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1. Executive Summary 

In order to consider and keep up with the up to date science and technology, related work and tools 

are analysed in each technical work package. In this deliverable, the state of the art and technology 

are collected and published up to the third year of the ASSUME project. This document will be 

updated based on the new studies and technologies during the entire project phase. 



 

 
 

D6.6.3 - State-of-the-art and technology Y3 

Page 5 of 28 State-of-the-art and technology v0.7 
 

 

2. Scalable Zero-Defect Analysis for Single-Core Systems (WP2) 

Avionics and automotive software development features a rich and multi -step validation and 

verification (V&V) process. It is however essentially based on conventional testing techniques, for 

which required coverage metrics and requirements are defined in international standards (e.g., ISO 

26262 for automotive applications). Conventional V&V requires a significant and ever growing 

portion of the overall development effort. With rising system complexity, it is on the brink of 

becoming the bottleneck of today's processes. 

2.1. Static analysis of run-time errors 

Sound static analysis (SSA) is a promising technique to improve the situation. It allows the analysis 

of software on unit level. In contrast to testing, it achieves complete control and data coverage of 

software by employing conservative over-approximations [1]. Thus SSA allows, under favourable 

circumstances, to prove the total absence of certain kinds of errors, in particular run -time errors 

(RTE) [2]. 

Most SSA tools are limited in scalability and precision. A single analysis run can take several days, 

limiting their application to components of small size. The results may include thousands of false 

(spurious) alarms, leading on some projects to economic ineffectiveness due to high efforts 

inspecting by hand these alarms. 

The state of the art in SSA for RTE on embedded C programs is Astrée, an analyzer developed by 

ENS and industrialized by AbsInt [3][4]. The limit on the precision of Astrée has its origins in the 

necessity for making approximate (abstract) computations, in order to scale up to large programs. 

In the past, it has been shown that by tailoring the abstractions to a specific class of properties and 

programs, the goal of zero false alarms can be achieved for synchronous embedded avionic and 

space software [5][6]. More research is necessary before generic libraries of abstractions are 

available to handle other common cases found in embedded software. 

End of 2015 the University of Karlsruhe started to commercialized there verification tools that base 

on Bounded Model Checking (BMC) [41]. BMC allow as well a sound verification without over-

approximation and has the chance to be more precise. On the other hand it can handle less 

complexity compared to [1]. 2017 the University of Oxford followed with a similar tool.  

2.2. Analysis of interactions 

Faults in complex industrial systems may result from complex hidden dependencies between 

interacting components. Existing tools do not allow for architecture and design verification of 

complex interactions (e.g. where dependencies between components are hidden in a 

communication layer or where call-back mechanisms are used). Therefore, to achieve the zero 

defect goal, architecture and design principles have to be improved and their fulfilment verified 

using new more powerful static analysis tools. Moreover, with the recent development of cyber -

physical systems in safety relevant areas, the amount of interactions with the system context grows 

tremendously. Consequently, future systems will have to ensure safety and security to a much 

greater extent. While safety analysis focuses on the reliability and correctness of the software, 

approaches to security analysis have to examine the software against risks resulting from 

interactions through high level and low level software interfaces.  Today's analysis tools do not 

provide sufficient support for safety and security analyses, although it is highly demanded.  
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2.3. Model-based development and integration with static analysis 

Model-driven development has been used to a rising degree in automotive industries, including 

functional models (in Simulink or ASCET) and meta-models which capture relevant meta-data. 

AUTOSAR and also the meta-model of the project AMALTHEA are prominent examples. Model-

driven development is also common in the avionics industry (LUSTRE and SCADE). The model 

information is often ignored by SSA tools, leading to needlessly difficult analysis problems and a 

loss of precision. There are however some examples for the integration of model-based code 

generators and static analysis tools. An integration between AbsInt’s WCET analyser aiT and 

Esterel’s SCADE generator has been established in the projects INTEREST and INTERESTED [7]. 

In ALL-TIMES, a first integration between aiT, Astrée, and TargetLink from dSPACE has been set 

up [8]. 

Moreover, there is a need to check beyond published modelling guidelines (such as MAAB or 

MISRA) and company specific rules, to include quality criteria such as maintainability, changeability 

and expandability. Analyses for coupling, cohesion and encapsulation are already available for non-

model based development, but not for model-based development. They are needed to prevent the 

introduction of defects resulting from side effects or insufficient understanding of the software 

system while modifying the code. In model-based development of large and complex models the 

same risks occur even more dramatically since the availability of software engineering principles in 

this field is very limited. Advanced methodology as well as convenient tool support is required for 

the quality analysis of models to prevent the introduction of defects during future development and 

maintenance activities. 
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3. System engineering methodology and standards (WP3) 

Automotive system engineering is founded on a wide set of well established, proven and tested 

processes ranging from requirements elicitation to system verification and validation. Many of these 

processes comprise dedicated engineering approaches targeting particular system quality aspects 

like e.g. correctness, safety, security, and many more. Even though these aspects are often 

combined together, synergies between these approaches are seldom recognized. Significant 

benefit is thus expected from coherently applying these engineering techniques continuously 

throughout the development process, i.e. from requirements elicitation to system verification and 

validation. We provide state of the art practice in system engineering methodology and standards 

but more detailed discussion can be found in D3.1.  

3.1. “Roadblocks” 

For example, at Daimler, as an OEM, automotive system development starts at system level where 

the realization and deployment of functions is not clear at the beginning. The validation and 

verification of system requirements is executed in a multi -step process and supported by several 

tools and models. These models show certain aspects of the model led system. The purpose of this 

approach is to improve the system understanding. Models serve also as source for verification. 

Since models typically are much simpler than their final source code representation verification 

tasks become better realizable.  

However, the verification of a model with respect to a certain requirement does not guarantee that 

the implementation does not violate that requirement. To ensure this, the code or at least certain 

parts have to be generated from these models with a sound code generator or some verification 

technologies have to be applied. In certain cases higher-level models are extractable from the 

source. An example here is the extraction of the task model to prove the absence of raise conditions. 

In other cases such a higher-level model is very hard to extract. The code that is generated from 

Matlab/Stateflow is an example here.  

Today many analysis tools work on code or even binary code level. For the efficient verification they 

often lack of information that is present but not easily accessible at this level. Due to this fact and 

due to technological borders, the application of static analysis tools today requires a high effort for 

setup and parameterization. Nevertheless many false alarms are produced causing significant effort 

for rework. Accompanied with the mentioned development process is the requirement of traceability. 

Available traceability solutions today are very limited and usually show only some aspects. Hence 

sound automatic impact analyses are difficult to execute. The pervasive traceability of requirements 

as well as faults requires the seamless integration into the development lifecycle of software -based 

vehicle functions running on multi-core embedded systems. This comprises data models, 

description languages, tools and methodology. 

Today, the source to gain performance is parallelization. Single core CPUs have nearly reached 

their limits in that respect. Multi- and many-core CPUs are state of the art in hardware technology. 

However, the development or the migration of existing software to concurrent application that 

exploits the CPU resources is an art itself and not well supported by tools. Hence, the effort to 

migrate an existing application to a multi-core processor causes much effort today. 

3.2. Requirement Formalization & Impact Analyses 

Key results relevant for the ASSUME have been created within the ARTEMIS project CESAR, 

addressing the lack of requirements quality that often leads to additional efforts, cost overrun and 
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schedule drifts in downstream development activities. One means to improve requirements quality 

is to formalize requirements using boilerplates, domain ontologies and patterns in order to allow 

automatic analysis and test generation. Key results of ITEA2 SAFE, relevant for ASSUME, are the 

methodology and pervasive consideration to analyses on functional safety for electric / electronic 

architectures of vehicles in the concept phase, and represented by static architectural models. This 

includes formalized safety requirements engineering and –management, the derivation of the safety 

case, pervasive traceability from requirements to detailed hardware models running the embedded 

software and the analysis and evaluation of this hardware in terms of fulfilling the safety 

requirements using industrial standards as E.g. AUTOSAR, EATOP and PREEvision. 

 

WP3 develops new patterns to blend functional requirements with timing requirements. We improve 

the consistency analysis to capture these new patterns. In near future, we further develop new 

formalization and analysis techniques to meet the industrial needs and investigate new pattern’s 

integration to the existing tools such as BTC EmbeddedPlatform and IBM DOORS. Current basis 

for requirement formalization in WP3 is the Simplified Universal Pattern  

 

3.3. Interfaces of Tools & Traceability  

Quality assurance is integral part in model-based SW development. Today, several tools are applied 

to address the broad range of quality requirements. Proper tracking of product quality requires much 

manual work and is thus error-prone. Tight analysis integration would provide means to compile 

quality results in a uniform and centralized fashion taking into account not only design and mode lling 

tools, but also analysis tools for determining different properties of a system under development 

and proving correctness of the system under various aspects such as functional behaviour, timing 

and safety. Consequently, the different models, generated source code and analysis results have 

to be related in order to ensure traceability of the development artefacts created during the process. 

 

The new ITEA project REVaMP21 has also initiated some activities in 2017 in the context of cross-

tools traceability with an emphasis on variability management.  

 

3.4. Standards for Semantic Interoperability 

Further needs arise in semantic interoperability between methods and tools. Some standards and 

exchange formats (e.g. AUTOSAR [O7]) exist, which facilitate the integration of architecture and 

behaviour modelling tools, and code generators. While analysis tools usually support interfaces to 

such standards, the integration of the analysis tools themselves is often considered using ad hoc 

solutions. There have been efforts in different research projects like MBAT, ARAMiS and Amalthea 

to come up with a more systematic integration approach. In MBAT a prototypical tool coupling 

between BTC's EmbeddedTester and Astrée has been developed, with the goal to applying model -

based testing to automatically find test cases for alarms reported by the static analysis. In the SAFE 

project, the data models of AUTOSAR, the initiative EATOP, tools from Dassault Systemes and 

PREEvision along with the respective tools were combined to facilitate pervasive traceability and 

analysis in architectural models. In the ARAMiS project the interoperability of design and  analysis 

tools for multi-core systems was addressed. An option consists in developing in-house integration 

platforms, generally based on internal and proprietary point-to-point solutions. A second option 

                                                      
1 http://www.revamp2-project.eu 
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consists in relying on commercial integration platforms implemented by well-established tool 

providers, e.g., PTC Integrity, IBM Rational Jazz, Siemens PLM Teamcenter, Dassault Enovia, 

Tasktop Sync, or Systemite System Weaver. 

 

The CESAR project offered customizable systems engineering providing interoperability of existing 

or emerging technologies. This project constitutes a milestone for a European standardization effort. 

Reference Technology Platform (RTP) defines basic services and their interfaces to perform 

specific design steps. RTP led the development of Interoperability Specifications (IOS) enabling 

seamless implementation of the whole design flows. Similar interoperability challenges are 

addressed by two other German projects, namely SPES 2020 and ARAMiS. These two projects aim 

to define common vocabulary for software-oriented systems engineering.  
 

The H2020 coordination action CP-SETIS2 has initiated in 2017 the so-called ICF (the 

“Interoperability Coordination Forum”) that is being incubated in an ARTEMIS-IA working group 

focused on standardization. The purpose of the ICF is to foster cooperation across European 

projects on pre-standardization activities of the IOS that has been initiated in the CESAR project 

(focused on data and tool integration for development environments in Systems Engineering).  

                                                      
2 http://cp-setis.eu 
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4. Synthesis of predictable concurrent systems (WP4) 

4.1. Verification of compilers and code generators 

Compiler and automatic code generators are essential tools to bridge the gap between models and 

executables. Sequential code generation from a synchronous language like Scade 6 can be 

formalized as a series of source-to-source and traceable transformations that progressively 

eliminate high-level programming constructs (hierarchical automata, activation conditions, 

sequences) down to a minimal data-flow kernel which is further simplified to a generic intermediate 

representation for transition functions, and ultimately turned into C code. These tools are vulnerable 

to miscompilation risks: a bug in the compiler or code generator causing it to produce incorrect 

object code from a correct source program. These risks are difficult to address in the context of 

critical embedded software qualified at the highest assurance levels: a few code generators have 

been qualified at level A of DO-178B (e.g. the Scade KCG6 generator), but no optimizing C 

compiler. A radical way to eradicate the miscompilation risk and provide high assurance is to 

formally verify the compilers and code generators themselves, using program proof.  The flagship 

of this approach is the CompCert C compiler, developed at Inria Gallium: an optimizing C compiler 

that is proved to be free of miscompilation bugs using the Coq proof assistant. CompCert provides 

provably correct mechanisms to trace properties of the source program down to the machine code, 

and is now in the pre-industrial phase via a collaboration with Airbus. The CompCert compiler has 

been licensed by AbsInt for further extensions of its capabilities and full indus trialization. The full 

formal verification of a code generator from a modelling language such as Scade remains to be 

done. 

4.2. Relaxed memory models 

Sequential consistency (SC), coined by Lamport [28], is an idealized semantic model for describing 

the behaviours of concurrent programs. It describes executions of concurrent programs as total 

orders over the set of program statements in which the program orders of the individual 

threads/processes are preserved. Although this definition gives us a clear and easy understanding, 

it is not realistic. Many modern hardware architectures (including Intel -x86, PowerPC ARM and 

GPUs) and programming language specifications (like C, C++, 2011) allow more behaviours than 

SC ones due to performance reasons. Hence, their semantics are relaxed with respect to SC. 

The documentation that describes memory subsystems of modern processors often lack formal 

precision and they are even inconsistent with the actual behaviours of the system at some points 

due to incorrectly implemented hardware. Extensive tooling was developed to perform model-based 

testing of processors and compilers, leading to the discovery of hardware bugs (acknowledged as 

such by the manufacturers) in the Power5 and Cortex A9 processors. Hence, there has been a 

notable effort to develop precise semantic models for these systems. They can be classified under 

two groups. Axiomatic models ([15], [29]) describe executions as unions of some relations over 

events and/or memory accesses and memory models as restrictions on the relations that define 

executions. Authors in [29] introduce a formal hierarchy of SC, RMO (relaxed memory order), PSO 

(partial store order), TSO (total store order) and Alpha memory models based on axiomatic models 

and proofs developed on Coq proof system. On the other hand, operational models ([21], [30], [31]) 

depict the behaviour of actual hardware components, abstracting them through data structures, 

such as queues. Most of the current research [13-21] formalizes semantics of relaxed memory 

models of the system they study as an example of one of these classes. 



 

 
 

D6.6.3 - State-of-the-art and technology Y3 

Page 11 of 28 State-of-the-art and technology v0.7 
 

 

Since SC is clear and powerful enough to reason about concurrent programs, it is desirable by the 

programmers. Adve and Hill [32] coined the term weak ordering as an interface between hardware 

and software. Given a restriction on the shared memory accesses of the programs as a 

synchronization model, hardware is weakly ordered with respect to this synchronization model if all 

the programs that obey the synchronization model show only SC behaviours. Hence, if the 

programmer writes a program obeying the synchronization model of a weakly ordered hardware, 

then s/he can reason this program as if it is SC. Similar definition of weak-ordering exists for 

programs and it is called robustness. A program is robust (or stable) if every weak memory 

behaviour of it corresponds to some SC behaviour. [29] and [33] propose a method for checking 

robustness. It characterizes robustness as acyclicity of a particular happens-before relation in the 

axiomatic model. However, the method in [33] is incomplete in the sense that it may label a program 

as non-robust although it is robust. [16] provides a complete decision procedure for checking 

robustness in terms of TSO programs. 

In some applications, correctness is much more important than the performance. In this situation, 

the programmer may agree to sacrifice performance to get rid of non-SC behaviours of the program, 

which might be unprecedented and erroneous. For this reason, a line of research developed for 

enforcing robustness on the programs by using synchronization primitives. The mos t commonly 

used primitives are memory fences which force programs to wait until some memory accesses 

become visible to all other processing units. Since the fence causes processing units to wait, it may 

degrade the program performance. Therefore, inserting as few fences as possible is crucial for the 

minimum performance degradation. Initial theoretical results for finding minimal fence insertions 

that forces robustness date back to 1988 [34]. Authors in [29] extend this algorithm to particular 

weak memory models and fence types. Authors in [16] propose an optimal fence insertion algorithm 

as a modification of their robustness check algorithm, which minimizes a particular cost function. 

Another group provides a dynamic and efficient fence insertion algorithm, which is neither complete 

nor optimal [35]. 

There are recent studies on the verification of programs running on weak memory models. 

Successful methods has been developed and used for verification of SC programs (like Owicki -

Gries, reduction, concurrent separation logic etc.) for a long time. There are recent attempts to 

extend these techniques to weak memory settings. [17] provides an Owicki -Gries kind of reasoning 

model for weak memory programs. [20] develops the relaxed separation logic (RSL) which can b e 

used to verify programs in release/acquire fragment of C11 specification.  A novel approach for 

verifying compiler optimizations is presented in [31]. This study considers possible statement 

rewritings or reorderings as compiler optimizations. Correctness of these optimizations depends on 

the underlying memory model of the platform that the program will run. For instance, reordering 

consecutive global read and write statements by the same thread is allowed by TSO memory model. 

Hence performing this reorder during the compilation period does not add any new behaviour to the 

program and it is valid for TSO. However, this reordering is not allowed by SC and it cannot be 

allowed as a valid optimization on an SC platform. To prove validity of given transformati ons on 

given memory models, the authors provide necessary conditions to be checked.  

Important preliminary studies on verified code generation for weak memory models has begun to 

emerge recently [13], however, such work often assumes that inter-thread and inter-task 

interference has been already ruled out through other verification tools. Verified refinement of 

programming language code to executable machine code for weak memory models remains an 

unsolved problem.  
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4.3. Synthesis of critical real-time software for multi-processor architectures 

Much of the classical work on real-time scheduling (both in research and the industry) relies on a 

process where the implementation is derived by manual transformations. Implementation is followed 

by verification and validation phases where timing analysis and schedulability analysis guarantee 

the respect of non-functional requirements. But today, the complexity of the multi -processor 

execution targets and the complexity of the functional and non-functional specifications increase 

rapidly, which makes it difficult to preserve a manual process (for cost, time-to-market, and/or 

confidence issues related to the number of errors introduced by human coders). Some important 

advances in this direction have largely automated the construction of task code and even the 

generation of full real-time implementations without providing schedulability guarantees or 

optimized mapping algorithms aimed at providing such guarantees. Work on optimized mapping still 

has to be integrated in standard industrial tooling. INRIA proposed methods and tools in this 

direction, namely the AAA methodology and the SynDEx and LoPhT tools for optimized real -time 

mapping of synchronous/reactive specifications onto multi-processor (distributed/multi-/many-core) 

targets.  

4.4. Automotive applications 

During the last years multi-core µC have entered the automotive domain. The arising challenge is 

to bring all existing and future SW from single core implementations and development processes 

into the new highly concurrent world. In industrial setting this transformation is still done by manual 

injection of inter-process communication and synchronization code. In addition, the mapping of 

runnable entities to different cores is also done manually. This injection of primitives is manual work, 

and hence prone to errors, and the runnable distribution has a huge impact on computation 

efficiency. Formal models of computation exist, but are currently not used for the multi -core SW 

engineering. Static analysis is in most cases restricted to the analysis of non-concurrent SW. 
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5. Zero-defect analysis for multi-core systems (WP5) 

5.1. Static analysis of concurrent multi-core applications 

Sound static analyzers (such as Astrée) have been successfully applied to check run -time errors in 

safety-critical sequential software, but far less tools are available for the analysis of concurrent 

software. Polyspace Code Prover can identify shared variables accessed by concurrent threads, 

but cannot precisely identify data races and lacks OS support so that OS-related information has to 

be provided manually. Earlier versions of the state-of-the-art industrial analyser Astrée have been 

restricted to analysing sequential code and did not support natively task-interleaving. To overcome 

this restriction ENS has developed AstréeA, a research prototype extending Astrée to check for 

run-time errors in multi-task C software consisting of millions of lines of code [9]. Concurrency 

effects like pre-emptions, task priorities, and critical sections can be soundly and precisely taken 

into account. AstréeA provides mechanisms to model operating systems by mapping the OS 

functionality to efficient stub libraries. In the course of the FORTISSIMO project the AstréeA 

mechanisms have now been transferred to Astrée and have been further enhanced. Currently OS 

support is provided for avionic software running under an ARINC 653 OS [10], and automotive 

software running under OSEK and AUTOSAR OS [11]. In ASSUME, the AUTOSAR support, which 

had been limited to system specifications in .oil format, has been extended to the service libraries, 

as, e.g., CAN, DEM, and DCM. Furthermore, some OSEK/AUTOSAR OS mechanisms like phases 

of execution, the priority inheritance protocol, and enabling/disabling interrupts have been modelled 

in the FORTISSIMO project. Detection of deadlocks and dynamic priorities including the priority 

ceiling protocol have been added in ASSUME. Now, Astrée can find concurrency-specific faults, 

including detection of data races, deadlocks, and priority inversions. 

 

The static analyzer framework Goblint is another emerging academic tool for concurrent programs. 

It has been elaborated in the scope of the MBAT project to prove the absence of data races in 

concurrent code as well as in interrupt-driven OSEK applications. The resulting prototype was 

imprecise with respect to global data, and not able to precisely model sophisticated synchronization 

primitives such as sending and receiving of events or suspending and resuming of tasks (often 

employed in embedded software to enforce scheduling policies).  In ASSUME, the precision has 

been improved by better handling of casts between different types,  support for context-sensitive 

warnings has been added, and the regression test infrastructure has been improved. Widening on 

calling contexts has been introduced to improve performance and to be able to deal with recursion. 

The space consumption has been reduced by working on basic blocks instead of individual 

statements and by keeping values only at widening points. 

 

A third tool, the MEMICS analyzer, was developed in the ARAMiS project to detect race conditions 

in concurrent software by bounded model checking. Its focus is on the analysis of low-level code 

(close to machine code). It incorporates an elaborate memory model including malloc and free 

and deals well with pointer structures. 

 

Another outcome of the ARAMiS project is the Gropius analyzer, a static analysis tool focused on 

concurrency errors arising in automotive software. In ASSUME, the tool was tested with real 

industrial code, which showed limitations in the tool design. A redesign of the tool in ASSUME 

introduced a precise context-sensitive pointer analysis and led to an increase in efficiency of the 

tool and a reduction of the number of false positives during the analysis of industrial code.  
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5.2. Deductive methods  

Program proofs for concurrent programs were pioneered by the Calvin and QED too ls. Current tools 

include VCC, which operates on concurrent C programs annotated with specifications and invariants 

and proves them correct using the Z3 SMT solver; Chalice, a modular verification tool  for a 

dedicated concurrent language; and CIVL (Concurrency Intermediate Verification Language), which 

verifies refinement for concurrent programs in various different languages after translation into a 

common intermediate format. VCC and Chalice base their invariant reasoning on objects, object 

ownership, and type invariants. VCC does not support refinement and Chalice does so only for 

sequential programs; neither support movers nor reduction reasoning. Finally, concurrent 

separation logic reasons on concurrent programs without explicit non-interference checks. State-

of-the art tools are able to blend this logic with explicit non-interference reasoning. 

 

5.3. Dynamic race detection 

Runtime verification and dynamic analysis fill an important gap between static analysis and testing. 

While static tools are conservative which may lead to a large false alarm rate, testing catches errors 

late, making it difficult to find their cause. Runtime verification, on the other hand, provides early 

error detection during execution. For instance, dynamic race detection tools, such as Goldilocks 

and FastTrack, instrument a program with code that detects data races while the program is running. 

However, these tools often suffer from significant execution slowdown. To reduce this slowdown, a 

variety of techniques have been explored. Some approaches improve performance by sacrificing 

precision, i.e., missing some races. They accomplish this by sampling the accesses performed, e.g. 

ThreadSanitizer [36] and RACEZ [37]. Speeding up race detection and/or replay by parallelization 

has also been explored, e.g. in the GPU-accelerated split race checker Kuda and DoublePlay 

(parallelizing sequential logging and replay) [40]. Others, e.g., HARD (Hardware-Assisted lockset-

based Race Detection) [38] and Paralog (enabling and accelerating online parallel monitoring of 

multithreaded applications) [39] make use of custom hardware to accelerate race detection and 

similar parallel program monitoring techniques. 

 

The following commercial tools can be used or adapted to detect races on some particular 

embedded computing platforms: 

 

- Intel Inspector XE, PIN dynamic instrumenter 

- Valgrind DRD  

- Helgrind  

- Parallocity ZVM-K (ARM) 

- Google ThreadSanitizer 

 

While these tools have been used in commercial applications with some success, the algorithms 

underlying them are often not precisely documented and each of them may need some adaptation 

and modifications before they can be used on any particular code base and application. 

 

Dynamic race detection for embedded systems has unique challenges. These include the mixed 

use of variables of different, often quite small, bit lengths [22], the use of task -based concurrency 

with priorities and interrupts [23-25] rather than threads and concurrency libraries, and issues 

relating with the platform on which development and testing is performed to the one on which the 

applications will finally run [26-27].  
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In particular, [22] proposes a dynamic race detection algorithm based on vector clocks by 

considering the granularity of program data (i.e.; words, bytes, bits, etc.) that is common in 

embedded systems. The main motivation is to improve data race precision as opposed to other 

race detection solutions, which do not consider various data sizes in the program. In [23] an on-the-

fly technique that efficiently detects apparent data races in interrupt -driven programs without false 

positives is presented. The technique combines a tailored lightweight labelling scheme to maintain 

the logical concurrency between a program and every instance of its interrupt handlers with a 

precise detection protocol that analyses conflicting accesses to shared memories by storing at most 

two accesses for each shared variable.  

 

In interrupt-driven programs, inconsistent ordering (races) of interrupt events could result in non-

determinism in the program. To detect these kinds of races, the algorithm in [24] sequentialises the 

program and applies model checking. However, this solution does not focus on multi-thread 

programs because the program under consideration is single-threaded event-driven.  

A failure that is caused by an interrupt handler that modifies a certain variable between a reference 

or modification to the variable and a later reference to the variable is defined as a race in [25]. The 

proposed solution in [25] is to generate an interrupt at the instruction points that possibly cause 

race conditions and replace input value from external device to control interrupt handlers. This 

covers all possibilities of sharing memory between the interrupt handler and other routines that 

would cause data races. 

 

To improve the performance of race detection in embedded systems, [26] employs hardware 

registers originally added to processors to watch the traffic along the data and instruction buses for 

debugging purposes. This improves the analysis of races compared to techniques based on 

software instrumentation. 

 

A testing method for identifying faults in multitasking applications for embedded systems is 

proposed in [27] where intra and inter task analysis is used to generate test cases to improve the 

observability of faults. 

 

In ASSUME, we aim at a race detection approach that can be adapted to a variety of platforms and 

applications, including possibly interrupt-driven ones, and one whose overhead-precision trade-off 

can be adjusted by the programmer. A first step in this direction is EmbedSanitizer [42], which aims 

at detecting data races for Linux POSIX-thread applications developed for the 32-bit ARMv7 

architecture. For analysis and instrumentation, the tool supports both interactive and batch modes. 

It can be invoked through a special Clang compiler flag while compiling the C/C++ application for 

the Linux ARM Cortex architecture. Since the tool is integrated in the Clang/LLVM compiler tool 

chain, its mode of use is no way different from the compiler and its flags. EmbedSanitizer has been 

derived from ThreadSanitizer, an open-source industrial-level race detection tool that is part of the 

LLVM compiler infrastructure, but only supports x86_64 as it relies on 64-bit address space for its 

internal optimizations. EmbedSanitizer is intended to be modular; any race detection algorithm can 

be plugged-in and used. Possible algorithms are FastTrack and variants of lockset-based race 

detection algorithms. For use in EmbedSanitizer, a custom implementation of the efficient and 

precise FastTrack race detection algorithm has been developed that works for 32-bit platforms. 
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5.4. Performance Analysis of Dataflow Models 

Dataflow models of computation are widely used to represent streaming systems. This is thanks to 

their simple graphical representation, compactness and the ability to express parallelism inherent 

to many streaming systems. In dataflow, a system is represented by a directed graph where nodes 

are called actors and edges are called channels. Actors represent computational kernels while 

channels typically capture data, control and resource dependencies between actors. The quanta of 

information exchanged across channels are called tokens. Actors involve themselves into 

communication with other actors by firing. The firing represents the quantum of computation during 

which actors consume tokens from their input channels and produce tokens in their output channels. 

Preconditions for firing are given by firing rules [43]. The numbers of tokens produced and 

consumed are called rates. In the timed versions of dataflow that are investigating in ASSUME, 

actor firings have duration that we call the actor firing delay. 

 

There exist quite a number of dataflow models. They can be roughly divided into decidable [44] and 

dynamic dataflow models [45]. Decidable dataflow models can be considered versions of dataflow 

with restricted semantics so that the model can be scheduled at design-time as well as analysed 

for boundedness, deadlock and its timing properties. Examples of decidable dataflow formalisms 

are synchronous dataflow (SDF) [46], cyclo-static dataflow [47] and scalable SDF [48]. Dynamic 

dataflow models offer more expressive power in exchange for a decrease in analysability and 

implementation efficiency [49]. Well-known examples are Boolean dataflow and dynamic dataflow 

[50]. 

 

All in all, in terms of support for design and analysis of timing predictable and repeatable systems 

(and most predictable systems are at first real-time systems), among dataflow models, decidable 

dataflow models still play a more pronounced role than the echelons of emerging dynamic dataflow 

models. This in particular refers to SDF as the most stable and mature flavour of decidable dataflow 

that is characterized by its predictability, strong formal properties and amenability to powerful 

optimization techniques [45]. In SDF rates are fixed and known at compilation time. The firing rules 

of SDF are conjunctive [43] in the sense that for an actor to fire, every of its inbound channels must 

contain the number of tokens prescribed by the port rate defined by the actor and the inbound 

channel in consideration. Furthermore, they are distributive [43] in the sense that when the actor 

fires all outbound channels receive tokens in the quantity prescribed by the corresponding port 

rates. SDF graphs evolve in iterations. An iteration is a set of actor firings that have no net effect 

on the token distribution of the graph. The number of firings of a particular actor in an iteration is 

given in the so-called repetition vector of the graph. In ASSUME, we consider the so-called self-

timed execution of SDF graphs, which means that actors must fire as soon as they are enabled.  

 

Several examples of use of SDF in design and analysis of predictable and repeatable systems can 

be found in [51][52][53]. As can be seen from these papers, the SDF formalism is not only useful 

for reasoning about the functional behaviour and correctness of systems, but also, in its timed 

version [54], can be used when one needs to derive or prove worst-case performance guarantees, 

in particular throughput that is a vital performance indicator in real -time streaming systems and that 

is defined as the long run average number of completed iterations per time-unit. 

 

Many authors [54][55][56][57][58] have dealt with the problem of performance analysis of SDF 

models. To make these techniques applicable in everyday engineering practice it is important that 

they are available in tools that can be utilized in fully or semi-automated design flows. The SDF3 

tool [59] developed by TU/e is such a tool. In particular, it implements various performance analysis 
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algorithms for various dataflow MoCs such as synchronous dataflow (SDF) [46], cycle-static 

dataflow (CSDF) [47], and finite-state machine-based scenario-aware dataflow (FSM-SADF) [60]. 

 

The common characteristic of all of the algorithms is that they are in terms of performance adversely 

affected by the increase of repetition vector entries of the graph. In particular, the performance will 

scale at least linearly with the sum of the repetition vector entries [60]. 

 

However, monolithic SDF models are inconvenient for capturing large designs. Therefore, allowing 

for compositional modelling is a necessity in the design of large systems as it enforces good 

engineering practices such as modularity and design reuse, and improves readability. Hierarchy 

has been introduced to SDF [61][62][63][64]. To apply the existing exact throughput analysis 

algorithms to hierarchical dataflow models, however, they fi rst need to be flattened. 

 

In ASSUME, we propose a modular technique for throughput analysis of a subclass of hierarchical 

SDF graphs with arbitrary number of hierarchy levels that removes the need for flattening the graph. 

This is achieved by using (max,+)-based state-space representations of hierarchical actors instead 

of flattening in the context of existing throughput analysis techniques based on symbolic simulation. 

Furthermore, as our technique is able to take advantage of the hierarchical semantics o f SDF, we 

argue that our technique helps mitigate the adverse effect of an increase in the repetition vector 

entries on the performance of existing performance analysis techniques. This is due to the fact that 

no matter how many times a hierarchical actor is scheduled in the composition, we do not need to 

replicate the firings of all the actors embodied in the hierarchical actor as the existing techniques 

do, but only use its more compact state-space representation to capture the effects its firing has on 

the rest of the composition. 

 

5.5. Worst-case execution time (WCET) 

Worst-case execution time (WCET) analysis on multi-core architectures has been considered in 

recent projects: Predator, T-Crest, Certainty, and parMerasa. In ARAMiS, an approach was 

proposed for computing an interference-sensitive Worst-Case Execution Time (isWCET) taking into 

account variable access delays due to the concurrent use of shared resources in multi-core 

processors [12]. The state of the art can now handle single-core executions without interference or 

when the number and kind of interference points can be determined. For time composable 

architectures, this is sufficient to obtain an overall WCET. There have also been recommendations 

for hardware configurations increasing predictability and composability.  

 

Recent results by INRIA showed that precise and scalable timing analyses can be achieved on 

selected parallel applications (using for instance the Heptane WCET analyser). The analysis has 

the precision and scalability of classic IPET-based WCET analysis. 

 

Timing analysis on concurrent task execution at the system level can also be used to reason about 

potential race conditions, as part of the concurrency defect analysis. Two classes of analyses can 

be identified. Analytical methods determine performance characterizations, such as response times 

of task chains, by solving fixed point equations. Popular approaches include SymTA/S and the Real -

Time Calculus. Periodic resource models provide compositional methods, focusing on partitioned 

resources. Computational methods, on the other hand, rely on model-checking techniques, where 

the system behaviour is represented as a state transition system. For example, the model checker 

UPPAAL can be used for scheduling analysis, as well as the related TIMES tool. While 
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computational methods typically provide better results, e.g. a reduced number of false positives, 

they also lack in scalability due to computational complexity. Scalability improvements have been 

proposed, e.g. as part of the COMBEST project. However, no computational analysis exists with 

integrated methods reliably preserving appropriate precision of the results.  
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6. Related Projects 

Name 

Program 

Period 

Technical Focus Relationship 

CompCert 

French ANR 

2005-2009 

Formal verification of compilers First explorations of compiler 

verification using Coq. 

ES_PASS 

ITEA 2 

2007-2009 

Embedded Software Product-

based Assurance 

Improvement and integration of the 

Astrée tool used in ASSUME. 

COMBEST 

FP7 IST STREP 

2008-2010 

Computational and analytical 

models for non-functional 

properties of embedded systems. 

Methods and tools for rigorous 

embedded systems design. 

Combination of different analysis 

techniques and tools. 

PARSEC 

FUI 

2009-2012 

Model-driven engineering for 

critical distributed systems 

Collaboration with Thales SA towards 

defining a development environment 

for critical distributed embedded 

systems requiring certification 

according to strict standards such as 

DO-178B (avionics) or IEC61508 

(transportation).  

ARAMiS 

German BMBF 

2011-2014 

ARAMIS develops methods and 

techniques for optimized use of 

Multi-Core architectures with 

respect to development standards 

in the transportation domain such 

as ISO 26262. 

ASSUME will develop models and 

interchange formats for the analysis of 

single and multi-core software. 

Functional as well as non-functional 

properties will be taken into 

consideration. The ARAMIS meta-

model for scheduling and timing will 

be taken into account to enrich the 

interfaces of the ASSUME platform. 

ARAMIS methods regarding the 

analysis of multi-core systems will be 

developed further in the ASSUME 

project including the MEMICS tool. 

Amalthea(4public) 

ITEA 2 

2011-2014, 

and 

2014-2017 

AMALTHEA4public will built a 

continuous development tool 

chain platform for automotive 

embedded multi-core systems 

based on results of various public 

funded projects by using the 

AMALTHEA methodology. 

ASSUME extends the scope of 

AMALTHEA beyond timing and HW 

resource modeling and simulation.   

ASSUME derives a methodology to 

analytically calculate data for the 

AMALTHEA meta-model (in contrast 

to measuring and simulation). 
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Name 

Program 

Period 

Technical Focus Relationship 

MBAT 

ARTEMIS 

2011-2014 

Combination of model-based 

analysis and testing. 

Traceability between Requirements, 

Design and V&V artefacts. Extensions 

of the Astrée and Goblint tools used in 

ASSUME. 

ParMerasa 

FP7 

2011-2014 

The objective of parMERASA 

(Multi-Core Execution of 

Parallelised Hard Real-Time 

Applications Supporting 

Analysability) is a timing 

analysable system of parallel hard 

real-time applications running on a 

scalable multi-core processor. 

The idea of analysable systems with 

regard to timing will be expanded in 

ASSUME by the analysis of functional 

and various non-functional properties 

in multi-core systems. 

PHARAON 

FP7 

2011-2014 

Parallel and Heterogeneous 

Architectures for Real-Time 

Applications 

Parallelization of soft real-time 

programs for low-power embedded 

architectures, based on task-parallel 

data-flow languages and model-driven 

engineering. 

SAFE 

ITEA 

2014-2017 

The SAFE project brings solutions 

to demonstrate the compliance to 

the ISO26262 functional safety 

standard for the development of 

safe automotive applications 

based on the AUTOSAR 

architecture. 

While SAFE focuses on architecture 

modelling in the concept phase of 

system development ASSUME will 

target the synthesis and analysis of 

implementation and behaviour models. 

Interfaces to SAFE will be explored 

regarding the traceability from concept 

models to implementation models in 

the development of safety-relevant 

functionality. 

Verasco 

French ANR 

2012-2015 

Joint verification of compilers and 

static analyzers 

Collaboration with Airbus towards the 

industrialization of CompCert. 

ESPRESSO 

Swedish FFI 

2012-2015 

Modelling and analysis 

methodology, Guidelines and tool 

recommendations for model-based 

engineering of embedded system 

at Scania, Application and 

evaluation of the developed 

concepts 

Traceability across the engineering 

phases (based on a use case from 

Scania) 

CRYSTAL 

ARTEMIS 

2013-2016 

Interoperability of System 

Engineering Methods 

Requirement Formalization, CCC 

(Correctness, Completeness, 

Consistency). 

http://pharaon.di.ens.fr/
http://pharaon.di.ens.fr/
http://pharaon.di.ens.fr/
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Name 

Program 

Period 

Technical Focus Relationship 

AstréeA 

French ANR 

2012-2015 

Static analysis of concurrent 

programs. 

Developed a research prototype of the 

AstréeA tool used in Assume. 

Fortissimo 

German BMBF 

2014-2016 

Formal Analysis and Verification of 

Concurrent Hardware and 

Software 

Develop the AstréeA tool as part of 

the commercial Astrée analyser. 

CAPACITES 

French 

Investissements 

d’Avenir 

2014-2017 

Parallel computing for safety-

critical real-time applications 

Collaboration with Kalray SA, Airbus, 

SAGEM, Dassault Aviation, MBDA on 

the construction of many-core safety-

critical real-time applications. This 

includes mixed-criticality applications 

with focus on the spatial partitioning 

enforced by the architecture, and 

latency-critical applications expressed 

in an idiomatic form of OpenCL that 

enables worst-case response time 

analysis. 

EMC2 

ARTEMIS 

EMC² finds solutions for dynamic 

adaptability in open systems, 

provides handling of mixed 

criticality applications under real-

time conditions, scalability and 

utmost flexibility, full scale 

deployment and management of 

integrated tool chains, through the 

entire lifecycle. 

ASSUME complements EMC² by 

analysis methods supporting the (1) 

validation of functional safety concepts 

including dynamic system adaptation 

and the (2) verification of technical 

safety concepts (against these 

functions) based on mixed-criticality 

multi-core platforms, thereby providing 

the needed arguments for certification 

purposes. 

SPES_XT 

BMBF 

2012-2015 

The Project SPES_XT develops a 

seamless integration platform for 

modelling and analysis techniques 

for embedded systems. 

The methods and techniques 

developed in ASSUME will be 

constructed to support the SPES 

methodology. They will provide new 

building blocks for the requirements 

viewpoint and the functional viewpoint 

in the SPES matrix. 

The demand of SPES_XT to implement 

the results in the industrial practice will 

be subsequently supported by the use 

case driven approach of ASSUME. 

REVaMP² The ITEA 3 project REVaMP² aims 

to conceive, develop and evaluate 

the first comprehensive automation 

Lifecycle Interoperability 



 

 
 

D6.6.3 - State-of-the-art and technology Y3 

Page 22 of 28 State-of-the-art and technology v0.7 
 

 

Name 

Program 

Period 

Technical Focus Relationship 

tool-chain and associated 

executable process to support 

round-trip engineering of SIS 

Product Lines and thereby helping 

to profitably engineer mass 

customised products and services 

in virtually any economic sector. 
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7. Conclusions and Discussion 

This deliverable presents the state of the art and technology regarding the ASSUME project for the 

year 2017. The related technologies for the main work packages of the project including WP2 

(Scalable Zero-Defect Analysis for Single-Core Systems), WP3 (System engineering methodology 

and standards), WP4 (Synthesis of predictable concurrent systems), and WP5 (Zero-defect analysis 

for multi-core systems) are discussed. Also, the related projects for ASSUME are elaborated in the 

document. 
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