
PROPRIETARY RIGHTS STATEMENT

THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE ASSUME CONSORTIUM.
NEITHER THIS DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED OR
COMMUNICATED BY ANY MEANS TO ANY THIRD PARTY, IN WHOLE OR IN PARTS, EXCEPT WITH THE PRIOR
WRITTEN CONSENT OF THE ASSUME CONSORTIUM THIS RESTRICTION LEGEND SHALL NOT BE ALTERED
OR OBLITERATED ON OR FROM THIS DOCUMENT. THE RESEARCH LEADING TO THESE RESULTS HAS
RECEIVED FUNDING FROM VARIOUS NATIONAL AUTHORITIES IN THE FRAMEWORK OF THE ITEA 3
PROGRAMME (PROJECT NUMBER 14014).

Affordable Safe & Secure Mobility Evolution

State-of-the-art and technology Y3
Deliverable D6.6.3

Deliverable Information

Nature Document Dissemination
Level

Public

Project ASSUME Project Number 14014

Deliverable ID D6.6.3 Date 08.09.2017

Status Final Version 0.7

Contact Person Moharram Challenger Organisation UNIT

Phone +90 (232) 339 6633 E-Mail Moharram.challenger@unitbilisim.com

 D6.6.3 - State-of-the-art and technology Y3

Author Table

Name Company Email

Moharram Challenger UNIT Moharram.challenger@unitbilisim.com

 Reinhold Heckmann AbsInt heckmann@absint.com

Bernard Schmidt Robert Bosch GmbH Bernard.Schmidt@de.bosch.com

Frederic Loiret KTH floiret@kth.se

Dumitru Potop-Butucaru INRIA dumitru.potop_butucaru@inria.fr

Stefan Otten FZI otten@fzi.de

Change and Revision History

Version Date Reason for Change
Affected

sections

0.1 03.11.2015 Initial version

0.2 20.11.2015 Extension of initial version 2, 4.1, 5

0.3 26.11.2015 Modification and further extension

0.4 01.12.2015 Updated version Submitted to Reviewers

0.5 15.12.2015 Review finished

0.6 28.11.2016 Additions of second year’s SotA 1,3,4.2,5

0.7 06.09.2017 Review and additions of third year’s SotA 1,2,3,5,6

D6.6.3 - State-of-the-art and technology Y3

Page 3 of 28 State-of-the-art and technology v0.7

Table of Contents

AUTHOR TABLE .. 2

CHANGE AND REVISION HISTORY ... 2

TABLE OF CONTENTS .. 3

1. EXECUTIVE SUMMARY ... 4

2. SCALABLE ZERO-DEFECT ANALYSIS FOR SINGLE-CORE SYSTEMS (WP2) 5

2.1. Static analysis of run-time errors... 5

2.2. Analysis of interactions ... 5
2.3. Model-based development and integration with static analysis .. 6

3. SYSTEM ENGINEERING METHODOLOGY AND STANDARDS (WP3) ... 7

3.1. “Roadblocks” .. 7

3.2. Requirement Formalization & Impact Analyses ... 7
3.3. Interfaces of Tools & Traceability .. 8

3.4. Standards for Semantic Interoperability .. 8

4. SYNTHESIS OF PREDICTABLE CONCURRENT SYSTEMS (WP4) ... 10

4.1. Verification of compilers and code generators ... 10
4.2. Relaxed memory models .. 10

4.3. Synthesis of critical real-time software for multi-processor architectures 12
4.4. Automotive applications .. 12

5. ZERO-DEFECT ANALYSIS FOR MULTI-CORE SYSTEMS (WP5) .. 13

5.1. Static analysis of concurrent multi-core applications ... 13
5.2. Deductive methods ... 14

5.3. Dynamic race detection .. 14
5.4. Performance Analysis of Dataflow Models .. 16
5.5. Worst-case execution time (WCET) .. 17

6. RELATED PROJECTS ... 19

7. CONCLUSIONS AND DISCUSSION ... 23

REFERENCES ... 24

D6.6.3 - State-of-the-art and technology Y3

Page 4 of 28 State-of-the-art and technology v0.7

1. Executive Summary

In order to consider and keep up with the up to date science and technology, related work and tools

are analysed in each technical work package. In this deliverable, the state of the art and technology

are collected and published up to the third year of the ASSUME project. This document will be

updated based on the new studies and technologies during the entire project phase.

D6.6.3 - State-of-the-art and technology Y3

Page 5 of 28 State-of-the-art and technology v0.7

2. Scalable Zero-Defect Analysis for Single-Core Systems (WP2)

Avionics and automotive software development features a rich and multi -step validation and

verification (V&V) process. It is however essentially based on conventional testing techniques, for

which required coverage metrics and requirements are defined in international standards (e.g., ISO

26262 for automotive applications). Conventional V&V requires a significant and ever growing

portion of the overall development effort. With rising system complexity, it is on the brink of

becoming the bottleneck of today's processes.

2.1. Static analysis of run-time errors

Sound static analysis (SSA) is a promising technique to improve the situation. It allows the analysis

of software on unit level. In contrast to testing, it achieves complete control and data coverage of

software by employing conservative over-approximations [1]. Thus SSA allows, under favourable

circumstances, to prove the total absence of certain kinds of errors, in particular run -time errors

(RTE) [2].

Most SSA tools are limited in scalability and precision. A single analysis run can take several days,

limiting their application to components of small size. The results may include thousands of false

(spurious) alarms, leading on some projects to economic ineffectiveness due to high efforts

inspecting by hand these alarms.

The state of the art in SSA for RTE on embedded C programs is Astrée, an analyzer developed by

ENS and industrialized by AbsInt [3][4]. The limit on the precision of Astrée has its origins in the

necessity for making approximate (abstract) computations, in order to scale up to large programs.

In the past, it has been shown that by tailoring the abstractions to a specific class of properties and

programs, the goal of zero false alarms can be achieved for synchronous embedded avionic and

space software [5][6]. More research is necessary before generic libraries of abstractions are

available to handle other common cases found in embedded software.

End of 2015 the University of Karlsruhe started to commercialized there verification tools that base

on Bounded Model Checking (BMC) [41]. BMC allow as well a sound verification without over-

approximation and has the chance to be more precise. On the other hand it can handle less

complexity compared to [1]. 2017 the University of Oxford followed with a similar tool.

2.2. Analysis of interactions

Faults in complex industrial systems may result from complex hidden dependencies between

interacting components. Existing tools do not allow for architecture and design verification of

complex interactions (e.g. where dependencies between components are hidden in a

communication layer or where call-back mechanisms are used). Therefore, to achieve the zero

defect goal, architecture and design principles have to be improved and their fulfilment verified

using new more powerful static analysis tools. Moreover, with the recent development of cyber -

physical systems in safety relevant areas, the amount of interactions with the system context grows

tremendously. Consequently, future systems will have to ensure safety and security to a much

greater extent. While safety analysis focuses on the reliability and correctness of the software,

approaches to security analysis have to examine the software against risks resulting from

interactions through high level and low level software interfaces. Today's analysis tools do not

provide sufficient support for safety and security analyses, although it is highly demanded.

D6.6.3 - State-of-the-art and technology Y3

Page 6 of 28 State-of-the-art and technology v0.7

2.3. Model-based development and integration with static analysis

Model-driven development has been used to a rising degree in automotive industries, including

functional models (in Simulink or ASCET) and meta-models which capture relevant meta-data.

AUTOSAR and also the meta-model of the project AMALTHEA are prominent examples. Model-

driven development is also common in the avionics industry (LUSTRE and SCADE). The model

information is often ignored by SSA tools, leading to needlessly difficult analysis problems and a

loss of precision. There are however some examples for the integration of model-based code

generators and static analysis tools. An integration between AbsInt’s WCET analyser aiT and

Esterel’s SCADE generator has been established in the projects INTEREST and INTERESTED [7].

In ALL-TIMES, a first integration between aiT, Astrée, and TargetLink from dSPACE has been set

up [8].

Moreover, there is a need to check beyond published modelling guidelines (such as MAAB or

MISRA) and company specific rules, to include quality criteria such as maintainability, changeability

and expandability. Analyses for coupling, cohesion and encapsulation are already available for non-

model based development, but not for model-based development. They are needed to prevent the

introduction of defects resulting from side effects or insufficient understanding of the software

system while modifying the code. In model-based development of large and complex models the

same risks occur even more dramatically since the availability of software engineering principles in

this field is very limited. Advanced methodology as well as convenient tool support is required for

the quality analysis of models to prevent the introduction of defects during future development and

maintenance activities.

D6.6.3 - State-of-the-art and technology Y3

Page 7 of 28 State-of-the-art and technology v0.7

3. System engineering methodology and standards (WP3)

Automotive system engineering is founded on a wide set of well established, proven and tested

processes ranging from requirements elicitation to system verification and validation. Many of these

processes comprise dedicated engineering approaches targeting particular system quality aspects

like e.g. correctness, safety, security, and many more. Even though these aspects are often

combined together, synergies between these approaches are seldom recognized. Significant

benefit is thus expected from coherently applying these engineering techniques continuously

throughout the development process, i.e. from requirements elicitation to system verification and

validation. We provide state of the art practice in system engineering methodology and standards

but more detailed discussion can be found in D3.1.

3.1. “Roadblocks”

For example, at Daimler, as an OEM, automotive system development starts at system level where

the realization and deployment of functions is not clear at the beginning. The validation and

verification of system requirements is executed in a multi -step process and supported by several

tools and models. These models show certain aspects of the model led system. The purpose of this

approach is to improve the system understanding. Models serve also as source for verification.

Since models typically are much simpler than their final source code representation verification

tasks become better realizable.

However, the verification of a model with respect to a certain requirement does not guarantee that

the implementation does not violate that requirement. To ensure this, the code or at least certain

parts have to be generated from these models with a sound code generator or some verification

technologies have to be applied. In certain cases higher-level models are extractable from the

source. An example here is the extraction of the task model to prove the absence of raise conditions.

In other cases such a higher-level model is very hard to extract. The code that is generated from

Matlab/Stateflow is an example here.

Today many analysis tools work on code or even binary code level. For the efficient verification they

often lack of information that is present but not easily accessible at this level. Due to this fact and

due to technological borders, the application of static analysis tools today requires a high effort for

setup and parameterization. Nevertheless many false alarms are produced causing significant effort

for rework. Accompanied with the mentioned development process is the requirement of traceability.

Available traceability solutions today are very limited and usually show only some aspects. Hence

sound automatic impact analyses are difficult to execute. The pervasive traceability of requirements

as well as faults requires the seamless integration into the development lifecycle of software -based

vehicle functions running on multi-core embedded systems. This comprises data models,

description languages, tools and methodology.

Today, the source to gain performance is parallelization. Single core CPUs have nearly reached

their limits in that respect. Multi- and many-core CPUs are state of the art in hardware technology.

However, the development or the migration of existing software to concurrent application that

exploits the CPU resources is an art itself and not well supported by tools. Hence, the effort to

migrate an existing application to a multi-core processor causes much effort today.

3.2. Requirement Formalization & Impact Analyses

Key results relevant for the ASSUME have been created within the ARTEMIS project CESAR,

addressing the lack of requirements quality that often leads to additional efforts, cost overrun and

D6.6.3 - State-of-the-art and technology Y3

Page 8 of 28 State-of-the-art and technology v0.7

schedule drifts in downstream development activities. One means to improve requirements quality

is to formalize requirements using boilerplates, domain ontologies and patterns in order to allow

automatic analysis and test generation. Key results of ITEA2 SAFE, relevant for ASSUME, are the

methodology and pervasive consideration to analyses on functional safety for electric / electronic

architectures of vehicles in the concept phase, and represented by static architectural models. This

includes formalized safety requirements engineering and –management, the derivation of the safety

case, pervasive traceability from requirements to detailed hardware models running the embedded

software and the analysis and evaluation of this hardware in terms of fulfilling the safety

requirements using industrial standards as E.g. AUTOSAR, EATOP and PREEvision.

WP3 develops new patterns to blend functional requirements with timing requirements. We improve

the consistency analysis to capture these new patterns. In near future, we further develop new

formalization and analysis techniques to meet the industrial needs and investigate new pattern’s

integration to the existing tools such as BTC EmbeddedPlatform and IBM DOORS. Current basis

for requirement formalization in WP3 is the Simplified Universal Pattern

3.3. Interfaces of Tools & Traceability

Quality assurance is integral part in model-based SW development. Today, several tools are applied

to address the broad range of quality requirements. Proper tracking of product quality requires much

manual work and is thus error-prone. Tight analysis integration would provide means to compile

quality results in a uniform and centralized fashion taking into account not only design and mode lling

tools, but also analysis tools for determining different properties of a system under development

and proving correctness of the system under various aspects such as functional behaviour, timing

and safety. Consequently, the different models, generated source code and analysis results have

to be related in order to ensure traceability of the development artefacts created during the process.

The new ITEA project REVaMP21 has also initiated some activities in 2017 in the context of cross-

tools traceability with an emphasis on variability management.

3.4. Standards for Semantic Interoperability

Further needs arise in semantic interoperability between methods and tools. Some standards and

exchange formats (e.g. AUTOSAR [O7]) exist, which facilitate the integration of architecture and

behaviour modelling tools, and code generators. While analysis tools usually support interfaces to

such standards, the integration of the analysis tools themselves is often considered using ad hoc

solutions. There have been efforts in different research projects like MBAT, ARAMiS and Amalthea

to come up with a more systematic integration approach. In MBAT a prototypical tool coupling

between BTC's EmbeddedTester and Astrée has been developed, with the goal to applying model -

based testing to automatically find test cases for alarms reported by the static analysis. In the SAFE

project, the data models of AUTOSAR, the initiative EATOP, tools from Dassault Systemes and

PREEvision along with the respective tools were combined to facilitate pervasive traceability and

analysis in architectural models. In the ARAMiS project the interoperability of design and analysis

tools for multi-core systems was addressed. An option consists in developing in-house integration

platforms, generally based on internal and proprietary point-to-point solutions. A second option

1 http://www.revamp2-project.eu

D6.6.3 - State-of-the-art and technology Y3

Page 9 of 28 State-of-the-art and technology v0.7

consists in relying on commercial integration platforms implemented by well-established tool

providers, e.g., PTC Integrity, IBM Rational Jazz, Siemens PLM Teamcenter, Dassault Enovia,

Tasktop Sync, or Systemite System Weaver.

The CESAR project offered customizable systems engineering providing interoperability of existing

or emerging technologies. This project constitutes a milestone for a European standardization effort.

Reference Technology Platform (RTP) defines basic services and their interfaces to perform

specific design steps. RTP led the development of Interoperability Specifications (IOS) enabling

seamless implementation of the whole design flows. Similar interoperability challenges are

addressed by two other German projects, namely SPES 2020 and ARAMiS. These two projects aim

to define common vocabulary for software-oriented systems engineering.

The H2020 coordination action CP-SETIS2 has initiated in 2017 the so-called ICF (the

“Interoperability Coordination Forum”) that is being incubated in an ARTEMIS-IA working group

focused on standardization. The purpose of the ICF is to foster cooperation across European

projects on pre-standardization activities of the IOS that has been initiated in the CESAR project

(focused on data and tool integration for development environments in Systems Engineering).

2 http://cp-setis.eu

D6.6.3 - State-of-the-art and technology Y3

Page 10 of 28 State-of-the-art and technology v0.7

4. Synthesis of predictable concurrent systems (WP4)

4.1. Verification of compilers and code generators

Compiler and automatic code generators are essential tools to bridge the gap between models and

executables. Sequential code generation from a synchronous language like Scade 6 can be

formalized as a series of source-to-source and traceable transformations that progressively

eliminate high-level programming constructs (hierarchical automata, activation conditions,

sequences) down to a minimal data-flow kernel which is further simplified to a generic intermediate

representation for transition functions, and ultimately turned into C code. These tools are vulnerable

to miscompilation risks: a bug in the compiler or code generator causing it to produce incorrect

object code from a correct source program. These risks are difficult to address in the context of

critical embedded software qualified at the highest assurance levels: a few code generators have

been qualified at level A of DO-178B (e.g. the Scade KCG6 generator), but no optimizing C

compiler. A radical way to eradicate the miscompilation risk and provide high assurance is to

formally verify the compilers and code generators themselves, using program proof. The flagship

of this approach is the CompCert C compiler, developed at Inria Gallium: an optimizing C compiler

that is proved to be free of miscompilation bugs using the Coq proof assistant. CompCert provides

provably correct mechanisms to trace properties of the source program down to the machine code,

and is now in the pre-industrial phase via a collaboration with Airbus. The CompCert compiler has

been licensed by AbsInt for further extensions of its capabilities and full indus trialization. The full

formal verification of a code generator from a modelling language such as Scade remains to be

done.

4.2. Relaxed memory models

Sequential consistency (SC), coined by Lamport [28], is an idealized semantic model for describing

the behaviours of concurrent programs. It describes executions of concurrent programs as total

orders over the set of program statements in which the program orders of the individual

threads/processes are preserved. Although this definition gives us a clear and easy understanding,

it is not realistic. Many modern hardware architectures (including Intel -x86, PowerPC ARM and

GPUs) and programming language specifications (like C, C++, 2011) allow more behaviours than

SC ones due to performance reasons. Hence, their semantics are relaxed with respect to SC.

The documentation that describes memory subsystems of modern processors often lack formal

precision and they are even inconsistent with the actual behaviours of the system at some points

due to incorrectly implemented hardware. Extensive tooling was developed to perform model-based

testing of processors and compilers, leading to the discovery of hardware bugs (acknowledged as

such by the manufacturers) in the Power5 and Cortex A9 processors. Hence, there has been a

notable effort to develop precise semantic models for these systems. They can be classified under

two groups. Axiomatic models ([15], [29]) describe executions as unions of some relations over

events and/or memory accesses and memory models as restrictions on the relations that define

executions. Authors in [29] introduce a formal hierarchy of SC, RMO (relaxed memory order), PSO

(partial store order), TSO (total store order) and Alpha memory models based on axiomatic models

and proofs developed on Coq proof system. On the other hand, operational models ([21], [30], [31])

depict the behaviour of actual hardware components, abstracting them through data structures,

such as queues. Most of the current research [13-21] formalizes semantics of relaxed memory

models of the system they study as an example of one of these classes.

D6.6.3 - State-of-the-art and technology Y3

Page 11 of 28 State-of-the-art and technology v0.7

Since SC is clear and powerful enough to reason about concurrent programs, it is desirable by the

programmers. Adve and Hill [32] coined the term weak ordering as an interface between hardware

and software. Given a restriction on the shared memory accesses of the programs as a

synchronization model, hardware is weakly ordered with respect to this synchronization model if all

the programs that obey the synchronization model show only SC behaviours. Hence, if the

programmer writes a program obeying the synchronization model of a weakly ordered hardware,

then s/he can reason this program as if it is SC. Similar definition of weak-ordering exists for

programs and it is called robustness. A program is robust (or stable) if every weak memory

behaviour of it corresponds to some SC behaviour. [29] and [33] propose a method for checking

robustness. It characterizes robustness as acyclicity of a particular happens-before relation in the

axiomatic model. However, the method in [33] is incomplete in the sense that it may label a program

as non-robust although it is robust. [16] provides a complete decision procedure for checking

robustness in terms of TSO programs.

In some applications, correctness is much more important than the performance. In this situation,

the programmer may agree to sacrifice performance to get rid of non-SC behaviours of the program,

which might be unprecedented and erroneous. For this reason, a line of research developed for

enforcing robustness on the programs by using synchronization primitives. The mos t commonly

used primitives are memory fences which force programs to wait until some memory accesses

become visible to all other processing units. Since the fence causes processing units to wait, it may

degrade the program performance. Therefore, inserting as few fences as possible is crucial for the

minimum performance degradation. Initial theoretical results for finding minimal fence insertions

that forces robustness date back to 1988 [34]. Authors in [29] extend this algorithm to particular

weak memory models and fence types. Authors in [16] propose an optimal fence insertion algorithm

as a modification of their robustness check algorithm, which minimizes a particular cost function.

Another group provides a dynamic and efficient fence insertion algorithm, which is neither complete

nor optimal [35].

There are recent studies on the verification of programs running on weak memory models.

Successful methods has been developed and used for verification of SC programs (like Owicki -

Gries, reduction, concurrent separation logic etc.) for a long time. There are recent attempts to

extend these techniques to weak memory settings. [17] provides an Owicki -Gries kind of reasoning

model for weak memory programs. [20] develops the relaxed separation logic (RSL) which can b e

used to verify programs in release/acquire fragment of C11 specification. A novel approach for

verifying compiler optimizations is presented in [31]. This study considers possible statement

rewritings or reorderings as compiler optimizations. Correctness of these optimizations depends on

the underlying memory model of the platform that the program will run. For instance, reordering

consecutive global read and write statements by the same thread is allowed by TSO memory model.

Hence performing this reorder during the compilation period does not add any new behaviour to the

program and it is valid for TSO. However, this reordering is not allowed by SC and it cannot be

allowed as a valid optimization on an SC platform. To prove validity of given transformati ons on

given memory models, the authors provide necessary conditions to be checked.

Important preliminary studies on verified code generation for weak memory models has begun to

emerge recently [13], however, such work often assumes that inter-thread and inter-task

interference has been already ruled out through other verification tools. Verified refinement of

programming language code to executable machine code for weak memory models remains an

unsolved problem.

D6.6.3 - State-of-the-art and technology Y3

Page 12 of 28 State-of-the-art and technology v0.7

4.3. Synthesis of critical real-time software for multi-processor architectures

Much of the classical work on real-time scheduling (both in research and the industry) relies on a

process where the implementation is derived by manual transformations. Implementation is followed

by verification and validation phases where timing analysis and schedulability analysis guarantee

the respect of non-functional requirements. But today, the complexity of the multi -processor

execution targets and the complexity of the functional and non-functional specifications increase

rapidly, which makes it difficult to preserve a manual process (for cost, time-to-market, and/or

confidence issues related to the number of errors introduced by human coders). Some important

advances in this direction have largely automated the construction of task code and even the

generation of full real-time implementations without providing schedulability guarantees or

optimized mapping algorithms aimed at providing such guarantees. Work on optimized mapping still

has to be integrated in standard industrial tooling. INRIA proposed methods and tools in this

direction, namely the AAA methodology and the SynDEx and LoPhT tools for optimized real -time

mapping of synchronous/reactive specifications onto multi-processor (distributed/multi-/many-core)

targets.

4.4. Automotive applications

During the last years multi-core µC have entered the automotive domain. The arising challenge is

to bring all existing and future SW from single core implementations and development processes

into the new highly concurrent world. In industrial setting this transformation is still done by manual

injection of inter-process communication and synchronization code. In addition, the mapping of

runnable entities to different cores is also done manually. This injection of primitives is manual work,

and hence prone to errors, and the runnable distribution has a huge impact on computation

efficiency. Formal models of computation exist, but are currently not used for the multi -core SW

engineering. Static analysis is in most cases restricted to the analysis of non-concurrent SW.

D6.6.3 - State-of-the-art and technology Y3

Page 13 of 28 State-of-the-art and technology v0.7

5. Zero-defect analysis for multi-core systems (WP5)

5.1. Static analysis of concurrent multi-core applications

Sound static analyzers (such as Astrée) have been successfully applied to check run -time errors in

safety-critical sequential software, but far less tools are available for the analysis of concurrent

software. Polyspace Code Prover can identify shared variables accessed by concurrent threads,

but cannot precisely identify data races and lacks OS support so that OS-related information has to

be provided manually. Earlier versions of the state-of-the-art industrial analyser Astrée have been

restricted to analysing sequential code and did not support natively task-interleaving. To overcome

this restriction ENS has developed AstréeA, a research prototype extending Astrée to check for

run-time errors in multi-task C software consisting of millions of lines of code [9]. Concurrency

effects like pre-emptions, task priorities, and critical sections can be soundly and precisely taken

into account. AstréeA provides mechanisms to model operating systems by mapping the OS

functionality to efficient stub libraries. In the course of the FORTISSIMO project the AstréeA

mechanisms have now been transferred to Astrée and have been further enhanced. Currently OS

support is provided for avionic software running under an ARINC 653 OS [10], and automotive

software running under OSEK and AUTOSAR OS [11]. In ASSUME, the AUTOSAR support, which

had been limited to system specifications in .oil format, has been extended to the service libraries,

as, e.g., CAN, DEM, and DCM. Furthermore, some OSEK/AUTOSAR OS mechanisms like phases

of execution, the priority inheritance protocol, and enabling/disabling interrupts have been modelled

in the FORTISSIMO project. Detection of deadlocks and dynamic priorities including the priority

ceiling protocol have been added in ASSUME. Now, Astrée can find concurrency-specific faults,

including detection of data races, deadlocks, and priority inversions.

The static analyzer framework Goblint is another emerging academic tool for concurrent programs.

It has been elaborated in the scope of the MBAT project to prove the absence of data races in

concurrent code as well as in interrupt-driven OSEK applications. The resulting prototype was

imprecise with respect to global data, and not able to precisely model sophisticated synchronization

primitives such as sending and receiving of events or suspending and resuming of tasks (often

employed in embedded software to enforce scheduling policies). In ASSUME, the precision has

been improved by better handling of casts between different types, support for context-sensitive

warnings has been added, and the regression test infrastructure has been improved. Widening on

calling contexts has been introduced to improve performance and to be able to deal with recursion.

The space consumption has been reduced by working on basic blocks instead of individual

statements and by keeping values only at widening points.

A third tool, the MEMICS analyzer, was developed in the ARAMiS project to detect race conditions

in concurrent software by bounded model checking. Its focus is on the analysis of low-level code

(close to machine code). It incorporates an elaborate memory model including malloc and free

and deals well with pointer structures.

Another outcome of the ARAMiS project is the Gropius analyzer, a static analysis tool focused on

concurrency errors arising in automotive software. In ASSUME, the tool was tested with real

industrial code, which showed limitations in the tool design. A redesign of the tool in ASSUME

introduced a precise context-sensitive pointer analysis and led to an increase in efficiency of the

tool and a reduction of the number of false positives during the analysis of industrial code.

D6.6.3 - State-of-the-art and technology Y3

Page 14 of 28 State-of-the-art and technology v0.7

5.2. Deductive methods

Program proofs for concurrent programs were pioneered by the Calvin and QED too ls. Current tools

include VCC, which operates on concurrent C programs annotated with specifications and invariants

and proves them correct using the Z3 SMT solver; Chalice, a modular verification tool for a

dedicated concurrent language; and CIVL (Concurrency Intermediate Verification Language), which

verifies refinement for concurrent programs in various different languages after translation into a

common intermediate format. VCC and Chalice base their invariant reasoning on objects, object

ownership, and type invariants. VCC does not support refinement and Chalice does so only for

sequential programs; neither support movers nor reduction reasoning. Finally, concurrent

separation logic reasons on concurrent programs without explicit non-interference checks. State-

of-the art tools are able to blend this logic with explicit non-interference reasoning.

5.3. Dynamic race detection

Runtime verification and dynamic analysis fill an important gap between static analysis and testing.

While static tools are conservative which may lead to a large false alarm rate, testing catches errors

late, making it difficult to find their cause. Runtime verification, on the other hand, provides early

error detection during execution. For instance, dynamic race detection tools, such as Goldilocks

and FastTrack, instrument a program with code that detects data races while the program is running.

However, these tools often suffer from significant execution slowdown. To reduce this slowdown, a

variety of techniques have been explored. Some approaches improve performance by sacrificing

precision, i.e., missing some races. They accomplish this by sampling the accesses performed, e.g.

ThreadSanitizer [36] and RACEZ [37]. Speeding up race detection and/or replay by parallelization

has also been explored, e.g. in the GPU-accelerated split race checker Kuda and DoublePlay

(parallelizing sequential logging and replay) [40]. Others, e.g., HARD (Hardware-Assisted lockset-

based Race Detection) [38] and Paralog (enabling and accelerating online parallel monitoring of

multithreaded applications) [39] make use of custom hardware to accelerate race detection and

similar parallel program monitoring techniques.

The following commercial tools can be used or adapted to detect races on some particular

embedded computing platforms:

- Intel Inspector XE, PIN dynamic instrumenter

- Valgrind DRD

- Helgrind

- Parallocity ZVM-K (ARM)

- Google ThreadSanitizer

While these tools have been used in commercial applications with some success, the algorithms

underlying them are often not precisely documented and each of them may need some adaptation

and modifications before they can be used on any particular code base and application.

Dynamic race detection for embedded systems has unique challenges. These include the mixed

use of variables of different, often quite small, bit lengths [22], the use of task -based concurrency

with priorities and interrupts [23-25] rather than threads and concurrency libraries, and issues

relating with the platform on which development and testing is performed to the one on which the

applications will finally run [26-27].

D6.6.3 - State-of-the-art and technology Y3

Page 15 of 28 State-of-the-art and technology v0.7

In particular, [22] proposes a dynamic race detection algorithm based on vector clocks by

considering the granularity of program data (i.e.; words, bytes, bits, etc.) that is common in

embedded systems. The main motivation is to improve data race precision as opposed to other

race detection solutions, which do not consider various data sizes in the program. In [23] an on-the-

fly technique that efficiently detects apparent data races in interrupt -driven programs without false

positives is presented. The technique combines a tailored lightweight labelling scheme to maintain

the logical concurrency between a program and every instance of its interrupt handlers with a

precise detection protocol that analyses conflicting accesses to shared memories by storing at most

two accesses for each shared variable.

In interrupt-driven programs, inconsistent ordering (races) of interrupt events could result in non-

determinism in the program. To detect these kinds of races, the algorithm in [24] sequentialises the

program and applies model checking. However, this solution does not focus on multi-thread

programs because the program under consideration is single-threaded event-driven.

A failure that is caused by an interrupt handler that modifies a certain variable between a reference

or modification to the variable and a later reference to the variable is defined as a race in [25]. The

proposed solution in [25] is to generate an interrupt at the instruction points that possibly cause

race conditions and replace input value from external device to control interrupt handlers. This

covers all possibilities of sharing memory between the interrupt handler and other routines that

would cause data races.

To improve the performance of race detection in embedded systems, [26] employs hardware

registers originally added to processors to watch the traffic along the data and instruction buses for

debugging purposes. This improves the analysis of races compared to techniques based on

software instrumentation.

A testing method for identifying faults in multitasking applications for embedded systems is

proposed in [27] where intra and inter task analysis is used to generate test cases to improve the

observability of faults.

In ASSUME, we aim at a race detection approach that can be adapted to a variety of platforms and

applications, including possibly interrupt-driven ones, and one whose overhead-precision trade-off

can be adjusted by the programmer. A first step in this direction is EmbedSanitizer [42], which aims

at detecting data races for Linux POSIX-thread applications developed for the 32-bit ARMv7

architecture. For analysis and instrumentation, the tool supports both interactive and batch modes.

It can be invoked through a special Clang compiler flag while compiling the C/C++ application for

the Linux ARM Cortex architecture. Since the tool is integrated in the Clang/LLVM compiler tool

chain, its mode of use is no way different from the compiler and its flags. EmbedSanitizer has been

derived from ThreadSanitizer, an open-source industrial-level race detection tool that is part of the

LLVM compiler infrastructure, but only supports x86_64 as it relies on 64-bit address space for its

internal optimizations. EmbedSanitizer is intended to be modular; any race detection algorithm can

be plugged-in and used. Possible algorithms are FastTrack and variants of lockset-based race

detection algorithms. For use in EmbedSanitizer, a custom implementation of the efficient and

precise FastTrack race detection algorithm has been developed that works for 32-bit platforms.

D6.6.3 - State-of-the-art and technology Y3

Page 16 of 28 State-of-the-art and technology v0.7

5.4. Performance Analysis of Dataflow Models

Dataflow models of computation are widely used to represent streaming systems. This is thanks to

their simple graphical representation, compactness and the ability to express parallelism inherent

to many streaming systems. In dataflow, a system is represented by a directed graph where nodes

are called actors and edges are called channels. Actors represent computational kernels while

channels typically capture data, control and resource dependencies between actors. The quanta of

information exchanged across channels are called tokens. Actors involve themselves into

communication with other actors by firing. The firing represents the quantum of computation during

which actors consume tokens from their input channels and produce tokens in their output channels.

Preconditions for firing are given by firing rules [43]. The numbers of tokens produced and

consumed are called rates. In the timed versions of dataflow that are investigating in ASSUME,

actor firings have duration that we call the actor firing delay.

There exist quite a number of dataflow models. They can be roughly divided into decidable [44] and

dynamic dataflow models [45]. Decidable dataflow models can be considered versions of dataflow

with restricted semantics so that the model can be scheduled at design-time as well as analysed

for boundedness, deadlock and its timing properties. Examples of decidable dataflow formalisms

are synchronous dataflow (SDF) [46], cyclo-static dataflow [47] and scalable SDF [48]. Dynamic

dataflow models offer more expressive power in exchange for a decrease in analysability and

implementation efficiency [49]. Well-known examples are Boolean dataflow and dynamic dataflow

[50].

All in all, in terms of support for design and analysis of timing predictable and repeatable systems

(and most predictable systems are at first real-time systems), among dataflow models, decidable

dataflow models still play a more pronounced role than the echelons of emerging dynamic dataflow

models. This in particular refers to SDF as the most stable and mature flavour of decidable dataflow

that is characterized by its predictability, strong formal properties and amenability to powerful

optimization techniques [45]. In SDF rates are fixed and known at compilation time. The firing rules

of SDF are conjunctive [43] in the sense that for an actor to fire, every of its inbound channels must

contain the number of tokens prescribed by the port rate defined by the actor and the inbound

channel in consideration. Furthermore, they are distributive [43] in the sense that when the actor

fires all outbound channels receive tokens in the quantity prescribed by the corresponding port

rates. SDF graphs evolve in iterations. An iteration is a set of actor firings that have no net effect

on the token distribution of the graph. The number of firings of a particular actor in an iteration is

given in the so-called repetition vector of the graph. In ASSUME, we consider the so-called self-

timed execution of SDF graphs, which means that actors must fire as soon as they are enabled.

Several examples of use of SDF in design and analysis of predictable and repeatable systems can

be found in [51][52][53]. As can be seen from these papers, the SDF formalism is not only useful

for reasoning about the functional behaviour and correctness of systems, but also, in its timed

version [54], can be used when one needs to derive or prove worst-case performance guarantees,

in particular throughput that is a vital performance indicator in real -time streaming systems and that

is defined as the long run average number of completed iterations per time-unit.

Many authors [54][55][56][57][58] have dealt with the problem of performance analysis of SDF

models. To make these techniques applicable in everyday engineering practice it is important that

they are available in tools that can be utilized in fully or semi-automated design flows. The SDF3

tool [59] developed by TU/e is such a tool. In particular, it implements various performance analysis

D6.6.3 - State-of-the-art and technology Y3

Page 17 of 28 State-of-the-art and technology v0.7

algorithms for various dataflow MoCs such as synchronous dataflow (SDF) [46], cycle-static

dataflow (CSDF) [47], and finite-state machine-based scenario-aware dataflow (FSM-SADF) [60].

The common characteristic of all of the algorithms is that they are in terms of performance adversely

affected by the increase of repetition vector entries of the graph. In particular, the performance will

scale at least linearly with the sum of the repetition vector entries [60].

However, monolithic SDF models are inconvenient for capturing large designs. Therefore, allowing

for compositional modelling is a necessity in the design of large systems as it enforces good

engineering practices such as modularity and design reuse, and improves readability. Hierarchy

has been introduced to SDF [61][62][63][64]. To apply the existing exact throughput analysis

algorithms to hierarchical dataflow models, however, they fi rst need to be flattened.

In ASSUME, we propose a modular technique for throughput analysis of a subclass of hierarchical

SDF graphs with arbitrary number of hierarchy levels that removes the need for flattening the graph.

This is achieved by using (max,+)-based state-space representations of hierarchical actors instead

of flattening in the context of existing throughput analysis techniques based on symbolic simulation.

Furthermore, as our technique is able to take advantage of the hierarchical semantics o f SDF, we

argue that our technique helps mitigate the adverse effect of an increase in the repetition vector

entries on the performance of existing performance analysis techniques. This is due to the fact that

no matter how many times a hierarchical actor is scheduled in the composition, we do not need to

replicate the firings of all the actors embodied in the hierarchical actor as the existing techniques

do, but only use its more compact state-space representation to capture the effects its firing has on

the rest of the composition.

5.5. Worst-case execution time (WCET)

Worst-case execution time (WCET) analysis on multi-core architectures has been considered in

recent projects: Predator, T-Crest, Certainty, and parMerasa. In ARAMiS, an approach was

proposed for computing an interference-sensitive Worst-Case Execution Time (isWCET) taking into

account variable access delays due to the concurrent use of shared resources in multi-core

processors [12]. The state of the art can now handle single-core executions without interference or

when the number and kind of interference points can be determined. For time composable

architectures, this is sufficient to obtain an overall WCET. There have also been recommendations

for hardware configurations increasing predictability and composability.

Recent results by INRIA showed that precise and scalable timing analyses can be achieved on

selected parallel applications (using for instance the Heptane WCET analyser). The analysis has

the precision and scalability of classic IPET-based WCET analysis.

Timing analysis on concurrent task execution at the system level can also be used to reason about

potential race conditions, as part of the concurrency defect analysis. Two classes of analyses can

be identified. Analytical methods determine performance characterizations, such as response times

of task chains, by solving fixed point equations. Popular approaches include SymTA/S and the Real -

Time Calculus. Periodic resource models provide compositional methods, focusing on partitioned

resources. Computational methods, on the other hand, rely on model-checking techniques, where

the system behaviour is represented as a state transition system. For example, the model checker

UPPAAL can be used for scheduling analysis, as well as the related TIMES tool. While

D6.6.3 - State-of-the-art and technology Y3

Page 18 of 28 State-of-the-art and technology v0.7

computational methods typically provide better results, e.g. a reduced number of false positives,

they also lack in scalability due to computational complexity. Scalability improvements have been

proposed, e.g. as part of the COMBEST project. However, no computational analysis exists with

integrated methods reliably preserving appropriate precision of the results.

D6.6.3 - State-of-the-art and technology Y3

Page 19 of 28 State-of-the-art and technology v0.7

6. Related Projects

Name

Program

Period

Technical Focus Relationship

CompCert

French ANR

2005-2009

Formal verification of compilers First explorations of compiler

verification using Coq.

ES_PASS

ITEA 2

2007-2009

Embedded Software Product-

based Assurance

Improvement and integration of the

Astrée tool used in ASSUME.

COMBEST

FP7 IST STREP

2008-2010

Computational and analytical

models for non-functional

properties of embedded systems.

Methods and tools for rigorous

embedded systems design.

Combination of different analysis

techniques and tools.

PARSEC

FUI

2009-2012

Model-driven engineering for

critical distributed systems

Collaboration with Thales SA towards

defining a development environment

for critical distributed embedded

systems requiring certification

according to strict standards such as

DO-178B (avionics) or IEC61508

(transportation).

ARAMiS

German BMBF

2011-2014

ARAMIS develops methods and

techniques for optimized use of

Multi-Core architectures with

respect to development standards

in the transportation domain such

as ISO 26262.

ASSUME will develop models and

interchange formats for the analysis of

single and multi-core software.

Functional as well as non-functional

properties will be taken into

consideration. The ARAMIS meta-

model for scheduling and timing will

be taken into account to enrich the

interfaces of the ASSUME platform.

ARAMIS methods regarding the

analysis of multi-core systems will be

developed further in the ASSUME

project including the MEMICS tool.

Amalthea(4public)

ITEA 2

2011-2014,

and

2014-2017

AMALTHEA4public will built a

continuous development tool

chain platform for automotive

embedded multi-core systems

based on results of various public

funded projects by using the

AMALTHEA methodology.

ASSUME extends the scope of

AMALTHEA beyond timing and HW

resource modeling and simulation.

ASSUME derives a methodology to

analytically calculate data for the

AMALTHEA meta-model (in contrast

to measuring and simulation).

D6.6.3 - State-of-the-art and technology Y3

Page 20 of 28 State-of-the-art and technology v0.7

Name

Program

Period

Technical Focus Relationship

MBAT

ARTEMIS

2011-2014

Combination of model-based

analysis and testing.

Traceability between Requirements,

Design and V&V artefacts. Extensions

of the Astrée and Goblint tools used in

ASSUME.

ParMerasa

FP7

2011-2014

The objective of parMERASA

(Multi-Core Execution of

Parallelised Hard Real-Time

Applications Supporting

Analysability) is a timing

analysable system of parallel hard

real-time applications running on a

scalable multi-core processor.

The idea of analysable systems with

regard to timing will be expanded in

ASSUME by the analysis of functional

and various non-functional properties

in multi-core systems.

PHARAON

FP7

2011-2014

Parallel and Heterogeneous

Architectures for Real-Time

Applications

Parallelization of soft real-time

programs for low-power embedded

architectures, based on task-parallel

data-flow languages and model-driven

engineering.

SAFE

ITEA

2014-2017

The SAFE project brings solutions

to demonstrate the compliance to

the ISO26262 functional safety

standard for the development of

safe automotive applications

based on the AUTOSAR

architecture.

While SAFE focuses on architecture

modelling in the concept phase of

system development ASSUME will

target the synthesis and analysis of

implementation and behaviour models.

Interfaces to SAFE will be explored

regarding the traceability from concept

models to implementation models in

the development of safety-relevant

functionality.

Verasco

French ANR

2012-2015

Joint verification of compilers and

static analyzers

Collaboration with Airbus towards the

industrialization of CompCert.

ESPRESSO

Swedish FFI

2012-2015

Modelling and analysis

methodology, Guidelines and tool

recommendations for model-based

engineering of embedded system

at Scania, Application and

evaluation of the developed

concepts

Traceability across the engineering

phases (based on a use case from

Scania)

CRYSTAL

ARTEMIS

2013-2016

Interoperability of System

Engineering Methods

Requirement Formalization, CCC

(Correctness, Completeness,

Consistency).

http://pharaon.di.ens.fr/
http://pharaon.di.ens.fr/
http://pharaon.di.ens.fr/

D6.6.3 - State-of-the-art and technology Y3

Page 21 of 28 State-of-the-art and technology v0.7

Name

Program

Period

Technical Focus Relationship

AstréeA

French ANR

2012-2015

Static analysis of concurrent

programs.

Developed a research prototype of the

AstréeA tool used in Assume.

Fortissimo

German BMBF

2014-2016

Formal Analysis and Verification of

Concurrent Hardware and

Software

Develop the AstréeA tool as part of

the commercial Astrée analyser.

CAPACITES

French

Investissements

d’Avenir

2014-2017

Parallel computing for safety-

critical real-time applications

Collaboration with Kalray SA, Airbus,

SAGEM, Dassault Aviation, MBDA on

the construction of many-core safety-

critical real-time applications. This

includes mixed-criticality applications

with focus on the spatial partitioning

enforced by the architecture, and

latency-critical applications expressed

in an idiomatic form of OpenCL that

enables worst-case response time

analysis.

EMC2

ARTEMIS

EMC² finds solutions for dynamic

adaptability in open systems,

provides handling of mixed

criticality applications under real-

time conditions, scalability and

utmost flexibility, full scale

deployment and management of

integrated tool chains, through the

entire lifecycle.

ASSUME complements EMC² by

analysis methods supporting the (1)

validation of functional safety concepts

including dynamic system adaptation

and the (2) verification of technical

safety concepts (against these

functions) based on mixed-criticality

multi-core platforms, thereby providing

the needed arguments for certification

purposes.

SPES_XT

BMBF

2012-2015

The Project SPES_XT develops a

seamless integration platform for

modelling and analysis techniques

for embedded systems.

The methods and techniques

developed in ASSUME will be

constructed to support the SPES

methodology. They will provide new

building blocks for the requirements

viewpoint and the functional viewpoint

in the SPES matrix.

The demand of SPES_XT to implement

the results in the industrial practice will

be subsequently supported by the use

case driven approach of ASSUME.

REVaMP² The ITEA 3 project REVaMP² aims

to conceive, develop and evaluate

the first comprehensive automation

Lifecycle Interoperability

D6.6.3 - State-of-the-art and technology Y3

Page 22 of 28 State-of-the-art and technology v0.7

Name

Program

Period

Technical Focus Relationship

tool-chain and associated

executable process to support

round-trip engineering of SIS

Product Lines and thereby helping

to profitably engineer mass

customised products and services

in virtually any economic sector.

D6.6.3 - State-of-the-art and technology Y3

Page 23 of 28 State-of-the-art and technology v0.7

7. Conclusions and Discussion

This deliverable presents the state of the art and technology regarding the ASSUME project for the

year 2017. The related technologies for the main work packages of the project including WP2

(Scalable Zero-Defect Analysis for Single-Core Systems), WP3 (System engineering methodology

and standards), WP4 (Synthesis of predictable concurrent systems), and WP5 (Zero-defect analysis

for multi-core systems) are discussed. Also, the related projects for ASSUME are elaborated in the

document.

D6.6.3 - State-of-the-art and technology Y3

Page 24 of 28 State-of-the-art and technology v0.7

References

[1] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In POPL ’77: Proceedings of the 4 th
ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pages 238–
252, New York, NY, USA, 1977. ACM Press.

[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X.
Rival. A Static Analyzer for Large Safety-Critical Software. In Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Implementation
(PLDI’03), pages 196–207, San Diego, California, USA, June 7–14 2003. ACM Press.

[3] P. Cousot, R. Cousot, J. Feret, A. Miné, L. Mauborgne, D. Monniaux, and X. Rival. Varieties
of Static Analyzers: A Comparison with ASTRÉE. In First Joint IEEE/IFIP Symposium on
Theoretical Aspects of Software Engineering, TASE 2007, pages 3–20. IEEE Computer
Society, 2007.

[4] D. Kästner, S. Wilhelm, S. Nenova, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
X. Rival. Astrée: Proving the Absence of Runtime Errors. Embedded Real Time Software and
Systems Congress ERTS², Toulouse, 2010.

[5] D. Delmas and J. Souyris. ASTRÉE: from Research to Industry. In Proc. 14th International
Static Analysis Symposium (SAS2007), number 4634 in LNCS, 2007.

[6] O. Bouissou, É. Conquet, P. Cousot, R. Cousot, J. Feret, K. Ghorbal, É. Goubault, D. Lesens,
L. Mauborgne, A. Miné, S. Putot, X. Rival, M. Turin. Space software validation using abstract
interpretation. In Proc. of the International Space System Engineering Conference on Data
Systems in Aerospace (DASIA 2009), volume SP-669, 7 pages, Istanbul, Turkey, May 2009.

[7] C. Ferdinand, R. Heckmann, T. Le Sergent, D. Lopes, B. Martin, X. Fornari, F. Martin.
Combining a High-Level Design Tool for Safety-Critical Systems with a Tool for WCET
Analysis on Executables. 4th European Congress ERTS - Embedded Real Time Software,
Toulouse, 2008.

[8] D. Kästner, C. Rustemeier, U. Kiffmeier, D. Fleischer, S. Nenova, R. Heckmann, M.
Schlickling, C. Ferdinand. Model-Driven Code Generation and Analysis. SAE World Congress
2014, available at http://papers.sae.org/2014-01-0217/

[9] A. Miné. Static analysis of run-time errors in embedded real-time parallel C programs. Logical
Methods in Computer Science (LMCS), 8(26):63, Mar. 2012.

[10] A. Miné and D. Delmas. Towards an Industrial Use of Sound Static Analysis for the
Verification of Concurrent Embedded Avionics Software. In Proc. of the 15th International
Conference on Embedded Software (EMSOFT’ 15), pages 65–74. IEEE CS Press, Oct. 2015.

[11] A. Miné, L. Mauborgne, X. Rival, J. Feret, P. Cousot, D. Kästner, S. Wilhelm, C. Ferdinand.
Taking Static Analysis to the Next Level: Proving the Absence of Run-Time Errors and Data
Races with Astrée. 8th European Congress ERTS - Embedded Real Time Software,
Toulouse, 2016. To appear.

http://papers.sae.org/2014-01-0217/

D6.6.3 - State-of-the-art and technology Y3

Page 25 of 28 State-of-the-art and technology v0.7

[12] J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, M. Schmidt. Multi-core
Interference-Sensitive WCET Analysis Leveraging Runtime Resource Capacity Enforcement.
26th Euromicro Conference on Real-Time Systems (ECRTS '14), pages 109-118. IEEE
Computer Society, 2014.

[13] Jagannathan, S., Laporte, V., Petri, G., Pichardie, D., & Vitek, J. (2014). Atomicity refinement

for verified compilation. ACM Transactions on Programming Languages and Systems

(TOPLAS), 36(2), 6.

[14] Jagannathan, S., Laporte, V., Petri, G., Pichardie, D., & Vitek, J. (2014). Atomicity refinement

for verified compilation. ACM Transactions on Programming Languages and Systems

(TOPLAS), 36(2), 6.

[15] Sarkar, S., Sewell, P., Nardelli, F. Z., Owens, S., Ridge, T., Braibant, T. & Alglave, J. (2009,

January). The semantics of x86-CC multiprocessor machine code. In ACM SIGPLAN Notices

(Vol. 44, No. 1, pp. 379-391). ACM.

[16] Bouajjani, A., Derevenetc, E., & Meyer, R. (2013). Checking and enforcing robustness against

TSO. In Programming Languages and Systems (pp. 533-553). Springer Berlin Heidelberg.

[17] Lahav, O., & Vafeiadis, V. Owicki-Gries Reasoning for Weak Memory Models, In ICALP 2015:

41st International Colloquium on Automata, Languages, and Programming.

[18] Hawblitzel, C., & Petrank, E. (2009, January). Automated verification of practical garbage

collectors. In ACM SIGPLAN Notices (Vol. 44, No. 1, pp. 441-453). ACM.

[19] Yang, J., & Hawblitzel, C. (2010, June). Safe to the last instruction: automated verification of

a type-safe operating system. In ACM Sigplan Notices (Vol. 45, No. 6, pp. 99-110). ACM.

[20] Vafeiadis, V., & Narayan, C. (2013, October). Relaxed separation logic: A program logic for

C11 concurrency. In ACM SIGPLAN Notices (Vol. 48, No. 10, pp. 867-884). ACM.

[21] Burckhardt, S., & Musuvathi, M. (2008, January). Effective program verification for relaxed

memory models. In Computer Aided Verification (pp. 107-120). Springer Berlin Heidelberg.

[22] "Efficient Data Race Detection for C/C++ Programs Using Dynamic Granularity” Young

Wn Song; Yann-Hang Lee, 2014 IEEE Parallel and Distributed Processing Symposium,

[23] “Verification of Data Races in Concurrent Interrupt Handlers” Guy Martin Tchamgoue,

Kyong Hoon Kim, and Yong-Kee Jun, International Journal of Distributed Sensor Networks,

2013

[24] "Data Race Detection for Interrupt-Driven Programs via Bounded Model Checking”

Xueguang Wu, Yanjun Wen, Liqian Chen, Wei Dong, Ji Wang, SERE-C '13 2013 IEEE Conf.

on Software Security and Reliability, 2013

[25] "An effective method to control interrupt handler for data race detection” Makoto

Higashi, Tetsuo Yamamoto, Yasuhiro Hayase, Takashi Ishio, Katsuro Inoue, AST '10,

Proceedings of the 5th Workshop on Automation of Software Test, 2010

[26] "E-RACE, A Hardware-Assisted Approach to Lockset-Based Data Race Detection for

Embedded Products “ Lily Huang, Michael Smith, Albert Tran, James Miller, 24thIEEE

Symposium on Software Reliability Engineering (ISSRE), 2013

D6.6.3 - State-of-the-art and technology Y3

Page 26 of 28 State-of-the-art and technology v0.7

[27] "An approach to testing commercial embedded systems” Tingting Yu, Ahyoung Sung,

Witawas Srisa-An, Gregg Rothermel, Journal of Systems and Software archive Volume 88,

February 2014

[28] Lamport, L. (1979). How to make a multiprocessor computer that correctly executes

multiprocess programs. IEEE transactions on computers, 100(9), 690-691.

[29] Alglave, J. (2010). A shared memory poetics (Doctoral dissertation, Université Paris 7).

[30] Boudol, G., & Petri, G. (2009, January). Relaxed memory models: an operational

approach. In ACM SIGPLAN Notices (Vol. 44, No. 1, pp. 392-403). ACM.

[31] Burckhardt, S., Musuvathi, M., & Singh, V. (2010). Verifying local transformations of

concurrent programs.

[32] Adve, S. V., & Hill, M. D. (1990, May). Weak ordering—a new definition. In ACM SIGARCH

Computer Architecture News (Vol. 18, No. 2SI, pp. 2-14). ACM.

[33] Alglave, J., & Maranget, L. (2011, July). Stability in weak memory models. In International

Conference on Computer Aided Verification (pp. 50-66). Springer Berlin Heidelberg.

[34] Shasha, Dennis, and Marc Snir. "Efficient and correct execution of parallel programs that

share memory." ACM Transactions on Programming Languages and Systems

(TOPLAS) 10.2 (1988): 282-312.

[35] Liu, F., Nedev, N., Prisadnikov, N., Vechev, M., & Yahav, E. (2012). Dynamic synthesis for

relaxed memory models. ACM SIGPLAN Notices, 47(6), 429-440.

[36] Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: data race detection

in practice. In Proceedings of the Workshop on Binary Instrumentation and Applications (WBIA

'09). ACM, New York, NY, USA, 62-71.

[37] Tianwei Sheng, Neil Vachharajani, Stephane Eranian, Robert Hundt, Wenguang Chen, and

Weimin Zheng. 2011. RACEZ: a lightweight and non-invasive race detection tool for

production applications. In Proceedings of the 33rd International Conference on Software

Engineering (ICSE '11). ACM, New York, NY, USA, 401-410.

[38] P. Zhou, R. Teodorescu and Y. Zhou, "HARD: Hardware-Assisted Lockset-based Race

Detection," 2007 IEEE 13th International Symposium on High Performance Computer

Architecture, Scottsdale, AZ, 2007, pp. 121-132.

[39] Evangelos Vlachos, Michelle L. Goodstein, Michael A. Kozuch, Shimin Chen, Babak Falsafi,

Phillip B. Gibbons, and Todd C. Mowry. 2010. ParaLog: enabling and accelerating online

parallel monitoring of multithreaded applications. In Proceedings of the fifteenth edition of

ASPLOS on Architectural support for programming languages and operating systems (ASPLOS

XV). ACM

[40] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica Ouyang, Peter M. Chen,

Jason Flinn, and Satish Narayanasamy. 2011. DoublePlay: parallelizing sequential logging

and replay. SIGPLAN Not. 46, 3 (March 2011), 15-26

D6.6.3 - State-of-the-art and technology Y3

Page 27 of 28 State-of-the-art and technology v0.7

[41] Biere, A., Cimatti, A., Clarke, E., & Zhu, Y. (1999). Symbolic model checking without BDDs.

Tools and Algorithms for the Construction and Analysis of Systems , 193-207.

[42] Hassan Salehe Matar, Serdar Tasiran and Didem Unat. EmbedSanitizer: Runtime Race

Detection Tool for 32-bit Embedded ARM. The 17th International Conference on Runtime

Verification, September 13-16, Seattle, USA.

[43] Kavi, K.M., Buckles, B.P., Bhat, U.N.: A formal definition of data flow graph models. IEEE

Transactions on Computers C-35(11), 940-948 (Nov 1986)

[44] Ha, S., Oh, H.: Decidable Dataflow Models for Signal Processing: Synchronous Dataflow and

Its Extensions, pp. 1083-1109. Springer New York, New York, NY (2013)

[45] Bhattacharyya, S.S., Deprettere, E.F., Theelen, B.D.: Dynamic dataflow graphs. In:

Bhattacharyya, S.S., Deprettere, E.F., Leupers, R., Takala, J. (eds.) Handbook of Signal

Processing Systems, pp. 905-944. Springer New York (2013)

[46] Edward A. Lee, David G. Messerschmitt. Synchronous data flow. Proceedings of the IEEE

75.9, pp. 1235-1245, 1987.

[47] Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J.: Cycle-static dataflow. Signal

Processing, IEEE Transactions on 44(2), 397-408 (Feb 1996)

[48] Ritz, S., Pankert, M., Zivojinovic, V., Meyr, H.: Optimum vectorization of scalable synchronous

dataflow graphs. In: Application-Specific Array Processors, 1993. Proceedings., International

Conference on. pp. 285-296 (Oct 1993)

[49] Stuijk, S., Geilen, M., Theelen, B., Basten, T.: Scenario-aware dataflow: Modeling, analysis

and implementation of dynamic applications. In: Embedded Computer Systems (SAMOS),

2011 International Conference on. pp. 404-411 (July 2011)

[50] Buck, J.T.: Scheduling dynamic dataflow graphs with bounded memory using the token flow

model. Ph.D. thesis, EECS Department, University of California, Berkeley (1993)

[51] Bekooij, M., Moreira, O., Poplavko, P., Mesman, B., Pastrnak, M., van Meerbergen, J.:

Predictable Embedded Multiprocessor System Design, pp. 77-91. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2004.

[52] Nelson, A., Goossens, K., Akesson, B.: Dataflow formalisation of real-time streaming

applications on a composable and predictable multi-processor SOC. Journal of Systems

Architecture 61(9), 435-448 (2015)

[53] Stuijk, S.: Predictable mapping of streaming applications on multiprocessors. Ph.D. thesis,

Eindhoven University of Technology (2007)

[54] Sriram, S., Bhattacharyya, S.S.: Embedded Multiprocessors: Scheduling and

Synchronization. CRC Press, Inc., Boca Raton, FL, USA, 2nd edn. (2009)

[55] Marc Geilen. Synchronous dataflow scenarios. ACM Transactions on Embedded Computing

Systems (TECS) 10.2, 16, 2010.

D6.6.3 - State-of-the-art and technology Y3

Page 28 of 28 State-of-the-art and technology v0.7

[56] Geilen, M.: Reduction techniques for synchronous dataflow graphs. In: Proceedings of the

46th Annual Design Automation Conference. pp. 911-916. DAC '09, ACM, New York, NY,

USA (2009)

[57] Ghamarian, A.H., Geilen, M.C.W., Stuijk, S., Basten, T., Theelen, B.D., Mousavi, M.R.,

Moonen, A.J.M., Bekooij, M.J.G.: Throughput analysis of synchronous data flow graphs. In:

Proceedings of the Sixth International Conference on Application of Concurrency to System

Design. pp. 25-36. ACSD '06, IEEE Computer Society, Washington, DC, USA (2006

[58] de Groote, R., Kuper, J., Broersma, H., Smit, G.J.M.: Max-plus algebraic through-put analysis

of synchronous dataflow graphs. In: 38th Euromicro Conference on Software Engineering

and Advanced Applications. pp. 29-38 (Sept 2012)

[59] Sander Stuijk, Marc Geilen and Twan Basten. SDF3: SDF For Free. 6th International

Conference on Application of Concurrency to System Design (ACSD 2006), pp. 276-278,

June 2006. SDF3 is available via www.es.ele.tue.nl/sdf3

[60] Marc Geilen, Sander Stuijk. Worst-case performance analysis of synchronous dataflow

scenarios. Eighth IEEE/ACM/IFIP international conference on Hardware/software codesign

and system synthesis, 2010

[61] Tripakis, S., Bui, D., Geilen, M., Rodiers, B., Lee, E.A.: Compositionality in synchronous data

flow: Modular code generation from hierarchical SDF graphs. ACM Trans. Embed. Comput.

Syst. 12(3), 83:1-83:26 (Apr 2013)

[62] Bhattacharya, B., Bhattacharyya, S.: Parameterized dataflow modeling for DSP systems.

Signal Processing, IEEE Transactions on 49(10), 2408-2421 (Oct 2001)

[63] Piat, J., Bhattacharyya, S.S., Raulet, M.: Interface-based hierarchy for synchronous data-flow

graphs. In: 2009 IEEE Workshop on Signal Processing Systems. pp. 145-150 (Oct 2009)

[64] Desnos, K., Pelcat, M., Nezan, J.F., Bhattacharyya, S.S., Aridhi, S.: PiMM: Parameterized

and interfaced dataflow meta-model for MPSoCs runtime reconfiguration. In: 2013

International Conference on Embedded Computer Systems: Architectures, Modeling, and

Simulation (SAMOS). pp. 41-48 (July 2013)

[65] Tino Teige, Tom Bienmüller, Hans J. Holberg: Universal Pattern: Formalization, Testing,

Coverage, Verification, and Test Case Generation for Safety-Critical Requirements. In:

MBMV 2016

http://www.es.ele.tue.nl/sdf3

