
OPENCPS
ITEA3 Project no. 14018

D1.1 State-of-the-Art
Access1: PU

Type2: Report

Version: 0.3

Due Dates3: M12, M24, M36

Open Cyber-Physical System Model-Driven Certified Development

Executive summary4:

This document provides a “State-of-the-Art” overview of the fields in which the ITEA3 research
project OPENCPS is performed. The goal of OPENCPS is to provide an open-source integrated
framework for co-simulation based on UML, Modelica, and the Functional Mock-up Interface (FMI)
standard. The innovations technically focus on UML/FMI/Modelica interoperability, debugging, and
efficient simulation.

1 Access classification as per definitions in PCA; PU = Public, CO = Confidential. Access classification per deliverable stated in FPP.
2 Deliverable type according to FPP, note that all non-report deliverables must be accompanied by a deliverable report.
3 Due month(s) according to FPP.
4 It is mandatory to provide an executive summary for each deliverable.

D1.1 SotA

OPENCPS, ITEA3 Project no. 14018 Page 2 of 15

Deliverable Contributors:

 Name Organisation Primary role
in project

Main
Author(s)5

Deliverable
Leader6

Lena Buffoni Linköping
University

Associated
Project
Coordinator

X

Contributing
Author(s)7

Internal
Reviewer(s)8

Peter Fritzson Linköping
University

Scientific
Coordinator

 Magnus Eek Saab Project
Coordinator

Document History:
Version Date Reason for Change Status9

0.1 15/11/2016 First Draft Version Draft

0.2 21/11/2016 Released Version Released

0.3 20/11/2017 Second Year Version, minor
updates Released

5 Indicate Main Author(s) with an “X” in this column.
6 Deliverable leader according to FPP, role definition in PCA.
7 Person(s) from contributing partners for the deliverable, expected contributing partners stated in FPP.
8 Typically person(s) with appropriate expertise to assess deliverable structure and quality.
9 Status = “Draft”, “In Review”, “Released”.

D1.1 SotA

OPENCPS, ITEA3 Project no. 14018 Page 3 of 15

CONTENTS

ABBREVIATIONS .. 3	
1	 OVERVIEW .. 4	
2	 STATE-OF-THE-ART (SOTA) ANALYSIS ... 4	
2.1	 Model-driven development environments – state-of-the-art 4	
2.2	 Model Federation ... 4	
2.3	 Safety related automatic code generation for behavioral modeling 6	
2.4	 Debugging ... 7	
2.5	 Modelica model compilers .. 8	
2.6	 Process simulation and plant modelling .. 8	
3	 STARTING TECHNOLOGICAL BASE FOR THIS PROJECT 9	
3.1	 Related collaborative research projects. .. 9	
4	 BIBLIOGRAPHY ... 13	

ABBREVIATIONS

List of abbreviations/acronyms used in document:

Abbreviation Definition
FMI Functional Mock-up Interface
FMU Functional Mock-up Unit
M&S Modelling and Simulation
SotA State of the Art

D1.1 SotA

OPENCPS, ITEA3 Project no. 14018 Page 4 of 15

1 OVERVIEW

The OPENCPS project aims to provide an industry grade FMI master simulation tool based
on a Modelica-UML compatible run-time system including extending the FMI standard to
allow improved co-execution and co-simulation of FMUs generated from Modelica and
UML. Another goal is to increase the efficiency and quality of verification, validation, testing
activities. In order to provide an industrially exploitable, efficient platform, improvements
over the existing state-of-the-art will be made in the fields of state-machine debugging and
validation, efficient multi-core co-simulation and model federation.

2 STATE-OF-THE-ART (SOTA) ANALYSIS

2.1 Model-driven development environments

• Dominating modeling and simulation solutions are proprietary, reducing uptake and
spread of M&S and model-driven rapid development technology in industry and
society.

• The dominating software modeling formalism (UML) works only for software. Recent
SysML extensions are not well developed for physical system modeling. Requirements
capture is often informal, text-based, leading to inconsistencies and incomplete models.

• ArCon (Architecture Conformance Validation Tool) is an Eclipse plugin for automatic
model (in model driven software development) inspection against defined architectural
rules.

• Dominating block-oriented modeling tools such as Simulink mainly support a block-
oriented causal modeling style which is cumbersome and error prone for physical
systems, but fits control modelling well.

• ModelicaML is a UML profile that enables using UML diagram notations for modeling
complex physical system and using Modelica for simulations. Moreover, it supports a
method for model-based design verification. This method and the ModelicaML
prototype were developed by Airbus Group Innovations and Linköping University (see
https://openmodelica.org/modelicaml/) in the ITEA OPENPROD project and slightly
extended in the ITEA2 MODRIO project.

• In order to compose simulation models automatically, i.e., to combine the formalized
requirements system design models and scenario models, a bindings concept was
elaborated in (Schamai W. , Ph.D. thesis, 2013) and prototyped in the ModelicaML
language.

2.2 Model Federation

Today, the strong division between different domains’ expertise involved into the design and
development of complex systems causes technological incompatibilities and difficulties.
Those are the source of misalignment and friction when data is both conceptually and
technically captured by several tools. This problem is generally managed in an ad-hoc manner
and its resolution leads most of time in a misuse of tools. For example, the engineering of
radar systems involves the definition of a system architecture and signal processing
algorithms. The definition of an architecture is usually performed using an in-house tool that
supports the vocabulary of the domain (Phased Array Antenna, Pulse Compression, Radar

D1.1 SotA

OPENCPS, ITEA3 Project no. 14018 Page 5 of 15

Cross Section, etc.) while the definition of the algorithms use mathematical tools providing
ordinary differential equations (ODE) solvers, differential algebraic equation (DAE) solvers,
and matrix operations (multiplication, inversion, etc.) like Matlab. In this context, relying
only on unified languages like UML and its derivatives (SysML, MARTE, etc.) is not
satisfying because this requires contortions from both system architects and algorithm experts.
Indeed, the projection of domain concepts onto a general purpose modeling language is not
easy since the mapping is often not straightforward and imposes semantic restrictions. The
necessity to adopt external modeling approaches does not soften the learning curve.
Manufacturers need methods for seamless and transparent integration of specialized
representations and their tooling at low cost. Beyond data and representations integration, we
need to provide a real separation of concerns allowing a consistent reasoning and a better
design space exploration. Maintaining a global consistency between the various prisms
through which the system is studied needs formal foundations to support consistent reasoning
and relevant querying (data mining, views extraction, information inferences). This requires
the ability to define and maintain semantic traceability links between the artifacts produced by
all the tools within a single modeling space. This includes inner domain traceability
(refinement, derivation, versioning) or cross-domain traceability (between artifacts or between
artifacts and process activities). For some application systems, we need to establish semantic
links between the architecture built with a SysML tool and the algorithms e.g. defined in
Matlab or algorithmic Modelica, and to clearly define the role of each model in relation with
the intentions of the process stakeholders. Capturing such semantic links is particularly
tedious and fragile within a context assuming an open world approach. The challenge is then
to trace each decision against requirements in order to support both horizontal (versioning,
decomposition) and vertical traceability (refinement). We need a framework to guide decision
making when the use case imposes the integration of several heterogeneous and
unsynchronized viewpoints generating data friction and inconsistencies. With a federation of
models, we need to ensure that federated models can be simulated effectively in a distributed
manner in order to support seamless integration and verification of IP’s produces by different
contractors at different levels of abstraction; to our knowledge, this aspect of the co-
simulation is not well addressed by any tool nor by existing standards, in particular when we
consider MoC refinement (time and data representation, computation, communication,
synchronization) over a set of levels of abstraction.

The Modelica association is currently working on the SSP (“System Structure and
Parameterization”) standard for specifying more in detail how systems should be connected
and parametrized SSP (Köhler et al, 2016). This is a good time to influence the standard if
during the course of the project it becomes clear that extensions are needed to support UML-
Modelica inter-operability.

Two co-simulation tools have been recently developed. DACCOSIM(Saidi et al, 2016) is a
tool developed by EDF for co-simulation of models, it is Java based, which raises several
issues when composing FMUs, however has interesting features for distributed co-simulation
a collaboration with EDF is being envisaged on this topic. FMICOMposer10 is another tool
similar to OMSimulator, however it does not offer TLM support.

10 Modelon FMI Composer http://www.modelon.com/products/fmi-tools/fmi-composer/

D1.1 SotA

OPENCPS, ITEA3 Project no. 14018 Page 6 of 15

2.3 Safety related automatic code generation for behavioral modeling

Support for automatic code generation greatly enhances the benefits of a model-based
development (MBD) process. However, if the generated code affects safety related functions
the additional effort to safeguard the generated code diminishes the initial benefit of MBD. A
remedy is to rely on (automatic code generation) tools that are qualifiable (i.e., in some sense
verifiable or possible to validate) for the identified use cases. Specialized standards (despite
conceptual similarities and shared basis standards) apply for different industrial domains, e.g.,
ISO 13849: (Machinery Control Systems), ISO 26262 (Automotive), DO-178 (Aircraft), etc.).
Only a few tools exist (typically restricted to particular industrial domains) which fulfill the
necessary requirements for safety related developments and which support control system
modeling in an adequate manner. The available tools on the market are based on discrete-time
causal data-flow models (block-diagrams), e.g., the TargetLink11 code generator for
Simulink/Stateflow12 (Schneider, Lovric, & Mai, 2009) or the Scade Suite13 that has its roots
in the synchronous language community (Beneviste, Edwards, Halbwachs, Le Guernic, & De
Simone, 2003).

However, these tools rely on proprietary model formats and they are often unaffordable for
small and medium sized enterprises. Their restriction to primarily discrete-time causal data-
flow prohibits the direct usage of physical (acausal) models in advanced controllers (a manual
conversion of equation based physical models into discretized causal data-flow models is
needed).

The safety standards suggest several methods for tool qualification, among them (ISO 26262):
increasing confidence from use, evaluation of the development process, validation of the
software tool, development in compliance with a safety standard. The degree of required
assurance depends on the usage context (criticality of the implemented function, etc.). Still,
there remains considerable room for interpretation how to achieve adequate qualification in
practice. In practice, the method of “tool validation” has proved to be a working approach to
achieve tool qualification. A successful example for tool validation by using a “validation
suite” approach for the TargetLink toolchain is reported in (Schneider, Lovric, & Mai, 2009).
Another practical approach to comply to safety standards is to use “translation validation”:
instead of demonstrating in advance that the complete toolchain produces target code that
implements the source model correctly (as in (Schneider, Lovric, & Mai, 2009)), the
correctness is demonstrated after a translation run by a subsequent validation phase. This
approach is advertised for MathWork’s embedded code generator (Conrad, 2009). A problem
of the validation suite approach is that qualification efforts can become prohibitively high for
more complex input languages. A problem of the translation validation approach is that the
subsequent validation phase may just offload the validation problems to the programmer –
especially if formal specifications for the input language and the transformation rules of the
code generator are missing or are insufficient.

11 dSPACE GmbH: TargetLink® Automatic production code generator. http://www.dspace.com
12 MathWorks, Inc.: Simulink®/Stateflow®. http://www.mathworks.com
13 Esterel Technologies: SCADE Suite®. http://www.esterel-technologies.com

D1.1 SotA

OPENCPS, ITEA3 Project no. 14018 Page 7 of 15

The complexity of the input language is a crucial factor for the applicability of the “validation
suite” method. Therefore some of us (Thiele, Schneider, & Mai, 2012) recently proposed a
subset of Modelica deemed suitable for a qualifiable code generator. However, up to now no
qualifiable Modelica tool is available on the market.

To reap the benefits of an advanced Modeling language like Modelica and to avoid the
drawbacks of being dependent on proprietary, closed-source tools for rapid control
prototyping Bosch Rexroth AG has started an effort for a prototype based on open source
software. Menager et al. (Menager, Worschech, & Mikelsons, 2014) decided to leverage the
OpenModelica compiler and adapt the code generation to their needs. Their results are very
encouraging, however in order to fully utilize the benefits of directly using acausal models in
safety-related, advanced controllers (such as model predictive control or nonlinear inverse-
model based control) substantial further advances in code generation technology, particularly
addressing V&V requirements, is required.

2.4 Debugging

Since equation-based object-oriented languages are declarative, such debugging is also
somewhat related to work in debugging of (mostly) declarative functional languages, of
which some is mentioned below.

In lazy functional languages like Haskell the execution order is hard to understand. Partly for
these reasons the concept of the Evaluation Dependence Tree (EDT) tree (Nilsson, 1998) was
developed to help the understanding and debugging of such languages. On the other hand,
functions in an equation-based object-oriented language like Modelica are similar to functions
in a strict functional language where arguments are evaluated before the call and in this
respect closer to Standard ML (Milner, Harper, MacQueen, & Tofte, 1997).

Explanation of program execution in deductive systems like Deductive Databases (Mallet &
Ducassé, 1999) or Description Logic reasoners (McGuinness, Explaining reasoning in
description logics, 1996), (McGuinness & Borgida, 1995), (McGuinness & Silva, 2003) has
similarities to our MetaModelica debugger (Pop & Fritzson, 2005) because they generate and
analyze proof-trees (or derivation trees).

In the context of dynamic (run-time) debugging of equation-based object-oriented languages,
some of us earlier (Bunus & Fritzson, 2003) proposed an automated declarative debugging
solution in which the user has to provide a correct diagnostic specification of the model,
which is used to generate assertions at runtime. Starting from an erroneous variable value the
user explores the dependent equations (a slice of the model) and acts like an “oracle” to guide
the debugger in finding the error.

Recently a design for tracing symbolic transformations and operations for an equation-based
object-oriented language such as Modelica has been developed and efficiently implemented in
the OpenModelica compiler (Pop, Sjölund, Ashgar, Fritzson, & Casella, 2012). It allows
tracing the causes of errors and presenting the information in a human understandable form.

Regarding debugging in requirement modeling, requirements are most often modeled in
dedicated domain specific languages, although some formal foundations with formalisms
such as the Four Variable Model (Parnas & Madey, 1991) have been proposed and extended.

D1.1 SotA

OPENCPS, ITEA3 Project no. 14018 Page 8 of 15

Some efforts to integrate requirements into system modelling tools, have also been made, for
instance SysML supports requirement modelling. However, SysML has not yet employed
requirements formalized as assertions and equations for automatic requirement testing as in
(Schamai W. , Helle, Fritzson, & Paredis, 2010). A model driven design process including
automatic requirement testing has been recently developed (Schamai W. , Helle, Fritzson, &
Paredis, 2011). A model driven design process including automatic generation of fault trees
and a prototype toolchain for requirement modelling and analysis in Modelica has been
implemented in OpenModelica (Hossain, Nyberg, Rogovchenko, & Fritzson, 2012).

2.5 Modelica model compilers

Most Modelica model compilers and tools are typically closed proprietary solutions, do not
yet support software modeling well, are rather monolithic and hard to extend, have sometimes
portability problems caused by informal semantics.

Multi-core simulation has just recently been established in a few Modelica compilers,
whereas various theoretical publications on that topic exist. The already available
implementations cover either an automated task-graph based parallelization (Walther,
Waulrich, & al., 2014), (Elmqvist, Eric, & Olsson, 2014) of the continuous model equations
or manual decoupling of submodels e.g. Transmission Line Modeling (TLM) (Sjölund,
Braun, Fritzson, & Krus, 2010), (Sjölund, Gebremedhin, & Fritzson, 2013). All presented
parallelization approaches focus on the continuous-time model equations. Concepts to support
multi-core-simulation for hybrid models with a large number of events or discrete, clocked
models do not yet exist.

2.6 Process simulation and plant modelling

The introduction of simulators in process industry has been a lengthy and complex process
that is still going on. Simulators have been understood as expensive tools that require
considerably special skills. User training for a certain simulation product has been expensive
and time-consuming. Thus, there is a definite need to develop entirely new business and
technological models to complement the sales of simulator licences and to make the
implementation of simulators in industry easier and more effective.

Plant engineering has undergone several changes during the last decades. Computer-assisted
methods took the planners away from the drawing tables and planted them in front of
computer screens to draw process, automation and structural charts. During the last decade,
3D-plant modelling has brought about yet another new way to design and model a plant. As
electronic data management is becoming more efficient, we are currently moving away from
document and chart-based design towards plant model-oriented design, where a conceptual
model is defined in advance for the plant structures. The plant engineering project then uses
this model and transfers the planning data between the various actors in this structural form.
The traditional charts or 3D-images are views into the plant model in this approach. Another
change in plant engineering is its increasingly networked nature. Participation in the design is
more and more global and involves persons from various organisations. This, in turn, sets
increasing demands on the design and simulation environment.

D1.1 SotA

OPENCPS, ITEA3 Project no. 14018 Page 9 of 15

Computational and simulation models strive to master both larger and larger entities and
smaller and smaller phenomena. For example, the need for integration of the CFD
(Computational Fluid Dynamics) method and large-scale flow network solution methods
exists, but it is not possible to create the most favourable integration with regard to the user by
merely combining existing products. In more general terms, this is a question of the need to
combine calculation methods of various levels of detail into operations that are visible as parts
of the plant model.

A computational model is usually constructed for a specific purpose. Often the models may
also be applied to other purposes, however. For example, a dynamic process simulation model
that has been constructed to support design can also be of service in automation testing and
operator training as well as in performance analysis and optimisation during operation of the
plant. Nevertheless, speaking in terms of software technology, the model is often too tightly
linked to its original application environment. In this sense, modular flexibility of components
in computational models is becoming an increasingly important requirement. In this way, the
computational models developed and used in connection with plant modelling could also be
used to support model-predictive control or maintenance in intelligent field equipment in an
integrated way. Integration of the computational models of various phases of engineering into
the plant model would enable seamless combination and thereby simulation of the operation
of the various entities. This would support the introduction of new working methods based on
simulation in the design of processes, automation and structures.

3 STARTING TECHNOLOGICAL BASE FOR THIS PROJECT

• Eclipse, the world-leading software development framework, open-source from the
Eclipse Consortium.

• Papyrus, an Eclipse-based open source and UML-compliant software design suite.
• The OpenModelica model compiler for Modelica and its associated Eclipse plugin with

a Modelica/UML profile; open source from the Open Source Modelica Consortium
(www.openmodelica.org) and Linköping University.

• The Simantics integration platform based on semantic data modelling; open source from
THTH association (www.simantics.org)

• Modeling and simulation tools, environments, interoperability techniques, and
application products from partners.

• Open standards and technologies such as Modelica and FMI from the Modelica
Association, UML and OWL from OMG.

3.1 Related collaborative research projects.

Link to previous and/or current collaborative research projects:

Project
Name

Cooperative
Programme

Time
period

Technical Focus Relationship

MODELISAR

ITEA2 2008-

2011
MODELISAR
Integrates Modelica
and Autosar with the

OPENCPS
complements, focusing
instead on general

D1.1 SotA

OPENCPS, ITEA3 Project no. 14018 Page 10 of 15

Project
Name

Cooperative
Programme

Time
period

Technical Focus Relationship

Dassault Systemes
proprietary V6 tool
suite, focusing on
automotive
embedded systems.

interoperability and
cyber-physical product
development based on
open-source.
Specifically, FMI-related
open-source
components and
standards from
MODELISAR will be
used in OPENPCPS.

OPENPROD ITEA2 2009-
2012

Development of an
open model-driven
development,
modeling and
simulation (M&S)
environment that
integrates Eclipse
with open-source
modeling and
simulation tools such
as OpenModelica
and industrial M&S
tools and
applications.

OPENCPS focuses on
efficient execution of
models of software and
physical phenomena,
including a run-time
system supporting a
high event rate.

OPENCPS extends the
approach to certified
code generation.

Moreover, OPENCPS
performs an industrial-
strength integration of
the open source tools
OpenModelica and
Papyrus.

POSE²IDON FP7 2009-
2012

Simulations and
comparisons of
diesel ships, full
electric ships &
hybrid ships. New
electrical architecture
including energy
recovery has been
defined and
assessed, and a
physical (hardware in
the loop)
demonstrator has
been developed by

Application of
OPENCPS
methodologies and tools
to improve the ECOSIM
software and physical
hardware in the loop
demonstrator, with
improved physical
modelling and system
integration.

D1.1 SotA

OPENCPS, ITEA3 Project no. 14018 Page 11 of 15

Project
Name

Cooperative
Programme

Time
period

Technical Focus Relationship

SIREHNA. SIREHNA
has developed a
multi-physics ship
simulator (ECOSIM -
emission energy and
consumption ship
simulator) to assess
emissions (CO²,
NOX and SOX) and
fuel consumption by
simulating a
complete ship:
mechanical part,
electric part, thermal
part and associated
command control
systems, as well as
the global energy
production which is
controlled by a
Power Management
System.

iFEST ARTEMIS 2010-
2013

Integration
Framework for
Embedded Systems
Tools. This project
aimed to provide a
framework to
integrate tools for the
design,
implementation and
verification of real-
time embedded
systems, including
life-cycle aspects
(versioning, bug-
tracking,
transformations,
etc.). It has
contributed to the
emerging standard
on linked engineering
data OSLC.

Federation of models
developed within the
use-cases and
distributed co-
simulation.

D1.1 SotA

OPENCPS, ITEA3 Project no. 14018 Page 12 of 15

Project
Name

Cooperative
Programme

Time
period

Technical Focus Relationship

MODRIO ITEA2 2012-
2015

MODRIO extends
state-of-the-art
modeling and
simulation
environments based
on open standards to
increase energy and
transportation
systems safety,
dependability and
performance
throughout their
lifecycle.

Some MODRIO
application modeling
results will be the basis
for certain models in
WP6 in OPENCPS, and
integrated into the
context of an open
source environment.

FMI enhancements from
MODRIO will be the
starting point for
OPENCPS work in
WP2.

Debugging and multi-
core simulation results
from MODRIO will be
further enhanced in
OPENCPS WP4 and
WP5 respectively.

HPCOM BMBF 2013-
2016

Implementation of
various
parallelization
approaches in the
OpenModelica
Compiler

Extend Parallel
Simulation to discrete
models with many
events.

TRIBUTE EU FP7 2013-
2017

Application of
equation based
simulators for
buildings in the
operation phase.

Focus on relationship
between simulators and
building controls

INTO-CPS HORIZON 2015-
2018

The aim of INTO-
CPS project is to
create an integrated
“tool chain” for
comprehensive
Model-Based Design
(MBD) of Cyber-

Work on FMI
cosimulation done in
INTO-CPS will be used
to drive the work on FMI
in OPENCPS

D1.1 SotA

OPENCPS, ITEA3 Project no. 14018 Page 13 of 15

Project
Name

Cooperative
Programme

Time
period

Technical Focus Relationship

Physical Systems
(CPSs).

EMPHYSIS ITEA3 2017-
2020

The aim is to
develop a new
standard (eFMI: FMI
for embedded
systems) to
exchange physics-
based models
between modelling
and simulation
environments

The master simulation
tool developed in
OPENCPS will be used
in this project.

4 BIBLIOGRAPHY

Andreasson, J., & Bünte, T. (2006). Global chassis control based on inverse vehicle dynamics

models. Vehicle System Dynamics, 44, pp. 321-328.
Beneviste, A., Edwards, S. A., Halbwachs, N., Le Guernic, P., & De Simone, R. (2003). The

synchronous languages 12 years later. Proceedings of the IEEE, 91(1), pp. 64-83.
Bunus, P., & Fritzson, P. (2003). Semi-Automatic Fault Localization and Behavior Verification

for Physical System Simulation Models. Proceedings of the 18th IEEE International
Conference on Automated Software Engineering. Montreal, Canada.

Conrad, M. (2009). Testing-based translation validation of generated code in the context of IEC
61508. Formal Methods in System Design, 35, 389-401.

Elmqvist, H., Eric, M. S., & Olsson, H. (2014). Parallel Model Execution on Many Cores. 10th
Int. Modelica Conference. Lund.

Fritzson, P., Auguston, M., & Shahmehri, N. (1994). Using assertions in declarative and
operational models for automated debugging. Journal of Systems and Software, 25(3),
pp. 223-239.

Jochen Köhler, Hans-Martin Heinkel, Pierre Mai, Jürgen Krasser, Markus Deppe, Mikio
Nagasawa 2016 Modelica-Association-Project “System Structure and
Parameterization” – Early Insights, The First Japanese Modelica Conferences, May
23-24, Tokyo, Japan

Hossain, M. Z., Nyberg, M., Rogovchenko, O., & Fritzson, P. (2012). Computerized model
based functional safety analysis. Proceedings of MATHMOD 2012 - 7th Vienna
International Conference on Mathematical Modelling.

Mallet, S., & Ducassé, M. (1999). Generating deductive database explanations. International
Conference on Logic Programming. Las Cruces, United States: MIT Press.

McGuinness, D. L. (1996). Explaining reasoning in description logics. Diss. Rutgers, The State
University of New Jersey.

D1.1 SotA

OPENCPS, ITEA3 Project no. 14018 Page 14 of 15

McGuinness, D. L., & Borgida, A. T. (1995). Explaining Subsumption in Description Logics.
Proceedings of the 14th International Joint Conference on Artificial Intelligence (pp.
816-821). Montreal, Quebec, Canada: Morgan Kaufmann Publishers Inc.

McGuinness, D. L., & Silva, P. P. (2003). Infrastructure for Web Explanations. In D. Fensel,
K. Sycara, & J. Mylopoulos, The Semantic Web - ISWC 2003 (pp. 113-129). Springer
Berlin Heidelberg.

Menager, N., Worschech, N., & Mikelsons, L. (2014). A toolchain for Rapid Control
Prototyping using Rexroth controllers and open source software. 10th Int. Modelica
Conference, (p. Sweden). Lund.

Milner, R., Harper, R., MacQueen, D., & Tofte, M. (1997). The definition of standard ML:
revised. MIT press.

Nilsson, H. (1998). Declarative Debugging for Lazy Functional Languages. Linköping
University. Linköping: Linköping University Electronic Press Distribution.

Parnas, D. L., & Madey, J. (1991). Functional Documentation for Computer Systems, Vol. 2.
McMaster University, Hamilton, Ontari, Technical Report CRL 237.

Pettersson, M. (1998). Portable debugging and profiling. Compiler Construction, 1383, pp.
279-293.

Pop, A., & Fritzson, P. (2005). A Portable Debugger for Algorithmic Modelica Code.
Proceedings of the 4th International Modelica Conference. Hamburg, Germany.

Pop, A., Sjölund, M., Ashgar, A., Fritzson, P., & Casella, F. (2012). Static and Dynamic
Debugging of Modelica Models. Proceedings of the 9th International Modelica
Conference. Munich, Germany.

Pope, B., & Naish, L. (2003). Practical aspects of declarative debugging in Haskell 98.
Proceedings of the 5th ACM SIGPLAN international conference on Principles and
practice of declaritive programming (pp. 230-240). Uppsala, Sweden: ACM.

Salah Eddine Saidi, Nicolas Pernet, Yves Sorel, Abir Ben Khaled. Acceleration of FMU Co-
Simulation On Multi-core Architectures. Modelica Association; Linköping University
Electronic Press. Japanese Modelica Conference, May 2016, Tokyo, Japan. Proceedings
of first Japanese Modelica Conference, 124, pp.106 - 112, 2016, Proceedings of first
Japanese Modelica Conference.

Schamai, W. (2013). Model-Based Verification of Dynamic System Behavior against
Requirements. Linköping University. Linköping University Electronic Press.

Schamai, W., Helle, P., Fritzson, P., & Paredis, C. (2010). Virtual Verification of System
Designs against System Requirements. Proc. of 3rd International Workshop on Model
Based Architecting and Construction of Embedded Systems (ACES’2010), in
conjunction with MODELS'201. Oslo, Norway.

Schamai, W., Helle, P., Fritzson, P., & Paredis, C. J. (2011). Virtual Verification of System
Designs against System Requirements. In J. Dingel, & A. Solberg, Models in Software
Engineering (Vol. 6627, pp. 75-89). Springer Berlin Heidelberg.

Schneider, S.-A., Lovric, T., & Mai, P. R. (2009, April). The Validation Suite Approach to
Safety Qualification of Tools. SAE World Congess.

Sjölund, M., Braun, R., Fritzson, P., & Krus, P. (2010). Towards Efficient Distributed
Simulation in Modelica using Transmission Line Modeling. Proceedings of the 3rd
International Workshop on Equation-Based Object-Oriented Modeling Languages and
Tools (EOOLT'2010). Oslo.

Sjölund, M., Gebremedhin, M., & Fritzson, P. (n.d.). Paralellizing equation-based models for
simulation on multi-core platforms by utilizing model structure. 17th Workshop on
Compilers for Parallel Computing.

D1.1 SotA

OPENCPS, ITEA3 Project no. 14018 Page 15 of 15

Tate, E. D., Sasena, M., Gohl, J., & Tiller, M. (2008). Model embedded control: A method to
rapidly synthesize controllers in a modeling environment. 6th International Modelica
Conference. Bielefeld, Germany.

Thümmel, M., Otter, M., & Bals, J. (2005). Vibration control of elastic joint robots by inverse
dynamics models. IUTAM Symposium on Vibration Control of Nonlinear Mechanisms
and Structures, (pp. 343-353). München.

Thiele, B., Schneider, S.-A., & Mai, P. R. (2012). A Modelica Sub-and-Superset for Safety-
Relevant Control Applications. 9th Int. Modelica Conference. Munich.

Tolmach, P. A. (1992). Debugging standard ML. Diss. Princeton University.
Tolmach, P. A., & Appel, A. W. (1995). A debugger for Standard ML. Journal of Functional

Programming, 5(2), pp. 155-200.
Walther, M., Waulrich, V., & al., e. (2014). Equation based parallelization of Modelica models.

10th Int. Modelica Conference. Lund.

