
OPENCPS
ITEA3 Project no. 14018

D5.1 Develop efficient multicore simulation
Access1: PU

Type2: SW

Version: 1.0

Due Dates3: M24

Open Cyber-Physical System Model-Driven Certified Development

Executive summary4:

This deliverable reports on the support for large scale and multicore simulation in OpenModelica.
For speeding up simulations using multicore computers, automatic parallelization can be employed but
speedup depends a lot on the model structure.
For speeding up compilation and simulation of large models, alternative solutions for solving the
systems of equations can be employed, using sparse solvers and DAE instead of ODE solvers.
Both solutions have been implemented as prototypes in OpenModelica.

1 Access classification as per definitions in PCA; PU = Public, CO = Confidential. Access classification per deliverable stated in FPP.
2 Deliverable type according to FPP, note that all non-report deliverables must be accompanied by a deliverable report.
3 Due month(s) according to FPP.
4 It is mandatory to provide an executive summary for each deliverable.

D5.1 Develop efficient multicore simulation

OPENCPS, ITEA3 Project no. 14018 Page 2 of 9

Deliverable Contributors:

 Name Organisation Primary role
in project

Main
Author(s)5

Deliverable
Leader6

Adrian Pop LIU WP5 Leader x

Contributing
Author(s)7

Internal
Reviewer(s)8

Bernhard Thiele LIU WP3 Leader

Document History:
Version Date Reason for Change Status9

0.1 23/11/2017 First Draft Version Draft

1.0 24/11/2017 First Issue Released

5 Indicate Main Author(s) with an “X” in this column.
6 Deliverable leader according to FPP, role definition in PCA.
7 Person(s) from contributing partners for the deliverable, expected contributing partners stated in FPP.
8 Typically person(s) with appropriate expertise to assess deliverable structure and quality.
9 Status = “Draft”, “In Review”, “Released”.

D5.1 Develop efficient multicore simulation

OPENCPS, ITEA3 Project no. 14018 Page 3 of 9

CONTENTS

ABBREVIATIONS ... 3
1 EFFICIENT COMPILATION AND SIMULATION 4
1.1 Automatic parallelization on multicore ... 4
1.2 Alternative strategies for solving large-scale models 6
REFERENCES .. 9

ABBREVIATIONS

List of abbreviations/acronyms used in document:

Abbreviation Definition
FMI Functional Mock-up Interface
FMU Functional Mock-up Unit
M&S Modelling and Simulation
N/A Not Applicable

D5.1 Develop efficient multicore simulation

OPENCPS, ITEA3 Project no. 14018 Page 4 of 9

1 EFFICIENT COMPILATION AND SIMULATION

Compiling and running simulations as efficient as possible is always desirable to
minimize cost. In this deliverables we briefly present two strategies for speeding the
compilation and simulation of models.

1.1 Automatic parallelization on multicore

The automatic parallelization on multicore is presented in detail in [1]. The approach is
based on a task system representation and a parallelization C++ library called
ParModAuto presented in [6], extended with continuous runtime profiling and scheduling.
The execution of ODE during simulation varies with time and a static schedule defined
before or at the start of the simulation will not stay efficient during the entire simulation
(see Figure 1. BranchingDynamicPipes ODE evaluation cost). Continuous profiling and
scheduling can improve the efficiency of parallel execution during simulation.

Figure 1. BranchingDynamicPipes ODE evaluation cost

The parallelization approach focuses on Strongly Connected Components supported by
the ParModAuto task parallelization library. ParModAuto was designed to be a complete
runtime library. It has runtime profiling and adaptive rescheduling capabilities. This
means the library can be used to perform more responsive adaptive parallel simulations
which is not possible with static compile-time approaches. ParModAuto is sufficiently
high level to be used without requiring advanced knowledge in parallel programming. It is
also designed with portability in mind, using Intel Intel®Threading Building Blocks
Library (TBB) and Boost Graph Library, so that it can be used by multiple simulation
tools. It can save time and effort for developers and researchers that intend to achieve
either a complete task parallelization implementation or try out different scheduling
approaches.

D5.1 Develop efficient multicore simulation

OPENCPS, ITEA3 Project no. 14018 Page 5 of 9

Figure 2. Speed-up for CauerLowPassSC model

Figure 3. Speed-up for BranchingDynamicPipes model

The performance has been investigated with a prototype implementation in the
OpenModelica Modeling and Simulation Environment and shows promising results. Tests
have been performed, using models from the Modelica Standard Library (MSL), to
evaluate the performance of the prototype implementation with the OpenModelica
compiler. All tests have been performed on a 64-bit Intel® Core™ i7-3930K
CPU@3.20GHz machine running Ubuntu 16.04.3 LTS. The time results presented do not
include model compilation time. Actual simulation times are used in the analysis.
However, it should be noted that all parallelization related execution times are included.
These include all the extra overhead from task system creation, profiling, clustering and
scheduling. Therefore, the timing results here are what users should expect when running
simulations normally. Simulations are performed from time 0 to 1 second. All simulations
are done using the default solver of OpenModelica environment, DASSL. For each model
we present the estimated speed-up of the Level Scheduler, the achieved speed-up of the
Level Scheduler, and the speedup for the Flow Graph based scheduler. The estimated
speed-up for the Level Scheduler is the ratio of the sequential cost to the ideal parallel

mailto:CPU@3.20GHz

D5.1 Develop efficient multicore simulation

OPENCPS, ITEA3 Project no. 14018 Page 6 of 9

cost. Sequential cost is obtained by adding up the costs of all individual tasks in the
system while the ideal cost is obtained by adding up the costs of the largest tasks at each
level of task graph. Timing results for two models from the Modelica Standard Library are
presented here. The first model is the fifth order lowpass-filter CauerLowPassSC.
Measurements for this model are presented in Figure 2. A speed-up of factor 2.0262 is
achieved using the Level Scheduler execution with 4 threads. Results for the second test
model, BranchingDynamicPipes, are presented in Figure 3. This model achived a speed-
up of factor 2.6445 using the Flow Graph Scheduler with 4 threads.

To compile a model with automatic parallelization using the OpenModelica compiler one
just needs to use a special flag: -d=parmodauto when building the simulation code. See
also the OpenModelica documentation:
https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/omchelptext.html#omcflag
-debug-parmodauto

During year 3 of OpenCPS project we will focus on testing the automatic parallelization
on the provided benchmarks and demonstrators and improve it further.

1.2 Alternative strategies for solving large-scale models

The proposed handling of large-scale models using DAE mode and sparse solvers is
presented in detail in [2].
The ease of model composition in Modelica makes it easy to develop very large systems.
The system size of interest in a Modelica-based simulation is continuously increasing and
the traditional way of generating simulation code, e.g. involving symbolic transformations
like matching, sorting, and tearing, must be adapted to this situation.
This section describes recently implemented sparse solver techniques in OpenModelica in
order to efficiently compile and simulate large-scale Modelica models. Performance is
evaluated on selected models from ScalableTestSuite. The ScalableTestSuite contains a
number of different benchmark models, whose size can be easily chosen by setting one or
more Integer parameters. The benchmarks are designed to stress some aspect of the code
generation and execution, e.g. by possessing large implicit systems of algebraic equations,
large number of states, large number of event-generating functions, etc.

The performance is presented in Figure 4 for a selection benchmark models, each one
coming in three different sizes. The results obtained with four different numerical solution
strategies are presented and compared. The table shows the number of equations NE,
number of states NS and the running times of the simulations in seconds, including the
time spent for initialization.

https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/omchelptext.html#omcflag-debug-parmodauto
https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/omchelptext.html#omcflag-debug-parmodauto

D5.1 Develop efficient multicore simulation

OPENCPS, ITEA3 Project no. 14018 Page 7 of 9

The first solution strategy, labelled OD in the result table, is the default approach to
solving Modelica models implemented in the OpenModelica tool. The DAEs are turned
into ODEs by solving them for the derivatives, using the BLT transformation to do so
efficiently, applying symbolic index reduction if the system has index greater than one.
The implicit equations in the BLT corresponding to strong components in the dependency
graph are solved with dense linear and nonlinear equation solvers, using tearing to reduce
the size of the implicit part of the problem and thus somehow exploiting sparsity. The
ODEs are then solved by the DASSL BDF integrator, using a dense linear solver for its
internal operations.

Figure 4. Simulation times of ScalableTestSuite benchmarks in seconds

The second strategy, labelled OS, still resorts to causalization; however, the implicit
equations corresponding to the strong components in the BLT are solved by the
Kinsol/KLU sparse solvers, while the ODEs are solved by the IDA BDF integrator,
relying on the KLU sparse linear solver internally. In this case, tearing is not applied to
solve the implicit equations corresponding to strong components in the BLT. The rationale
behind this decision is that on the one hand, the sparse solver already vastly reduces the
computational complexity, if the system is highly sparse. On the other hand, tearing very
large systems might take a disproportionately large amount of time by the compiler back-
end, so that the time savings at run time are likely to be more than offset by the much
longer code generation time.

The third strategy, labelled DA, is to only apply symbolic index reduction (if needed) to
the DAEs, and then use the sparse IDA solver directly to solve them over time.

D5.1 Develop efficient multicore simulation

OPENCPS, ITEA3 Project no. 14018 Page 8 of 9

The fourth strategy, labelled DD, is a variant of the former one, in which the subset of the
DAEs that is strictly required to be solved in order to compute the state variables at the
next time step is identified and passed to the sparse IDA solver. Once the new time step
has been computed and accepted as valid by the error estimation routine, the remaining
equations are solved for the remaining variables by OpenModelica-generated code,
exploiting the usual BLT decomposition to solve them efficiently. This strategy can be
advantageous because it avoids computing unnecessary variables during the internal
solver iterations, particularly when tentatively computing a step that may then be rejected
by the error estimation routine. Also, it is often the case that the dependencies in the
systems are such that, once the variables required to advance the states have been
computed, the remaining ones can be computed by explicit assignments. Furthermore,
these are only computed once instead of getting unnecessarily involved many times in the
iterative solution of the implicit sparse nonlinear DAEs.
As to the initialization problem, with the first strategy the standard dense linear and
nonlinear solvers with tearing are used; with the other three, the sparse solvers
Kinsol/KLU without tearing are used instead.

All tests were carried out on the Open Source Modelica Consortium continuous testing
infrastructure, using the development version 1.12.0 of OpenModelica. The computer used
to run the tests is a 16-core Intel i7-6900K CPU @ 3.20 GHz, with 132 GB RAM.

The speedup achieved for the DD strategy varies from 2 to 60 times faster than the OD
strategy, which is currently the default in OpenModelica.

The main result of this study is that the use of sparse solvers is almost always beneficial,
sometimes very substantially, over the traditional use of dense solvers supported by
symbolic manipulation. The comparison between sparse DAE solvers and sparse ODE
solvers has many different outcomes, depending on the specific problems at hand.
Another interesting result is that we have demonstrated the feasibility of using such sparse
solvers to successfully simulate Modelica models of industrially relevant systems with
size up to over half a million DAEs.

To compile a model with DAE mode the OpenModelica compiler one just needs to use
special flags: --daeMode=dynamic when building the simulation code. Additional flags
are needed when running the built executable code: -mei=4000 -daeMode -s=ida -
idaLS=klu. Please refer to OpenModelica documentation for more information about
these flags:
https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/omchelptext.html#omcflag
-daemode
https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/simulationflags.html#simfl
ag-mei

https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/omchelptext.html#omcflag-daemode
https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/omchelptext.html#omcflag-daemode
https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/simulationflags.html#simflag-mei
https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/simulationflags.html#simflag-mei

D5.1 Develop efficient multicore simulation

OPENCPS, ITEA3 Project no. 14018 Page 9 of 9

https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/simulationflags.html#simfl
ag-daemode

During year 3 of the OpenCPS project we will focus testing the DAE mode on the
benchmarks and demonstrators and improve it further.

REFERENCES

[1] Mahder Gebremedhin, Peter Fritzson “Parallelizing Simulations with Runtime Profiling and
Scheduling”, 8th International Workshop on Equation-Based Object-Oriented Modeling Languages
and Tools, Munich, Germany, 2017.

[2] Willi Braun, Francesco Casella, Bernhard Bachmann “Solving Large-scale Modelica Models: New
Approaches and Experimental Results using OpenModelica”, 12th International Modelica Conference,
Prague, Czech Republic, 2017.

[3] Hilding Elmqvist, Sven Erik Mattsson, Hans Olsson “Parallel Model Execution on Many Cores”. 10th
International Modelica Conference, Lund, 2014

[4] Martin Sjölund, Mahder Gebremedhin, Peter Fritzson “Paralellizing equation-based models for
simulation on multi-core platforms by utilizing model structure”. 17th Workshop on Compilers for
Parallel Computing.

[5] Martin Sjölund, Robert Braun, Peter Fritzson, Peter Krus “Towards Efficient Distributed Simulation in
Modelica using Transmission Line Modeling”. Proceedings of the 3rd International Workshop on
Equation-Based Object-Oriented Modeling Languages and Tools (EOOLT'2010). Oslo.

[6] Mahder Gebremedhin, Peter Fritzson: “Automatic task based analysis and parallelization in the context
of equation based languages”. EOOLT 2014

https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/simulationflags.html#simflag-daemode
https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/simulationflags.html#simflag-daemode

	Abbreviations
	1 Efficient compilation and simulation
	1.1 Automatic parallelization on multicore
	1.2 Alternative strategies for solving large-scale models

	References

