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Executive Summary 

This Deliverable 3.1 contains different topics regarding the package format of component models which 
will become necessary in the ENTOC tool chain. Aspects of the description and explanation of the available 
package formats are important for the intended extension “Engineering Model Store” of tools to be used 
in ENTOC tool chain.  

In this Deliverable the focus lays on two aspects which are important to distinguish. On the one hand the 
AutomationML based component package format itself, together with e.g. interface descriptions and 
standardization activities. The other part comprehends the superior model store package format for 
common dependency management systems which will be the basic infrastructure for the model store to 
handle the component models. Based on AutomationML the package format will fit into the ENTOC tool 
chain and enables the entirely way of engineering. 
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1 Introduction  

The content of Work Package 3 is the creation and distribution of component models. From the view 
of Task 3.1 it is necessary to define a way how these component models must look like – based on 
common industrial standards and independent from the component. Following, the developed topics 
of Task 3.1 (Specification of component models) will be described in detail. For the package format of 
the component model itself and the dependencies of a package format used for the model store the 
following content includes different possibilities and solutions which will be presented in the following 
chapters.  

The results of Task 3.1 are the basic to create the Component Model Store – which is a part of the 
ENTOC toolchain shown in Figure 1. 

 

 

Figure 1: WP3 classification in the ENTOC toolchain 

  



 

ENTOC 
Engineering tool chain for efficient and iterative 

development of smart factories 
ITEA 3, 15015 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 7/28 

 

1.1 AutomationML inside the ENTOC tool chain 

Nowadays the demand for automation as well as the complexity of the automated tasks is constantly 
increasing in the field of production. A possible reason for this increase are demands on the flexibility 
of the automation system.  To guarantee a more cost and time efficient automation solution for an 
automation task, the whole automation process, especially the data transfer between engineering 
tools must be optimized. AutomationML is a file format that aims at optimizing the data transfer and 
make it more seamless. The main goal of AutomationML is a unified exchange file format. Currently 
there are a lot of software tools that are being used in the planning and engineering stages, each 
software tool usually stores data in a different format that other software tools may not be directly 
able to import. Actually, some software providers tend to use their own proprietary file formats that 
only can be used by their software tools.  

AutomationML [1] stands for Automation Markup Language. It’s a neutral file format which is based 
on XML (Extensible Markup Language). The free and open AutomationML standard can be used free 
of charge. AutomationML adapts the hierarchical concept of CAEX which includes objects, Interface 
and compositions.  The compositions describe the combination of more than one object with specific 
relation between them. AutomationML utilizes existing standards for describing essential modelling 
aspects of an automation project like geometry or behaviour. The linking element in AutomationML, 
which also represents topologies, is accomplished with the aid of the CAEX (Computer Aided 
Engineering Exchange) data format. Elements in the CAEX format are either Internal Elements (IE) or 
interfaces. COLLADA [2] (COLLAborative Design Activity) is an open standard file format that stores 
kinematics and geometry. Additionally, PLCopenXML [3] is also referenced in AutomationML. It is used 
for storing the models of behavior of objects, control logic information and could also be used for 
providing information about the production process like the sequence of process steps. AutomationML 
is flexible and allows the incorporation of future XML standard formats. AutomationML is used to 
establish relations and connections between the different objects, which are usually linked to other 
files that are incorporated in AutomationML. For Example, an object like a cylinder in the CAEX 
structure can be linked to a COLLADA file representing its geometry.  

In order to ease compatibility across all of the software tools, AutomationML adopts the concept of 
libraries. It offers three different libraries: 

• Role Class Library 

• Interface Class Library 

• System Unit Library (SUC) 

The Role Class Library is used to describe the abstract semantics of specific terms. It describes the 
attributes and interfaces of each role. The Interface Class Library is used to give information about the 
possible types of relations between different objects in a project. It also includes information about 
the relation between objects in specific projects to external data. Finally, the System Unit Library stores 
objects that are usually based on sub objects that are already defined in the Role Class Library, which 
are related to each other according to the information in the Interface Class Library. In addition, the 
System Unit Library may also contain objects that are only specific (custom made) for a special use 
case. The objects in a System Unit Library are usually objects that are often reused in the same 
engineering use case. That’s why the use of such (already linked objects) can be considered as a time 
saving practice. 
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1.2 Understanding of a component 

A component is a cultivable object which can be ordered from a manufacturer of your choice. For each 
component there exists an order code and other dependent files e.g. construction data and 
documentations. From the virtual engineering and virtual commissioning point of view an additional 
added physical behavior model is necessary. But it should be declared for which kind of functional 
behavior the model is prepared. In the ENTOC understanding a component with an associated behavior 
model is a functional component.  

Every functional component may consist of one or more components and may itself be part of a larger 
composition or aggregation which is shown in Figure 2. The correlated characteristic is derived from 
the related level of detail.  

 

     

Figure 2: Functional Components Festo pneumatic drive (left) and Schneider electric drive (right) 

For the generation of a detailed behavior model component manufacturers need access to internal 
data and component dependencies – which is normally the know-how of the component manufacturer 
company. To guarantee a physical behavior of the model with an accuracy of more than 90% a 
component manufacturer can combine own – well known - components to a functional component 
and offer the right behavior model for a combination of products.  

The example of the functional component pneumatic drive shows a combination of a pneumatic 
cylinder, valve, throttles, sensors, connectors and tubes. The throttles and tubes can have variable 
settings you should care about e.g. the opening position of the throttles and the dimension and length 
of the tube. How these standalone components should fit together is defined in the fluidic plan. 

Same for the electric drive. You can´t simulate an accurate behavior just with the component electric 
motor. You need more information from the gear ratio, axis and motor controller to provide a usable 
behavior model. 

Other topics like dimensioning and the compatibility to guarantee the different kinds of requirements 
are also important engineering aspects and necessitate a huge knowledge about each component. 
Typical objects in plant automation comprise information on topology, geometry, kinematics and logic, 
whereas logic comprises sequencing, behavior and control. 

The interface definition depends on the level of detail, which depends on the Use Case. For the ENTOC 
project we define the interfaces from a PLC programmer point of view and check if this is enough for 
the ENTOC purpose. The description of each interface is or will be documented in the AutomationML 
file – independent from the complexity of the used models. 
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2 Component model package format 

Today, it is common for each component model package to be described in a standardized data format 
used by the engineering software tool. Although only for separated engineering aspects and not tool 
comprehensive. Especially for behavior modelling there exists a huge number of different software 
tools with different specifications depending the component model package format.  

The ENTOC tool chain prefers AutomationML as integrated engineering format that allows, for 
example, reference to behavior models for Virtual Engineering and Virtual Commissioning.  

 

2.1 Data formats to describe behavior models 

The data format of the behavior models depends on the level of detail. Inside the AutomationML 
standard PLCopenXML is used for logic descriptions and MathML [4] for behavior description. One 
additional standard is the FMI (Functional Mock-Up Interface) [5]. FMI is a standard for the interaction 
of simulation models generated by different tools. The standard was created within the framework of 
the MODELISAR [6] project, and enjoys great support from simulation program manufacturers - 
currently 108 programs. 

The standard offers great advantages in co-simulation by allowing models from different tools to be 
simulated together without having access to the native simulation tools. For this, the models (so-called 
Functional Mockup Units, FMU) have to be exported as stand-alone files with integrated solver as a 
binary file. This black-box approach protects intellectual property despite detailed modeling. Thus, 
supplier can provide OEMs with internal engineering models from the design process of their 
components without fear of losing their know-how. This allows, for example, a plant manufacturer to 
have early access to realistic models for virtual engineering and virtual commissioning, without having 
to run their own modeling effort. The FMU standard is not integrated into AutomationML yet – but 
ENTOC efforts will bring that to standardization.  

One major aspect of using behavior descriptions in general is the definition of interfaces.  Additionally, 
different degree of details may require different methods (data formats) for describing. Depending on 
the level of detail, the decision is to use PLCopenXML data format for a simple behavior description 
e.g. a time delay for one movement.  

For example, an intermediate behavior may be a more detailed movement curve which is calculated 
with a defined parameter setting for one use case. This behavior curve can be built up in a MathML 
formula and easily integrated in AutomationML. 

The variable parameters are the connection to the simulation environment, e.g. other components or 
the control logic. With the FMU concept it is possible to calculate each simulation step depending 
interacting and changing parameters. FMUs are also capable of describing simple behavior, like shown 
in Table 1. The big advantage of the FMI concept is that the rules and ways how the FMU should 
interact with each other are defined in the FMI standard.  
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                 properties 

data format 

simple  

level of detail 

intermediate 

 level of detail 

complex 

level of detail 

know- how- 

protection 

PLCopenXML 
    

MathML 
    

FMU 
    

Table 1: Data formats depending behavior level of detail  

During the start of Virtual Engineering it should be clear which level of detail is needed. It is nearly 
impossible to derive a complex model from a simple model with comparable behavior accuracy. 
Alternatively, one can use for specific engineering steps the convenient level of detail with the 
appropriate data format. Or the complex behavior as FMU can be used through the whole engineering. 
But the decision depends on the engineering software environment and the needed focus of the 
engineering aspects. 

In general, handling FMUs is very convenient and useful for Virtual Engineering, where you frequently 
change parameters to optimize the solution. Further you can use the adjusted FMUs for Virtual 
Commissioning and get very precise results. If the focus is more on Virtual Commissioning it could 
make more sense to use simpler variants of behavior models like the PLCopenXML or MathML variant. 
Furthermore, in latter cases there is no need for the FMI environment. 

 

2.2 Practical examples 

To show the difference regarding the level of detail from behavior models with different data formats 
a comparison between PLCopenXML, MathML and FMU behavior models is shown.  
For each calculation following parameter settings are used: 

 supply pressure: 5 bar (rel.) 

 throttle opening: 30% 

In the ENTOC understanding we get behavior models from the component manufacturer in the 
described level of details. 

 SIMPLE behavior model:  

PLCopenXML function block which integrates a time during a position 

 INTERMEDIATE behavior model:  

MathML formula which describes the result of the movement curve 

 COMPLEX behavior model:  

FMU which can be independently used and free parametrized. The movement for example will 
be calculated at each simulation step 
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2.2.1 Pneumatic drive use case without load 
 

                 

Figure 3: Fluidic plan of the pneumatic drive example (left) and an example function block (right) 

The use case of the pneumatic drive without load compares the different models of the movement 
behavior from the pneumatic drive for a move out and a move in scene. In Figure 3 the fluidic plan is 
shown which is the base for the pneumatic drive function block models. 

 

SIMPLE behavior model (without load): 

Inside the PLCopenXML model is an integrator interpolating the position as a function of the time 
during the movement based in calculation results.  

∆tmoveout: 2,94s  ∆tmovein: 3,81s 

 

INTERMEDIATE behavior model (without load): 

In comparison the MathML model is more detailed and describes the movement as a mathematical 
function. 

 

Figure 4: MathML formula for the extend movement (without load) 

  

Figure 5: MathML formula for the retract movement (without load) 
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COMPLEX behavior model (without load): 

 

Figure 6: Independent pneumatic drive FMU 

The detailed FMU of the pneumatic drive contains a complex physical model and can be used for each 
parameter setting and is universally applicable (Figure 6). If there is a change of the settings, e.g. a 
change of the supply pressure or the throttle opening, it is necessary to create a new PLCopenXML and 
the MathML function. 

 

Results (without load): 

     

Figure 7: Results of the pneumatic drive movement (extend left/ retract right) without load  

As you can see in Figure 7 the results of the different detailed behavior models are very similar to 

each other. The highest deviation is the not considered switching time delay of the pneumatic valve 

inside the move in scene from the PLCopenXML model. But in general, the results are appropriate to 

the movement without load acceptable. 
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2.2.2 Realistic use case with load curve 

 

 

Figure 8: ENTOC Component Demonstrator with a pneumatic and an electric drive 

The ENTOC component demonstrator contains typical electrical and pneumatic actuators of 
automated assembly plants: The built-in electric drive (2) is able to linearly move a weight (3) between 
the start point (SP) and the end point (EP) and is attached to the upper beam. By extending the 
pneumatic drive (3), this beam can be tilted over the joint, which allows the flow of different processes. 
The examples rely on the pneumatic part of the ENTOC Component Demonstrator. 

For the comparison and further discussions, the pneumatic drive from the Component Demonstrator 
will be used as functional component.  

 

 

Figure 9: Calculated reduced force consider the kinematic  

To keep this example clear, the following results will use the calculated reduced force from mass 
position of the start point (SP) and the end point (EP). In principle, the Component Demonstrator can 
vary the reduced force depending the position of the mass between the blue and the red curve which 
is part of the diagram in Figure 9.  
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SIMPLE behavior model (load curve SP): 

∆tmoveout: 3,27s  ∆tmovein: 3,66s 

 

INTERMEDIATE behavior model (load curve SP): 

 

Figure 10: MathML formula for the extend movement (mass on SP) 

 

 

Figure 11: MathML formula for the retract movement (mass on SP) 

 

COMPLEX behavior model (load curve SP): 

Independent pneumatic drive FMU. 

 

Results (load curve SP) 

  

Figure 12: Results of the pneumatic drive movement (extend left/ retract right) 
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SIMPLE behavior model (load curve EP): 

∆tmoveout: 3,41s  ∆tmovein: 3,65s 

 

INTERMEDIATE behavior model (load curve EP): 

 

Figure 13: MathML formula for the extend movement (mass on end position) 

 

Figure 14: MathML formula for the retract movement (mass on end position) 

 

COMPLEX behavior model (load curve SP): 

Independent pneumatic drive FMU. 

 

Results (load curve EP) 

  

Figure 15: Results of the pneumatic drive movement (extend left/ retract right) 

The results show different movement curves depending from the different level of detail (Figure 12 
and Figure 15). The largest deviation is from the PLCopenXML model to the MathML and FMU models. 
Comparing the MathML and the FMU results the deviation is very small – almost insignificant. The 
huge benefit of the FMU is the independent behavior model, which is used unchanged for each 
described use case. Compared to the results of the six different PLCopenXML function blocks or six 
MathML formulas the one used FMU speaks for the easy usability of the FMI concept. For Virtual 
Engineering, for example, there is not only a change of the reduced forces it is possible that you have 
to change for example adjustable parameters such as the supply pressure or the throttle opening. With 
an FMU, these changes are easily realizable without changing or updating the behavior model. 
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2.3 Kinematic behavior modelling with FMU  

 

The idea of the behavior kinematic FMU is that in one 
simulation environment all FMUs, consisting of different 
engineering disciplines, can be connected to each other. 

A mechanics FMU of the Component Demonstrator, 
using articulated rigid body dynamics, was created with 
Algoryx Momentum. The basis for this was the CAD-data 
provided by FESTO. The FMUs for the pneumatic 
cylinder and the electric motor which was to be co-
simulated together with the mechanical system. 
For co-simulating the complete system, the FMUs were 
loaded inside the Simulink environment in MATLAB, 
where the pneumatic FMU was connected to the 
Algoryx Momentum-generated mechanics FMU using a 

PID controller, synchronizing the pneumatic cylinder position with the corresponding mechanical joint 
of the cylinder position in Algoryx Momentum. A simple forwards and backwards movement was 
conducted, where the pneumatic cylinder drove the mechanics FMU. 
Some issues appeared when simulating the system in MATLAB 2016b as the default FMU support were 
not properly able to simulate the FMUs. The main tool used to simulate the system was thus FMU 
Toolbox from Modelon, which proved to be able to successfully couple the system when tested by 
Algoryx. 
The system was successfully simulated (Figure 17) in real time with an update frequency of 100 Hz. 
Future work could be spent on including force feedback from the mechanical system to the pneumatic 
cylinder FMU, as well as including the electric motor FMU in the simulation which would be done in a 
similar way as the pneumatic cylinder. 

 
Figure 17: Simulink co-simulation of pneumatics and mechanics FMUs 

  

 

Figure 16: Mechanics FMU in Algoryx Momentum 
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2.4 Independent standardized interface for component models 

The FMI/FMU standard is today no part of the AutomationML description. Ongoing standardization 
activities driven from the ENTOC project will change that. The main part of the activities is to describe 
a neutral way to reference from an AutomationML file to a FMU and the appropriate interfaces. 

 For the FMI/FMU standard there are some assumptions: 
o It is assumed, that many CAEX-tools will support AutomationML for file transfer in near 

future. 
o It would be efficient to assign FMUs to components during engineering with CAEX 

tools and thus use AutomationML for adding FMU-based co-simulation configuration 
data. 

o Alternatively, AutomationML files generated by CAEX tools may be enhanced with 
assignments to FMUs afterwards by using a separate tool. 

Figure 18: AutomationML inside the engineering process 

 Goal: 
o The main goal is to re-use interconnection information of production components 

engineered in CAEX processes to set-up of Virtual Commissioning scenarios based on 
FMI 

 Information to be formalized in AutomationML: 
o Components may be represented by Internal Elements (IEs) or System Unit Classes 

(SUCs). For further description we call it component-IE. 
o The component-IE contains a sub-IE, which refers an FMU. For further description we 

call it FMUConnector-IE, since it is an instance of RoleClass ="FMUConnector". 
o A component-IE may contain multiple FMUConnector-IEs for different goals of 

simulation. E.g. Hardware-in-the-Loop needs very performant simulation models, 
while other scenarios need high accuracy of the models, what possibly may cause 
lower performance. 

o An FMUConnector-IE will contain: 
 An IE (role=ExternalDataConnector) for referencing the FMU 
 Interfaces of input/output variables of the FMU in order to be connected 

inside of the AutomationML file 

Engineering process

(CAEX tools)

Virtual Commissioning

(FMI based co-

simulation)

AML

- Component identities

- Component interconnections

Engineering process

(CAEX tools)

Information

Enhancement

Tool for VC

AML

- Component identities

Virtual Commissioning

(FMI based co-

simulation)

AML

- Component identities

- Component interconnections

(1) Improved CAEX tools

(2) Additional Information Enhancement tool
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With this proposal we are able to reference from an AutomationML file to the path of the FMU. In a 
further step the expected engineering tool will unzip the .fmu file and find the defined IN – and OUT 
ports inside the modeldiscription.xml (FMU standard). This interface from the FMU can relate to other 
AutomationML parts e.g. as internal links (Figure 19). 

 

 

Figure 19: FMU integration in the AutomationML structure 

    

ExternalDataConnector

ComponentIE

Output

Input

Connections in AutomationMLConnected component FMUs
in an FMI co-simulation

FMUConnector

 

      Figure 20: Scheme to relate FMU´s 

With this proposal, every vendor of FMUs is independent and free to use the interfaces permitted by 
the FMI standard. The AutomationML integration allows these interface descriptions to be read and 
linked to other AutomationML parts with internal links which is shown in       Figure 20.  
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2.5 Container format “.amlx” 

AutomationML offers the opportunity to create a container file to compress AutomationML data. In 
general, two types of AutomationML Containers [7] are allowed:  

 Local linked container files 

 Free linked container files 

For the standalone container file which is an approach to work offline with the AutomationML files e.g. 
construction sites without guaranteed internet access is only allowed to link relative to local files. It´s 
not possible to refer to public addresses. 

The free linked container files can refer to project links via URIs – but they need public access as a kind 
of online dependency. 

Each container file consists of a Root AMLfile which serves the entry point for an AutomationML 
Container and a Library AMLfile which contains only RoleClassLibs, InterfaceClassLibs and 
SystemUnitClassLibs and is always definied as entry point (referenced from the root AMLfile). Within 
the structure of an .amlx container well known AutomationML data e.g. COLLADA, CAEX and 
PLCopenXML can be attached to the file (see Figure 21). An .amlx container can just contain library 
files and can include further .amlx containers. 

 

 

Figure 21: AutomationML container file structure [7] 
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With these Container files it is possible to simply transfer AutomationML data and integrate it into a 
higher-level data structure. As an example, the pneumatic and electric drive from the Component 
Demonstrator is shown as AutomationML container, see Figure 22 and Figure 23. 

 

 

Figure 22: Container format for an electric drive 

 

 

Figure 23: Container format for a pneumatic drive 

 

For the use and handling with AutomationML Containers the depth of the AutomationML data for the 
ENTOC tool chain should be defined for each part when engineering results can be used by subsequent 
processes. If, for example the functional component is created by the component manufacturer then 
one or more AutomationML Containers can be handover to the plant manufacturer. The plant 
manufacturer again can build up the plant with existing standalone AutomationML Containers to one 
AutomationML file of the plant and zip this information for the OEM to provide an AutomationML 
Container of the plant.  
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3 Model Store package format 

The common understanding of a package format is an archive containing files or additional metadata. 
For the ENTOC project it is necessary to find a solution how the component models and the specific 
dependencies can be managed through the whole engineering process. 

To manage the individual aspects of components described in section 1.2 a holistic component 
description format has to be defined, which will be described in this section. These component 
descriptions will then be provided in the model store, which requires a further packaging format, 
incorporating the format described in this section 

Looking at existing dependency management systems like Debian or Maven with package structures 
and management processes we suggest principles which may be adopted for the management of 
mechatronic component models to realize the engineering of complex production systems.  

3.1 Debian package format 

Debian is a modern Linux distribution, which is available for long time (since 1993). Currently it includes 
more than 51000 software packages [8]. Most of them depend on each other. Debian has been used 
as base for other Linux derivatives (e.g. Ubuntu, Knoppix, Linux Mint), which means that the majority 
of Debian software packages are used and are slightly modified and supplemented by further software 
packages. Thus those associations maintaining Debian derivatives reduce the effort for package 
management and could be a base for the ENTOC package format. 

3.1.1 Debian package structure 

Debian packages contain all files necessary to provide a single functionality for the user of the 
operating system. There are different types of packages: 

 Binary packages, containing executables, configuration and documentation files. They are 
distributed within a Debian-specific archive format (file suffix .deb). 

 Source packages, consisting of a .dsc file describing the source package (including names of 
source files), a .orig.tar.gz file, containing the unmodified original source code and a .diff.gz 
file, containing Debian-specific modifications against the original source code. 

Users of mechatronic component models will probably be not in charge of compiling source code of 
the models. Thus we will consider the approach of handling Debian binary packages as a similar process 
to the distribution of mechatronic component models and analyze related package structures and 
processes more in detail. 

The Debian binary package is based on a specific archive format, which can be understood by an 
archive tool available for almost all Linux systems (the tool is called "ar"). A package can contain 
member files up to 9 GB. There are three member files defined for the debian package, which must 
appear in the following order (see [9]): 

 debian-binary: a text file of multiple lines (currently there is only one line containing the deb 
version "2.0") 

 control.tar: contains the control information for the package in a compressed format (gzip or 
xz). Within this compressed container there is a mandatory file "control", which is explained 
later. 

 data.tar: contains the file system with all executables, configuration and documentation files 
either uncompressed or compressed (gzip, xz, bzip2, lzma). 
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Further members of the .deb-file are ignored by current Debian package management tools, but are 
not prohibited. 

Debian package filenames are structured as follows: "<ProgramName>_<VersionNumber>-
<DebianRevisionNumber>_<DebianArchitecture>.deb". The file name elements have the following 
meaning (see [10]): 

 <ProgramName>: indicates the main executable or functionality provided 

 <VersionNumber>: the version number of the program 

 <DebianRevisionNumber>: the version of the Debian operating system 

 <DebianArchitecture>: the hardware and binary format indicator e.g. x86, amd64, arm, … 

The Debian package member control.tar contains descriptive information about the package, which is 
used by package management client systems to install program systems without conflicts and with 
resolution of dependencies. Figure 24 shows an example of a control file. It is taken from [10]: 

      

Figure 24: Example of a control file 

 

All possible fields of such control files are described in [11]. We will explain some selected fields in the 
following: 

 Package: contains the name of the package as <ProgramName> in the name of the .deb package 
file name. 

 Version: contains the <VersionNumber>-<DebianRevisionNumber>+<DebianRevisionNumber> 
as described above. 

 Architecture: contains the <DebianArchitecture> as described above. 

 Relationship fields (Depends, Pre-Depends, Recommends, Suggests, Breaks, Conflicts, Provides, 
Replaces, Enhances) 

Package: hello 

     Version: 2.9-2+deb8u1 

     Architecture: amd64 

     Maintainer: Santiago Vila <sanvila@debian.org> 

     Installed-Size: 145 

     Depends: libc6 (>= 2.14) 

     Conflicts: hello-traditional 

     Breaks: hello-debhelper (<< 2.9) 

     Replaces: hello-debhelper (<< 2.9), hello-traditional 

     Section: devel 

     Priority: optional 

     Homepage: http://www.gnu.org/software/hello/ 

     Description: example package based on GNU hello 

      

The GNU hello program produces a familiar, friendly greeting.  It 

allows non-programmers to use a classic computer science tool which 

would otherwise be unavailable to them. 

      . 

Seriously, though: this is an example of how to do a Debian package. 

It is the Debian version of the GNU Project's `hello world' program 

(which is itself an example for the GNU Project). 
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o Those fields contain relations to other packages by specifying name and version 
information of those packages and taking conjunctions and disjunctions of those 
packages into account 

o Example: "Depends: libc6 (>= 2.2.1), exim | mail-transport-agent" specifies, that this 
package is dependent on package libc in version 2.2.1 or above and from either the 
package exim or mail-transport-agent. 

At least relationships as "depends", "conflicts" and "replaces" are expected too in case of engineering 
of complex production systems by use of mechatronic component models. 

3.1.2 Debian binary package management 

There is a variety of tools to manage packages of a Debian system and the Debian package repository. 
They provide following functionalities [10]: 

 Manipulate and manage packages or parts of packages, 

 Administer local overrides of files in a package, 

 Aid developers in the construction of package archives, and 

 Aid users in the installation of packages, which reside on a remote FTP site. 

Similar tools are expected to support the management of mechatronic component models within 
engineering workflows. 

3.1.3 Conclusions for the AutomationML package format 

There are a variety of consequences, which should be taken into account, when designing package 
formats and tool chains for the management of mechatronic component models: 

 A package should contain the following information: 
o a package format version indicator (see debian-binary member of a Debian package) 
o component name (see <ProgramName> of the Debian package file name) 
o version of component model (see <VersionNumber> of the Debian package file name) 
o AML version (see <DebianRevisionNumber> of the Debian package file name) 
o Information about relationships to other packages (see Depends, Conflicts, Replaces, 

… elements of the control.tar member of a Debian package) 
o a container for the payload data of the package. 

 There is a need to specify data formats: 
o for the definition of a control.tar equivalent 
o for the data container (including compression algorithm) 

 There is a need for tools 
o to create and modify packages for the mechatronic component model developers 
o to provide functionalities of a package server (Debian uses a kind of FTP/SFTP here) 
o to provide functionalities for users of packages, which have access to control.tar 

equivalents and provide the functionalities of computing all dependencies and 
possible conflicts of package installations; search of packages should be easy in those 
tools and it shall also consider commercial aspects 

 There is a need for a package development strategy 
o e.g. the concept of packaging single functionalities of a program system into separate 

packages allows the user a better control over his package installations (e.g. for a 
mechatronic component considered as a model system, there should be separate 
packages for behavior model, documentation, 3D-information, …) 
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o within the Debian package system, there exist meta-packages, containing only 
dependency information about all separate packages of an according program system 
and in case of mechatronic component models, the concept could be used to create 
meta-packages with dependency-references to all sub-models (behavior, 3D, … 
models). 
 

3.2 Maven 

Maven [12] is a tool to manage building software and is Java based. It describes how the software 
should be build and describes the necessary dependencies to build and manage software projects.  

Core of any Maven project is the Project Object Model represented by the XML file `pom.xml`. The 
Project Object Model is used for describing a Maven Package as well as a Maven development project. 
For Maven Packages, this file contains metadata, packaging information and dependency information. 
Obligatory metadata for a Maven Package consists of a <groupId> in reversed-DNS notation, an 
<artifactId> used for identifying the package within a group, a <version> and information about the 
packaging itself.  

The combination of <groupId>, <artifactId> and <version> serves as a unique identifier for each Maven 
Package. Additional metadata for a Maven Package can be added as key-value pairs in the <properties> 
section of the Project Object Model. A lot of pre-defined metadata can be added to the Project Object 
Model such as license information, owning organization or URL to the project page. The Project Object 
Model can contain information about other packages this package relies on, also known as dependency 
information. Dependencies in the Project Object Model are referenced via the unique identifier 
consisting of <groupId>, <artifactId> and <version>, where the version can be specified as an exact 
version, version ranges or a list of exact versions and/or version ranges.  

The Maven client can download all dependencies including the dependencies of the dependencies, 
also known as transitive dependencies, when performing any Maven goal that requires them. Maven 
goals specify actions on a Maven project, which can be extended by Maven plugins. Such goals can 
include building, running or packaging a Maven project. Maven is used as a de-facto standard in JAVA 
software development, but can be used in other contexts as well. Available package formats include a 
zip-format, which can contain any file-based payload data for a project.  
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3.3 ENTOC specific Model Store file 

An additional file is required to use the generated behavior models with the AutomationML description 
within the ENTOC tool chain in combination with the dependency management of the ENTOC Model 
Store. The content of the file includes basic information about the behavior model e.g. version and 
compatibility information to enable the functionality of the dependency management. It is also 
possible to refer and use the attributes and structures of eClass [13] specifications or other common 
discipline-specific definitions. This allows to search for components with common used basic 
attributes. Figure 25 shows an example of an additional file which will be used for the prototype Model 
Store of the ENTOC Project. 

 

Figure 25: first version of the ENTOC Model Store file  

//ENTOC additional model store file 
{   "descriptorVersion":"1.0.0",                                             // informs about the version 
    "name": "theNameOfThePackage",                                        // name of the model package 
    "version": "v1.0.7",                                                    // version of the model package 
    "deprecated": false,                                                     // declares whether the package is deprecated or not 
    "previousVersion" : "v1.0.5",                                            // [not in first implementation] 
    "description": "Text with a description of the Package.",  // a short description of the model package 
    "typeIdentification":{                                                   // modelPackageType itself is dependent on its identifier 
        "eClass":{     // link to eClass structure possible 
            "modelPackageType": "rollerConveyor",                      // type of the model package (search filter) 
            "modelPackageTypeId": "13-47-42-11",                              
            "attributes": {                                                          
                "Speed": "3",                                                 // attributes are stored (for the search filter) 
                "SpeedUnit": "m/s" 
            } 
        }, 
        "customIdentifier":{    // link to individual customized structure also possible 
            "modelPackageType": "rollTransportUnit",    // type of the model package (for the search filter) 
            "modelPackageTypeId": "",                                         
            "attributes": {                                                          
                "Acceleration": "3",                                         // attributes are stored (for the search filter) 
                "UnitOfSpeed": "m/s" 
            } 
        } 
    }, 
    "behaviorModels":{                                                       // the behavior model included in the model package 
        "behavior.fmu":{ 
            "replaces":"vendorXYZ/testPackage - v1.0.2"              // [not in first implementation] breaks, conflicts, etc. ...  
        } 
    }, 
    "3dModels":[                                                              // the 3d models included in the model package 
        "test.dae" 
    ], 
    "others":[                                                                // other files included in the model package 
        "values.xslx", 
        "manual.pdf" 
    ], 
    "dependencies":[                                                         // paths of all depending model packages are stored 
        "ENTOCvendorABC/testPackage - v1.0.4"                        // path to the vendor and the model package 
    ], 
    "author": "ENTOC member",                                                // author of the model package 
    "createdOn": "2018-03-30T11:01:26.9755646+02:00",     // timestamp when the model package was uploaded 
} 
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3.4 Engineering Model Store package format 

The entry point to get the Engineering Model from the Model Store is that the plant builder knows 
which kind of product or related specifications will be used inside the plant. This information normally 
is defined in the specification sheet of the planned production plant. The component vendors have the 
opportunity to generate a functional component including topology, geometry, behavior and logic in 
AutomationML and can pack that to the AutomationML container format. To use the functional 
components inside the Model Store an additional Model Store file has to be generated for each 
functional component to enable the dependency management which will be used inside the store. This 
additional file allows further functions inside the Model Store like versioning, actualization, searching 
and lot more helpful functionalities. At least it is easily realizable to detect which special characteristic 
of each functional component is stored. 

To increase the range of components inside the Engineering Model Store component vendors could 
offer their product portfolio of functional components or they generate a functional component 
triggered from a request coming from the Engineering Model Store – which can enable new business 
models.  

The Engineering Model Store package format consists of the AutomationML file of the functional 
component and the additional Model Store file, which contains versioning information and 
specification attributes, see Figure 26. 

 

 

Figure 26: Scheme of the Model Store package format 
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4 Summary 

The content of Deliverable 3.1 focuses on the various ways to create a component package format 
based on AutomationML, where the functional component contains characteristics of behaviour 
(PLCopenXML/MathML/FMU), logic (PLCopenXML) and geometry data (COLLADA).  

It is possible to generate a component package with different kinds of e.g. behaviour models. The 
package format and the interface description itself are independent and can contain one or more 
variants of behaviour models for the different ways of engineering. From a technical point of view, the 
FMI standard offers the most promising potential for using maximum accuracy and an independent 
simulation architecture. Ongoing standardization activities regarding the integration of the FMI 
concept within AutomationML will be forced from WP3.  

One further focus of D3.1 is the discussion about the usage and content of additional files to enable an 
Engineering Model Store within the ENTOC toolchain. The concept of the Engineering Model Store 
itself will be detailed described in Deliverable 3.2.  

For the ENTOC tool chain an engineering package format inside the Model Store will be offered. It is 

a AutomationML component file with an associated Model Store file. This additional Model Store file 

enables functionalities of the dependency management system which will be implemented in the 

Model Store prototype.  
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