

ITEA 3 – 15015

Work package 3

Creation and Distribution of Component Models

Deliverable D3.2
Model distribution system specification

Document type
Document version
Document Preparation Date
Classification
Contract Start Date
Contract End Date

: Deliverable
: 1.0
: 2018-06-30
: public
: 01.09.2016
: 31.08.2019

ENTOC
Engineering tool chain for efficient and

iterative development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 2/42

Final approval Name Partner

Review Task Level Mario Thron IFAK e.V.

Review WP Level Christian König TWT GmbH

Review Board Level Manuel Paul FESTO AG & Co.KG

ENTOC
Engineering tool chain for efficient and

iterative development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 3/42

Executive Summary

This document provides a specification of a Model Store, which is necessary for exchange of engineering
models between different companies. Those models are related to mechatronic components, which are
assembled to production systems. The concept of packages has been introduced, while a package can
contain multiple models as files (e.g. geometry models and behavior models), which are described within
a package description file. The Model Store is designed as client-server application. The client specification
requires the management of package dependencies if e.g. other component models are aggregated to a
system model.

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 4/42

Contents

Executive Summary ... 3

1 Introduction ... 6

2 Use Case Analysis and Requirements .. 7

2.1 User Roles and Systems and Use Case Overview .. 7

2.2 Use Case Descriptions ... 9

 Management of Multiple Model Store Servers on Client Side .. 9

 Management of Distributed Hosting ... 9

 Downloading of Models with Dependencies .. 10

 Search of Component Models ... 11

 Requesting Costs of Models .. 11

 Payment Scenario .. 12

 Access Token Handling .. 13

 Uploading of Models to a Model Store ... 14

 Financial processes .. 14

 Account and Access Management .. 15

 Model Storage on Server Side ... 16

2.3 Requirements resulting from the Use Cases ... 17

3 System Design ... 19

3.1 Initial Design Decisions .. 19

3.2 Decomposition of Model Store Server and Client ... 19

 Client CLI .. 20

 Client GUI ... 22

 Client Config .. 23

 Package Store .. 23

 Package Description Cache .. 24

 Client Adapter .. 25

 Server Adapter ... 25

 Server Config ... 26

 Admin CLI ... 28

 Payment Service .. 28

4 Summary and Outlook ... 30

References ... 31

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 5/42

Annex A: Formal Description of the Model Store Server Interface .. 32

Annex B: Package Description File Format .. 38

List of Figures

Figure 1: Terminology used in this document as UML class diagram ... 6

Figure 2: Systems and related user roles .. 7

Figure 3: System architecture of the Model Store .. 19

Figure 4: Structure of a configuration file for an ENTOC ModelStore Client .. 20

Figure 5: Draft design of the Client GUI .. 22

Figure 6: The Folder Structure of the Package Store .. 24

Figure 7: General structure of the Model Store Server configuration file. ... 27

Figure 8: User roles within the Model Store Server configuration file ... 27

Figure 9: Example for a payment data store ... 29

file:///C:/Users/manp/Desktop/ENTOC_D32_ModelDistributionSystemSpecification.docx%23_Toc520791598

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 6/42

1 Introduction

The purpose of the ENTOC project is to provide a tool chain of engineering tools, which makes it
possible to re-use data of previous engineering steps within the current engineering step. This makes
it possible to harmonize data structures, their semantics and their encoding. A further challenge is to
provide places, where to store and acquire necessary data. Within this document we specified a
system, which we call Model Store. It is specified according to the client and server architecture
pattern, which easily makes it possible to access the engineering data by different engineers.

A basic assumption is that a production system can be split into mechatronic components, such as
robots, conveyors or others. Engineering data, related to those components, can be of different
nature, like geometry models, behavior models and interlinking component description models. We
introduce the term "package" as a combination of models and a package description. The package
structure is presented as an example in [D3.1] and formally described within this document (see Annex
B). Thus the Model Store is the main utility to manage those packages containing engineering
information about mechatronic components (see Figure 1). It is important to note, that the provider
of models upload the models as complete packages, while it should be possible to download only
selected model types of the package (so parts of a package only).

Figure 1: Terminology used in this document as UML class diagram

A typical usage scenario would be that a provider of a mechatronic component provides a package
containing a CAD-based geometry model and a behavior model. The geometry model can be used by
planners who assemble different components to a system view for the system integrator, such as a
company designing the production plant. The behavior model can be used within the virtual
commissioning phase of the project. So data supply and usage are at different time and the data is
provided and used by different engineering teams.

The intention of this document is to provide initially a detailed use-case analysis (chapter 2), a list of
requirements (section 2.3) and system design specification (chapter 3). That specification provides
information about data structures and interfaces between tools. The annex of this document contains
formal specifications of the package description file structure as well as a formal specification of the
interface of the Model Store Server, which makes it possible to provide conformant implementations
of that server.

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 7/42

2 Use Case Analysis and Requirements

The specification of the Model Store is approached in a use-case driven fashion. This chapter describes
the use cases for the proposed Model Store. First, three different roles and three systems and their
relations are described. In the next step, use-cases for the user roles and systems are drafted, to create
requirements based on these use-cases.

2.1 User Roles and Systems and Use Case Overview

The approach presented in the following chapters is a combination of the approach for distribution of
software packages for Open Source operating systems (like Linux, NetBSD or FreeBSD) and the
commercial approach used for distribution of so called Apps for mobile devices by using central App
repositories (like Apple App Store or Google Play Store).

Software packages for operating systems should be efficient in terms of re-using existing code and in
terms of disk space. Therefore multiple binaries of an operating system share the use of pre-compiled
software libraries and tools. Thus a software package depends on those libraries and tools. If the
software package is to be installed from a package repository, then all libraries and tools, this software
package depends on, have to be checked and installed if necessary.

Engineering is the process of creating models of products or production systems and also this process
has to be managed in an efficient manner. Re-using of partial models is an appropriate approach for
that purpose. If a larger system model is composed of smaller component models then it should be
possible to download the components from a repository too. But if this system model later on will be
integrated into a super-system model, then the dependent component models have to be integrated
too, which implies, that the system and component models have to be available from a repository,
which we call a Model Store in the ENTOC project.

The commercial aspect of the Model Store is similar to the commercial model used by mobile device
App repositories. Multiple vendors create component models and upload it to the Model Store. A
Model Store operator manages the distribution of the models to clients and is payed from that
collected money, but some money is retained by the Model Store operator for his model distribution
services.

Figure 2 depicts elements and user roles in context of the Model Store. The main system for handling
the data will be the Model Store Client, which provides access to the server for any human user.

Model Store
Server

Model Store
Server

Payment
Service
Payment
Service

Model Store
Server

Payment
Service

Model Store
Operator

Model User

Model Vendor

Model Store
Client

Figure 2: Systems and related user roles

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 8/42

The following table describes systems and user roles in detail:

No. User Role or System Name and its Description

1 Model User

A Model User is a user role, which is able to download, search for and retrieve meta
information about packages from the vendor sections in a Model Store Server it has granted
access to. Furthermore, it is able to search for, retrieve meta information, update and delete
packages from its local Model Store Client.

2 Model Vendor

A Model Vendor is a user role, which provides Packages. It is capable of all operations a Model
User can carry out. In addition, it is able to upload new packages to its own vendor section on
a Model Store Server including new versions of older packages.

3 Model Store Operator

A Model Store Operator is a user role, which is capable of all operations of a Model Vendor . It
has access rights to all vendor sections on its related Model Store Server and can manage the
users and their roles on its related Model Store Server.

4 Model Store Server

A Model Store Server is a system, which stores all packages from Model Vendors who have
access to it in the structure described in section 3.2.4. It provides all necessary APIs to perform
operation on it. There can be multiple Model Store Servers in a distributed scenario.

5 Model Store Client

A Model Store Client is a system, which runs on a local environment. It is capable of
establishing a connection to a Model Store Server (sending requests and getting responses),
processing responses from a Model Store Server, managing a local Model Store Storage and
perform operations either on the local Model Store Storage or on a Model Store Server via API
calls to it.

6 Payment Service

A Payment Service is a system, which regulates the payment processes of the Model Store
applications. Existing Payment Services are the on-line services from PayPal, VISA, Mastercard
or other. Model Users pay via this service onto the "bank account" of the Model Store
Operator. The collected money is later on distributed among Model Vendors and the Model
Store Operator.

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 9/42

2.2 Use Case Descriptions

The use cases are described by the user or system that has his use case (main perspective), the goals
that shall be achieved by the use case, and the typical steps that are executed to achieve this goal
(standard workflow). From theses use cases, requirements are derived that are described in further
detail in section 2.3.

Some of the use cases are considered necessary for the basic functioning of the Model Store. Those
use cases that relate to the Payment Service are considered optional in this specification.

 Management of Multiple Model Store Servers on Client Side

Name Management of Multiple Model Store Servers on Client Side

Main Perspective Model User, Model Vendor

Goals Any user of the Model Store Client can configure an arbitrary number
of Model Store Servers that will be queried when a model has to be
downloaded. The configuration includes a prioritization of the Model
Store Servers.

Standard Workflow The Model User configures the Model Store Client via configuration
file or commands to use different Model Store Servers in a specific
order. Such commands would be add_server or up/down_server (for
prioritization).

Comments References to models don’t include information about the location of
the model on a specific Model Store Server. This improves the
flexibility when models are exchanged between different companies.
In order to resolve model references it is necessary to provide Model
Vendor, model name and version id, the Model Store Client has to be
configured for the specific Model Store Servers to be used.

Resulting Requirements Multiple Model Store Servers in Model Store Client

 Management of Distributed Hosting

Name Management of Distributed Hosting

Main Perspective Model Store Server, Model Store Operator

Goals A Model Store Server can be configured to proxy model requests to
other Model Store Servers. Model data stored on the remote Model
Store Server can be cached in the local Model Store Server. If the
remote Model Store Server requires authentication, the local Model
Store Server can be configured to use specific login information for the
remote Model Store Server by the Model Store Operator.

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 10/42

Standard Workflow  The Model Store Operator logs in into the Model Store Server.

 The Model Store Operator adds a remote Model Store Server as
a separate repository.

 The Model Store Operator provides login information for
remote Model Store Server to be used instead of the user’s
login information when accessing model information through
this repository.

Comments This use case will not be applied when a centralized Model Store Server
is used.

Resulting Requirements Model Store Payment

The Model Store Server SHOULD be able to support payment

 Downloading of Models with Dependencies

Name Downloading of Models with Dependencies

Main Perspective Model User

Goals The Model User has downloaded one or more models. There are
transactions per single model. The Model User is informed, whether
all requested models have been downloaded or which of the models
could not be downloaded (and the failure cause). If there are
dependencies of a model requested by the Model User then all
depending models are downloaded too.

Standard Workflow  The Model User defines the list of models to be downloaded.

 The Model User calls a command for downloading at the Model
Store Client application and uses the list of models as
command parameter.

 The Model Store Client calculates a list of dependent models to
be downloaded too and asks the Model User to acknowledge
the complete model list (or abort of the operation).

 The Model Store Client then downloads each of the models from
the Model Store Server in a transactional manner.

 The Model Store Client informs the Model User about success or
failures of the operation.

Comments The Model Store Client is responsible for the dependency
management.

Resulting Requirements Store components data

Store component metadata

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 11/42

 Search of Component Models

Name

Search of Component Models

Main Perspective Model User

Goals The Model User gets a list of short descriptions of models according to
a query. The query may involve one or more elements:

 A Model Vendor name search expression

 A component model name search expression and

 A model type like behavior model or symbol model

 A version search expression.

Search expressions may include unsharp definitions, like regular
expressions for strings or minimum version numbers.

Standard Workflow  The Model User defines the query.

 The Model User calls a command for searching models at the
Model Store Client application and uses the query as
command parameter.

 The Model Store Client sends the query to the server, which
determines matching models and returns a list of models and
their according package descriptions.

 The Model Store Client presents the resulting list of models to
the Model User.

Comments The model type will be a property within the package description files.

Resulting Requirements Searching for components

 Requesting Costs of Models

Name Requesting Costs of Models

Main Perspective Model User

Goals The Model User is informed about the costs for downloading a set of
models and depending models.

Standard Workflow This workflow is embedded into the workflow of downloading models.

When the Model Store Client calculates the list of dependent models
and shows the information about the models, then cost information
should be included as information per model and as summary
information about all models to be downloaded.

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 12/42

It is part of further specifications, whether the costs can be calculated
on client side or whether the Model Store Server must be queried each
time, when a download process is initiated. (see "Downloading of
Models with Dependencies")

Comments This is an optional feature of the Model Store Client and Model Store
Server.

Resulting Requirements Multiple Model Store Servers in Model Store Client

 Payment Scenario

Name Payment Scenario

Main Perspective Model User

Goals The Model User has paid for the download of models and has got an
invoice. The money is now managed by the Model Store Operator.

Standard Workflow This workflow is embedded into the workflow of downloading models.

The following sub-workflow has to be performed before the Model
Store Client downloads each of the models:

 The Model Store Client sends the list of models to be
downloaded and the expected summary cost to the Model
Store Server, which calculates the summary costs at the server
side. If there are deviations between the two calculated costs,
then the Model Store Server sends a message to the client,
that the model meta-information is outdated. The Model
Store Client then asks the Model User to update the model
meta-information.

 The Model Store Server requests at the Payment Service
whether the Model User (or the respective company) is able
to pay for all models. If so, then the Model Store Server signals
it to the Model Store Client, which then performs the
download of the models in a transactional manner.

 After each model download transaction a log entry is stored at
the Model Store Server.

 The Model Store Server sums up the costs for each downloaded
model and after a certain delay books the money at the
Payment Service.

(see use case 2.2.3 "Downloading of Models with Dependencies")

Comments This is an optional feature of the Model Store Client and Model Store
Server.

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 13/42

Resulting Requirements Multiple Model Store Servers in Model Store Client

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 14/42

 Access Token Handling

Name

Main Perspective Model User

Goals A Model User creates or removes an access token for his account on
the Model Store Server. This access token can be provided to other
tools requesting model data on the user’s behalf without providing the
actual login information.

Standard Workflow Creating an access token

 The Model User logs in into the Model Store Server via its Model
Store Client and a session is opened.

 The Model User calls a synchronous function "create access
token" on his Model Store Client, which generates an access
token for his account on the Model Store Server.

 The Model User is provided the access token, which he can
provide to various tools

 Any tool configured with the access token can access the same
model data as the user until the access token is removed

 The Model User logs out of the Model Store Server.

Removing an access token

 The Model User logs in into the Model Store Server via its Model
Store Client and a session is opened.

 The Model User calls a synchronous function "remove access
token" on his client providing the access token information to
be removed.

 The Model Store Server informs the Model User that the access
token has been removed.

 Any tool configured with the access token can no longer access
the model data on the user’s behalf.

 The Model User logs out of the Model Store Server.

Comments Since the Model Store Server should be able to be configured for
authentication backends, the login information of the Model User is
most likely to be used in several systems. Directly providing this login
information to the tools that act on the user’s behalf would introduce
a security risk.

Resulting Requirements Model Store Access Token

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 15/42

 Uploading of Models to a Model Store

Name Uploading of Models to a Model Store

Main Perspective Model Vendor

Goals A model is uploaded by the Model Vendor to the Model Store Server
in a transactional manner and is immediately available for all Model
Users.

Standard Workflow  The Model Vendor creates the model files and the model
description file containing all dependencies from other
models and puts them into right location of his local model
storage.

 The Model Vendor logs in into the Model Store Server via its
Model Store Client and a session is opened.

 The Model Vendor calls a synchronous function "upload
package" on its Model Store Client, which requests the
location of the file system position of the package.

 The Model Store Client transfers the package to the Model Store
Server.

 The Model Store Server saves the package in its storage
component.

 The Model Store Server sends a commit message to the Model
Store Client.

 The Model Store Client informs the Model Vendor about the
success of the action.

Comments The transfer is skipped after some seconds and reported as
"transaction fails" in cases the Model Store Server could not be
reached or the transaction could not be finished within that time.

If a model X already exists (same vendor, model id and version) then it
may not be overwritten, which is reported as "error: model X in
version … already exists".

Resulting Requirements Store components data

 Financial processes

Name Financial processes

Main Perspective Model Vendor, Model Store Operator

Goals The Model Vendor is paid for the download of models by Model Users
within a pre-defined time frame (e.g. monthly or quarterly bills). The
payment is done by the Model Store Operator while a part of the total
income is retained for the operation of the Model Store Server.

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 16/42

Standard Workflow The Model Store Server runs a UNIX cron like utility. Payment jobs are
configured for each of the Model Vendors, when they are registered
at the Model Store Server.

We assume a monthly payment for a Model Vendor X for the following
description of the payment process.

 The Model Store Server checks regularly for triggers of payment
jobs. If a job has to be performed, then it is done according to
the following descriptions:

 The Model Store Server creates a list of models of Model Vendor
X, which have been downloaded since the last billing. The list
also contains information identifying Model Users. The base
for billing is the list of log-entries created after model
download transactions (see also "Payment Scenario"). The bill
is finally formatted and transferred to the Model Vendor by e-
mail in PDF or/and spreadsheet format.

 The Model Store Server initiates a respective transfer of money
from the Payment Service to a bank account of the Model
Vendor.

 The Model Store Server creates a daily report of billings and
sends it to the Model Store Operator.

Comments The Model Store Server and respectively the Administration Client (see
Admin CLI in Figure 3 and section 3.2.9) will provide an interface to
query passed and future billings.

This is an optional use case.

Resulting Requirements Multiple Model Store Servers in Model Store Client

 Account and Access Management

Name Account and Access Management

Main Perspective Model Store Operator

Goals Access to repositories on the Model Store Server can be restricted to
specific users and groups of users. For each user or group of users the
access can be restricted in terms of read, write and/or update/delete
access. A user without permissions for the specific task cannot
perform this operation.

Configuration and integration of standard authentication backends
should be considered.

Standard Workflow  Model Store Operator logs into Model Store Server

 Model Store Operator is provided the current configuration

 Model Store Operator can create, edit or delete groups

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 17/42

 Model Store Operator can edit permissions for
o Read permissions for users
o Write permissions for users
o Update/Delete permissions for users
o Read permissions for groups
o Write permissions for groups
o Update/Delete permissions for groups

Comments -

Resulting Requirements Model Store user access management

Model Store access management per repository

 Model Storage on Server Side

Name Model Storage on Server Side

Main Perspective Model Store Server, Model Store Operator

Goals The Model Store Server is able to store model data locally in a
repository. An arbitrary number of repositories can be configured on
the server.

Standard Workflow  The Model Store Operator logs in into the Model Store Server.

 The Model Store Operator is provided with the current
repository information.

 The Model Store Operator can add a repository.

 The Model Store Operator can delete a repository.

Comments -

Resulting Requirements Store components data

Store component metadata

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 18/42

2.3 Requirements resulting from the Use Cases

The requirements in this section directly result from the use cases in the previous section. They are
prioritized by the keywords MUST or SHOULD, meaning that they are either necessary for the function
of the Model Store, or that they add functionality, but are not crucial for the basic operation of the
Model Store.

No. Requirement Title and its Description

1 Store components data

The Model Store Server and Model Store Client MUST be able to store components,
comprising arbitrary payload data and metadata for the components (e.g. vendor,
version, etc).

2 Vendors must be able to perform management operations on their packages

The Model Store Server MUST be able to support the following operations for the
vendor stakeholder group: Creation and Delivery of Packages.

The Model Store Client MUST be able to support the following operations for the vendor
stakeholder group: Delete Packages from the Client Storage, Retrieve and Update of
Packages from the Server.

3 Download models

The Model Store Server and Model Store Client MUST be able to support the following
operations for the user stakeholder group: Retrieve of models.

4 Model Store user access management

The Model Store Server and Model Store Client MUST be able to incorporate an access
management right system supporting users.

5 Model Store group access management

The Model Store Server SHOULD be able to incorporate an access management right
system supporting groups.

6 Model Store access management per repository

The Model Store Server MUST be able to restrict the access to components to certain
users.

7 Store component metadata

The Model Store Server MUST be able to provide metadata for a requested component.

8 Searching for components

The Model Store Client MUST be able to provide a search functionality for components.

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 19/42

No. Requirement Title and its Description

9 Model Store Payment

The Model Store Server SHOULD be able to support payment

10 Multiple Model Store Servers in Model Store Client

The Model Store Client MUST be able to be configured for multiple Model Store Servers
including prioritization of the Model Store Servers to be queried. It SHOULD be possible
to add, changed and deleted this Model Store Servers in the config file from the Model
Store Client.

11 Model Store Access Token

The Model Store Server MUST be able to generate access tokens for users.

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 20/42

3 System Design

3.1 Initial Design Decisions

Figure 1 introduced a component description model as one of the possible models stored in a package.
There are plenty of possibilities on how this model should be encoded, from STEP Express over XML
up to AutomationML. The decision of the project partners was to use AutomationML here, since the
partners have experiences and tools to create AutomationML files. Additionally AutomationML has
been used in WP2 to describe requirements for production systems and will be used in further WPs
e.g. to describe interconnection of simulation models for co-simulation for virtual commissioning of
those production systems. AutomationML is publicly available [Aml2016a] and standardized by the
IEC [IEC62714:2018] as well as its basic format CAEX [IEC6242:2008].

The use of AutomationML here implies informally to use COLLADA for geometry models, since this is
recommended by the AutomationML standards suite. FMI-based behavior models should be used,
while the referencing of FMUs (Functional Mock-up Units) out of AutomationML has been introduced
by another research project [Suess2016].

3.2 Decomposition of Model Store Server and Client

Figure 3 provides an overview about the system architecture of the Model Store. It consists of two
main components (ModelStore CLI Client, ModelStore Server), which interact according to the client-
server communication pattern.

Client CLI

Model
User /
Vendor

Client Adapter

Client Config

Server
Adapter

Server Config
Model
Store

Operator
Admin CLI

public interface (specification is public)

Model Store Server

Model Store Client

Payment
Service

External
Payment-
Service
(e.g. PayPal)

Package
Description Cache

Package Store

Package Store

Client GUI

Figure 3: System architecture of the Model Store

Each of the main components consists of inner software modules for better adaptability of the
software to new use cases. For example a text console based client application can be easily adapted
to become a graphical user interface, if the logic for application configuration and dependency
management are implemented as separate software modules. The same approach is used for

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 21/42

implementation of the server application. The following sections describe the responsibility and
functionality of the software modules.

In order to be able to implement Model Store Clients and/or Servers independently from the ENTOC
project consortium it will be necessary to provide or consume the interface of the Model Store Server
(denoted as public interface in Figure 3 and described as ModelStore API in section 3.2.7). Thus it
becomes possible e.g. to extend new or existing engineering, planning or simulation tools to access a
Model Store.

 Client CLI

The Client CLI is a command line based tool to manage models via accessing one or more Model Store
Servers. For each of the servers the client has to manage access information (user accounts) and the
related server address information. The models on the servers have their own life cycle thus the Client
CLI has to provide functions to update information about which models are available at the servers
and which model versions are supported. Finally it should be possible to download packages to the
client side, while the dependencies between packages are calculated on client side.

The server management should be done by manual editing a configuration file or by using the
add_/remove_server functions of this interface. It may have the following structure:

Figure 4: Structure of a configuration file for an ENTOC ModelStore Client

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 22/42

The Client CLI shall provide functions to be used the user as mentioned in the following, while the
syntax is in scope of the CLI implementation. The functions are summarized in the
ClientCommandLineInterface:

 get_package(pkg, version): This function accesses the Model Store Server in order to get all the
requested package and all packages it depends on.

 get_package_dependencies(pkg, version): This function accesses the Package Description Cache
in order to query, which packages have to be installed in order to fulfil all of the dependencies.
An advanced implementation can contact the Model Store Server in order to determine the
cost information, based on the information, which of the necessary packages have to be
acquired newly.

 update: It is assumed, that Model Store Servers provide meta-information files about the
packages they manage. All meta-information files of all the configured Model Store Servers are
downloaded by using the command "update".

 upgrade: The newest available version on any of the configured servers is determined for each
package existing on the client side. Those newest versions are then downloaded to the client
side including all dependent packages.

 upgrade(pkg): This command upgrades only a single package pkg to the newest version.

 list(): This command lists all available packages. Per default from the server. Optionally use local
as input, to list all model packages in the local storage.

 vendorlist: This command lists all available vendors.

 search(pkg_str): This command lists all available package names including the character string
pkg_str. All configured servers are taken into account.

 info(pkg): This command lists the meta-information of a single package referenced by name
given by pkg.

 install(pkg): This command installs a package referenced by its name pkg.

 remove(pkg): This command removes a package pkg on the client side.

 add_server(url, port, user_name, password): this function updates the configuration file by
adding a server to the configured list Model Store Servers.

 remove_server(server_url, port): this function removes all related entries from the configuration
file.

 change_local_storage(path): This command change the location of the storage on the local
machine. By default it is “C:\DownloadedPackages”, this will be created with the first start of
the model store CLI client.

 --help: This command lists all available ModelStore commands and a short description of them.

 login: This command will direct you to input your username and password. If they are correct
you will be able to carry out all other functions mentioned above on the server.

The following functions of the ClientCommandLineInterface are available for package administrators
only. Package administrators are provided with special access rights on the server side.

 install(pkg): This command installs a new package on the server. The package pkg refers to a
local package folder on the client side.

 deprecate(pkg, version): This command deprecates a version of a package referenced by the
package name pkg and the version. All lower versions of the package are deprecated too.

Currently there are no functions to uninstall a package from the server. This is only in scope of the
Model Store Server provider.

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 23/42

The command line tool should be called ccli or ccli.exe, so that commands can be written like: ccli
upgrade c:\\mypackage.pkg

 Client GUI

The Client GUI is an alternative for the Client CLI. It provides the same functionality as the text-based
Client CLI (CCLIUserInterface), but provides a form based interface, which could look like the interface
shown in Figure 5.

File Edit PackageMgmt Help
Update Upgrade

ylind SearchServer list:

Sstore GmbH
MSto AG

-

Package name
Hydraulic Cylinder 123
Pneumatic Cylinder ABC
Pneumatic Cylinder DEF

Vendor
Bosch Rexro
FESTO
FESTO

Version
2.1.7
1.4.5
1.8.2

Status
i
ni
i

+ x

Figure 5: Draft design of the Client GUI

The Client GUI provides direct shorthand’s (buttons, lists, tables and text entry fields) for the
commands update, upgrade, list, search and it provides context menus for upgrade(pkg), info(pkg),
install(pkg), remove(pkg). The search result results in a table providing information like install status
(here i=installed, ni=not installed), package name, vendor and version. Package management is
available only for package administrators and provides the functionality of install(pkg) and
deprecate(pkg) by providing either file selection dialogs or search-dialogs as basic user interface.
Additionally Model Store Servers may be added via the GUI.

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 24/42

 Client Config

The Client Config module is responsible to access the configuration file as depicted in Figure 4. The
purpose of this module is to provide an interface to access Model Store Server information directly via
an API. Thus the module is responsible to abstract from the structure, encoding and location of the
configuration.

The Client Config provides an interface to be used by the CCLI called
ClientConfigurationAdminInterface with the following functions:

 add_server(url, port, user_name, password): this function updates the configuration file by
adding a server to the configured list Model Store Servers.

 remove_server(server_url, port): this function removes all related entries from the configuration
file.

 init(): initially reads the configuration file and creates an internal representation of that file.

 get_servers(): provides a list of server objects, each containing information like Model Store
Server URL, port, user name and password. An initially empty (null) session ID is provided too.

 Package Store

The Package Store is a universal component, which is intended to be used in the Model Store Client
and the Model Store Server. It provides access to all packages managed locally. The intended
implementation strategy is to use the filesystem for package storage.

The Package Store provides the PackageStoreAccessInterface, which provides following basic
functions:

 get_package(pkg, version): This function returns a zipped package from the local storage
without dependencies. It is intended that it may be unzipped at the root folder of another
package management file system.

 put_packages(pkg_zip): This function puts a package files from a zipped package into the local
file system.

 remove_package(pkg, version): This function removes a package from the local storage.

 get_list_of_packages(): This function returns a list of packages in the local storage.

 get_package_descriptions(): This function returns a zipped file containing all package
description files available in the local storage.

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 25/42

 Package Description Cache

The Package Description Cache may hold and serve package descriptions of Model Store Servers, which
can be reached by the Model Store Client. Each package in the package Store needs to include such a
package description file called “PackageDescription.json”. This file is mandatory for every package. A
description of this file is provided by Annex B as a JSON schema. This schema can be used to validate
a package description file.

The Package Description Cache provides the PackageDescriptionCacheInterface with following
functions:

 put_package_list(server, port, list): This function is called when the user triggers the update
function and the related Model Store Servers provide newer package descriptions than stored
locally in the Package Description Cache.

 get_available_package_descriptions(): returns a list of description_objects, which have
attributes like original_server, description_string, etc.

A Package (Naming convention:
“packageName - v*.*.*“, while *
are integer numbers), all file
belonging to this package are
stored underneath it

A Vendor folder, all packages
belonging to this vendor are
stored underneath it

The MoldeStore folder, all vendor
folders are stored underneath it

The ENTOC master folder

Figure 6: The Folder Structure of the Package Store

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 26/42

 Client Adapter

This module is the central component of the Model Store Client. It consumes the services of the
ModelStoreServerInterface, the ClientConfigurationAdminInterface , the PackageStoreInterface and
the PackageDescriptionCacheInterface. It implements the business logic available on the client side,
including calculation of dependencies between packages. The ModelStoreServerInterface is described
by using a formal language (swagger) and code for a proxy object may be generated out of this
interface description, which can be used to implement parts of the Model Store Client.

The Client Adapter provides a ClientAdapterUserInterface which provides all functions of the
ClientCommandLineInterface, but implemented as API and not as command line based interface to the
user.

 Server Adapter

The Server Adapter is the central module of the Model Store Server. It uses a Package Store as specified
in section 3.2.4 for storage of component packages. But it controls access to the packages by using
information of a server configuration (Server Config) and a Payment Service.

This module provides an interface called ModelStore API, which can be accessed via REST call to the
ModelStore Server URI and provides following functions (see Annex A for a formal interface
description):

 InitializeModelStoreServerSession(username, password): this function provides a session_key,
which is used for getting access to all the other functions. (API Call:
…/api/InitializeModelStoreServerSession/userName, password)

 DisableSessionKey(sessionKey): this function disables the session key. (API Call:
…/api/DisableSessionKey/sessionKey)

 DowloadPackage(vendorName, packageName, sessionKey): This function returns a zipped
package from the package store of the Model Store Server without dependencies. It is intended
that it may be unzipped at the root folder of a Model Store Client. (API Call: …
/api/DownloadPackage/vendorName/packageName/sessionKey)

 DowloadPackageInfo(vendorName, packageName, sessionKey): This function provides a
summary as a JSON object, containing how much data would be transferred for a list of
requested packages, how much would it cost and which packages are not available or
deprecated. (API Call: …/api/DowloadPackageInfo/ vendorName/packageName/sessionKey)

 DownloadPackageDescription(vendorName, packageName, sessionKey): This function returns
the packageDescription.json file belonging to the input package as zipped package. It is also
able to return all PackageDescription.json for all packages on the Model Store Server as zipped
package. If you only give the sessionKey as input (or the string “all” for vendorName and
packageName). This can be used to fill the PackageDescriptionCache of the Model Store Client
(API Calls: …/api/DownloadPackageDescription/vendorName/packageName/sessionKey
…/api/DownloadPackageDescription/sessionKey)

 PackageList(vendorName, sessionKey): This function returns a JSON object which contains a list
of packages belonging to a certain vendor from the package store of the Model Store Server.
If one want to get of all model package in the package store, one can use “all” as value for
vendorName and gets back a JSON object containing all model packages clustered by their
vendor. (API Call: …/api/PackageList/vendorName/sessionKey)

 VendorList(sessionKey): This function returns a list of all vendors available in the package store
of the Model Store Server. (API Call: …/api/VendorList/sessionKey)

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 27/42

 UploadPackage(requestBody, sessionKey): This function puts package files from a zipped
package into the package store of the Model Store Server. It gets its mainly needed data from
the requestBody. The requestBody has to be in JSON format and must include the attributes
packageName, vendorName and inputFileData. Otherwise this function will crash. The
attribute have to include to following data:
packageName, the name the model package should have in the package store of the server as
string
vendorName, the name of the vendor under which the model package should be stored have
in the package store of the server As string
inputFileData, the zipped package that includes all the files that are wished to be stored inside
the model package
(API Call: …/api/UploadPackage/sessionKey)

 Server Config

The Server Config module manages the local storage of the server configuration information as
depicted in Figure 7 and Figure 8.

This module provides two interfaces. The first interface is called the ServerAdminInterface, which
provides the functions as defined for the Admin CLI, but this interface is implemented as API and not
as a command line interface.

The second interface is called the ServerConfigurationRunTimeInterface, which provides the following
functions:

 start_session(company_id, user_id, password): this function returns a session_id, which is
persistently maintained together with the LastLogIn time.

 stop_session(session_id): which maintains the removal of the given session_id from a user entry
and the LastLogOut timestamp.

 has_role(session_id, role): return true/false whether the user identifiable via the given
session_id has the requested role.

The ServerAdminInterface is used by the Admin CLI and the ServerConfigurationRunTimeInterface is
used by the Server Adapter according to Figure 3.

It is assumed, that the server configuration is stored in a file with the following structure, which is self-
explanatory due to the in-line comments:

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 28/42

Figure 7: General structure of the Model Store Server configuration file.

Figure 8 provides an overview about the specified user rights. Examples of allowed functions are given
in the comments of the user roles.

Figure 8: User roles within the Model Store Server configuration file

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 29/42

 Admin CLI

The Admin CLI of the Model Store Server provides access to the Server Config module via a command
line interface called ServerAdminCommandLineInterface. The operator of the Model Store will use
this interface to manage clients, users and access rights.

The ServerAdminCommandLineInterface provides following functions for the management of
companies, users and sessions:

 add_company(name_id, full_name, mail_address, phone_number, post_address)

 update_company(name, mail_address, phone_number, post_address)

 remove_company(name_id)

 add_user(company_id, name_id, password, full_name, mail_address, phone_number,
post_address, roles)

 update_user(company_id, name_id, password, full_name, mail_address, phone_number,
post_address, roles)

 remove_user(company_id, name_id)

 remove_package(pkg, version): This function removes a package with the name pkg and the
related version from the package store of the Model Store Server.

The mentioned functions are self-explanatory by the provided function and argument names. They
add/update/remove entries in the server configuration file.

 Payment Service

The payment service is responsible to manage money transfer for delivered packages. It provides the
PaymentInterface with the following functions:

 transfer_money(sending_company, receiving_company, cost, order_id): This is a complex
function, which logs, which packages have been ordered by which user. The order gets an
order_id and the data set is stored in a payment service internal database (which could be file-
based too). The concrete payment is delegated to on-line payment services like PayPal. Thus
the arguments sending_company and receiving_company represent all the necessary address
information needed from the on-line payment service. Those data have to be managed in the
server configuration file.

A structure of a database to store commercial model transfer data is self-explanatory depicted in
Figure 9.

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 30/42

Figure 9: Example for a payment data store

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 31/42

4 Summary and Outlook

This document provides a specification of a Model Store, which is necessary for exchange of
engineering models between different companies. Those models are related to mechatronic
components, which are assembled to production systems. The concept of packages has been
introduced, while a package can contain multiple models as files (e.g. geometry models and behavior
models), which are described within a package description file. The Model Store is designed as client-
server application. The client specification requires the management of package dependencies if e.g.
other component models are aggregated to a system model.

A reference implementation of the model store is one of the next tasks within the ENTOC project (Task
3.3). It will be evaluated within application driven use cases in WP6 of the ENTOC project.

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 32/42

References

[Aml2016a] AutomationML e.V.: Whitepaper AutomationML, Part 1 – Architectural and general
requirements, Version 2.0.0, April 2016.

[D3.1] ENTOC consortium: Deliverable D3.1: Package Format specification. May 2018.

[IEC62714:2018] IEC: Engineering data exchange format for use in industrial automation systems
engineering - Automation Markup Language - Part 1: Architecture and general
requirements

[IEC6242:2008] IEC: Representation of process control engineering – Requests in P&I diagrams and
data exchange between P&ID tools and PCE-CAE tools. IEC 6242/Ed.1.

[Suess2016] Süß, S.; Magnus, St.; Thron, M.; Zipper, H.; Odefey, U.; Strahilov, A.; Klodowski, A.;
Bär,Th.: Test methodology for virtual commissioning based on behaviour simulation
of production systems. 21st IEEE International Conference on Emerging
Technologies and Factory Automation ETFA 2016, Berlin, September 2016.

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 33/42

Annex A: Formal Description of the Model Store Server Interface

The following text describes the interface of the ServerAdapter formally as a swagger file
(https://swagger.io/), which makes it easy to generate a REST interface implementation:

{

 "swagger": "2.0",

 "info": {

 "version": "v1",

 "title": "ModelStore API",

 "description": "This the description of the Model Store Server API.",

 "contact": {

 "name": "ifak - Institut für Automation und Kommunikation e. V.",

 "url": "https://www.ifak.eu/",

 "email": "info@ifak.eu"

 }

 },

 "paths": {

 "/api/DisableSessionKey/{sessionKey}": {

 "put": {

 "tags": [

 "DisableSessionKey"

],

 "operationId": "ApiDisableSessionKeyBySessionKeyPut",

 "consumes": [],

 "produces": [

 "text/plain",

 "application/json",

 "text/json"

],

 "parameters": [

 {

 "name": "sessionKey",

 "in": "path",

 "required": true,

 "type": "string"

 }

],

 "responses": {

 "200": {

 "description": "Success",

 "schema": {

 "type": "string"

 }

 }

 }

 }

 },

 "/api/DownloadPackage/{vendorName}/{packageName}/{sessionKey}": {

 "get": {

 "tags": [

 "DownloadPackage"

],

 "operationId":

"ApiDownloadPackageByVendorNameByPackageNameBySessionKeyGet",

 "consumes": [],

 "produces": [

"application/zip"

],

 "parameters": [

 {

 "name": "vendorName",

 "in": "path",

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 34/42

 "required": true,

 "type": "string"

 },

 {

 "name": "packageName",

 "in": "path",

 "required": true,

 "type": "string"

 },

 {

 "name": "sessionKey",

 "in": "path",

 "required": true,

 "type": "string"

 }

],

 "responses": {

 "200": {

 "description": "Success",

 "schema": {

 "type": "string"

 }

 }

 }

 }

 },

 "/api/DownloadPackageDescription/{vendorName}/{packageName}/{sessionKey}":

{

 "get": {

 "tags": [

 "DownloadPackageDescription"

],

 "operationId":

"ApiDownloadPackageDescriptionByVendorNameByPackageNameBySessionKeyGet",

 "consumes": [],

 "produces": [

 "application/zip"

],

 "parameters": [

 {

 "name": "vendorName",

 "in": "path",

 "required": true,

 "type": "string"

 },

 {

 "name": "packageName",

 "in": "path",

 "required": true,

 "type": "string"

 },

 {

 "name": "sessionKey",

 "in": "path",

 "required": true,

 "type": "string"

 }

],

 "responses": {

 "200": {

 "description": "Success",

 "schema": {

 "type": "object"

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 35/42

 }

 }

 }

 }

 },

 "/api/DownloadPackageDescription/{sessionKey}": {

 "get": {

 "tags": [

 "DownloadPackageDescription"

],

 "operationId": "ApiDownloadPackageDescriptionBySessionKeyGet",

 "consumes": [],

 "produces": [

"application/zip"

],

 "parameters": [

 {

 "name": "sessionKey",

 "in": "path",

 "required": true,

 "type": "string"

 }

],

 "responses": {

 "200": {

 "description": "Success",

 "schema": {

 "type": "object"

 }

 }

 }

 }

 },

 "/api/DownloadPackageInfo/{vendorName}/{packageName}/{sessionKey}": {

 "get": {

 "tags": [

 "DownloadPackageInfo"

],

 "operationId":

"ApiDownloadPackageInfoByVendorNameByPackageNameBySessionKeyGet",

 "consumes": [],

 "produces": [

 "text/plain",

 "application/json",

 "text/json"

],

 "parameters": [

 {

 "name": "vendorName",

 "in": "path",

 "required": true,

 "type": "string"

 },

 {

 "name": "packageName",

 "in": "path",

 "required": true,

 "type": "string"

 },

 {

 "name": "sessionKey",

 "in": "path",

 "required": true,

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 36/42

 "type": "string"

 }

],

 "responses": {

 "200": {

 "description": "Success",

 "schema": {

 "type": "object"

 }

 }

 }

 }

 },

 "/api/InitializeModelStoreServerSession/{userName}/{password}": {

 "get": {

 "tags": [

 "InitializeModelStoreServerSession"

],

 "operationId":

"ApiInitializeModelStoreServerSessionByUserNameByPasswordGet",

 "consumes": [],

 "produces": [

 "text/plain",

 "application/json",

 "text/json"

],

 "parameters": [

 {

 "name": "userName",

 "in": "path",

 "required": true,

 "type": "string"

 },

 {

 "name": "password",

 "in": "path",

 "required": true,

 "type": "string"

 }

],

 "responses": {

 "200": {

 "description": "Success",

 "schema": {

 "type": "string"

 }

 }

 }

 }

 },

 "/api/PackageList/{vendorName}/{sessionKey}": {

 "get": {

 "tags": [

 "PackageList"

],

 "summary": "Returns a JSON file that holds a list of all P´packages

provided by a vendor.",

 "description": "Either give a certain vendor as input or just use

\"all\" to get back a JSON with all packages clustered by vendor.",

 "operationId": "ApiPackageListByVendorNameBySessionKeyGet",

 "consumes": [],

 "produces": [

 "text/plain",

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 37/42

 "application/json",

 "text/json"

],

 "parameters": [

 {

 "name": "vendorName",

 "in": "path",

 "required": true,

 "type": "string"

 },

 {

 "name": "sessionKey",

 "in": "path",

 "required": true,

 "type": "string"

 }

],

 "responses": {

 "200": {

 "description": "Success",

 "schema": {

 "type": "object"

 }

 }

 }

 }

 },

 "/api/UploadPackage/{sessionKey}": {

 "post": {

 "tags": [

 "UploadPackage"

],

 "operationId": "ApiUploadPackageBySessionKeyPost",

 "consumes": [

 "application/json-patch+json",

 "application/json",

 "text/json",

 "application/*+json"

],

 "produces": [

 "text/plain",

 "application/json",

 "text/json"

],

 "parameters": [

 {

 "name": "Parameters",

 "in": "body",

 "required": false,

 "schema": {

 "type": "object"

 }

 },

 {

 "name": "sessionKey",

 "in": "path",

 "required": true,

 "type": "string"

 }

],

 "responses": {

 "200": {

 "description": "Success",

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 38/42

 "schema": {

 "type": "string"

 }

 }

 }

 }

 },

 "/api/VendorList/{sessionKey}": {

 "get": {

 "tags": [

 "VendorList"

],

 "operationId": "ApiVendorListBySessionKeyGet",

 "consumes": [],

 "produces": [

 "text/plain",

 "application/json",

 "text/json"

],

 "parameters": [

 {

 "name": "sessionKey",

 "in": "path",

 "required": true,

 "type": "string"

 }

],

 "responses": {

 "200": {

 "description": "Success",

 "schema": {

 "type": "array",

 "items": {

 "type": "string"

 }

 }

 }

 }

 }

 }

 },

 "definitions": {}

}

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 39/42

Annex B: Package Description File Format

The following text describes the JSON schema (http://json-schema.org/) of the PackageDescription-

file, which makes it easy to validate a package description file provided by a model vendor:

{

 "title": "modelPackageDescription",

 "type": "object",

 "properties": {

 "descriptorVersion": {

 "type": "string",

 "pattern": "(\\d+\\.)(\\d+\\.)(\\d+)",

 "title": "The Descriptor version Schema ",

 "description": "informs about the version of the package description

file, in case there are addition or attribute name changes etc. in the future",

 "examples": [

 "1.0.0"

]

 },

 "name": {

 "type": "string",

 "pattern": "^[A-Z a-z]{1,} - v(\\d+\\.)(\\d+\\.)(\\d+)",

 "title": "The Name Schema ",

 "description": "the name of the model package",

 "examples": [

 "TheNiceModelPackage - v1.0.7"

]

 },

 "version": {

 "type": "string",

 "pattern": "(\\d+\\.)(\\d+\\.)(\\d+)",

 "title": "The Version Schema ",

 "description": "the version of the model package",

 "examples": [

 "1.0.7"

]

 },

 "deprecated": {

 "type": "boolean",

 "title": "The Deprecated Schema ",

 "description": "declares whether the package is deprecated or not",

 "default": false,

 "examples": [

 false

]

 },

 "previousVersion": {

 "type": "string",

 "pattern": "(\\d+\\.)(\\d+\\.)(\\d+)",

 "title": "The Previous version Schema ",

 "description": "the previous version of the model package",

 "examples": [

 "1.0.5"

]

 },

 "description": {

 "type": "string",

 "title": "The Description Schema ",

 "description": "a short description of the model package",

 "default": "",

 "examples": [

 "This is a nice short description of the Model Package."

http://json-schema.org/

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 40/42

]

 },

 "typeIdentification": {

 "type": "object",

 "description": "this is needed because the modelPackageType itself is

dependent on its identifier and so are the attributes",

 "patternProperties": {

 "^.*$": {

 "anyOf": [

 {

 "type": "object",

 "description": "",

 "additionalProperties": {

 "modelPackageType": {

 "type": "string",

 "title": "The Model package type Schema ",

 "description": "the type of the model package

(relevant for the search filter implementation)",

 "default": "",

 "examples": [

 "rollerConveyor"

]

 },

 "modelPackageTypeId": {

 "type": "string",

 "title": "The Model package typeid Schema ",

 "description": "the id of the model package

type, this is not always necessary",

 "default": "",

 "examples": [

 "13-47-42-11"

]

 },

 "attributes": {

 "type": "object",

 "description": "here all the attributes are

stored which are used for the search filter, a clear set of mandatory and optional

attributes should by defined per modelPackageType",

 "patternProperties": {

 "^.*$": {

 "anyOf": [

 {

 "type": "string"

 },

 {

 "type": null

 }

]

 },

 "additionalProperties": false

 }

 }

 }

 }

]

 }

 },

 "additionalProperties": false

 },

 "behaviorModels": {

 "type": "object",

 "description": "the behavior model included in the model package",

 "patternProperties": {

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 41/42

 "^.*$": {

 "anyOf": [

 {

 "type": "object",

 "description": "properties can be breaks, conflicts,

replaces, deprecates, contributes",

 "patternProperties": {

"(breaks)|(conflicts)|(replaces)|(deprecates)|(contributes)": {

 "anyOf": [

 {

 "type": "string",

 "title": "The dependency relation

Schema",

 "description": "The string describes

the path to the depending behavior model file. Hint: This structure could be

extended to 3dModels and others in further iterations of this JSON schema. If such

a dependency relation is needed for this files in the future."

 }

]

 }

 }

 }

]

 }

 }

 },

 "3dModels": {

 "type": "array",

 "items": {

 "type": "string",

 "title": "The 3dModels item Schema ",

 "description": "the 3d models included in a model package",

 "examples": [

 "test.dae"

]

 }

 },

 "others": {

 "type": "array",

 "items": {

 "type": "string",

 "title": "The others item Schema ",

 "description": "other files included in a model package",

 "examples": [

 "hello.xslx",

 "manual.pdf"

]

 }

 },

 "dependencies": {

 "type": "array",

 "items": {

 "type": "string",

 "title": "The dependency item Schema ",

 "description": "The paths of all model packages the actual model

package depends on are stored. The path consists of the folder of the vendor and

the model package itself.",

 "examples": [

 "vendorABC/testPackage - v1.0.4"

]

 }

 },

ENTOC
Engineering tool chain for efficient and iterative

development of smart factories
ITEA 3, 15015

Project Coordinator: Thomas Bär, Daimler AG

 42/42

 "author": {

 "type": "string",

 "title": "The Author Schema ",

 "description": "The author of a model package.",

 "default": "no author given",

 "examples": [

 "Terence Hill"

]

 },

 "createdOn": {

 "type": "string",

 "format": "date-time",

 "title": "The Created on Schema ",

 "description": "The timestamp when a model package was uploaded.",

 "default": "",

 "examples": [

 "2018-04-24T11:01:26.9755646+02:00"

]

 }

 },

 "additionalProperties": false,

 "required": [

 "descriptorVersion",

 "name",

 "version",

 "deprecated",

 "previousVersion",

 "description",

 "typeIdentification",

 "behaviorModels",

 "3dModels",

 "others",

 "dependencies",

 "author",

 "createdOn"

]

}

