
PROPRIETARY RIGHTS STATEMENT

THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE ASSUME CONSORTIUM.
NEITHER THIS DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED
OR COMMUNICATED BY ANY MEANS TO ANY THIRD PARTY, IN WHOLE OR IN PARTS, EXCEPT WITH THE
PRIOR WRITTEN CONSENT OF THE ASSUME CONSORTIUM THIS RESTRICTION LEGEND SHALL NOT BE
ALTERED OR OBLITERATED ON OR FROM THIS DOCUMENT. THE RESEARCH LEADING TO THESE
RESULTS HAS RECEIVED FUNDING FROM VARIOUS NATIONAL AUTHORITIES IN THE FRAMEWORK OF
THE ITEA 3 PROGRAMME (PROJECT NUMBER 14014).

Affordable Safe & Secure Mobility Evolution

Advanced Concurrent Static Analysis

Toolkit Description

Deliverable D5.2

Deliverable Information

Nature Document Dissemination Level Public

Project ASSUME Project Number 14014

Deliverable ID D5.2 Date 31.08.2018

Status Final Version v13

Contact Person Reinhold Heckmann Organisation AbsInt GmbH

Phone ++49-681-38360-25 E-Mail heckmann@absint.com

mailto:heckmann@absint.com

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 2 of 88 Public Final – v13

Author Table

Name Partner Email

Reinhold Heckmann AbsInt heckmann@absint.com

Arturo Tejada Ruiz TNO arturo.tejadaruiz@tno.nl

Mladen Skelin TU/e m.skelin@tue.nl

Anja Stoll MES anja.stoll@model-engineers.com

Sebastian Ottlik FZI ottlik@fzi.de

Philipp Sieweck UKiel psi@informatik.uni-kiel.de

Philipp Reinkemeier OFFIS philipp.reinkemeier@offis.de

Ralf Vogler TUM ralf.vogler@tum.de

Antoine Miné Sorbonne University Antoine.Mine@ens.fr

Helmut Seidl TUM seidl@in.tum.de

Hassan Salehe Matar Koç University hmatar@ku.edu.tr

Anton Paule FZI paule@fzi.de

Jens-Peter Rohrlack MES jens-peter.rohrlack@model-engineers.com

Rifat Atar Ericsson rifat.atar@ericsson.com

mailto:heckmann@absint.com
mailto:arturo.tejadaruiz@tno.nl
mailto:m.skelin@tue.nl
mailto:anja.stoll@model-engineers.com
mailto:ottlik@fzi.de
mailto:psi@informatik.uni-kiel.de
mailto:philipp.reinkemeier@offis.de
mailto:ralf.vogler@tum.de
mailto:Antoine.Mine@ens.fr
mailto:seidl@in.tum.de
mailto:hmatar@ku.edu.tr
mailto:paule@fzi.de
mailto:jens-peter.rohrlack@model-engineers.com

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 3 of 88 Public Final – v13

Change and Revision History

Version Date Reason for Change Affected sections

v01 23.05.2018 Initial version All

v02 15.06.2018 Update of SDF section 2.3

v03 22.06.2018 Update of PLAATO section 2.2

v04 25.06.2018 Update of EmbedSanitizer section 5.1

v05 25.06.2018 New section on DRDCheck Hybrid 5.4

v06 25.06.2018 Update of C-SAPP section 4

v07 27.06.2018 Update of Goblint section 3.2

v08 28.06.2018 Update of Gropius section 3.1

v09 11.07.2018 Update of RTANA2 section 2.4

v10 16.07.2018 Update of Astrée section 3.3

v11 20.07.2018 Update of M-XRAY section 2.1

v12 23.07.2018 Finalization for internal review All

v13 31.08.2018 Finalization for delivery All

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 4 of 88 Public Final – v13

Table of Contents

AUTHOR TABLE ... 2

CHANGE AND REVISION HISTORY .. 3

TABLE OF CONTENTS ... 4

LIST OF FIGURES ... 7

LIST OF ABBREVIATIONS ... 9

1. EXECUTIVE SUMMARY.. 11

2. ANALYSES ON MODEL LEVEL ... 12

2.1. M-XRAY: SIMULINK MODEL REFACTORING SUPPORT ... 13

2.1.1. Introduction .. 13
2.1.2. Methodology .. 13
2.1.3. Work done in the ASSUME project ... 13

2.1.3.1. Cohesion for Simulink models .. 13
2.1.3.2. Metrics for coupling ... 14
2.1.3.3. Effective interface metric ... 15

2.2. PLAATO: PLATFORM ARCHITECTURE ANALYSIS TOOLS ... 16

2.2.1. Introduction .. 16
2.2.2. Methodology .. 17

2.2.2.1. Inputs.. 17
2.2.2.2. Processing .. 18
2.2.2.3. Output ... 19

2.2.3. Current status and future development... 19

2.2.4. Use Cases and KPIs .. 20

2.3. SDF FOR FREE (SDF3): PERFORMANCE ANALYSIS OF DATAFLOW MODELS 21

2.3.1. Introduction .. 21
2.3.2. Related work .. 22
2.3.3. Preliminaries .. 23

2.3.3.1. (max,+) Algebra .. 23
2.3.3.2. Synchronous dataflow ... 23
2.3.3.3. (max,+) Semantics of Synchronous Dataflow ... 24
2.3.3.4. Hierarchy in SDF Graphs ... 26
2.3.3.5. FSM-based Scenario-Aware Dataflow (FSM-SADF) ... 27

2.3.4. Throughput Analysis of Hierarchical SDF Models ... 27
2.3.4.1. Our algorithm .. 28
2.3.4.2. Symbolic Simulation .. 28
2.3.4.3. Example .. 30

2.3.5. Compositionality in Synchronous Dataflow: Modular Performance Analysis from

Hierarchical SDF Graphs ... 33
2.3.6. Analysis flow .. 36
2.3.7. Conclusion ... 37
2.3.8. Current status .. 37

2.3.9. Use case ... 37

2.4. RTANA2: SYSTEM-LEVEL TIMING ANALYSIS OF REAL-TIME SYSTEM MODELS 38

2.4.1. Introduction .. 38

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 5 of 88 Public Final – v13

2.4.2. Input .. 38
2.4.3. Method description... 39
2.4.4. Interface to concurrency defect analyses ... 41
2.4.5. Current status and future development... 42

2.4.5.1. Verification based on Difference Bound Matrices .. 42
2.4.5.2. Verification based on Future Difference Bound Matrices: .. 43
2.4.5.3. Compositional Analysis Strategy Combining State-based and Analytical Methods 46

3. STATIC ANALYSIS OF C CODE FOR CONCURRENCY ERRORS ... 50

3.1. GROPIUS ... 50

3.1.1. Input .. 51

3.1.2. Output ... 51

3.1.3. Method description... 51

3.1.4. Ranking heuristic ... 53
3.1.5. What changed between D5.0 and D5.1 .. 54
3.1.6. What changed since D5.1 .. 54
3.1.7. Use-Cases ... 54

3.1.8. KPI Status ... 54

3.2. GOBLINT .. 55

3.2.1. Input and Output .. 55
3.2.2. Configuration ... 56

3.2.3. Method description... 57
3.2.4. Analysis of Asynchronous Programs .. 57

3.2.5. Scalability .. 57
3.2.6. Improvements since D5.0 and KPI Status .. 58

3.3. ASTRÉE ... 58

3.3.1. Input and Output .. 58

3.3.2. Features of Asynchronous Programs ... 59
3.3.2.1. Processes ... 59
3.3.2.2. Synchronization Objects .. 60

3.3.3. Analysis of Asynchronous Programs .. 61
3.3.4. Execution Model .. 62

3.3.5. Abstraction of Concrete Behaviour ... 64
3.3.6. Error Reporting .. 64
3.3.7. Improvements during the Project and KPI Status ... 65

4. ANALYSIS OF HARDWARE-DEPENDENT SOFTWARE ... 67

4.1. ANALYSIS OF ASYNCHRONOUS AND CONCURRENT HW DEPENDENT SW 67

4.1.1. Input .. 68
4.1.2. Invocation .. 71
4.1.3. Method description... 71

4.1.4. Output ... 71
4.1.5. Changes compared to D5.0 and future development .. 71
4.1.6. KPI status .. 72

4.2. DEADLOCK ANALYSES FOR REAL-TIME EMBEDDED SYSTEMS .. 72

4.2.1. Method description... 73
4.2.2. Algorithm ... 74

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 6 of 88 Public Final – v13

5. RACE DETECTION BY INSTRUMENTATION ... 77

5.1. EMBEDSANITIZER: RACE DETECTION FOR ARMV7 POSIX-THREAD APPLICATIONS 77

5.1.1. Introduction .. 77
5.1.2. Method .. 77

5.1.2.1. Architecture and Workflow ... 78
5.1.2.2. Installation .. 79

5.1.3. Evaluation .. 79
5.1.3.1. Tool Precision Evaluation .. 80
5.1.3.2. Tool Performance Evaluation ... 80

5.1.4. Uses cases and requirements .. 81

5.1.5. Status w.r.t. KPIs ... 81

5.2. GOLDILOCKS .. 82

5.3. FASTTRACK ... 82

5.4. DRDCHECK HYBRID ... 83

5.4.1. Introduction .. 83

5.4.2. Method .. 83
5.4.3. Evaluation .. 83

6. CONCLUSIONS AND DISCUSSION ... 84

REFERENCES... 85

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 7 of 88 Public Final – v13

List of Figures

FIGURE 1: M-XRAY WORKFLOW ... 13

FIGURE 2: EXAMPLE OF SUBSYSTEM WITH TWO INHERENT COMPONENTS HIGHLIGHTED WITH COLOURED

RECTANGLES ... 14

FIGURE 3: REFACTORING EXAMPLE USING INCOHERENCE METRIC ON SUBSYSTEM WHERE DEPENDENCIES

ARE HIDDEN BY GOTO+FROM BLOCKS.. 14

FIGURE 4: EXCERPT FROM M-XRAY EXCEL REPORT WITH QUALITY METRICS FOR NUMBER OF IN- AND

OUTPORTS... 15

FIGURE 5: EXAMPLE OF EFFECTIVE INTERFACE COMPUTATION .. 15

FIGURE 6: PLAATO INTERFACE EXAMPLE ... 16

FIGURE 7: PLAATO’S CURRENT STRUCTURE ... 17

FIGURE 8: EXAMPLE OF PLAATO'S MATLAB GUI .. 18

FIGURE 9: OVERVIEW OF TNO'S CONTRIBUTION TO THE ASSUME PROJECT. SEE DELIVERABLE 1.4 FOR

DETAILS .. 20

FIGURE 10: EXAMPLE OF AN SDF GRAPH. .. 24

FIGURE 11: EXAMPLE OF A HIERARCHICAL SDF GRAPH. .. 26

FIGURE 12: AN FSM-SADF GRAPH ... 27

FIGURE 13: COMPOSITIONALITY IN SDF ... 33

FIGURE 14: DSSF PROFILES... 34

FIGURE 15: FSM-SADF PERFORMANCE MODEL FOR DSSF ... 35

FIGURE 16: SDF3 ANALYSIS FLOW .. 36

FIGURE 17: TASK NETWORK EXAMPLE ... 39

FIGURE 18: STATE REPRESENTATION FOR EVENT MODEL (LEFT) AND RESOURCES (RIGHT) 40

FIGURE 19: SYSTEM STATE REPRESENTATION .. 41

FIGURE 20: FLOW DIAGRAM OF COMPOSITIONAL COMBINED REAL-TIME ANALYSIS 47

FIGURE 21: CASE-STUDY: EXTERIOR LIGHT MANAGEMENT SYSTEM ... 47

FIGURE 22: ANALYSIS STEPS IN GROPIUS .. 52

FIGURE 23: STRUCTURE OF GOBLINT (SEE [13]) ... 55

FIGURE 24: GOBLINT'S HTML OUTPUT .. 56

FIGURE 25: ANALYSES OF HARDWARE-DEPENDENT SOFTWARE (HDS) WORKFLOW 68

FIGURE 26: SPECIFICATION OF THE HW/SW INTERACTION ... 69

FIGURE 27: EXCERPT FROM THE SW/HW INTERFACE METAMODEL ... 70

FIGURE 28: PLATFORM MODEL FOR THE FZI_UC01 DEMONSTRATOR .. 70

FIGURE 29: TWO SCENARIOS WITH INTERLEAVINGS BETWEEN TWO TASKS ... 75

FIGURE 30: CALCULATED TIMING INTERVALS FOR THE TWO SCENARIOS .. 76

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 8 of 88 Public Final – v13

FIGURE 31: HIGH LEVEL ABSTRACTION OF THREADSANITIZER AND EMBEDSANITIZER IN LLVM/CLANG.

(A) THREADSANITIZER: ESSENTIAL LLVM MODULES FOR RACE DETECTION. (B) EMBEDSANITIZER: SAME

MODULES MODIFIED TO INSTRUMENT AND DETECT RACES FOR 32-BIT ARM 78

FIGURE 32: SHOWING THE AUTOMATED PROCESS FOR THE INITIAL BUILD OF EMBEDSANITIZER 79

FIGURE 33: SLOWDOWN COMPARISON OF RACE DETECTION ON ARMV7 VS ON QEMU-ARM 81

FIGURE 34: ALTERNATIVE OVERVIEW OF EMBEDSANITIZER WHEN USED TO DETECT DATA RACES IN

COLLABORATOR’S 32-BIT ARMV7 SMART TV SOFTWARE FOR USE CASE ARC_UC02 81

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 9 of 88 Public Final – v13

List of Abbreviations

ADAS Advanced Driver Assistance Systems

API Application Programming Interface

AST Abstract Syntax Tree

BCET Best-Case Execution-Time

BSF Breadth-First Search

CFG Control Flow Graph

CIL C Intermediate Language

CIVL Concurrency Intermediate Verification Language

CPU Central Processing Unit

CSDF Cycle-Static DataFlow

DMA Direct Memory Access

DSSF Deterministic SDF with Shared FIFOs

EA Enterprise Architect

ECU Electronic Control Unit

ENS École Normale Supérieure (Paris)

FCFS First-Come, First-Served

FIFO First In, First Out (queue)

FSM Finite-State Machine

FSM-SADF Finite-State Machine-based Scenario-Aware DataFlow

GUI Graphical User Interface

HdS Hardware-dependent Software

HSDF Homogeneous SDF

HTML HyperText Markup Language

HW Hardware

HWA Hardware Accelerator

IDE Integrated Development Environment

I/O Input/Output

JSON JavaScript Object Notation

JVM Java Virtual Machine

LCG Linear Constraint Graph

LLBMC Low-Level Bounded Model Checker

LLVM (collection of modular and reusable compiler and toolchain technologies)

LTL Linear Temporal Logic

MMIO Memory Mapped Input/Output

MoC Model of Computation

Mutex Mutual exclusive lock

M-XRAY (static analysis tool for Simulink models)

OIL OSEK Implementation Language

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 10 of 88 Public Final – v13

OS Operating System

PLAATO Platform Architecture Analysis Tool

RTANA2 (tool for system-level timing analysis of real-time system models)

SDF Synchronous DataFlow

SDF3 (tool for performance analysis of dataflow models)

SME Small or Medium Enterprise

SW Software

TUM Technische Universität München

TU/e Technische Universiteit Eindhoven

UPMC Université Pierre et Marie Curie

WCET Worst-Case Execution-Time

WP Work Package

XML Extensible Markup Language

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 11 of 88 Public Final – v13

1. Executive Summary

This deliverable provides a description of the analysis tools proposed or used in WP5 of the

ASSUME project. The common aim of these tools is the analysis of concurrent behaviour. Their

descriptions are grouped according to what they analyse and how they do this.

The first group consists of four tools performing analysis on the model level (Section 2). It

comprises M-XRAY providing Simulink model refactoring support (Section 2.1), PLAATO

performing platform architecture analysis (Section 2.2), SDF3 for performance analysis of

dataflow models (Section 2.3), and RTANA2 for system-level timing analysis of real-time system

models (Section 2.4).

The second group consists of three tools for static analysis of C code for concurrency error

(Section 3). It comprises Gropius (Section 3.1), Goblint (Section 3.2), and Astrée (Section 3.3).

Static analysis means that the code is analysed without executing it. Its results are valid for all

executions with all inputs.

The third group deals with analysis of hardware-dependent software (Section 4). It contains the

C-SAPP tool for analysis of asynchronous and concurrent hardware-dependent software (Section

4.1) and a related method for deadlock analysis of real-time embedded systems (Section 4.2).

The last group (Section 5) comprises several related approaches for race detection by

instrumentation. All these approaches produce a binary executable augmented by

instrumentation code that detects concurrency errors while the instrumented program is running

and produces a report about its findings.

This deliverable D5.2 is the third in a series of deliverables. Its predecessors D5.0 and D5.1

presented the status of the WP5 tools after the first and second year of the project, respectively.

D5.2 presents the status at the end of the project, i.e. after three years of work in ASSUME.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 12 of 88 Public Final – v13

2. Analyses on Model Level

This section presents four tools with the common property that they perform analysis on model

level.

The M-XRAY tool by MES is a static analysis tool for Simulink models, which is extended in

ASSUME to support the refactoring of models towards multi-core concurrency by computing and

representing dependencies (Section 2.1).

The Platform Architecture Analysis Tool PLAATO is developed by TNO with the goal to provide

researchers and designers with the ability of assessing a given HW/SW architecture using

objective criteria such as failure probabilities, mean time to failure, etc. (Section 2.2).

The SDF3 tool for performance analysis of dataflow models has been developed by TU/e. In

ASSUME, the analysis of finite-state machine-based scenario-aware dataflow is extended to

improve precision in the case where the selection of the scenario to be activated next depends

on time (Section 2.3).

The RTANA2 tool performs system-level timing analysis of real-time system models. It is being

extended by OFFIS so that it can compute properties of real-time models such as response times

per task, end-to-end latencies of functional chains of tasks, maximum number of pending

activations per task, and pre-emption relationships between tasks for each resource (Section

2.4).

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 13 of 88 Public Final – v13

2.1. M-XRAY: Simulink Model Refactoring Support

2.1.1. Introduction

During the lifetime of the ASSUME project, MES extended M-XRAY – its static analysis tool for

Simulink models – to support the refactoring of models towards multi-core concurrency. First

coupling and cohesion were defined for the dedicated domain of Simulink models in order to

support industrial applications. Second, we designed an algorithm to compute dependencies

between subsystems. Third, an appropriate representation of the dependencies was introduced

to support the planning of refactoring and the assessment of design options.

2.1.2. Methodology

M-XRAY analyzes Simulink models at the level of individual subsystems as well as aggregated

results for the complete model. M-XRAY generates different metrics to evaluate different quality

aspects of the model, like the complexity of individual subsystems.

To evaluate the aspect of coupling and cohesion and visualize dependencies, M-XRAY computes

specific metrics highly correlated to this aspect. These metrics are used by M-XRAY for two

purposes: Firstly, the metrics can be used to guide the model developer to parts of the model that

are violating specified quality standards. Secondly, the metrics are used for appropriate

representations that can give further information of how to start or conduct a refactoring in terms

of multi-core concurrency.

As shown in Figure 1 below, M-XRAY conducts the structural analysis of the given Simulink

models and presents the described results in an HTML report.

Figure 1: M-XRAY workflow

2.1.3. Work done in the ASSUME project

2.1.3.1. Cohesion for Simulink models

Different metrics have been evaluated by MES that are related to the quality aspect of cohesion.

As part of the ASSUME project an incoherence metric was introduced in M-XRAY 3.1. This metric

is based on the tight cohesion introduced in Mäurer et al. [1]. The goal is to identify subsystems

that have a low cohesion and, thus, may be split up into multiple subsystems. The new

subsystems make the different data flow components obvious, which is a useful information for

refactoring, in particular in terms of multi-core concurrency. Imagine the subsystem from Figure 2

which has a low cohesion because, actually, two parallel components are mixed up in a single

system (green and orange rectangles).

The incoherence metric of M-XRAY helps to detect this kind of subsystems. The incoherence is

computed as the inverse of the tight cohesion from Mäurer et al. [1]. Thus, if all blocks of a

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 14 of 88 Public Final – v13

subsystem are somehow connected by signal paths, the subsystem has a low incoherence (=

high cohesion). If there are separate groups of blocks that are not connected by signal paths, the

subsystem has a high incoherence (= low cohesion).

Figure 2: Example of subsystem with two inherent components highlighted with coloured rectangles

The incoherence metric gives a rough estimate of the parallel divisib ility of a subsystem. For the

example subsystem from Figure 2, the incoherence metric is approximately 2, which gives a good

estimate of the parallel divisibility. Figure 3 gives another nice application scenario in terms of

identification of parallel components with subsequent refactoring. Due to the extensive use of

Goto+From blocks, the dependencies between the individual blocks are completely obscured. For

this subsystem M-XRAY’s incoherence metric is approx. 3, so there should be roughly 3 inherent

parallel components. The incoherence metric also helps to identify these components. After

refactoring in the model editor, the data flow and separated components are made completely

obvious (right part of Figure 3). Thus, the incoherence metric can especially guide the refactoring

for cases where the separability of a subsystem is very hard to estimate manually in advance.

Figure 3: Refactoring example using incoherence metric on subsystem where dependencies are

hidden by Goto+From blocks

2.1.3.2. Metrics for coupling

As a first supplement to the incoherence metric introduced in Release 3.1, quality metrics for the

most direct and obvious forms of subsystem coupling were added in M-XRAY 3.2: Count of

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 15 of 88 Public Final – v13

subsystem inports and subsystem outports. These simple but important quality metrics help to

assure quality standards like ISO 26262 and their demand for a 'Restricted size of interfaces'. A

small interface in terms of inports and outports is a prerequisite for a fast refactoring in terms of

multi-core concurrency. Therefore M-XRAY predefines quality metrics for the number of inports

and outports. For quality metrics, thresholds can be set and surveyed easily from the M-XRAY

reports. Figure 4 shows an excerpt from an M-XRAY Excel report where you can find quality

metrics columns for the number of in- and outports of a subsystem together with a color shading

for subsystem values above a quality threshold.

Figure 4: Excerpt from M-XRAY Excel report with quality metrics for number of in- and outports

2.1.3.3. Effective interface metric

To extend the incoherence and interface count metrics already introduced in M-XRAY 3.1 and

3.2, M-XRAY has been extended as part of the ASSUME project to measure the ‘effective

interface’ of Simulink subsystems. As Simulink subsystems can have input and output signals in

the form of buses and as signals can be directly forwarded to subordinate subsystems, a key to

understand the real coupling of a subsystem is to detect which input and output signals are

effectively used or defined in a subsystem including its subordinate subsystems. This is called

the ‘effective interface’ of the subsystem. To give a simple example, the subsystem from Figure 5

has an effective input interface size of two as only two of six input bus signals are effectively

used in the subsystem.

Figure 5: Example of effective interface computation

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 16 of 88 Public Final – v13

2.2. PLAATO: Platform Architecture Analysis Tools

2.2.1. Introduction

In safety-critical domains such as automotive, railway, and avionics, even a small failure of a

system might cause injury to or death of people. A number of international safety standards are

introduced as guidelines for system suppliers to keep the risk of systems at an acceptable level,

such as IEC 61508 (multiple domains), ISO 26262 (automotive domain), DO 254 (avionic

domain), CENELEC railway standards (railway domain). In the automotive domain, currently the

ISO 26262 standard, which is a goal-oriented standard for safety-critical systems within the

domain of road vehicles, is the state of the art. This is, of course, the applicable standard for the

Dutch (VDL) use case, which is the driver for TNO’s developments in the ASSUME project.

After its introduction in 2011, ISO 26262 has attracted more and more attention in the automotive

domain. There are more than 120 work products generated throughout the safety lifecycle

suggested by this standard. This makes managing traceability and consistency of the information

an absolute necessity for assuring safety and compliance. In order to be able to maintain the

above-mentioned traceability when designing a vehicular system, it is important to have a well-

structured process in place. This is already partly ensured when ISO 26262 is followed, however

the norm still leaves a lot open for interpretation and in itself cannot guarantee the quality of a

design process.

To aid in this process, TNO has developed a tool called Platform Architecture & Analysis Tool

(PLAATO) using Enterprise Architect as front end to input hardware and software models (and

eventually link them to requirements using an ISO 26262 template). An example of that interface

is shown in Figure 6.

Figure 6: PLAATO Interface example

Based on this information, PLAATO is able to automatically generate fault trees and to perform

reliability analysis on them (the analysis is performed in Matlab). The tool can also provide

support advising the designer on where to possibly improve the architecture to increase its

reliability (i.e. resilience to faults) in accordance with safety requirements.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 17 of 88 Public Final – v13

2.2.2. Methodology

TNO uses an existing commercial tool called Enterprise Architect (EA) to perform system design

and analysis in a structured way. To achieve this, a specific “way of working” was set up by

customizing the EA user interface and by connecting it with several other software tools (e.g. ,

Excel, Matlab, etc.). Enterprise Architect supports design and architecture of a system at several

levels of abstraction. It also supports traceability to documentation, code simulation and

centralisation of the design.

By making use of different diagrams that contain specific information for specific people, a natural

layered and ordered representation of a system design can be presented to the user. This

together with EA’s tools for maintaining traceability ensure that documentation about the design,

the design decisions, and other project information is kept very close to the actual system

development.

PLAATO’s current structure is shown in Figure 7.

Figure 7: PLAATO’s current structure

The above structure is complete. PLAATO is able to take an ADAS architecture and provide

insight on its reliability, the main points of attention (e.g., which component failures are most

critical), etc.

2.2.2.1. Inputs

PLAATO enables the user to deliver design input through a graphical representation of the

system. To this end, three diagram templates have been added to those that are already

available in Enterprise Architect:

- The first diagram is a function description diagram which shows which functions are

present in the system. It captures information about what these functions do and the

specific details about the information that is exchanged between these functions.

- The second diagram is a hardware description diagram, which captures details on how

hardware is interconnected and what properties the hardware has. It also defines the

interfaces that are used to communicate between hardware components , and properties

that are required for fault tree generation (e.g. failure probability or failure rate).

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 18 of 88 Public Final – v13

- The third diagram is the deployment diagram. It contains information on how functions

are deployed or mapped to the hardware. In this way an engineer can experiment with

deploying multiple functions on one or more Electronic Control Units (ECUs) or shift tasks

between ECUs.

2.2.2.2. Processing

When all information has been input correctly, it can be exported to Matlab for further processing.

This is done by a plug-in to EA developed by TNO. The plug-in exports an “.m” file that can be

interpreted by Matlab. This file is then executed, yielding a representation in Matlab of the system

deployment.

This representation allows the user to perform system analysis using a custom-made Matlab

graphical user interface (GUI) (see Figure 8). This GUI can be used to generate a fault tree from

the information that was entered in the model diagrams. When information is missing the tool will

try to guide the user to enter all required information in EA.

Figure 8: Example of PLAATO's Matlab GUI

Once everything is complete, the fault tree can be analysed structurally as well as quanti tatively.

The structural analysis can be performed from a very early stage in the project as numbers are

not strictly required – only the structure of the system will suffice. The quantitative analysis

requires actual numbers such as failure rates or importance metrics of specific elements in the

system. The GUI offers the user several options for both forms of analysis, however specific

knowledge of the analysis methods is required to be able to interpret the results. A Matlab script

subsequently processes these results to generate a static fault tree for a specific architectural

component failure. (A fault tree describes the logical chain of component /subsystem faults that

may trigger the considered architectural component failure [3]).

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 19 of 88 Public Final – v13

2.2.2.3. Output

PLAATO provides support to the system designer on deciding where to possibly improve the

system’s architecture. To this end, PLAATO offers a number of structural and quantitative

analysis tools (running over the fault trees described above).

For structural analysis PLAATO offers the ability to look at:

- Modules in the tree. These are independent regions which will show that a certain part of

the tree is independent of other parts of the tree. This can indicate containment regions,

in which failures will not propagate to other branches of the tree. These modular regions

can be emphasised by the tool.

- Minimal cut-sets. These are the smallest terms of the logical formula (Boolean

expression) that corresponds with a tree. The expression describes how the Basic Events

contribute to failure of the top node of the tree. Basic events are considered to be the

smallest elements that can fail in the system. By looking at the expressions one gets

insight in which events may result in system failures. If there are only few (or only one),

this means that few faults (or only one) are required to trigger a system failure.

- The actual tree and its structure can be seen as a graphical representation. This will

allow the analyst to visually inspect the tree.

For quantitative analysis, PLAATO offers the ability to look at:

- Failure probabilities of the basic events and how these are distributed with respect to

each other.

- Failure probabilities of intermediate events and top event. These probabilities have to be

calculated by finding the probability expression from the logical formula. The tool can

perform these calculations.

- Importance metrics. The tool offers the ability to calculate importance metrics that will

give information about the relative importance of the basic events in the tree. The tool

supports the Birnbaum [55] and the Fussel-Vesely [56] importance measures.

The Matlab tool allows the user to store results in “.mat” files to be used for later analysis. Node

properties can be adapted with the tool once the tree is generated. Additionally , one can build

fault-trees directly in EA. A tree can then be export to an “.m” file and also be analysed in the

tool. This way the fault-tree generation step can be skipped.

2.2.3. Current status and future development

Figure 9 shows the main contributions of TNO to the ASSUME project, including PLAATO

development (see Deliverable 1.4). At this point, the development of PLAATO has reached the

stage of a mature prototype.

As shown in Figure 9, PLAATO mostly covers the left-hand side of the safety engineering V-

cycle. The rest of the left side of the V-cycle (from Item Definition to System Design) will be

covered by a second tool called MBaSSy: Model Based System Safety Analysis (MBaSSy). This

tool is currently under development at TNO as part of a PhD project (partially supported by

ASSUME). Once completed, MBaSSy will replace the PLAATO interface shown in Figure 6 with a

SysML-compliant one, while keeping PLAATO’s fault-tree analysis engine. It is expected that

MBaSSy will cover the full V-cycle once completed, thus merging the three main contributions of

TNO to this project (see Figure 9 and Deliverable 1.4 for details). For more information on

MBaSSy, see Deliverable 3.4.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 20 of 88 Public Final – v13

Figure 9: Overview of TNO's contribution to the ASSUME project. See Deliverable 1.4 for details

2.2.4. Use Cases and KPIs

All the activities described above are part of VDL’s use case (TNO_UC_01) and support KPI1.1

(reduce the effort required to set up and employ an analysis tool).

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 21 of 88 Public Final – v13

2.3. SDF for free (SDF3): Performance Analysis of Dataflow Models

2.3.1. Introduction

Dataflow models of computation are widely used to represent streaming systems. This is thanks

to their simple graphical representation, compactness and the ability to express parallelism

inherent to many streaming systems. In dataflow, a system is represented by a directed graph

where nodes are called actors and edges are called channels. Actors represent computational

kernels while channels typically capture data, control and resource dependencies between

actors. The quanta of information exchanged across channels are called tokens. Actors involve

themselves into communication with other actors by firing. The firing represents the quantum of

computation during which actors consume tokens from their input channels and produce tokens

in their output channels. Preconditions for firing are given by firing rules [32]. The numbers of

tokens produced and consumed are called rates. In the timed versions of dataflow that we are

investigating in this project, actor firings have duration that we call the actor firing delay.

There exist quite a number of dataflow models. They can be roughly divided into decidable [30]

and dynamic dataflow models [18]. Decidable dataflow models can be considered versions of

dataflow with restricted semantics so that the model can be scheduled at design-time as well as

analysed for boundedness, deadlock and timing properties. Examples of decidable dataflow

formalisms are synchronous dataflow (SDF) [5], cyclo-static dataflow [20] and scalable SDF [35].

Dynamic dataflow models offer more expressive power in exchange for a decrease in

analysability and implementation efficiency [37]. Well-known examples are Boolean dataflow and

dynamic dataflow [21].

All in all, in terms of support for design and analysis of timing-predictable and repeatable systems

(and most predictable systems are at first real-time systems), among dataflow models, decidable

dataflow models still play a more pronounced role than the echelons of emerging dynamic

dataflow models. This in particular refers to SDF as the most stable and mature flavour of

decidable dataflow that is characterized by its predictability, strong formal properties and

amenability to powerful optimization techniques [18]. In SDF rates are fixed and known at

compilation time. The firing rules of SDF are conjunctive [32] in the sense that for an actor to fire,

every of its inbound channels must contain the number of tokens prescribed by the port rate

defined by the actor and the inbound channel in consideration. Furthermore, they are distributive

[32] in the sense that when the actor fires all outbound channels receive tokens in the quantity

prescribed by the corresponding port rates. As we will further elaborate below, SDF graphs

evolve in iterations. An iteration is a set of actor firings that have no net effect on the token

distribution of the graph. The number of firings of a particular actor in an iteration is given in the

so-called repetition vector of the graph. In this report, we consider the so-called self-timed

execution of SDF graphs, which means that actors must fire as soon as they are enabled.

Several examples of use of SDF in design and analysis of predictable and repeatable systems

can be found in [16][33][38]. If we study these papers, we see the SDF formalism is not only

useful for reasoning about the functional behaviour and correctness of systems, but also, in its

timed version [36], can be used when one needs to derive or prove worst-case performance

guarantees, in particular throughput that is a vital performance indicator in real -time streaming

systems, which is defined as the long-term average number of completed iterations per time-unit.

Many authors [9][26][28][29][36] have dealt with the problem of performance analysis of SDF

models. To make these techniques applicable in everyday engineering practice, it is important

that they are available in tools that can be utilized in fully or semi-automated design flows. The

SDF3 tool [4] developed by TU/e is such a tool. In particular, it implements various performance

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 22 of 88 Public Final – v13

analysis algorithms for dataflow MoCs such as synchronous dataflow (SDF) [5], cycle-static

dataflow (CSDF) [6], and finite-state machine-based scenario-aware dataflow (FSM-SADF) [7].

The common characteristic of all of the algorithms is that they are in terms of performance

adversely affected by the increase of repetition vector entries of the graph. In particular, the

performance will scale at least linearly with the sum of the repetition vector entries [7].

However, monolithic SDF models are inconvenient for capturing large designs. Therefore,

allowing for compositional modelling is a necessity in the design of large systems as it enforces

good engineering practices such as modularity and design reuse, and improves readability.

Hierarchy has been introduced to SDF [39][17][34][24]. There is a technique for directly analyzing

hierarchical SDF structures [23] but it is not exact, which means that it can only give a

conservative throughput estimate but not the exact value. The exact throughput analysis

algorithms existing so far can only be applied to hierarchical dataflow models after flattening

them.

In this report, we propose a new exact modular technique for throughput analysis of a subclass of

hierarchical SDF graphs with an arbitrary number of hierarchy levels that removes the need for

flattening the graph. This is achieved by using (max,+)-based state-space representations of

hierarchical actors instead of flattening in the context of existing throughput analysis techniques

based on symbolic simulation. Furthermore, as our technique is able to take advantage of the

hierarchical semantics of SDF, we argue that our technique helps to mitigate the adverse effect

of an increase in the repetition vector entries on the performance of existing performance

analysis techniques. This is due to the fact that no matter how many times a hierarchical actor is

scheduled in the composition, we do not need to replicate the firings of all the actors embodied in

the hierarchical actor as the existing techniques do, but only use its more compact state-space

representation to capture the effects of its firing on the rest of the composition.

In addition (novelty compared to D5.1), we use our newly developed modular technique for

throughput analysis of hierarchical SDF graphs to address the compositionality problem in SDF in

the context of modular performance analysis and Deterministic SDF with Shared FIFOs.

In particular, hierarchical SDF models are not compositional: a composite SDF actor cannot be

represented as an atomic SDF actor without loss of information that can lead to ra te

inconsistency or deadlock [57]. To remedy the former while working in the context of code

generation, the authors of [57] propose a compositional abstraction of composite SDF actors

called DSSF (Deterministic SDF with Shared FIFOs) that can be used for modular compilation.

Nevertheless, the DSSF profiles have no accompanying performance models. In this work, we

show how to incrementally build performance models for DSSF profiles using FSM-based

scenario-aware dataflow (FSM-SADF) [60] across arbitrary levels of hierarchy that eventually

brings us to the overall system performance model from which a performance metric can be

derived using the usual (max,+)-based techniques. We illustrate our approach on a simple

hierarchical SDF graph borrowed from [57].

The remainder of Section 2.3 is organized as follows. Section 2.3.2 discusses related work,

Section 2.3.3 covers the basic concepts used, Section 2.3.4 presents our throughput analysis

technique, Section 2.3.5 compositionality, and Section 2.3.6 the analysis flow.

2.3.2. Related work

Roughly, state-of-the-art techniques for throughput analysis of SDF graphs can be divided in two

groups.

The first group of approaches is based on the conversion of SDF graphs to equivalent

homogeneous SDF (HSDF) graphs. HSDF is a special kind of SDF where all rates equal 1. The

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 23 of 88 Public Final – v13

basic algorithm for the conversion is described in [36]. The drawback of these approaches is that

the size of the graph may expand exponentially [26]. However, advances have been made by the

authors of [29] wherein the size of the expansion can be significantly reduced by constructing a

so-called linear constraint graph (LCG) from the original SDF graph. With LCG in particular, the

compaction is achieved by taking advantage of its redundancy and regularity. Still, some graphs

as reported in [29] cannot be represented compactly by the LCG.

The second group of approaches are the simulation-based approaches. The seminal work of [28]

performs explicit state-space exploration of the operational semantics of SDF. Despite its high

worst-case complexity, the method works well in practice, while the techniques based on the

conversion of [36] often fail. The symbolic simulation-based approach described in [26][9] uses

(max,+) algebra to capture the self-timed execution of SDF graphs. In particular, the graph's

evolution is sublimed into a simple recursive (max,+) linear matrix equation. The matrix in the

equation is derived by symbolic simulation of one iteration of the SDF graph. This matrix can be

considered as the incidence matrix of a weighted digraph, the maximum cycle mean of which is

equal to the inverse of the graph's throughput.

All the exact techniques mentioned above have the common characteristic that the increase of

the repetition vector entries in the graph will adversely affect their performance. In addition, the

technique of [28] is also sensitive to the length of the graph's transient (self-timed execution of an

SDF graph consists of a periodic phase preceded by a so-called transient phase). Furthermore,

none of the exact techniques are directly applicable to hierarchical SDF structures, i.e., the

hierarchical model should be flattened before.

There exists a technique that targets hierarchical SDF structures [23] but it is not exact, which

means that it can only give a conservative throughput estimate but not the exact value.

2.3.3. Preliminaries

This section recaps the (max,+) algebra, the basic SDF concepts and the (max,+) linear system

theoretic aspects of SDF that are used in this report.

2.3.3.1. (max,+) Algebra

Let ℝ𝑚𝑎𝑥 = ℝ ∪ {−∞} where ℝ is the set of real numbers. For elements 𝑎, 𝑏 ∈ ℝ𝑚𝑎𝑥 , we define

operations ⊕ and ⊗ with max as addition (𝑎 ⊕ 𝑏 ≝ max (𝑎, 𝑏)) and + as product (𝑎 ⊗ 𝑏 ≝ 𝑎 + 𝑏).

The set ℝ𝑚𝑎𝑥 together with operations ⊕ and ⊗ extended to matrices and vectors in the same

way as in conventional linear algebra is called (max,+) algebra. The set of 𝑛-dimensional (max,+)

vectors is denoted ℝ𝑚𝑎𝑥
𝑛 , while ℝ𝑚𝑎𝑥

𝑛×𝑛 denotes the set of 𝑛 × 𝑛 (max,+) matrices. The (sup-) sum of

matrices 𝐴, 𝐵 ∈ ℝ𝑚𝑎𝑥
𝑛×𝑛 is defined by [𝐴 ⊕ 𝐵]𝑖,𝑗 = [𝐴]𝑖,𝑗 ⊕ [𝐵]𝑖,𝑗 where [𝐴]𝑖,𝑗 and [𝐵]𝑖,𝑗 are entries of

matrices 𝐴 and 𝐵 with indices 𝑖 and 𝑗. The matrix product 𝐴 ⊗ 𝐵 is defined by [𝐴 ⊗ 𝐵]𝑖,𝑗 =

 ⊕𝑘=1
𝑛 [𝐴]𝑗,𝑘 ⊗ [𝐵]𝑘,𝑗.

2.3.3.2. Synchronous dataflow

Figure 10 shows an SDF graph.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 24 of 88 Public Final – v13

Figure 10: Example of an SDF graph.

The graph has six actors, In, D, E, F, G and Out. Actor firing delays are denoted next to actor

names. Rates are denoted next to channel ends with a convention that the omission of a rate

value implies the value of 1. Notice that the graph in the figure has two feedback loops, one going

from actor E to D across F, and a so-called self-edge from actor G back to itself. Such feedback

loops can cause the graph to deadlock because actors in the loops depend on each other for

tokens. Therefore, feedback loops must include a certain number of initial tokens that specify the

initial condition from which the execution starts. In the figure, these are depicted using grey

circles and are marked as 3, 4, 5, 6.

SDF graphs evolve in iterations. An iteration is a set of actor firings that have no net effect on the

token distribution in the graph. The numbers of firings are stored in the repetition vector of the

graph Γ. For the graph in Figure 10, Γ(𝐼𝑛, 𝐷, 𝐸, 𝐹, 𝐺, 𝑂𝑢𝑡) = [1, 2, 2, 1, 2, 1]𝑇. This vector can be

obtained by solving the so-called set of balance equations for an SDF graph [5]. Notice that

iterations can overlap in time, i.e. they can be pipelined. An SDF graph can be closed or open

[39] depending on whether all input ports are connected or not, respectively. The graph in Figure

10 is open as not all its input ports are connected.

2.3.3.3. (max,+) Semantics of Synchronous Dataflow

We use (max,+) algebra [15] to model timed SDF graphs. It is a natural choice as it has two

operations that determine the self-timed execution of SDF graphs: synchronization and delay.

Synchronization manifests itself when an actor waits for all its input tokens to become available

(⊕ i.e. max in (max,+)) before firing. The delay manifests itself in the fact that tokens will be

produced only after an amount of time corresponding to the actor firing delay after the firing has

begun (⊗ i.e. + in (max,+)). We mentioned that SDF graphs evolve in iterations that restore the

graph back to its initial state. The initial state is determined by the distribution of initial tokens

over the channels of the graph. Thus, in terms of time, the evolution of an SDF graph can be

represented as a sequence of vectors 𝒙(𝑘) where each entry of the vector stores the availability

time of a token produced in place of a particular initial token after the 𝑘-th iteration of the graph.

Geilen [9] shows that this sequence (for closed SDF graphs) can be determined by a (max,+)

linear recursive equation

 () ()1 ,k M k+ = x x (1.1.1)

where 𝑀 is the (max,+) matrix of the graph that defines its state-space representation. For open

SDF graphs, whose inputs are fed by the token sequence 𝒖(𝑘), and that produce tokens the

timestamps of which are stored in sequence 𝒗(𝑘), (1.1.1) can be generalized to the form

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 25 of 88 Public Final – v13

()

()

()

()

1 A B

C D

x k x kM M

v k u kM M

   +  
=     
    

 (1.1.2)

where 𝑀𝐴 is the state matrix, 𝑀𝐵 is the input matrix, 𝑀𝐶 is the output matrix and 𝑀𝐷 is the feed-

through matrix [27].

These matrices (as in conventional linear system theory) encode mutual dependencies between

inputs, outputs and internal state. They can be derived via symbolic simulation of one iteration of

the graph as described in [9]. We illustrate how to do this on the example SDF graph in Figure

10. To establish the relationship between the timestamps of tokens contained in (1.1.2) we need

to express the timestamps of tokens produced in positions of initial tokens after the (k+1)-st

iteration and tokens produced at the outputs of the graph as (max,+) linear combinations of the

timestamps of the same tokens after the k-th graph iteration and the input tokens. For the graph

of Figure 10,

   3 0 () ()
T

x k u kt = − − − −  ,    4 0 () ()
T

x k u kt = − − − − 

all the way up to    0 () ()
T

ut x k u k= − − − −  . We call these timestamps

symbolic timestamps. We now perform symbolic simulation. The iteration is given by the

schedule 𝐼𝑛 𝐷2𝐸2𝐹𝐺2𝑂𝑢𝑡 where powers represent actor repetition counts. The iteration starts by

actor 𝐼𝑛 firing. This firing consumes the input token 𝑢 and produces two tokens in channel (𝐼𝑛, 𝐷)

carrying the symbolic timestamp  0 0ut  = − − − − . These tokens along with

initial tokens in channel (𝐹, 𝐷) fuel two firings of actor 𝐷 as follows. The firings produce two

tokens each. The first two have the symbolic timestamp

 ()  30 2 2 2t− − − −   = − − −
.

The remaining are of the following symbolic timestamp

 ()  40 2 2 2t− − − −   = − − −
.

Then we proceed with actor 𝐸 the first firing of which is initialized by the tokens produced by the

first firing of actor 𝐷. The firing results in production of three tokens in channel (𝐸, 𝐹) and one

token in channel (𝐸, 𝐺) with the timestamp    2 2 2 4 4− − −  = − − − .

The tokens produced by the second firing are available at

   2 2 2 4 4− − −  = − − − . This enables actor 𝐹 to fire and restore

tokens in position 4 and 5 with the symbolic timestamps  4 5 7 7 7t t = = − − .

Note that token 5 was not consumed in the current iteration but was shifted in position of token 3.

Thus,  3 5 0t t = = − − − − . Similarly, actor 𝐺 fires and its second firing results in

restoring the token in position 6 that ends up with the timestamp  6 6 5 2 6t  = − . This is

also the timestamp of the token produced on the output, i.e. 6vt t = . If we gather the symbolic

timestamps 3 4 5 6, , ,t t t t    and vt
 row-by-row into a matrix, we obtain

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 26 of 88 Public Final – v13

0

7 7 7
(1) ()

7 7 7
() ()

6 5 2 6

6 5 2 6

x k x k

v k u k

 − − − −
 

− − 
+    − −=     

   − 
 

−  

 (1.1.3)

where
3 4 5 6(1)

T

x k t t t t    + =
 

,
 ()

T

vv k t=
,

 3 4 5 6()
T

x k t t t t=
 and

 ()
T

uu k t=
.

2.3.3.4. Hierarchy in SDF Graphs

In this report, following the terminology of [39], when we talk about hierarchical SDF graphs, we

mean graphs that contain hierarchical actors. Unlike atomic actors, a hierarchical actor

encapsulates an SDF graph. Hierarchical actors can then be connected to other SDF actors,

either atomic or hierarchical to form hierarchies of arbitrary depths.

An example of a hierarchical SDF graph is shown in Figure 11.

Figure 11: Example of a hierarchical SDF graph.

In the figure, the top-level graph is composed out of three actors A, B and C. Actors A and C are

atomic, while actor B is a hierarchical actor that encapsulates the SDF graph of Figure 10. In this

particular example, the output port of actor A is connected to the input port of actor In, while the

input port of actor C is connected to the output port of actor Out of the encapsulated graph of

hierarchical actor B.

Although hierarchical SDF models are widely used (e.g. in the well-known Ptolemy II framework

[25]), care must be taken as there is one complication. In general, hierarchical SDF models are

not compositional. In particular, a hierarchical SDF actor cannot be represented by an atomic

SDF actor without loss of information that can lead to inconsistency and deadlock [39]. In this

report, we assume that only valid aggregations are specified.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 27 of 88 Public Final – v13

2.3.3.5. FSM-based Scenario-Aware Dataflow (FSM-SADF)

FSM-SADF is a dynamic dataflow model that preserves as much as possible of the determinacy

of dataflow behaviour while introducing the possibility of non-deterministic variations in the form

of scenarios individually represented as SDF graphs. Operationally, an FSM-SADF evolves in

(possibly) partial iterations of its non-deterministically selected scenarios captured by SDF

graphs. The scenario FSM defines the scenario occurrence patterns.

Figure 12 shows an example of an FSM-SADF graph.

Figure 12: An FSM-SADF graph

The scenario FSM is shown in the upper part of the figure while the associated scenario graphs

are shown in the lower part of the figure. The FSM-SADF has two scenarios: “AAB” and “AB”

specifying the orderings of actor firings in the associated scenario graph. With the FSM as

shown, the scenario traces generated by the model are as follows: (“AAB” “AB”)*. In the general

case, from one scenario to the other, the set of firing actors, their port rates and firing delays will

differ. The entailing (max,+) scenario representations and the control specification (the FSM of

the FSM-SADF) are used to perform the worst-case performance analysis of the model based on

the (max,+)-linear switched system semantics of FSM-SADF involving a structure called the

(max,+)-automaton [58]. For details we refer to [59] and [60].

2.3.4. Throughput Analysis of Hierarchical SDF Models

In this section, we discuss throughput analysis for a class of hierarchical SDF models where

starting from the bottom level of the hierarchy, the firing of every hierarchical actor implies the

execution of one full iteration of the encapsulated graph. In particular, we propose a technique

that is an enhancement of the symbolic simulation procedure of [9] that is able to take advantage

of the SDF hierarchy semantics.

Our technique combines symbolic simulation and the system-theoretic view on SDF graphs as

(max,+) linear systems that recognize the “usual” state-space representation based on the state,

input, output and feedthrough matrices (cf. (1.1.2)).

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 28 of 88 Public Final – v13

2.3.4.1. Our algorithm

A high-level overview of our algorithm is the following Algorithm 1.

Algorithm 1: Throughput analysis for hierarchical SDF models

The input to the algorithm is a hierarchical SDF graph G, while the output of the algorithm is the

throughput Thr of the graph. We begin the procedure by isolating the hierarchy levels of the

graph starting in a bottom-up manner (cf. Line 1). This can be done by employing a suitable

variant of the reverse breadth-first search algorithm. Thereafter for each hierarchical actor (cf.

Line 3) at the current hierarchy level (cf. Line 4) we perform symbolic simulation in order to obtain

the relevant state-space representation of the hierarchical actor (cf. Line 2). The representation

(composite matrix that includes the state, input, output and feedthrough submatrices) is stored

because later on the symbolic simulation at a higher hierarchy level will need this representation

(note that the symbolic simulation in Line 4 is invoked with all the state-space representations

belonging to the previous hierarchy level). Finally, when we reach the highest hierarchy level, the

symbolic simulation will produce a state-space representation of G for which we construct the

corresponding communication graph (cf. Line 8). For details on how to construct the

communication graph of a (max,+) matrix we refer the interested reader to [31]. The throughput of

the graph equals the inverse of the maximum cycle mean of the communication graph (cf. Line

9). Note that the algorithm assumes the existence of a hierarchy in the sense that a graph

composed only of atomic actors is assumed to be a hierarchical graph composed of one

hierarchical actor that encapsulates the atomic actor composition.

2.3.4.2. Symbolic Simulation

Algorithm 1 as its core part uses symbolic simulation. The symbolic simulation as originally

proposed by [9] cannot take advantage of semantics of hierarchical SDF models.

This means that if we are to use the techniques of [9] to compute the throughput of a hierarchical

SDF model, we first need to flatten the hierarchy, i.e. to transform the graph to one without it.

As explained in Section 2.3.3.3, symbolic simulation derives the state-space representation of an

SDF graph by simulating the graph for exactly one iteration following the iteration schedule. In

the schedule, every actor is fired the number of times corresponding to the repetition vector entry

for that actor. The procedure requires administration of every token produced and consumed

during the iteration. Thus, for graphs with large repetition vector entries, the symbolic simulat ion

can become a bottleneck in the overall throughput analysis flow. In case of hierarchical SDF

models (regardless whether the hierarchy is extracted from a flat graph or comes in the

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 29 of 88 Public Final – v13

specification) we argue that one can avoid the administration of every token. To explain: given a

hierarchical actor, the symbolic simulation of [9] would simulate the firing of the actor the number

of times given by the encapsulating graph's repetition vector. This implies the firing of every actor

(and administration of tokens produced and consumed) of the encapsulation for the same number

of times multiplied by the corresponding repetition vector entry in the encapsulation itself and so

until the deepest level of the hierarchy. E.g., for the graph of Figure 11, actor D would have to be

fired 𝑝 ⋅ 2 times. It is clear that, across hierarchy levels, depending on the repetition vectors at

different levels, we may experience (in the worst-case) an exponential rise in complexity. We

argue that we can mitigate the impact that this rise has on the efficiency of symbolic simulation

by taking advantage of the hierarchy semantics of SDF. In particular, by using the system

theoretic view on SDF sublimed in (1.1.2), we propose a way to avoid administration of all actor

firings and token consumptions/productions of the encapsulation by using its state-space

representation. In particular, to compute the new state of the hierarchical actor and the

timestamps of tokens that are produced at its output interface, it is more beneficial, lightweight

and elegant to perform a matrix multiplication (cf. (1.1.2)) than to simulate the encapsulation

symbolically. This way we focus only on the tokens that are part of the state (initial ones) and

need not to care about others. Furthermore, particular actor firings are compactly encoded in a

single matrix. We argue that in case of hierarchical SDF models with large repetition vectors

across the hierarchy this approach will mitigate the adverse effect the increase of the graph's

repetition vector entries has to the throughput analysis algorithm performance. The modified

algorithm for symbolic simulation is outlined as Algorithm 2.

Algorithm 2: Compute state-space representation of a hierarchical SDF actor.

The algorithm is a modification of Algorithm 1 of [9]. The inputs to the algorithm are the very

structure of the hierarchical actor 𝑎 and the state-space representations ((max,+) matrices) of

actors of previous hierarchy levels as the hierarchical actor may as well encapsulate a

hierarchical actor from a lower hierarchy level. The output is the state-space representation of the

hierarchical actor, i.e. the matrix of (1.1.2). The algorithm first computes the iteration schedule of

the actor (cf. Line 1) that gives the ordering of actor firings within the iteration. The schedule is

then traversed (cf. Line 3). The firing of each actor is simulated with all the tokens consumed and

produced by the firing being administered in container 𝑇 (cf. Line 2). The crucial difference

between Algorithm 2 and Algorithm 1 of [9] is that here, if the actor is hierarchical, we use its

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 30 of 88 Public Final – v13

state-space representation to compute its new state as well as the symbolic timestamps of tokens

it produces in its output channels (cf. Line 6). This way we have avoided the need for flattening

the structure and having to administer all the actor firings and tokens consumed and produced by

these firings. This has the effect of a compression, as we only focus on initial tokens that are part

of the overall state and are carried over to the next hierarchy level. Finally, the tokens can be

gathered in the state-space representation for the current actor (cf. Line 12).

2.3.4.3. Example

We demonstrate the operating principles of Algorithm 1 and Algorithm 2 using the running

example graph with p = 2. We begin with Algorithm 1. We can isolate two hierarchy levels in the

structure. Going bottom up the algorithm encounters the hierarchical actor B for which a state-

space representation is derived using Algorithm 2 in the usual manner of [9] as the encapsulation

has only atomic actors. The state-space representation is given by (1.1.3). Algorithm 1 now visits

the top level of the hierarchy on which it employs Algorithm 2. Consequently, the iteration

schedule is computed which has the form AB2C. The schedule is now simulated. Actor A fires

first by consuming token 1. The two tokens produced by its firing carry the symbolic timestamp

    0 2 2− − − − −  = − − − − − . (1.1.4)

Note that the symbolic timestamps account for all tokens across all hierarchy levels while the

ordering in the vector is given by initial token indices in the figure. After actor A, the schedule

dictates that actor B is fired. However, now, to perform this firing, we do not flatten the graph but

we use the state-space representation of B in (1.1.3).

The timestamp of the token produced by the first firing of hierarchical actor B can be directly

computed from (1.1.2) as follows

 

 

   

 

0

0
6 5 2

0

0

6 2

6 5 2 8

8 6 5 2

− − − − − 
 
− − − − −
 − 
 − − − − −
 
− − − − − 

  − − − − −

= − − −  − − − − −

= − −

 (1.1.5)

According to (1.1.2), the internal state of B advances as follows

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 31 of 88 Public Final – v13

 

0 0

7 7 0

7 7 0

6 5 2 0

7
2

7

6

0

7 7 9

7 7

6 5 2

− − − − − − − −   
   

− − − − − − −
   
   − − − − − − −
   

− − − − − −   

− 
 
   − − − − −
 
 
 

− − − − − − − − − − − 
 
− − − − − − − − −
 = 
 − − − −
 
− − − 

9

8

0

9 7 7

9 7 7

8 6 5 2

 
 
 
 − − − − −
 

− − − − − 

− − − − − 
 

− − −
 =
 − − −
 

− − 
 (1.1.6)

This leads us to the second firing of B. The hierarchical actor is now initialized with the state of

(1.1.6) while consuming the second token produced by A that carries the symbolic timestamp of

(1.1.4). The symbolic timestamp of the second token produced by B is therefore calculated as

follows

 

 

   

 

0

9 7 7
6 5 2

9 7 7

8 6 5 2

6 2

14 12 12 6 4 8

14 12 12 6 4

− − − − − 
 

− − −
 − 
 − − −
 

− − 

  − − − − −

= −  − − − − −

= −

 (1.1.7)

Similarly, as in the case of (1.1.6) we can calculate the new state of the encapsulated actor B.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 32 of 88 Public Final – v13

 

0 0

7 7 9 7 7

7 7 9 7 7

6 5 2 8 6 5 2

7
2

7

6

9 7 7 0

16 14 14 7 9

16 14 14 7 9

14 12 12 6 4

− − − − − − − −   
   

− − − − −
   
   − − − − −
   

− − −   

− 
 
   − − − − −
 
 
 

− − − − − − − − 
 

− − − − − − −
 = 
 − − − − −
 

−  8

9 7 7 0

16 14 14 7

16 14 14 7

14 12 12 6 4

 
 
 
 − −
 

− − − − − 

− − 
 

− −
 =
 − −
 

− 
 (1.1.8)

Finally, actor C can fire by consuming the tokens produced by B (cf. (1.1.5) and (1.1.7)) and

producing the token carrying the symbolic timestamp

   ()

 

8 6 5 2 14 12 12 6 4 3

14 12 12 6 4

− −  − 

= −
 (1.1.9)

The firing of C completes the iteration and the tokens produced in positions of initial tokens can

be gathered up to compose the state-space representation of the graph. In particular, the tokens

produced in places of the initial tokens of the underlying encapsulated graph of B (tokens 3, 4, 5,

6) are available in (1.1.8). Token 2 is not consumed in the current iteration as at its end it has

moved in position of token 1. Therefore, the token in position 1 after the iteration has the

symbolic timestamp

  0− − − − − (1.1.10)

The token produced in place of initial token 2 is the result of the firing of actor C and carries the

symbolic timestamp of (1.1.9).

When we arrange these tokens into a matrix, we obtain the desired state-space representation of

the running example SDF model

0

14 12 12 6 4

9 7 7

16 14 14 7

16 14 14 7

14 12 12 6 4

M

− − − − − 
 

−
 
 − − −

=  
− − 

 − −
 

− 

 (1.1.11)

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 33 of 88 Public Final – v13

From the communication graph of this matrix, we can obtain the throughput of the graph by

applying a maximum cycle mean algorithm [22]. In this case the throughput of the graph is 1/14

iterations per time-unit. From the performance perspective, by doing symbolic simulation in this

manner, for the graph of Figure 11, we have replaced p standard symbolic simulations of the

encapsulation of B with p matrix multiplications of (1.1.2). We argue that this is a more

performance-friendly way for constructing state-space representations of SDF graphs exposing

hierarchy and featuring repetition vectors with large entries. In our example, using the SDF3 tool

suite [4] running on an Intel i7-6500U machine operating at 2.50 GHz, we have observed that

even for the simple structure of Figure 11 with p = 10,000, symbolic simulation of [9] will take

about 20 seconds, while the version introduced in this report will complete in about 0.5 seconds.

2.3.5. Compositionality in Synchronous Dataflow: Modular Performance Analysis from

Hierarchical SDF Graphs

We now put our hierarchical analysis in the context of work addressing compositionality of SDF in

the context of modular code generation of [57]. This is the novel contribution w.r.t. D5.1.

Let us explain. Hierarchical SDF models are not compositional: a composite SDF actor cannot be

represented as an atomic SDF actor without loss of information that can lead to rate

inconsistency or deadlock [57]. To remedy the former while working in the context of code

generation, the authors of [57] propose a compositional abstraction of composite SDF actors

called DSSF (Deterministic SDF with Shared FIFOs) that can be used for modular compilation.

Nevertheless, the DSSF profiles have no accompanying performance models. In this work, we

show how to incrementally build performance models for DSSF profiles using FSM-SADF across

arbitrary levels of hierarchy that eventually brings us to the overall system performance model

from which a performance metric can be derived using the usual (max,+)-based techniques. We

illustrate our approach on a simple hierarchical SDF graph borrowed from [57].

Take a close look at SDF graphs shown in Figure 13. Consider the graph on the right where

composite actor P is used. Now consider the graph on the left. It seems that the right graph

should be equivalent to the left graph if we consider that actors A and B represent the internal

content of P. Note that actor P has a rate of 3 at its input port and rate 2 at its output port.

This makes sense, as it corresponds to a full iteration of the internal graph in the leftmost part of

the figure, namely, (A,A,A,B,B). The left graph has no deadlock while the right graph deadlocks.

In particular, P cannot fire because it needs 3 tokens from channel (C, P) but only two are

available.

Figure 13: Compositionality in SDF

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 34 of 88 Public Final – v13

The example illustrates that composite SDF actors cannot be represented by atomic actors

without loss of information that leads to deadlock. The work of [57] deals with the problem by

introducing the notion of profiles that characterize a given actor. It is shown that SDF profiles are

SDF graphs themselves with an extra ability of associating multiple producers and consumers to

a single FIFO queue. Sharing queues gives rise to non-determinism. However, the profiles of [57]

are able to guarantee that actors access shared queues in deterministic order. Thus, the profiles

are called deterministic SDF with shared FIFOs (DSSF).

Let us consider an example. Take a closer look at Figure 14.

Figure 14: DSSF profiles

The graph shown in the left part of Figure 14 is the same as the left graph of Figure 13 with a

composite actor encapsulating atomic actors A and B. The graph in the middle is a profile with a

single actor representing a single firing function corresponding to the internal sequence of firings

(A,A,A,B,B). Such a profile is problematic as described in the discussion related to Figure 13. The

right part of Figure 14 is a DSSF with two actors, P.f1 and P.f2. The actors share two FIFO

queues depicted as small squares. The accessing of shared queues is made deterministic by

introducing dependency edges between the profile actors. This profile is maximally reusable and

optimal. This means that no less than two firing functions (actors) can achieve maximal

reusability. The firing functions represented by actors P.f1 and P.f2 correspond to firing

sequences (A,A,B) and (A,B), respectively.

To conclude, the concept of DSSF succeeds in forming a compositional abstraction of composite

actors that can be used for modular compilation. However, the DSSF concept has no

accompanying performance models that can be incrementally built and used in performance

(throughput and latency) analysis of the system. The SDF performance models ((max,+)

matrices) cannot be used because DSSF is different from SDF in the sense that it involves

shared FIFO queues. Therefore, DSSF cannot be captured in SDF. However, FSM-SADF is

expressive enough to capture DSSF and serve as a performance model for it.

Let’s look again at the right profile in Figure 14. The corresponding FSM-SADF model is shown in

Figure 12. Taking the transition labelled with “AAB” corresponds to the execution of the firing

function P.f1 corresponding to the actor firing sequence (A,A,B), while taking transition “AB”

corresponds to the execution of the firing function P.f2 corresponding to the firing sequence (A,B).

The static order of accesses to the shared FIFOs is encoded in the FSM.

This shows that FSM-SADF is fit to be used as a performance model for DSSF profiles. As DSSF

profiles are built incrementally across arbitrary levels of hierarchy, their performance models must

also be built using the hierarchical throughput analysis.

Consider Figure 15.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 35 of 88 Public Final – v13

Figure 15: FSM-SADF performance model for DSSF

The upper part of the Figure shows the top-level SDF model while the FSM-SADF performance

model belonging to the DSSF profile of actor P (right profile in Figure 14) is depicted in the lower

part of the figure. To get the performance model for the top-level profile (graph), we need to

perform symbolic simulation of the graph. In the simulation, we do not unfold the model, but use

the FSM-SADF performance model of the DSSF profile of P consisting of the scenario FSM and

two (max,+) matrices belonging to scenarios “AAB” and “AB”. In the concrete case:

2

2

3 1

AABM

− − 
 

= − −
 
 − 

 and
2

3 1 1
ABM

− − 
=  
 

.

The matrices can be used in the symbolic simulation of the top level structure where according to

the schedule ((A,A,B), C, (A,B)).

After firing sequence (A,A,B), tokens are produced in places 5, 6 and v1 carrying the following

timestamps:

1

'

5

'

6

2 0

2 0

3 1 0

2

2

3 0 1

v

t

t

t

  − − − − −   
     

= − −  − − − =     
     − − − −    

− − − 
 
− − −
 
 − 

.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 36 of 88 Public Final – v13

The firing of C generates three token hosted by channel (C,P) with the symbolic timestamps

   ()

 

' '

1 2 3 0 1 0 2

5 2 2 3

t t= = −  − − − 

=
.

Finally, the firing sequence (A,B) completes the iteration as follows

2

'

4

5 2 2 3
2

2
3 1 1

2

7 4 4 7

8 5 5 6

v

t

t

 
  − −   

=  − − −     
      − − − 

 
=  
 

.

If we gather the symbolic timestamps of tokens produced in places 1, 2, 3 and 4 we get the

performance model of the top-level profile (graph):

5 2 2 3

5 2 2 3

8 5 5 6

7 4 4 7

M

 
 
 =
 
 
 

.

To conclude, FSM-SADF can be effectively used to incrementally generate performance profiles

for DSSF actors. This way, we have added a powerful performance analysis framework to

enhance the DSSF-based design flow by making it applicable in a real-time setting without the

need to unfold the hierarchical structure. This means that performance profiles as well as the

DSSF profiles can be used in any context provided as a component library.

2.3.6. Analysis flow

The envisioned analysis flow of the SDF3 tool is shown in Figure 16.

Figure 16: SDF3 analysis flow

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 37 of 88 Public Final – v13

The core of the flow is the actual analysis engine of SDF3 (the grey box in Figure 16). The

algorithms implemented in the analysis engine are based on the theoretical discussions

presented above. The input to the analysis engine is an XML file that contains the hierarchical

dataflow model of the application that is to be analysed. The results of the analysis (throughput

and latency quantities) can be viewed on the terminal or in a specific file.

2.3.7. Conclusion

In this work, we focused on throughput analysis of hierarchical dataflow models. We have shown

ways how to develop new methods that can take advantage of the hierarchical semantics of SDF.

We base our method on the existing state-of-the-art symbolic simulation method that we combine

with the system-theoretic view on SDF graphs where hierarchy elements need not be flattened

during the symbolic simulation but where their state-space representation can be used instead.

This way we remove the need for the repeated simulation of encapsulated subgraphs of

hierarchical actors that includes the administration of actor firings and all of the produced and

consumed tokens. By using a state-space representation, we can focus on the tokens that are

part of the state by means of matrix multiplications. We argue that symbolic simulation endowed

with this feature can help to mitigate the difficulties that the standard flavour experiences when

dealing with graphs with large repetition vectors.

In addition (beyond the progress reported in D5.1) we have generalized our hierarchical

throughput analysis to the case of FSM-SADF, which is a dynamic dataflow model, and applied it

in the context of DSSF by enhancing the modular abstraction of DSSF primarily intended for

modular code compilation with reusable performance profile models. The enhancement enables

performance analysis of profiles without the need for graph unfolding, which promises a

significant improvement of the scalability of the analysis.

2.3.8. Current status

To add support for analysis of hierarchical SDF models the analysis engine of SDF3 needs to be

enriched with implementations of Algorithm 1 and Algorithm 2 with the addition of FSM-SADF

related specifics presented. Furthermore, the input XML specifications of dataflow models need

to be able to account for hierarchical actors the structure of which may be nested in the

encapsulating’s model description or given in a separate XML file.

With respect to KPIs, we target [KPI1.2] (improve tool performance). The progress achieved so

far is accounted for in the methodology presented in the previous sections that is ready to be

implemented in the tool with expectation of significant performance gains as simulation of the

operational semantics of SDF is replaced by simple matrix multiplications yielding a complexity

decrease of the analysis.

2.3.9. Use case

All the activities described above are part of VDL’s use case (TNO_UC_01).

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 38 of 88 Public Final – v13

2.4. RTANA2: System-Level Timing Analysis of Real-Time System Models

2.4.1. Introduction

Embedded safety-critical systems must not only be functionally correct, but must also provide

timely service. Timing and scheduling analysis is an important method in the design of such

systems and is used for determining timing properties of a system, aiming at understand ing and

optimizing the timing of systems, and to verify that timing requirements are met.

Much work on real-time scheduling analysis has been done with increasing expressive power

along the evolution of the analysis methods. These methods can be broadly classified as

analytical methods on the one hand and computational methods on the other hand. Methods of

the first class provide an efficient analysis by abstracting from concrete behaviour in terms of

event streams. Scheduling is analysed by evaluating fixed-point equations. While such analyses

are fast and scalable up to large systems, they often (depending on the system) deliver

pessimistic results [10]. Methods belonging to the second class, such as model-checking on

automata, consider the state space of a model and explore all actual execution paths resulting in

precise figures for end-to-end timing of functional chains. In addition, more complex safety

properties can be verified. Of course, this comes at a price: model-checking is computationally

expensive and can suffer from state-space explosion.

As part of the OFFIS contribution to the ASSUME project, OFFIS is extending a computational

timing analysis tool RTANA2. Given a real-time model the tool determines properties of that

model such as response times per task, end-to-end latencies of functional chains of tasks,

maximum number of pending activations per task and a task matrix per resource containing for

each task which other tasks may pre-empt it on that resource. Further, observer automata can be

used to check whether the real-time model satisfies a more complex requirement. The tool will

then determine whether such an automaton enters a deadlock.

2.4.2. Input

The input for the tool is a real-time model consisting of a task network deployed on a set of

resources, where each resource is assigned a scheduling strategy. The task network consists of

a set of tasks, where each task has a set of input and output ports. Via connections of output

ports to input ports, a precedence relation on the tasks is defined. Each input port of a task

represents a possible source of activation of a task, meaning it is activated whenever an event is

observed on any of its input ports. Input synchronizations are expressed by multiple connections

to the same input port. In the example depicted in Figure 17, the task is either activated by an

event a observed on input port i1 or when an event b and an event c are observed on input port

i2.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 39 of 88 Public Final – v13

Figure 17: Task network example

Each activation causes a delay for processing, depending on the activating event and the state of

a task. The delays are taken from intervals with best- and worst-case bounds for each output port

on which the task sends an event. Referring to Figure 17, when activated by an event a on port

i1, the task sends an event e on port o1 after 2 to 3 time units. A characterization of the delay

intervals can be obtained from measurement (e.g. by tracing the actual implementation), by

analysis, the so-called worst-case execution-time (WCET) analysis, or by estimations (esp. in

early phases of development). Where a preceding task is unknown, assumptions about the timing

behaviour of the environment can be expressed by means of event sources. Such an event

source has parameters like period, jitter, and offset, characterizing an event stream.

To define a real-time model, a task network is deployed on a set of resources. Typically, a real -

time model contains more tasks than resources, meaning access to resources needs to be

scheduled. Currently, the tool only supports scheduling according to fixed priorities with or

without pre-emption of tasks.

2.4.3. Method description

The tool belongs to the class of computational analyses and relies on model checking based on

ω-regular languages. In the following, the basic principles of the analysis method are described.

Further details can be found in [11].

A discrete time model is assumed, where time is divided into slots of pre-defined equal length. All

scheduling-related events, such as task arrivals, completions, and pre-emptions take place at

these discrete time points. The behaviour of a real-time model is represented by means of an ω-

regular language, which is computed by the method based on the real -time model and its

parameters. For the representation of ω-regular languages, finite state machines (FSMs) are an

obvious choice. The analysis is done by creating an FSM on-the-fly for event sources

representing assumed environment behaviour and each resource, like ECUs and buses, with its

allocated tasks. The FSM constructed for a simple strictly periodic event source, with a period ρ

and jitter j = 0, is sketched on the left-hand side of Figure 18. The first event c is emitted non-

deterministically within the first ρ time units due to the invariant on the upper bound of clock x in

location l1. Afterwards it is emitted each ρ time units, which is enforced by the invariant on the

upper bound of clock x in location l2 and the guard of the transition sending c, which constrains

the clock to have at least progressed ρ time units.

Task

Event
Source

I nput Port

Output Port

i1

i2

o1

o2

S = { s}

T = {

 i1,a,s -> { (o1,e,[2,3]) ,

 (o2,e,[4,5]) } , s

 i2,{ b,c} ,s -> { (o1,f,[2,2]) ,

 (o2,f,[6,6]) } , s

 }

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 40 of 88 Public Final – v13

Figure 18: State representation for event model (left) and resources (right)

On the right-hand side of Figure 18 the encoding of a state of a resource is shown. Each task

allocated to it is represented by a data structure similar to the one shown in Figure 18, consisting

of a buffer storing activation events and the current state of the task. Activations are stored in the

buffer as shown for an activation of task T2 by event c. Each task has its own private clock. The

scheduling strategy determines which of the clocks of its tasks are stopped. In the shown

example task T1 has higher priority. As tasks have an interval [BCET, WCET] for each output

port, non-determinism may be introduced in the FSM (not shown in Figure 18). Each FSM is input

receptive to all events. So if an FSM sends an event c, all other FSMs have a transition that

synchronizes with that event. FSMs that are not sensitive to some received event c do not take

part in the synchronization. The states of the real-time model are hierarchical. Figure 19

illustrates a top-level system state, consisting of a vector of states of event sources and

resources, as well as a valuation for each clock of the real-time model. Assuming that

BCET(T1,s0,a) < ρ < WCET(T1,s0,a) holds, the figure shows the successor states of some state

with location vector (l2,m1) and a valuation of 0 for each clock. The local states are depicted in

Figure 18: The event source could send an event c after ρ time units, leading to a successor

state where its clock x is reset, the clock y1 of the scheduled task has progressed by ρ time units

and the clock y2 of the suspended task is unchanged. If in addition task T1 sends an event f, also

its clock y1 is reset. If only the task T1 sends an event, its clock y1 is reset, y2 is unchanged and

the clock x of the event source has progressed to a value within the range [BCET(T1,s0,a), ρ-1].

For each value of this interval, a separate system state is constructed.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 41 of 88 Public Final – v13

Figure 19: System state representation

The complete behaviour of the real-time model is determined by iteratively computing the product

FSM of all event source FSMs and resource FSMs. The algorithm is a mild variation of the one

proposed in [41], which is an approach to reachability analysis of closed timed automata based

on encoding their discrete time semantics by means of a data structure called time-darts. Based

on the reachable state space, typical timing properties like end-to-end latencies can be computed

by means of path analysis, involving breadth-first search (BFS) on the product FSM. At each

state where a task in the chain is finished, the algorithm starts a BFS to find the paths to

completion of the successor task in the chain.

2.4.4. Interface to concurrency defect analyses

Besides typical timing properties like response times per task and end-to-end latencies of

functions, the tool can also determine, as a by-product, possible pre-emption scenarios between

tasks. As explained in Section 2.4.3, the computation of next states of a resource takes into

account which tasks are active and selects a (subset) of the tasks to be running during the n ext

step. Depending on the scheduling strategy it might be the case that a task gets pre -empted by

the new activation of a higher priority task. If so, the analysis marks the task executing in the

current state as being pre-empted by the task executing in the next state. This marking is then

extended to all other tasks that are active in the current state. So if a task B is executed during

the current state and task C is active but not executing and a task A is executed during the next

state pre-empting task B, then both tasks B and C are marked as being pre-empted by task A.

Further, the analysis also takes corner cases into account like seemingly simultaneous task

activations resulting from the underlying discrete time model. If a set of different tasks ar e

activated at the same discrete step, the analysis assumes that these activations can happen in

arbitrary order. This ensures that pre-emption scenarios are sound independently from the length

of discrete time slots.

The result of the analysis is a function 𝑃𝑅𝐸𝐸𝑀𝑃𝑇: 𝑇 × 𝑇 → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} on the set 𝑇 of tasks

allocated to a resource. For each resource, such a function is computed. The function assigns to

each pair (𝜏𝑋, 𝜏𝑌) of tasks a boolean value denoting whether a scenario is possib le where 𝜏𝑋 can

be pre-empted by 𝜏𝑌. This function provides valuable insights where concurrency defects might

occur and in particular where concurrency defects can be excluded based on the function

𝑃𝑅𝐸𝐸𝑀𝑃𝑇 inferred from the timing behaviour of the system.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 42 of 88 Public Final – v13

2.4.5. Current status and future development

In the ASSUME project we focused on two aspects to improve the timing analysis tool:

- We add features to the analysis, like support for more scheduling strategies, for multi-

core architectures and for functions executed by operating system threads.

- We investigate methods to alleviate the state space explosion problem.

Regarding the first item, one extension is to provide support for scheduling strategies that are

used by commercial operating systems. For example, the OSEK standard defines a scheduling

strategy where pre-emptable and non-pre-emptable tasks can be mixed on the same operating

system. Further, tasks can be grouped. All tasks within a group are non-pre-emptable among

each other, but can be pre-empted by tasks with a higher priority than the highest priority of all

tasks within a group. Another extension is to lift the restriction that per resource at most one task

is executing. This can then be used to analyse multi-core systems where tasks can migrate

between different cores.

During the ASSUME project we have realized a refinement of the task model, allowing the

modelling of top-level functions executed by operating system tasks. Given that characterizations

of execution time intervals of these functions are available, the analysis can determine timing

properties like response times and end-to-end latencies based on these functions, as well as pre-

emption scenarios based on functions. As an example, consider the AUTOSAR standard. An

AUTOSAR model defines a set of so-called runnables, which in turn are executed by operating

system tasks. So the extension can be used to get more fine-grained results based on runnables

instead of tasks.

Regarding the second item, we have three lines of attacking the state space explosion: The first

one is to improve the representation of the state space by considering better symbolic methods,

especially regarding time progress. The second one is to develop a compositional method, where

a real-time model is sliced into different sub-models that can be analysed separately. The third

one is to consider combinations with analytical approaches.

2.4.5.1. Verification based on Difference Bound Matrices

During the ASSUME project we have added support for an alternative verification engine based

on difference bound matrices (DBMs), a data structure often used for the analysis of timed

automata (cf. [42]). It is well known that though discrete time approaches like time-darts or BDD-

based representations of a discretized state space perform well for some timed-automata models

[41][43], zone-based methods outperform such discretized methods when the size of the

constants in clock constraints of a timed-automaton is increased [43]. This effect can be seen in

the exemplary system states shown in Figure 19: Multiple system states with location vector

(l2,m3) are reachable from the state with location vector (l2,m1). The transitions leading to these

states have the same events, only the time progress differs. Using DBMs, such phenomena are

avoided because the constraint BCET(T1,s0,a) ≤ x ≤ ρ-1 is stored in the DBM resulting in just one

successor state. In case pre-emptive scheduling strategies are used, we needed to overcome the

problem that clocks cannot simply be stopped if DBMs are used. This is because the reachability

problem is undecidable for the resulting model of stop-watch automata. To solve this problem, we

made use of an approach similar to the one illustrated in [44]: Instead of stopping clocks, the

clock constraints of pre-empted tasks are modified in a monotonically increasing way according

to the time progress of running tasks. Consider the following example: The invariant of the clock

𝑦2 of some task T2 is given by ≤ 𝑊𝐶𝐸𝑇(𝑇2) and the guard for its termination is ≥ 𝐵𝐶𝐸𝑇(𝑇2) in

some state and T2 is preempted by T1, which has the private clock 𝑦1. Then the new invariant of

𝑦2 becomes ≤ 𝑊𝐶𝐸𝑇(𝑇2) + 𝑢𝑏(𝑦1, 𝑆) and the new guard becomes ≥ 𝐵𝐶𝐸𝑇(𝑇2) + 𝑙𝑏(𝑦1 , 𝑆), where

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 43 of 88 Public Final – v13

𝑢𝑏(𝑦1 , 𝑆) is the upper bound of the clock 𝑦1 in the system state 𝑆 where T1 finishes its execution,

and 𝑙𝑏(𝑦1, 𝑆) is the lower bound. Note that the interval of the valuation of clock 𝑦1 at state 𝑆

determines for how long T1 has executed. This interval is contained in the interval defined by the

BCET and WCET of T1. This ensures that the actual time T2 spends executing reflects the

amount of time it is preempted by T1. Not surprisingly, this approach turned out to be more

efficient than the encoding based on the time-darts data structure. Depending on the real-time

model, it can however lead to over-approximations of its behaviour. To see this, let us instantiate

the previous example with concrete numbers for the execution time intervals of T1 and T2:

Assume T1 has an execution time interval [3,9] and T2 has an execution time interval [4,4].

Further, we assume that T1 is always activated 3 time units after T2 and reactivation of T1 and

T2 occurs after both tasks have finished their execution. It is easy to see that T2 has a response

time interval of [7,13]. Resetting the clocks 𝑦1 and 𝑦2 when the respective task gets activated, the

difference 𝑦2 − 𝑦1 is 3 when T1 gets activated. Given that T1 is activated 3 time units after T2,

preempting T2 for [3,9] time units, T2 needs to execute for exactly 1 time unit after T1 has

finished its execution, because its execution time interval is [4,4]. This relation is independent of

the actual time span of the range [3,9] by which T2 got preempted. While the DBM analysis

engine indeed correctly calculates the response time interval, it over -approximates the relation of

the clocks 𝑦1 and 𝑦2 at the time T1 finishes its execution. The approach of increasing the clock

invariant and guard of 𝑦2 by the amount of preemption by T1 results in the condition 7 ≤ 𝑦2 ≤ 13

for T2 to finish its execution. Since the difference of the clocks is 𝑦2 − 𝑦2 = 3 when T1 gets

activated and T1 executes for [3,9] time units, the valuation of 𝑦2 at the point T1 finishes its

execution is 6 ≤ 𝑦2 ≤ 12. Combined with the condition for 𝑦2 we get that T2 finishes between 0

and 7 time units after T1 has finished its execution. The cause of the over-approximation is that

the increase of the invariant and guard of 𝑦2 must exactly be the amount of time T1 has

executed. If T1 has executed for 3 time units, the new interval where T2 can finish i ts execution

must be [4,4] + [3,3], if it has executed for 4 time units, the new interval must be [4,4] + [4,4], and

so on. This would lead to the correct relation between the times where T1 and T2 finish their

execution. However, using the usual encoding in DBMs [42], it is impossible to accurately capture

this relation.

2.4.5.2. Verification based on Future Difference Bound Matrices:

To tackle the over-approximation of the DBM-based verification engine, we developed another

engine, which we refer to as future-DBMs in the following. This approach is based on the same

data structure, a square matrix of linear clock constraints. The algorithm for computing the

reachable states is quite different though. The basic idea is to remove the spec ial zero clock of

DBMs that is used to reason about the valuation of each clock [42]. So future-DBMs only

represent a constraint system on the differences between clocks, but do not explicitly track the

valuation of a clock. This simplification comes at a price: Symbolic reachability analysis using

future-DBMs cannot be applied to general timed safety automata (as supported by Uppaal), but

only to a subclass similar to Event Recording Automata [66]. In event recording automata, clocks

have a fixed predefined association with the symbols of the input alphabet. The valuation of a

clock of the input symbol 𝑎 is a history variable whose value always equals the time of the last

occurrence of 𝑎 relative to the current time. In contrast to timed automata, clocks thus cannot be

reset arbitrarily. We also require such a fixed predefined association of clocks to input symbols. A

guard on a clock may only appear on a transition where its associated symbol occurs. We also

require that for each clock, all transitions from a given location have the same constraints

regarding the clock. An additional condition regarding clock guards to be fulfilled is that a clock

guard may not change from location to location, but only on the next occurrence of 𝑎. So the

constraint on a clock is solely determined by the input word. Further it is required that a clock

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 44 of 88 Public Final – v13

constraint is either a closed finite interval or a clock is not constrained at all (corresponds to the

interval] − ∞, ∞[). Whenever a symbol occurs on a transition, its associated clock is reset. A

clock may also be reset by a transition, if it is not constrained in the current location. While these

are quite some restrictions, the resulting automaton class is still powerful enough for a broad

range of schedulability and timing analyses.

In order to discuss the algorithm based on future-DBMs, let us first briefly review the algorithm for

symbolic reachability analysis for timed automata based on DBMs [42]. First we introduce the

syntax of timed automata and operational semantic.A timed automaton 𝐴 with a set 𝐶 of clocks is

a tuple ⟨𝑁, 𝑙𝑜, 𝐸, 𝐼⟩, where

- 𝑁 is a finite set of locations

- 𝑙0 ∈ 𝑁 is the initial location

- 𝐸 ⊆ 𝑁 × 𝐵(𝐶) × Σ × 2𝐶 × 𝑁 is the set of edges and

- 𝐼: 𝑁 → 𝐵(𝐶) assigns invariants to locations. These invariants typically constrain the

maximum valuation of clocks.

To keep track of the changes of clock values, functions known as clock assignments are used,

mapping 𝐶, the set of clocks, to the non-negative reals ℝ+. Let 𝑢, 𝑣 denote such functions and

use 𝑢 ∈ 𝑔 to mean that the clock values given by 𝑢 satisfy the guard 𝑔 ∈ 𝐵(𝐶). For 𝑑 ∈ ℝ+, let 𝑢 +

𝑑 denote the clock assignment that maps all 𝑥 ∈ 𝐶 to 𝑢(𝑥) + 𝑑. For 𝑟 ⊆ 𝐶, let [𝑟 ↦ 0]𝑢 denote the

clock assignment that maps all clocks in 𝑟 to 0 and agrees with 𝑢 for the other clocks in 𝐶\𝑟. The

semantics of a timed automaton is a timed transition system where states are pairs ⟨𝑙, 𝑢⟩, and

transitions are defined by the rules:

- ⟨𝑙, 𝑢⟩
𝑑
→ ⟨𝑙, 𝑢 + 𝑑⟩ if 𝑢 ∈ 𝐼(𝑙) and (𝑢 + 𝑑) ∈ 𝐼(𝑙) for a non-negative real 𝑑 ∈ ℝ+

- ⟨𝑙, 𝑢⟩
𝑎
→ ⟨𝑙′, 𝑢′⟩ if ⟨𝑙, 𝑔, 𝑎, 𝑟, 𝑙′⟩ ∈ 𝐸, 𝑢 ∈ 𝑔, 𝑢′ = [𝑟 ↦ 0]𝑢 and 𝑢′ ∈ 𝐼(𝑙′)

The reachability analysis is typically based on a symbolic semantics, that in turn is based on the

notion of zone graphs. A zone is the solution set of a clock constraint, i.e. the maximal set of

clock assignments satisfying the clock constraint. A DBM represents such a zone. A symbolic

state of a timed automaton is a pair ⟨𝑙, 𝐷⟩ representing a set of states of the automaton, where 𝑙 is

a location and 𝐷 is a zone. A symbolic transition describes all the possible concrete transitions

from the set of states. We define 𝐷↑ = {𝑢 + 𝑑 ∣ 𝑢 ∈ 𝐷, 𝑑 ∈ ℝ+} and 𝑟(𝐷) = {[𝑟 ↦ 0]𝑢 ∣ 𝑢 ∈ 𝐷}. The

symbolic transition relation ⇝ over symbolic states is defined by the following rules:

⟨𝑙, 𝐷⟩ ⇝ ⟨𝑙, 𝐷↑ ∧ 𝐼(𝑙)⟩

⟨𝑙, 𝐷⟩ ⇝ ⟨𝑙′, 𝑟(𝐷 ∧ 𝑔) ∧ 𝐼(𝑙′)⟩ 𝑖𝑓 ⟨𝑙, 𝑔, 𝑎, 𝑟, 𝑙′⟩ ∈ 𝐸

The symbolic semantics corresponds closely to the operational semantics in the sense that

⟨𝑙, 𝐷⟩ ⇝ ⟨𝑙′, 𝐷′⟩ implies for all 𝑢′ ∈ 𝐷′, ⟨𝑙, 𝑢⟩ → ⟨𝑙′, 𝑢′⟩ for some 𝑢 ∈ 𝐷. Further, a state ⟨𝑙, 𝑢⟩ reachable

in the semantics implies that also a state ⟨𝑙, 𝐷⟩ with 𝑢 ∈ 𝐷 is reachable in the symbolic semantics.

Based on this, a symbolic computation of the reachable states of a timed automaton can be

realized by the following algorithm:

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 45 of 88 Public Final – v13

𝑃𝐴𝑆𝑆𝐸𝐷 = ∅ , 𝑊𝐴𝐼𝑇 = {⟨𝑙0, 𝐷0⟩}

𝒘𝒉𝒊𝒍𝒆 𝑊𝐴𝐼𝑇 ≠ ∅ 𝒅𝒐

 𝑡𝑎𝑘𝑒 ⟨𝑙, 𝐷⟩ 𝑓𝑟𝑜𝑚 𝑊𝐴𝐼𝑇

𝒊𝒇 𝐷 ⊈ 𝐷′𝑓𝑜𝑟 𝑎𝑙𝑙 ⟨𝑙, 𝐷′⟩ ∈ 𝑃𝐴𝑆𝑆𝐸𝐷 𝒕𝒉𝒆𝒏

𝑎𝑑𝑑 ⟨𝑙, 𝐷⟩ 𝑡𝑜 𝑃𝐴𝑆𝑆𝐸𝐷

𝒇𝒐𝒓 𝒂𝒍𝒍 ⟨𝑙′, 𝐷′⟩ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ⟨𝑙, 𝐷⟩ ⇝ ⟨𝑙′, 𝐷′⟩ 𝒅𝒐

𝑎𝑑𝑑 ⟨𝑙′, 𝐷′⟩ 𝑡𝑜 𝑊𝐴𝐼𝑇

𝒆𝒏𝒅 𝒇𝒐𝒓

𝒆𝒏𝒅 𝒊𝒇

𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆

The algorithm mentioned above can be used to compute the state-space of an automaton under

consideration. Starting with the initial state ⟨𝑙0, 𝐷0⟩, it iteratively computes the reachable symbolic

states according to the transition relation of the automaton.

Technically, a zone 𝐷 is represented by a DBM and the operations and relations on zones have

corresponding operations on DBMs. These operations are explained in detail in [42]. For

example, the operation 𝐷↑ corresponds to an operation 𝑢𝑝(𝐷). That operation removes the upper

bounds on all clocks by setting them to ∞. More precisely, it is the difference constraint 𝑥 − 𝑥0

that is set to ≤ ∞, where 𝑥0 is the special clock mentioned before whose valuation is always zero.

The operation 𝑟(𝐷) corresponds to an operation 𝑟𝑒𝑠𝑒𝑡(𝐷, 𝑥). That operation sets the difference

constraint 𝑥 − 𝑥0 to 0 and updates the differences 𝑥 − 𝑦 accordingly. The implemented scheme is

to alternate between computation of time delay (the first rule of the symbolic transition relation)

and computation of successor states reached by transitions of the automaton (the second rule of

the symbolic transition relation).

Given the described restrictions on the kind of automata, we can derive an algorithm for symbolic

reachability analysis that neither needs the operation 𝑢𝑝(𝐷), nor the operation 𝑟𝑒𝑠𝑒𝑡(𝐷, 𝑥) and

also does not need the zero clock. First we introduce some notations: Let 𝑔(𝑥, 𝑙) be the constraint

associated with clock 𝑥 in location 𝑙, 𝑥𝑎 be the clock associated with input symbol 𝑎, and 𝑎𝑥 the

input symbol associated with clock 𝑥. Further we denote by 𝑙𝑏(𝑔) and 𝑢𝑏(𝑔) the lower and upper

bounds of a guard interval. The same notation is used to refer to the bounds of a clock difference

𝑥 − 𝑦.

The algorithm starts with an initial symbolic state ⟨𝑙0, 𝐷0⟩, where 𝐷0 is the conjunction over all

clock differences 𝑥 − 𝑦 = 𝑔(𝑥, 𝑙0) − 𝑔(𝑦, 𝑙0). If one of 𝑥 or 𝑦 is not constrained, then the difference

constraint is 𝑥 − 𝑦 =] − ∞, ∞[. Now the differences of clocks in 𝐷0 represent the relationships of

the points in time at which the transitions of the automaton can fire relative to each other and

their corresponding clocks are reset. The idea of the algorithm is to update these relations

between clocks in 𝐷 whenever a transition is taken. The general algorithm for reachability

analysis is the same as for the DBM-based reachability analysis, only the symbolic states and

their computation differ. Let ⟨𝑙, 𝐷⟩ be a state added to 𝑃𝐴𝑆𝑆𝐸𝐷. The algorithm examines all

transitions ⟨𝑙, 𝑔, 𝑎, 𝑟, 𝑙′⟩ ∈ 𝐸 and first computes 𝐷←(𝑎) = 𝐷 ∧ (𝑥𝑎 − 𝑦 ≤ 0), where 𝑦 ranges over all

clocks 𝑦 ∈ 𝐶, such that 𝑔(𝑦, 𝑙) ≠] − ∞, ∞[. The constraint system 𝐷←(𝑎) thus reflects that the

chosen transition is taken before all other pending transitions. During this step 𝐷←(𝑎) might

become inconsistent, i.e. its solution set might be empty. This can happen if some transition

cannot be taken before another pending transition. In the next step, the algorithm updates the

clock differences to other clocks by considering the constraints for clocks in 𝑟 in the next location

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 46 of 88 Public Final – v13

𝑙′. The following constraint system is computed: 𝑓𝑤(𝐷←(𝑎), 𝑔, 𝑟) = {[𝑟 ↦ 𝑔]𝑢 ∣ 𝑢 ∈ 𝑟(𝐷←(𝑎))}. As

before, 𝑟(𝐷←) = {[𝑟 ↦ 0]𝑢 ∣ 𝑢 ∈ 𝐷} denotes the operation mapping all clocks in 𝑟 to zero. However,

since the future-DBMs do not have a zero-clock, its technical realization is different from

𝑟𝑒𝑠𝑒𝑡(𝐷, 𝑥): For any pair 𝑥, 𝑦 ∈ 𝑟 , 𝑟(𝐷←) just sets 𝑥 − 𝑦 = [0,0]. The term [𝑟 ↦ 𝑔]𝑢 denotes the

clock assignment that maps all clocks 𝑥 in 𝑟 to 𝑢(𝑥) + 𝑑, with 𝑑 ∈ 𝑔(𝑥, 𝑙′), and agrees with 𝑢 for

the other clocks not in 𝑟. So this operation increases the difference 𝑥 − 𝑦 by the guard interval

𝑔(𝑥, 𝑙′) for all clocks 𝑥 ∈ 𝑟. So far this algorithm works for constructing the symbolic state space

for the considered class of automata when no pre-emption occurs. The symbolic semantics is

given by the following rule:

⟨𝑙, 𝐷⟩ ⇝𝑎 ⟨𝑙′, 𝑓𝑤(𝐷←(𝑎), 𝑔, 𝑟)⟩ 𝑖𝑓 ⟨𝑙, 𝑔, 𝑎, 𝑟, 𝑙′⟩ ∈ 𝐸

In order to deal with pre-emption of a task P by task N we have to modify our rule. Observe that a

task N can only pre-empt P if N has been idle in the current state ⟨𝑙, 𝐷⟩, meaning its clock was

unconstrained in 𝑙, and N is non-idle in the next state ⟨𝑙′, 𝐷′⟩, meaning its clock is constrained to

some finite interval (the execution time interval of N). Now suppose that clock 𝑦 belongs to the

preempted task P and clock 𝑥 belongs to the pre-empting task N. As thoroughly discussed in the

paragraph about verification using DBMs, the time interval P has left to finish its execution is

independent from the actual amount of pre-emption suffered from N. Therefore, we let [𝑟 ↦

𝑔, 𝑝𝑟]𝑢 denote the clock assignment that maps all clocks 𝑥 in 𝑟 to 𝑢(𝑥) + 𝑑, with 𝑑 ∈ 𝑔(𝑥, 𝑙′), and

all preempted clocks 𝑦 to 𝑢(𝑦) − 𝑒, with 𝑒 equal to the value the pre-empting clock 𝑥 is mapped

to, and agrees with 𝑢 for the other clocks. So this operation increases the difference 𝑥 − 𝑦 by the

guard interval 𝑔(𝑥, 𝑙′) for all clocks 𝑥 ∈ 𝑟, increases the difference 𝑦 − 𝑧 of a preempted clock 𝑦 by

the guard interval 𝑔(𝑥, 𝑙′) and sets the difference 𝑦 − 𝑥 of a preempted clock 𝑦 and a pre-empting

clock 𝑥 to 𝑦 − 𝑥𝑎. Setting the difference 𝑦 − 𝑥 to 𝑦 − 𝑥𝑎 is because 𝑦 − 𝑥𝑎 represents the time

interval a preempted task P has left to finish its execution. The symbolic semantics is thus given

by the rule:

⟨𝑙, 𝐷⟩ ⇝𝑎 ⟨𝑙′, 𝑓𝑤(𝐷←(𝑎), 𝑔, 𝑟)⟩ 𝑖𝑓 ⟨𝑙, 𝑔, 𝑎, 𝑟, 𝑙′⟩ ∈ 𝐸

where 𝑓𝑤(𝐷←(𝑎), 𝑔, 𝑟) = {[𝑟 ↦ 𝑔, 𝑝𝑟]𝑢 ∣ 𝑢 ∈ 𝑟(𝐷←(𝑎))}.

2.4.5.3. Compositional Analysis Strategy Combining State-based and Analytical Methods

During the ASSUME project we have realized a compositional analysis strategy, where the

analysis is applied in combination with an analytical analysis approach. Figure 20 shows a

diagram of the resulting analysis strategy. All of the steps are complete ly automated. First the

given real-time model is sliced into parts, each of which can be analysed independently of the

other slices. Analysis results obtained for each slice can be merged easily. For each constructed

slice, an analytical analysis is started, as well as an analysis based on time-darts. The latter is

however setup to create a potential under-approximation of the behaviour of the real-time model.

For the analytical approach, we have chosen pyCPA1. This analytical approach renders

potentially over-approximated results. After having executed both analyses for a slice, the results

reported by the analyses are compared. If they are equal, the result must be exact. If they are not

equal, then the exact result must be somewhere in the range formed by the under - and over-

approximation. The analysis then tries to further reduce the slice by removing objects from the

real-time model, for which it has exact results. Of course, an object can only be removed, if no

other object directly or indirectly depends on it. On the resulting slice, an exact computational

1 A research-grade implementation of compositional performance analysis
(https://bitbucket.org/pycpa/pycpa/)

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 47 of 88 Public Final – v13

analysis is carried out using the future-DBM-based verification engine. This delivers the missing

exact results for a slice. The exact results determined for each slice are then aggregated forming

the results for the entire real-time model.

Figure 20: Flow Diagram of compositional combined real-time analysis

The analysis strategy described above is geared towards obtaining exact performance figures.

However, it can be easily adapted for the case, where timing and performance requirements are

given and the analysis shall just determine whether these are met or not. In this scenario, one

can often avoid the step of having to execute an exact computational analysis.

Figure 21: Case-Study: Exterior Light Management System

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 48 of 88 Public Final – v13

In order to evaluate the DBM-based verification engine and the combination with analytical

approaches, we compared the performance of the analysis strategies on a case study from the

automotive domain depicted in Figure 21. The system under investigation has two functions that

control the signal lights of a car according to the driver’s actions. The BrakeLight function controls

the rear brake lights according to the driver’s brake pedal position. The brake pedal position is

periodically sensed and preprocessed by the tasks BPSens and P2L, respectively. The latter

sends the generated control values via the bus to the actuator task BLAct. The TurnLight function

controls the turn lights according to the position of the turn switch and the warning light switch at

the driver console. The function has sensing and pre-processing tasks for the turn switch

(TSSens, TSPrep) and the warning lights (WLSens, WLPrep). The pre-processed data is read by

the central Logic task, which generates control values for the individual actuator tasks. The data

is sent via the CAN bus to the actuator tasks RLAct and RRAct, which are hosted at the ECU

REM. The task also generates control data for the switch lights that reside in the driver console

(SLAct). The front lights are omitted in the model. The system also implements an emergency

brake signalling feature. Whenever the driver performs an emergency brake (which is indicated

by a brute force brake action), then the car should activate both rear turn lights in order to signal

following drivers about the emergency brake situation. The task EmcyPrep calculates whether an

emergency brake took place. The dotted elements with a rectangle symbol indicate shared

variables that store control values. The variables at the ECU CEM store the data from the pre-

processing tasks. Whenever the Logic task is activated, it reads the stored values to generate the

actuator control values. The shared variables at the ECU REM store these values for the actuator

tasks. In the analysis model, we omit these variables. All resources of the model are scheduled

using FPS. The event sources T11, T21 and T22 each have a period of exactly 20 and a jitter of

0. The event source T24 has a period of 10 and a jitter of 0. The trivial execution time intervals

are noted in Figure 21. Two end-to-end effect chains were of interest for this case-study: One

addresses the delay between sensing the brake pedal position (T11) and actuating the brake

lights (BLAct). The second one concerns the emergency brake feature and addresses the delay

between sensing the brake pedal position (T11) and actuating rear indicator lights according to

an emergency brake (RLAct and RRAct).

The analysis results and a comparison of the analysis performance regarding analysis time and

memory consumption are summarized in the following table. As expected, an analysis based on

DBMs generates less symbolic states than the variant based on time-darts. The runtime of the

analysis also improved. However, as discussed before, the analysis based on DBMs may over-

approximate the behaviour. The analysis based on future-DBMs is exact though and also

performs better than the DBM-based analysis, as the numbers in the table indicate (in terms of

runtime of the analysis, as well as its memory consumption). For the sake of completeness, we

also analysed the system using only an analytical approach. Of course, this analysis is the fastest

one and has the lowest memory consumption. This must be trade-off against the analysis results,

which are over-approximate. The compositional analysis combining a computational with an

analytical method shows promising results. The sizes of the state space and the memory

consumption are several orders of magnitude lower than the holistic approach purely based on

model-checking using time-darts, DBMs or future-DBMs. So at least for the case study, [KPI1.2],

which expects a performance (run-time) increase of analysis tools by 50%, is fulfilled.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 49 of 88 Public Final – v13

 Time-Darts DBMs
Future

DBMs
Analytical

DBMs +

Analytical

Future

DBMs +

Analytical

EffectChain1 [5.25,15.25] [5.25,15.25] [5.25,15.25] [5.25,16.25] [5.25,15.25] [5.25,15.25]

EffectChain2 [15.25,45.25] [15.25,45.25] [15.25,45.25] [11.25,54.5] [15.25,45.25] [15.25,45.25]

System states 10,244,412 3,544,602 2,689,774 0 16,992 12,765

Explored states 133,188,232 35,053,532 11,147,689 0 1,661 1,038

Run-time 60s 17s 14s <1s <1s <1s

Memory

consumption

12,837 MiB 7,116 MiB 5,466MiB 11 MiB 30 MiB 24MiB

Future work after ASSUME consists of extending the interface to concurrency defect analyses to

also benefit there from the decomposition of the analysis problem and the combination of

computational and analytical methods. We have also successfully applied the analysis on a

realistic case-study, the use-case THA_UC01, which is a model of a flight management system

provided by THALES.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 50 of 88 Public Final – v13

3. Static Analysis of C Code for Concurrency Errors

Several tools have been proposed for the static analysis of C code for concurrency errors. These

are Gropius by University Kiel (Section 3.1), Goblint by Technical University Munich (Section

3.2), and Astrée by ENS, Sorbonne University (the former UPMC) and AbsInt (Section 3.3).

Advantages of static analysis are that the program is analysed without actually executing it and

that the results of static analysis cover all program runs with all possible inputs.

3.1. Gropius

Gropius is a static analysis tool focused on concurrency errors arising in software in the

automotive domain. Gropius was in an early stage of development at the start of ASSUME and

since then it matured into a reliable analysis software.

Identifying data races in the source code of embedded systems is a challenging task, especially

in the automotive domain with legacy code developed for single-core processors. There are

several reasons for this. Firstly, there is no ubiquitous standard on how embedded software

should be structured. Thus, it is not always the case that there is a commonly used standard API

for managing threads, locking resources, enabling and disabling interrupts. Secondly, more often

than not, definition and treatment of critical sections is done implicitly (e.g. via priority scheduling)

and therefore critical sections are very hard to automatically identify reliably. Documentation

about critical sections and how mutual exclusion is implemented is incomplete or even non-

existent. Lastly, there are cases of deliberately tolerated data races, where performance

considerations outweigh the occasional violation of the involved critical sections.

Because specifications are incomplete the search for unwanted data races cannot be fully

automated. Instead, the search should be modelled as an iterative process where the analyst is

required to add additional knowledge about the system under consideration to filter out false

positive results. To make this approach feasible, there are some requirements which led to the

design of Gropius.

Transparency. Having trust in the tool is very important for its adoption. For each discovered

data race candidate, there must be a detailed and comprehensible explanation of the tool's

inference process that led to it. Only then the analyst is able to discern whether the data race is

real or not.

Reduction of the number of false alarms. If a data race candidate is not real, the analyst can

derive a sufficiently general rule based on the tool's inference process to reject this and other

similar data race candidates. The influence of that new rule must be communicated to its creator

immediately, so that the desired effect can be easily verified.

Speed. Gropius needs to be able to handle big projects with at least 250,000 lines of code within

a reasonable amount of time. It starts with running analyses that have low complexity, but result

in big over-approximations. It then gradually reduces the list of data race candidates by running

algorithms with higher complexity.

Ranking. There must be some mechanism to sort data race candidates based on some metric,

such that the engineer knows where to look at first. After the initial run of an anal ysis project, the

user of the tool is typically confronted with several thousands of candidates. It would be too time

consuming to wade through them all. Instead, with some ranking heuristics in place, the engineer

can make a decision based on the top 10 or so candidates about which rule to add next.

Modularity. This requirement is based on the need of transparency explained before and the

desired capability of defining a wide range of rules that strengthen or weaken aspects of previous

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 51 of 88 Public Final – v13

analysis results. The output of analyses must be fine-grained enough, such that it is not only

comprehensible to the user, but also provides hooks for the addition of new rules.

3.1.1. Input

Gropius needs the LLVM bitcode (currently version 3.9) of the program and a set of task entry

points. The input program may need some tweaking to make it analysable. Synchronisation API

function definitions should be replaced by stubs which make use of special functions provided by

Gropius.

The function names below have special meanings for Gropius. They can be used to create stub

implementations for the synchronization API used in the program.

• Handle gropius_spawn_thread(Fn entry_fn_ptr, …args)

Create a new thread with entry_fn_ptr as its entry function. If entry_fn_ptr takes

arguments then these can be supplied via args. Return a handle to the created task.

• void gropius_join_thread(Handle h)

Mark the thread that is associated with the handle h as completed.

• void gropius_lock(void *ptr)

Declare the memory location pointed to by ptr to act as a guard. The guard is set to

“active”.

• void gropius_unlock(void *ptr)

Declare the memory location pointed to by ptr to act as a guard. The guard is set to

“inactive”.

• Handle gropius_get_thread_id()

Returns the handle of the thread which calls this function.

3.1.2. Output

The analysis results are provided via an SQLITE database, text or an HTML file containing:

• List of access records to shared memory. An access record contains a task reference, the

position in the call graph, accessed memory location, if it is a read or write access and a

program location.

• Data dependency graph where vertices are access records and edges denote data

dependencies between accesses.

• List of potential data races.

• Discovered threads and their call graphs.

3.1.3. Method description

The analysis in Gropius is realized via several sub-analysis steps. Initial project setup and the

results of each analysis step are stored in a project database, such that each analysis does not

depend on volatile information. This encourages an iterative and exploratory approach to analyse

a software project.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 52 of 88 Public Final – v13

Figure 22: Analysis steps in Gropius

The main analysis steps are depicted in Figure 22. After initialization of the project with the LLVM

bitcode and a set of task definitions, the task side-effect analysis creates an over-approximation

of the tasks’ accesses to shared memory. An access to shared memory consists of the memory

location (global variable or dynamically allocated memory and an offset), the type of access (read

or write) and the context (task, call stack, responsible instruction, state of locks, and so on).

The task side-effect analysis is based on abstract interpretation to over-approximate all reachable

program states. As a consequence, false positives cannot be completely avoided, but the

algorithm detects all potential data races including those which would stay hidden during testing.

A sophisticated memory model keeps track of the abstract state of global variables, stack and

heap memory allocations. The analysis is built upon a fast context-sensitive pointer analysis in a

dataflow framework. During the analysis, pointers stored in variables and memory are tracked

precisely while other data types like integers are over-approximated very coarsely, so that the

analysis scales to large code bases.

The data race candidate analysis uses the set of shared memory accesses from the task side-

effect analysis and groups them together to find data race candidates based on pairs of accesses

to the same memory location. Some candidates can already be refuted at this stage by taking the

locking context of the accesses into account or by using scheduling constraints provided by other

tools. These are filtered out before the next analysis stage.

The data race candidates are then filtered and ranked by the filtering and ranking heuristic step.

Not every data race is equally harmful (some are even tolerated) and a substantial percentage of

the found data race candidates in the last step consists of false positives due to over-

approximation and lack of information about the project. The race candidates thus need to be

sorted to present the user the ones that require the most attention.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 53 of 88 Public Final – v13

3.1.4. Ranking heuristic

All information that arises in the analysis is organized in an acyclic graph called proof graph,

where nodes are proof items and edges describe the logical dependencies. A proof item can

denote a function, a global variable, one edge of an approximated call graph, a data race, and so

on. In short, it can be any named entity or some statement that could be later referenced in order

to build a chain of reasoning. Furthermore, every proof item 𝑣 has a weight 𝑤(𝑣) ∈ [0; 1], which

denotes a probability of how “true” the proof item is.

Initial proof items of the proof graph are derived by the supplied information for Gropius. Proof

items are generated for

• each function and global variable in the input LLVM module. Their initial weight is set to

1.

• each task definition. A task definition is linked to the proof item of its entry function and

contains additional information like priority, CPU core, interrupt handler flag.

The following analyses are implemented in Gropius.

Call graph analysis. This analysis derives a call graph for each task proof item.

Variable access analysis. An over-approximation from where global variables may be

referenced in functions. The analysis creates a proof item for each read and/or write access that

may occur by running an abstract interpretation algorithm. The results of this analysis are

context-sensitive, which means that a variable access proof item is linked to a certain task

definition.

Data race analysis. Combines call graph information, task definitions and variable accesses and

generates an initial set of proof items denoting data race candidates. Each data race candidate is

linked to proof items 𝑡1, 𝑎1, 𝑟1, 𝑡2, 𝑎2, 𝑟2, where 𝑡1 and 𝑡2 are the tasks that may run in parallel, 𝑎1

is a variable access within 𝑡1 and 𝑎2 is a variable access within 𝑡2. At least one 𝑎𝑖 must be a

writing access. 𝑟1 and 𝑟2 are reachability proof items that denote the claim that there exists a

feasible path in the call graph such that 𝑎1 is reachable by 𝑡1 and 𝑎2 is reachable by 𝑡2.

After the coarse-grained data race analysis, there are typically many data race candidates which

are false positives. There are several ways to reduce the list of candidates with further analyses.

Manual filtering of proof items. This is always possible and the most direct way for the analyst

to influence the output of Gropius. There are several use cases for this approach. For example:

• Sometimes there are global variables that are susceptible to data races, but are

unimportant with respect to the system’s intended behaviour. For instance, counting

variables as a simple means for reporting statistics fit into this category. Changing the

weight of such a variable to 0 invalidates all proof items derived from them including data

race candidates.

• Removing edges from the call graph. The call graph construction algorithm is very fast,

but imprecise. There are cases where a function 𝑓 is not reachable from task 𝑡 because

of subtle details in the control flow. By changing the weight of a call graph edge proof

item to 0, the analyst can counter the effect of the over-approximated call graph.

• Some parts of the code should be excluded from data race analysis like the logging

framework or the error reporting mechanism in order to focus on finding relevant data

races in the actual application part of the software. By setting the weight of a function 𝑓 to

0, the analyst can filter out data races that are in some way related to 𝑓.

Note, that by setting a proof item’s weight to 0, the cumulative weight of each proof item that is a

direct or transitive dependency via regular dependency edges is also 0. However, it is also

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 54 of 88 Public Final – v13

possible to choose a value between 0 and 1 such that in the end, the data race candidates are

weighted differently and can be sorted accordingly.

Project specific knowledge. This is another instance, where choosing weights between 0 and 1

can be meaningful. Consider the following scenario in a program with a global variable 𝐺, which

is a C-struct with two members 𝑥 and 𝑦, and two tasks 𝑡1 and 𝑡2. Task 𝑡1 writes to 𝐺. 𝑥 and 𝐺. 𝑦,

whereas task 𝑡2 reads from 𝐺. 𝑥 and 𝐺. 𝑦. Should Gropius mark this as a race condition because

𝐺. 𝑥 and 𝐺. 𝑦 may not be updated atomically? Only the analyst has domain specific knowledge

about the underlying software and can submit rules that pattern match on some proof items and

change their weights.

3.1.5. What changed between D5.0 and D5.1

Most of the work in the second year of ASSUME was spent on improving the accuracy of the task

side-effect analysis. The initial concept of having a very fast analysis and then filter the results

using domain specific knowledge and input from tools of other analysis domains is maintained.

However, it is very beneficial to reduce the false positives of initial data race candidates. For that

the pointer analysis domain has been rewritten. A precise pointer analysis is essential for

resolving function pointers and accesses to shared memory. The analysis must be context-

sensitive with respect to the analysed task and its call stack. Otherwise the over -approximation is

too imprecise to be useful for data race analysis. The new pointer analysis is fast and can handle

projects with 500k LOC within 30 minutes.

3.1.6. What changed since D5.1

In the third year of ASSUME, there have been several major improvements in Gropius in various

areas. Concurrent programs with locks and a non-static number of threads are supported by the

analysis. Gropius provides a set of special C functions which can be used as basic blocks to

implement stubs for APIs for threads and synchronisation. This allows a more precise analysis of

programs which consist of an initialization phase and a regular task scheduling phase. Effects of

Inter-Task communication are now handled. This closes a big gap in the over-approximation. The

analysis speed was improved and a further speed up was gained by making the analysis

concurrent such that it makes better use of the available cores on the host machine. This

reduced the analysis time of projects that took 30 minutes to compute (at the time of D5.1) to

around 6 minutes.

3.1.7. Use-Cases

Gropius was evaluated in the use-cases DAI_UC1 and FORD OTOSAN.

The use-case DAI_UC1 was the main driver behind the direction of Gropius’s development. Since

the beginning of the project, a sound detection of shared data and code in concurrent

applications [Req_DAI_01] has been the main goal. For concurrent embedded software with hard

deadlines as specified by the use-cases this requirement is met.

In the use-case FORD OTOSAN, Gropius was used for the analysis of the Advanced Emergency

Braking System (AEBS). The software is used mainly in collaboration with WP2, but a concurrent

version based on Pthread was provided for WP5. The Pthread API for thread creation and

mutexes was successfully stubbed by using Gropius’s native thread and synchronisation API.

3.1.8. KPI Status

[KPI1.2] At project start Gropius was not able to completely analyse a real-world software project

provided by Daimler. Some parts of the code were difficult to analyse (for instance a single C

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 55 of 88 Public Final – v13

function with over 5000 LoC and nested loops) and induced a time-out or memory-out. The

current version of Gropius can handle this kind of projects.

[KPI1.3] Pointer analysis was very weak at the beginning. A large part of the generated data race

candidates could be attributed to that. Compared to the current version of Gropius, the number of

data race candidates dropped significantly.

[KPI2.1] Data race analysis so far has been focused on finding dirty read and lost update errors.

Other data race classes like non-repeatable read are detected as well, but not yet classified as

such. This is still work in progress.

3.2. Goblint

The Goblint analyser is developed at Technische Universität München (TUM) and University of

Tartu (UT). Goblint is a static analysis framework that supports static analyses where some parts

of the program state may be analysed flow-insensitively while others may be analysed both flow-

and context-sensitively. This flexibility allows for analysing multi-threaded programs in a modular

way. The focus of Goblint so far has been on analysing the locking behaviour of multi-threaded C

programs. Goblint also supports potentially failing lock operations and is able to perform path

splitting in order to track different behaviour of the program depending on the outcome of locking.

Goblint is written in OCaml and makes use of the CIL framework [12] as the front end. A high-

level overview of Goblint is given in Figure 23. First, the control flow graph is constructed from

the standard textual representation. From the control flow graph and a given analysis

specification, a side-effecting constraint system is generated. Next, the selected generic solver

solves the constraint system. All of the presented high-level components are implemented in

Goblint as modules or functors in OCaml.

Figure 23: Structure of Goblint (see [13])

3.2.1. Input and Output

Goblint takes C source files and, if needed, an include directory. Then Goblint runs the C pre-

processor to produce a single file, which is passed to the front end CIL. After termination of the

analysis, the analysis results can be written to a file in several formats. For the JSON format, the

results can be saved to a file, or be persistently stored in the database MongoDB for later

inspection and post-processing. The default output format is XML, which can be transformed to

an HTML representation for inspection by the user. The HTML output includes the highlighted

source code with analysis information for every code line. Alternatively, a control -flow graph

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 56 of 88 Public Final – v13

representation can be displayed (see Figure 24). In both views, dead code as well as other

warnings such as violated assert statements or data races are visualized.

Figure 24: Goblint's HTML output

3.2.2. Configuration

Goblint is highly configurable, as most of the analyses implemented in Goblint are parameterized

in some way. Different analysis parameters are used, for example, to enable experimental

features, or to adjust the precision in order to increase the speed of the analysis. In some cases ,

an analysis requires extra information about the code to be analysed, e.g., is it a Linux device

driver, an OSEK program, or a program using the POSIX interface. An overview over all available

options can be obtained by running goblint –print_all_options. To allow flexible

configuration of the analyser, a JSON (JavaScript Object Notation) based sub-framework is

available. The framework simplifies the task of adding new options and querying the value of the

options inside the analyser. All options and values are stored centrally to allow for better

overview of the settings. Additionally, the system allows grouping of settings, merging of settings

from different sources, and writing the active settings back to a file. At start -up, the default

configuration is active, however, there are several ways to change the settings – before they are

accessed. One way is to merge an external JSON file with the currently active configuration. For

that, the name and path of the external file can be passed to Goblint via the --conf command

line option.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 57 of 88 Public Final – v13

3.2.3. Method description

Goblint is based on a clear distinction between the specification of the analysis and the solver

engine. This simplifies arguments about the correctness of each component. The analysis

designer provides abstract domains and specifies the local abstract behaviour of statements and

conditions. Together with the control-flow graph as provided by the front end, a side-effecting

constraint system is generated. The analysis result then is obtained as a solution to the given

constraint system by one of the solver engines. In some cases, a further post-processing phase

may be required to identify potential bad behaviour such as data races. For those cases, Goblint

searches for possibly concurrent accesses to global data.

3.2.4. Analysis of Asynchronous Programs

The analysis of concurrent tasks or function calls in Goblint is simplified if possibly shared data

are analysed flow-insensitively. In this case, each task can be analysed individually with respect

to a global invariant for the shared data. This approach has been realized for C with POSIX

threads, for OSEK/AUTOSAR as well as for ARINC653. As synchronization primitives, this

approach nicely supports locking and unlocking as well as dynamic changes in thread priorities

as provided, e.g., by OSEK. ARINC programs may also make use of setting of and waiting for

events. Further functionalities, which need to be supported, are various forms of wait and

blocking operations on blackboards or buffers. Moreover, dynamic changes of the task status via

suspend, resume, stop, start must be handled, as well as changes of the partition mode. In order

to deal with all these and soundly analyse the potential violation of liveness properties such as

starvation of tasks or deadlocks, we have realized a two-stage approach. First, Goblint is used to

extract a decently small model, which (under reasonable assumptions) over-approximates all

possible concurrent behaviours of the original program. This model then is fed into a standard

model-checker, which simulates all possible executions on the ARINC platform and is able to

verify LTL formulas.

3.2.5. Scalability

In close contact with Daimler (use case DAI_UC1), TUM has tried to accommodate Goblint to the

analysis of large concurrent OSEK applications.

The space consumption during the analysis is a severe obstacle to the scalability of Goblint to

larger programs. In order to deal with that, several new options have been provided:

• It is now possible to iterate over the control-flow graph with basic blocks as nodes, rather

than individual statements. This saves on average 30-40% of constraint variables, without

making compromises concerning the run-time of the analysis.

• Widening on contexts has been introduced to reduce the number of calling contexts

distinguished by the analyser. This allows dealing with programs that may contain

recursive functions – even if they use integer arguments.

• Finally, an experimental generic solver has been constructed that only keeps values at

widening points and reconstructs values at other nodes only after the fix-point has been

reached. This cuts down the number of constraint variables during the fix -point iteration

by a factor of ~10.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 58 of 88 Public Final – v13

3.2.6. Improvements since D5.0 and KPI Status

[KPI1.2] The newly implemented space-efficient solver has a 10x improvement in the number of

variables. The new version is also guaranteed to always terminate. It terminates for all programs of

our benchmark suite, while the previous version did not terminate for two of 26 tests.

The new implementation of our address domain now uses hashing to find comparable elements,

which reduces the costs for operations on large address sets.

[KPI1.3] The new implementation of our address domain now keeps apart different offsets for

structs, which leads to more precise results / fewer false positives.

During the evaluation of Goblint on Ford Otosan’s AEBS use case, we improved the precision of

the deadlock analysis.

3.3. Astrée

Astrée is a static program analyser that has been developed by ENS and licensed by AbsInt for

industrialization and also addition of new features in cooperation with ENS and Sorbonne

University (the former UPMC). Astrée finds runtime errors and invalid concurrent behaviour in

safety-critical embedded applications written or generated in C. This is done by static program

analysis by means of abstract interpretation. The analysis covers all possible program runs,

including all possible inputs and all possible thread interleavings allowed by the scheduler,

without actually executing the program. Astrée is sound: if no errors of a certain class are

signalled, the total absence of errors from this class has been established. Moreover, Astrée

aims at efficiency, targeting C code with millions of lines and dozens of concurrent processes.

This is achieved through efficient abstractions and a thread-modular analysis scheme.

In WP5, the emphasis is on finding potential data races, deadlocks, inconsistent lock/unlock

operations, and further invalid calls to OS services. The project also made progress on the

analysis of AUTOSAR applications, on the support of dynamic priorities, including the priority-

ceiling protocol, and on more precisely exploiting scheduling policies to remove spurious false

alarms.

3.3.1. Input and Output

Astrée offers an interactive mode, with a graphical user interface, and a batch mode that works

without user interaction under the control of a project file.

The main input of Astrée is C source code, either original or already pre-processed. Secondary

input is given by directives that provide additional information about the analysed program and i ts

environment. Directives may be inserted into the C source code or given in separate annotation

files. An annotation consists of a directive and a description of the program point to which the

annotation applies. Directives can be provided by users, but Astrée also offers interfaces to

certain model-based code generators. These interfaces automatically convert relevant model

information into Astrée annotations.

To better support the analysis of applications running under the OSEK/AUTOSAR operating

system, Astrée was extended with an OIL converter that extracts all information specified in an

.oil configuration file and automatically generates the corresponding C data structures and

access functions. This allows a direct analysis of OSEK/AUTOSAR applications.

Astrée outputs a list of potential and definite run-time errors, with source location and context

information (such as call stack, offending variable values, etc.). Astrée also gives information

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 59 of 88 Public Final – v13

about variable ranges, pointers to data and code, shared data-structures, the call graph, and

dead code. This information can be navigated interactively in the source code interface. Astrée

also produces a detailed textual report file for human inspection and an XML report file that may

be read by other applications.

3.3.2. Features of Asynchronous Programs

Besides being able to cope with synchronous programs that have to deal with asynchronous

events, Astrée can perform a precise and sound analysis of asynchronous programs, i.e.,

concurrently executing tasks. To avoid the cost of analysing generic operating system functions,

these can be replaced by so-called stubs, i.e., small functions in which the operating-system

primitives are replaced with Astrée intrinsics that tell Astrée about the effect of the primitives

without an extra analysis. Stubs are also useful to model parts of the programs or the operating -

system written in assembly code. Astrée is provided with ready-to-use libraries of stubs to model

significant parts of popular operating systems, including ARINC 653 (for avionics),

OSEK/AUTOSAR (for automotive applications), and POSIX.

Internally, Astrée models concurrent executions using two classes of built -in objects: processes

and synchronization objects. A process is an execution unit and conforms to a process i n ARINC

653 terminology, a thread in POSIX terminology, or a task in OSEK/AUTOSAR terminology, i.e.,

it is an execution unit with independent control, but sharing the memory of other execution units.

Synchronization objects include mutually exclusive locks (mutexes), events, and barriers.

Each object is denoted by a unique identifier that can be an arbitrary integer or pointer. Identifiers

can be chosen freely by the concurrent library stubs linked with the analysed program. Each

class of objects (processes, mutexes, events, barriers) has its own identifier namespace.

3.3.2.1. Processes

Astrée processes are intended to be used to model OS-level threads, tasks, and processes. They

can also be used to soundly model other forms of asynchronous executions, such as POSIX

signals, interrupt handlers, models of hardware controllers, models of asynchronous

environments and so on.

Processes have to be registered to Astrée before being used. This is done with an Astrée

intrinsic of the form __astree_create_process (task, id, priority) where the first

parameter is the name of the entry function of the process, the second is the process identifier,

and the third is the initial priority of the process.

Processes share all global variables. There is no need to declare which global variables are

actually shared as this is automatically computed during the analysis. It is not possible, however,

to share local variables between processes: accessing a local variable of a process from another

process is reported as an error. Additionally, while Astrée supports dynamic memory allocation

for sequential programs, dynamic memory allocation in concurrent processes is currently not

supported and results in alarm messages.

A process can be in one of the following states:

• stopped: the process has not been started yet or it has finished its execution and has not

been started again;

• waiting: the process is waiting for an external resource which can be a mutex, an event, a

barrier or a non-deterministic wait;

• suspended: the process has suspended itself and is waiting to be resumed by another

process;

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 60 of 88 Public Final – v13

• pre-empted: the process is currently pre-empted by the execution of another process with

higher priority;

• running: the process is currently executing.

A process that is neither stopped nor waiting nor suspended is called runnable. Note that a

process enters waiting state only when executing certain analyser-intrinsic functions and hence

can only wait for at most one external resource at a time. A process can, however, wait on a

resource and be suspended by another process in which case the process must be resumed and

get its resource to start running again.

Each process has a priority which is an integer value. Processes start with the priority specified

during process creation. However, their priority can change during execution, either by direct

priority modification or through the priority-ceiling protocol. Additionally, a process can be created

specifying two different priorities: one which is used when the process is running and one which

is used when it is not running (i.e., while waiting, being suspended, or pre-empted). It is possible

to have several processes with the same priority. In that case, one of several scheduling policies

can be used, on a per-process basis: a real-time process can only be pre-empted by a process

with strictly higher priority, while a non-real-time process can also be pre-empted at any time by a

process with the same priority. The scheduling policy is specified as an optional additional

argument to the __astree_create_process primitive, the default being real-time scheduling.

3.3.2.2. Synchronization Objects

Synchronization objects fall into three classes: mutual exclusive locks (mutexes), events, and

barriers.

Mutexes can be locked and unlocked. This is done by the Astrée intrinsics

__astree_lock_mutex(id) and _astree_unlock_mutex(id) where the parameter is the

identifier of the mutex. A mutex locked by a process is held by this process and cannot be locked

by another process. Any process attempting this is put into waiting state until the process holding

the mutex unlocks the mutex. Upon unlocking a mutex, the process with highest priority waiting

for the mutex gets the mutex and is put into running state. In case there are several waiting

processes with equal highest priority, Astrée considers that any of these can get the mutex, thus

covering all possible scheduling policies. The unlocking process is pre-empted if it has lower

priority. A mutex has to be unlocked by the process locking it and cannot be unlocked by another

process. Mutexes are non-recursive, i.e., locking the same mutex a second time is a no-

operation. It is, however, possible for a process to lock several different mutexes. At program

start, mutexes are not locked by any process.

Mutex locking never fails, i.e., if and when the execution continues after the lock operation, the

mutex is assumed to be locked by the current process. Nevertheless, potentially failing mutexes

as in POSIX pthread_mutex_timedlock can be simulated along the following lines:

volatile int lock_successful;

int potentially_failing_lock (int id) {

 if (lock_successful) {

 __astree_lock_mutex(id);

 return 1;

 } else {

 __astree_yield();

 return 0;

 }

}

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 61 of 88 Public Final – v13

Since the variable lock_successful is declared as volatile, the analyser always follows both

possibilities: successful lock and failing to lock.

Similarly, it is possible to model recursive (i.e., counting) mutexes where a process can lock a

mutex several times and must unlock it an equal number of times for other processes to lo ck it.

Operating system stub libraries thus model high-level synchronisation primitives transparently in

terms of the simple mutexes supported internally by Astrée.

Mutexes are also used in operating system stubs to model other kinds of synchronisation obj ects

(such as ARINC 653’s backboards and queues, semaphores, etc.) and to protect internal data -

structures (such as process tables, blackboard contents, etc.).

Events are synchronization objects with a binary state: an event is either set or reset. At program

start, all events are in the reset state. Processes can set events, reset events, as well as wait for

an event to be set. Event semantics is based on ARINC 653 and also compatible with

OSEK/AUTOSAR. Waiting for an event does not consume it, and it stays set until explicitly reset.

Furthermore, while being set, no wait operation on the event blocks. POSIX condition variables

behave differently, but can nevertheless be simulated using Astrée events.

Barriers are synchronization objects that require a certain number of processes to reach and

wait at the barrier before they are all simultaneously allowed to continue. In concurrency libraries,

the number of processes that need to wait at a barrier is fixed at creation time. Astrée, however,

takes this number of processes as an argument each time the barrier is used. This allows a

simpler, state-less and creation-free semantics, but alternate semantics, such as POSIX barriers,

can be easily simulated on top of these barriers in stub functions.

3.3.3. Analysis of Asynchronous Programs

The analysis of asynchronous programs is performed in two phases: the sequential phase, or

sequential initialization, and the parallel phase. The first, sequential phase uses a purely

sequential semantics. This analysis phase starts at the specified entry routine (such as main) and

exits either when reaching the end of the entry routine, when returning from it, or when the

analyser-intrinsic function __astree_exit is called at any point. During this phase, process

creation orders issued via calls of the analyser-intrinsic function __astree_create_process are

recorded. If no such order was issued, i.e., no process has been created, the analysis finishes

after this phase with a sound sequential analysis result.

If process creation orders were issued, a second, parallel analysis phase is performed. In this

phase, the interleavings of executions of the processes created in the sequential initialization

phase are analysed. The initial program state for the parallel phase is the state when exiting the

first phase. Hence, in the first phase, any initialization procedure required by the program before

process execution can be performed. During the parallel phase, it is illegal to issue process

creation orders. This constraint is generally required of embedded critical applications. Astrée

thus enforces a static set of parallel processes, while allowing this set to be defined

programmatically in the sequential initialization phase.

In order to analyse the process interleavings in an efficient way, Astrée performs a process-

modular analysis. The processes are analysed separately, in no particular order but, during

process analysis, the effect of each process on the global memory is recorded and considered in

the analysis of the other processes. To take into account all possible interactions, processes may

be analysed multiple times, until their analysis results stabilize. A fundamental theorem of

abstract interpretation states that, upon stabilisation, the effects gathered indeed take into

account all possible interleavings in a sound way. This technique proves to be more efficient for

large programs than explicitly enumerating all possible interleavings, which does not scale up.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 62 of 88 Public Final – v13

Astrée's two-phase execution model is derived from the ARINC 653 execution model. In ARINC

653, the first phase ends when a specific SET_PARTITION_MODE call is issued. This can be

modelled as a call to __astree_exit. Astrée's model is also appropriate for OSEK/AUTOSAR:

the first phase corresponds to synthetic code automatically generated from the OIL specification

that takes care of system initialization and process creation. The second phase corresponds to

the actual parallel execution of the created tasks. The current two-phase model does, however,

not match the full generality of POSIX threads. Technically, POSIX allows thread creation at any

point during execution. Nevertheless, in case the thread creation part of a POSIX application can

be isolated from the part of the program actually running asynchronously, Astrée’s current mod el

can still be used.

3.3.4. Execution Model

When a process is started, it starts its execution at the entry routine registered at process

creation. A process execution stops when the execution reaches the end of its entry routine or

__astree_exit is called. Additionally, process execution can be stopped prematurely, be

suspended and resumed, made to wait for some resource, or be pre-empted by the scheduler to

execute another process. Finally, a process can be made to yield, i.e., relinquish control for a

non-deterministic amount of time, allowing other processes to run; this is useful to model waiting

for an external resource or for some amount of time. Several scheduling policies are available:

• A classic real-time policy, which is the default, assumes that only the process of highest

priority can run at any given point, and that it can only be pre-empted by processes of

strictly higher priorities. This model assumes a mono-core execution: only one process

runs at a time.

• A non-real-time policy, where only the process of highest priority can run at any given

point, but it can be pre-empted by processes of equal priority non-deterministically at any

point.

• Mixed models, where some processes obey the real-time scheduling policy and others

obey a non-real-time scheduling policy. One example is a pre-emptive environment with

non-pre-emptive interrupts.

• Using a non-real-time scheduling and processes of equal priority, arbitrary pre-emption is

enabled. This model is also compatible with multi-core execution, where several

processes actually run in parallel. It can also be used as fall-back model when the actual

scheduling policy is not explicitly supported (such as real-time multi-core scheduling) as it

considers all possible interleavings, and is thus sound for all policies.

A process can leave its running state under the following circumstances:

• the process calls an analyser-intrinsic function that makes the process wait on a

resource;

• the process yields, i.e., waits for a non-deterministic amount of time;

• the process suspends itself, waiting for some other process to resume it;

• the process exits its entry routine or stops itself;

• the process releases a resource on which a process with strictly higher priority is waiting;

• the process resumes or starts another process with strictly higher priority;

• the process uses non-real-time scheduling and a process with equal priority is runnable;

• the process changes its own priority or the priority of another process such that it is no

longer the runnable process with highest priority;

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 63 of 88 Public Final – v13

• there is a yielding process with strictly higher priority, whose yielding period ends non-

deterministically.

Some of these pre-emptions are systematic (such as trying to lock a mutex already locked by

another process), while others are non-deterministic (such as being pre-empted by a yielding

process). Note that, in the last case, the current process is not pre-empted as a consequence of

calling some function or primitive, but as a consequence of an event outside of its control. Hence,

it can be pre-empted at any point of its execution. Astrée thus assumes that any process location

is a potential pre-emption point. This assumption is vital for taking into account all possible

process interleavings and soundly detecting all possible errors.

Each time a running process leaves the runnable state, Astrée selects a runnable process of

highest priority to become the running process. In case several such processes exist, Astrée

assumes that one is chosen non-deterministically. While this is in contrast to common OS

specifications, that often resort to round-robin or FIFO policies in this case, Astrée’s non-

deterministic semantics is guaranteed to be sound with respect to all possible policies. A similar

non-deterministic choice is assumed in case a resource becomes available and several

processes with equal highest priority are waiting on this resource. Astrée's non-deterministic

semantics is then again guaranteed to be sound with respect to all possible policies.

Astrée supports a directive, __astree_set_process_priority(thread,priority), allowing a

process to explicitly change dynamically its own priority or the priority of another process. Astrée

also supports the priority-ceiling protocol, which allows a process to automatically change its

priority as a consequence of locking or unlocking a mutex. When locking a mutex, the process

can specify a priority as an additional parameter. The new priority of the process becomes the

maximum of its base priority (defined initially during process creation and possibly updated with a

__astree_set_process_priority directive) and the priority associated to every mutex it has

locked. When unlocking a mutex, the priority is lowered to take into account the remaining locked

mutexes only and the base priority. Note that a priority is associated to a lock operation, and can

change from one lock operation to another on the same mutex, which is more general than the

classic priority-ceiling protocol and allows a simpler, creation-less semantics for mutexes. The

classic priority-ceiling protocol can be easily constructed on top of these primitives. This also

allows modelling the resource mechanism of OSEK/AUTOSAR. Moreover, Astrée can distinguish

a different base priority for a process in its running and its non-running states. This makes it

possible to model the internal resource mechanism of OSEK/AUTOSAR, i.e., resources with their

own priority that are assumed to be taken when the corresponding process is running.

Astrée supports processes with several instances running concurrently. Each instance of a

process has its own local variables that cannot be shared between the instances. The instances

may interact with each other and the instances of other processes through global variables,

which are implicitly shared. Hence, multiple instances of a process behave in many ways like

multiple, distinct processes. The main difference, however, is that all instances of a process

share the same identifier and creation attributes, while different processes have different

identifiers and may have different creation attributes. As all instances of a process have the same

identifier, it is not possible to distinguish one instance from another. Such instances can,

however, be efficiently created in large or even unbounded numbers. This is particularly usef ul to

model parametrized systems, such as servers, that take as argument a number N of requests

and create N instances of the same process to handle a single request each. In Astrée, several

instances of a process are created by calling __astree_create_process() several times with

the same identifier and are analysed as efficiently as a single process.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 64 of 88 Public Final – v13

Note that Astrée currently does not track the exact number of instances: once a process with the

same identifier is created at least twice, Astrée considers that there is an unbounded number of

instances of this process. This behaviour may be improved in future versions of Astrée.

For selected analysis options, the analysis performed by Astrée is also sound with respect to a

large class of weakly consistent memory models, including Total Store Ordering (x86), Partial

Store Ordering, as well as classic compiler optimisations. More precisely, when flow-sensitive

and relational inter-process abstractions are disabled (which is the default) and all processes use

a common priority and non-real-time scheduling, the analysis handles soundly the analysis of

multi-core applications, including in the presence of data races. When these precision options are

enabled, and the analysed program is a multi-core application running under a weak memory

model, the analysis is sound only if it does not report any data race.

3.3.5. Abstraction of Concrete Behaviour

Apart from not considering the exact number of process instances, Astrée performs other

abstractions of the concrete behaviour. The reason is that the model of concurrent execution

presented above corresponds to a precise, concrete semantics that would be very costly to

compute. Hence, Astrée reverts internally to a more abstract semantics that is simpler to

compute. This more abstract semantics is nonetheless guaranteed to include all the concrete

behaviour implied by the model we presented above. Due to abstractions, spurious behaviours

may be introduced which may result in false alarms.

The most important abstractions that may cause a loss of precision are as follows:

• Astrée does not precisely track which processes have been started, stopped, suspended,

and resumed; it only remembers whether a process may have been started at most once,

or more than once during program execution.

• Astrée does not always exploit priority and scheduling information as precisely as

possible. It mainly uses priorities to infer mutual exclusion of portions of codes from

different processes, i.e., the fact that one portion cannot be pre-empted to give control to

another portion. It does not however currently infer precedence information, such as the

fact one portion of code from one process is always executed before a portion of code

from another process.

• Astrée assumes that each event may be in set or reset state at every point of the

program execution. This is a sound, but coarse abstraction.

• Astrée assumes that an arbitrary number of processes may have reached every barrier at

every point of the program execution. This is a sound, but coarse abstraction .

The abstract semantics is subject to change to match the concrete semantics more closely, and

so, improve the analysis precision. In fact, during the course of the project, the handling of

priorities and scheduling has been improved to discover more mutual exclusion, hence, consider

less spurious flows of information between processes, thus improving the precision. The concrete

semantics, i.e., the precise rules described above, are fixed. Hence, modelling of concurrency

should always take into account the concrete semantics and not rely in any way on a specific

abstract semantics. This information about the currently implemented abstract semantics is

nevertheless relevant to help understanding the current limitations of the analysis results in terms

of precision.

3.3.6. Error Reporting

The extension of Astrée to concurrent programs reports all the run-time errors reported by the

sequential version of Astrée, including: non-initialisation, arithmetic overflows, invalid integer,

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 65 of 88 Public Final – v13

floating-point and pointer operations, out-of-bound array accesses, memory access errors,

assertion failures, dead code.

In addition, Astrée reports hazards specific to concurrency, including:

• data races: the access of the same memory location by two processes, one of the

accesses being a write and the accesses being not protected by a common mutex. Astrée

distinguishes in its report read/write from write/write data races. In the presence of a data

race, Astrée nevertheless continues the analysis to report subsequent errors, in case the

data race is considered to be possible but benign by the user.

• invalid use of concurrency primitives, including: locking a mutex twice, unlocking a mutex

not locked by the current process, referencing a non-existent process or synchronisation

object, etc.

• dead-locks: cycles of processes that are blocked waiting for a mutex that is locked by

another process in the cycle, so that no process in the cycle can make any progress .

Astrée also reports the case of partial dead-locks, where only a part of the processes in

the system are blocked, as well as blocking cycles of arbitrary size.

Finally, Astrée reports information about the use of the synchronisation objects and the use of the

shared memory (which variables are actually shared, and which processes access these

variables, distinguishing read and write accesses).

3.3.7. Improvements during the Project and KPI Status

[KPI1.1] Reduce the effort required to set up and employ an analysis or synthesis tool.

During the project, new options have been added to facilitate the setup of analyses by achieving

higher percentage of analysed code (pointer materialization) and by automatically generating

absolute address directives. This improves turnaround times and supports component-level

analyses.

A Jenkins plugin is now available to automatically start Astrée analyses and evaluate their results

from within a continuous integration framework.

[KPI1.1] Increase the automatic coverage of environment models (e.g. AUTOSAR libraries).

A new AUTOSAR stub library for the Dcm component was added. Now in total three stub

component libraries are available (NvM, Dem, Dcm).

[KPI1.2] Increase the performance (run-time) of the analysis tools.

The analysis time of certain use cases was reduced by more than 50% (one case from >10 days

to 3d, another case from 26h to 2h30, a third case from 2h to 38 min).

[KPI1.3] A significant reduction of false positives.

At the end of the first project year, Astrée assumed most of the time that any process may pre-

empt any other process, disregarding the relative priorities and real-time statuses of the

processes. Now, Astrée takes relative priorities into account and even supports dynamic

priorities, including the priority-ceiling protocol, and more precisely exploits scheduling policies.

These improvements led to the removal of many spurious false alarms: The number of data race

alarms has been reduced by more than 80% from 1184 to 215 on some use case.

[KPI1.3] Reduce the effort for inspecting runtime errors.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 66 of 88 Public Final – v13

• A new data flow view for exploring data races has been created.

• Concurrent accesses to shared variables are now graphically visualized in the call tree.

• Alarm messages about data races now indicate whether the access path is volatile and

atomic.

These changes made the inspection of data race alarms much more convenient and intuitive than

before.

[KPI2.1] Incorporate at least three new error classes (mainly for multi -core software).

In the project, Astrée was extended by a new analysis module for detecting potential deadlocks

during concurrent program execution.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 67 of 88 Public Final – v13

4. Analysis of Hardware-Dependent Software

Within the scope of the ASSUME project, FZI is developing a methodology and an accompanying

tool chain to support analyses of Hardware-dependent Software (HdS) [14]. The ever-increasing

system complexity and tight integration of hardware (HW) and low-level software (SW)

components makes a strong case for an analysis that not only considers the SW/HW components

in isolation but also their complex interplay. A key to performing a cross-boundary co-verification

is to translate the HW and SW models to a common representation and thus enabling

specification of system-level properties across HW/SW boundaries. The mechanisms for invoking

functionality and sharing data among software modules are relatively few and well defined

whereas in contrast the means of passing information between hardware and software are built

up from nonstandard primitives that may include interrupts, memory-mapped I/O, and special-

purpose registers. In addition, the hardware/software interface also marks a boundary between

different threads of concurrent execution. There are three types of concurrency-related HW/SW

interfaces: (1) hardware concurrency; (2) software concurrency; and (3) HW/SW concur rency.

HW components are concurrent in nature and can run independently from each other whereas

software components can run synchronously or concurrently in multiple threads. Emphasis of the

developed methodology and tool chain is put on the analyses of asynchronously interacting

HW/SW components and their interface. The HW/SW concurrency describes two situations. Most

of the time, software and hardware components transition asynchronously, so their states do not

affect each other. On the other hand, when hardware and software interact with each other, their

synchronous transition will be decided by the states of both hardware and software.

In critical embedded systems, interfaces are often modelled as "volatile" variables and the

interface specification typically as constraints on these variables. Modern "intelligent" HW

components go beyond simple Port I/O and thus work directly on shared-memory, perform direct

memory access (DMA), all asynchronously from the main processor. System side effects, caused

by embedded assembly instructions, direct access to system memory and specific I/O-registers

via Memory Mapped I/O (MMIO), make it impossible to verify the SW component without

considering the HW component, because incorrect programming of the HW component can have

severe consequences, such as memory zones being erased.

In addition to analysing HW/SW interaction, an analytic approach for identifying deadlocks and

livelocks, based on the modelled hardware properties and a white-box model of the

hardware/software system, is pursued. The algorithms for deadlock/livelock identification can

take advantage of additional information in the form of timing abstraction of the system's software

parts to reduce false positives during static software analysis.

4.1. Analysis of Asynchronous and Concurrent HW Dependent SW

The central idea of the developed approach is to augment the input to static software analysis

back end tools by auxiliary information advancing the overall software analysis by considering

specific hardware platform details. The code transformation tool C-SAPP, which is in continuous

development at FZI, carries out this augmentation.

The tool can be thought of as a complex pre-processor for the software code under analysis. Its

major tasks include the identification of hardware specific code sections (e.g., inline assembly

code, device driver function calls, etc.) and a transformation step replacing those sections with

directives that can be understood by a static analysis back end (e.g., Astrée). The pre-processing

step is devised as an extensible sequence of actions, implementing various source code

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 68 of 88 Public Final – v13

transformations and source code injection mechanisms that rely on analysis -specific hardware

models. The hardware models that describe specific hardware properties and the functional

behaviour of a hardware platform (e.g., the interrupt behaviour of a processor) are incorporated

into the pre-processing step in order to generate additional information for the static analysis

back ends. Besides augmentation, the developed tool can also act as an analysis back end and

perform static analysis tasks. Figure 25 shows the overall workflow of the C-SAPP tool.

Figure 25: Analyses of Hardware-dependent Software (HdS) workflow

4.1.1. Input

Primary input of the C-SAPP tool is C source code complemented by the addition of common

settings (e.g., include paths), necessary to generate an abstract syntax tree (AST) of the

provided source code. In addition, the target binary (e.g., ARM .elf file) is needed to generate

the timing behaviour of concurrent software components on task level.

Concurrent software components are specified using Quality Contracts. A contract can be used

to specify the scheduling behaviour and the binding of a task to a specific computing resource

(e.g., CPU). Furthermore, one can specify additional restrictions in the form of assumptions (e.g.,

interrupts are disabled during task execution) as well as guarantees, which hold after task

execution (e.g., task execution time is limited to an execution interval [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥]) using

contracts.

As secondary input, the tool requires a hardware model and a set of transformation rules. The

hardware model – precisely SW/HW Interface Model – specifies the functionality and constraints

of a specific hardware platform that are relevant for cross-boundary HW/SW defect analysis. The

transformation rules control the actual code transformation under consideration of analysis goals,

analysis back end (e.g., specific keywords used by a particular back end) and the hardware

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 69 of 88 Public Final – v13

model. The hardware model can be seen as a formal representation of a hardware component,

where hardware behaviours are modelled using atomic transaction functions and implementation

details such as clock signals are abstracted away. A hardware transaction represents a hardware

state transition that is atomic to software. Any terminating C function can be treated as a

transaction function. To formally specify the HW/SW interface one has to capture all possible

HW/SW behaviours that are allowed by the interface. In case of MMIO, the read() and write()

access to the HW device registers are modelled.

Figure 26: Specification of the HW/SW interaction

Figure 26 illustrates the specification of a HW/SW interaction. The software model is defined by

the firmware routines that can access the hardware component. The hardware model describes

the desired hardware behaviours when hardware works asynchronously with the software to

realize system functionalities. The HW/SW interface, as the abstraction of the HW/SW stack

layers between the hardware component and its software driver, propagates software events to

hardware and vice versa. For example, when a driver writes to a hardware interface register, the

HW/SW interface will update the related hardware registers accordingly. This can lead to a state

transition in the hardware model generating side effects. In summary, the approach specifies

hardware behaviour using C programs to model the state and the state transi tions of the

hardware component. When necessary, the parallelism between firmware and hardware is

captured with a modelling approach that employs software concurrency in the form of

asynchronous threads (e.g., pthreads).

The overall hardware platform is modelled using the SW/HW Interface Metamodel (see Figure

27), which allows for modelling the hierarchy and interconnection of hardware components. The

SW/HW Interface Metamodel, which is implemented using the Eclipse EMF framework , is

currently under development and enables the user to model a hardware platform from the

software perspective. The hardware platform topology is modelled using Master/Slave

components that can have a shared address space or their own subspace. Interactions between

components are modelled using communication sets. In the current version of the metamodel,

various communication interactions are considered, but can be easily extended in future revisions

of the metamodel.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 70 of 88 Public Final – v13

Figure 27: Excerpt from the SW/HW Interface Metamodel

A model of the whole hardware platform allows for the automatic generation of C code that

represents the hardware components themselves as well as their interaction through their

HW/SW interface. The HW/SW Interface Metamodel is very abstract and just covers the

hierarchy of hardware components, their address space and their communication. Figure 28

displays a platform model of the FZI_UC01 demonstrator, where hardware accelerators (HWAs)

interact with the software running on the ARM cores through MMIO and a common address

space. This model can be used to automatically generate source code annotations and

assumptions about the global memory access as well as the access to the hardware reg isters of

the hardware accelerators through MMIO registers.

Figure 28: Platform model for the FZI_UC01 demonstrator

In addition, final and intermediate results of AbsInt’s WCET analyzer aiT are used as auxiliary

input. Statically computed tight bounds for the worst-case execution time (WCET) of tasks in real-

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 71 of 88 Public Final – v13

time systems are extracted from the generated control flow graph that aiT produces, and

exploited in an analysis that considers timing information.

4.1.2. Invocation

The C-SAPP tool is invoked on the command line in batch mode, which enables its use as a pre-

processor in an automated analysis flow. Hardware modelling is done in an Eclipse environment

using customized EMF modelling editors.

4.1.3. Method description

The core of the tool is based on pattern matching. Patterns will match parts of an AST and are

associated with transformation rules that describe transformations of the AST that shall be

performed for each match. Transformation rules may include meta-variables, which could for

example refer to specific parts of a pattern, hardware model elements, analysis back end

properties, or secondary analysis inputs.

Generation of C code that specifies hardware components is achieved through model -to-text

(M2T) transformations using templates that are tailored to an analysis goal.

Besides code transformation, the C-SAPP tool also generates modified control flow graphs

(CFGs) enriched with concurrency control primitives such as locks (e.g., mutexes) and annotated

timing constraints, extracted from aiT’s CFG. The generated graphs, which represent the control

flow and the timing constraints between concurrency control primitives for each task, are used for

deadlock analysis described in Section 4.2.

4.1.4. Output

The main output of the tool is the processed source code, in which hardware dependent code

constructs will be replaced such that the code can be analysed by an analysis back end. In

addition, hardware and platform specific properties (e.g., interrupt behaviour of a processor) are

injected into the source code by the C-SAPP tool in form of functionally equivalent behaviour

models. For example, if the correct use of processor modes (e.g., interrupts enabled/disabled)

shall be investigated, the output may contain a global variable to model the current processor

mode and its status flag register. C code, specifying the interaction of a hardware component

with software, is generated and can be included in a static analysis of the software project.

4.1.5. Changes compared to D5.0 and future development

The modelling approach using the SW/HW Interface Metamodel has been improved by refining

the metamodel and implementing a GMF based editor in Eclipse to visually support the modelling

process. A new editor for specifying register interfaces using SystemRDL is being finalized. A

code generator that takes the register specification and the HW/SW interface model as input and

produces C code that can be used in a static analysis is under development. An Eclipse Rich

Client Platform was setup as a common basis for integrating all modelling, analysis, generation

and transformation steps. The integration of all sub steps into an overall workflow is currently

ongoing. The methodology and tooling developed in WP5 covers the FZI_UC01 use case and

addresses the requirements Req_FZI_001 and Req_FZI_002. The requirement Req_FZI_001 is

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 72 of 88 Public Final – v13

fulfilled by reducing the effort to analyse hardware-dependent code segments using a model

driven approach. A SW/HW interface model allows for the automatic generation of source code

and source code annotations that expose hardware properties during a static analysis.

Req_FZI_002 is fulfilled because communication of parallel instances (HW, SW) and their

interaction can be verified using the generated code that models the hardware behaviour and an

analysis back end such as Astrée or Goblint that is capable of detecting errors (data races,

deadlocks, etc.) in parallel software.

4.1.6. KPI status

At the beginning of ASSUME, the C-SAPP tool and the accompanying methodology did not exist.

Because the tool was developed from scratch during the ASSUME project, the KPIs do not reflect

a relative improvement of the tool chain but are an approximate estimation of the overall

development process.

[KPI1.1]: Our HW/SW interface model and the code generators facilitate the static analysis of

low-level embedded SW. (KP1.1 reached to approx. 65%)

[KPI1.2]: Even though our tool can process large SW code bases, spanning numerous source

files with millions of lines of code, only the driver code (low-level software) needs to be examined

and transformed. Because our tool only examines the low-level part of the software, the code

transformation, generation and annotation tasks scale independently of the overall code size

(KPI1.2 reached to approx. 80%).

[KPI1.3]: Spurious warnings are reduced by exploiting domain knowledge about the HW platform

and HW/SW constraints, introduced by the HW/SW interface model. Our developed deadlock

analysis uses modeled HW characteristics and extracted timing constraints to reduce false

positives (KPI1.3 reached to approx. 50%)

[KPI2.1]: Our analysis addresses HW-related runtime errors, which arise due to the interaction of

low-level SW with HW. (KPI 2.1 reached to approx. 60%).

4.2. Deadlock analyses for real-time embedded systems

Real-time embedded systems can be differentiated from computation-intensive desktop

applications by their execution of a fixed set of concurrent tasks that execute specific control and

time-dependent operations periodically. The presence of multiple concurrent tasks operating on

shared memory (e.g., sensor data) makes the embedded safety-critical system highly vulnerable

to race conditions, which introduce non-determinism in the system and can cause violations of

temporal constraints leading to system failure [45].

One solution to avoid data races is to make sure that global data is only accessed by one t ask at

a time by introducing so-called critical sections and the concept of mutual exclusion. The

principle of mutual exclusion states that resources (e.g., global variables, MMIO registers, etc.)

within a critical section can only be accessed by one execution instance (thread, process, task,

etc.) at any given instant of time. Lock-based resource protection and task synchronization

mitigate the problem of data races by enforcing sequential access to data within critical sections

but introduce a new type of problem that can cause violations of temporal constraints in form of a

deadlock. A deadlock is a state in which two or more execution instances (threads, processes,

tasks, etc.) mutually block each other forever, because each one is waiting for a lock owned by

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 73 of 88 Public Final – v13

another one [46]. A deadlock situation can arise if and only if the four Coffman conditions hold

simultaneously in a system [47]:

1. Mutual exclusion: Resources (e.g., global variables) can only be accessed by one

execution instance at any given instant of time.

2. Hold and wait: An execution instance holds at least one resource and requests

additional resources held by other execution instances.

3. No pre-emption: Resources cannot be removed from execution instances that are

holding them until the resources are released by the execution instance itself.

4. Circular wait: A circular chain of execution instances exists, such that each execution

instance holds one or more resources that are being requested by the next task in the

chain.

Detecting deadlocks precisely is a difficult endeavour because they depend on intricate

sequences of low-probability events and are sensitive to timing dependencies, which makes

detecting such errors with classical testing techniques (e.g., unit tests) very hard [48]. Many

methodologies have been devised to overcome the difficulties in deadlock detection and

avoidance such as language-level approaches, where higher-level constructs for concurrency

control embedded in the programming language prohibit error-prone uses [49]. Other approaches

tackle the problem by dynamically tracking the set of locks that are held during program

execution and performing deadlock detection checks at runtime [50]. Post-mortem techniques

[51] are similar to the dynamic approach but analyse execution traces after the program

execution finished. Both methods suffer from the same limitation that only errors along executed

paths can be found.

Model checking [52] is a formal verification technique that can be used to find concurrency errors

in programs [53] for all possible inputs and program paths, but suffers from possible state space

explosion. Several completely automatic static analyses have been developed to find deadlocks

in C code [48][54]. While these techniques guarantee to find all possible deadlocks, they suffer

from imprecision caused by the abstraction of precise local information and thus generate

spurious warnings because of overestimation.

To improve the precision of static deadlock analysis techniques a new method was developed to

exclude spurious warnings by considering timing constraints.

4.2.1. Method description

In real-time safety-critical systems, deadlines for concurrent tasks are fixed because a violation of

a computation deadline can lead to catastrophic consequences. Deterministic performance and

response behaviour of the whole system is of uttermost importance and can imply a restricted

concurrency execution model as follows:

• tasks are scheduled periodically (e.g., every 100ms) and the starting point of each task

within a period is defined statically;

• the schedule as well as the assignment of tasks to execution units (e.g. CPUs) is

defined statically;

• tasks cannot be interrupted by means of pre-emption;

• the number of tasks is fixed and new tasks cannot be created dynamically;

• locking primitives such as mutexes can only be released by the task that acquired the

mutex or after the task terminates.

Using the assumptions of the restricted concurrency execution model, one can calculate the

minimum and maximum execution time of each task in the presence of synchronization primitives

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 74 of 88 Public Final – v13

such as mutexes. Using the maximum execution time and the schedule of the tasks, one can

derive the maximum deadline of the task itself and verify that the overall deadline imposed by the

periodicity of the schedule is not violated. If a deadlock between two or more tasks occurs, the

maximum execution time will be infinite, exceeding the overall deadline and thus leading to a

violation of the real-time constraints. Instead of identifying deadlocks directly, our approach can

exclude possible deadlocks (false positives) between tasks based on the timing constraints of

locking primitives and a static schedule.

4.2.2. Algorithm

The developed algorithm for deadlock detection, using timing constraints, utilizes an iterative

approach for computing the overall maximum execution time of each task in the presence of

synchronization primitives. Describing the algorithm in all its details would exceed the scope of

this document, so a short introduction based on an abstract example is given.

Table 1 depicts a possible deadlock scenario with n tasks running in parallel. For the sake of

convenience, we only consider three tasks {𝑇1, 𝑇2, 𝑇𝑛}, which are displayed in the example. A

deadlock can only occur between Task 1 and Task 2 (i.e., 4 Coffman conditions are met for 𝑇1

and 𝑇2) whereas Task n cannot influence the other tasks because it doesn’t acquire locks tha t

are used by the other tasks. Timing information is annotated as intervals containing the absolute

min/max execution time to reach a synchronization primitive such as a lock/mutex. If two tasks

acquire the same resource (e.g., lock L1), their timing intervals, necessary to reach the program

state where they can acquire the lock, are in relation to each other. A task that can acquire the

lock first changes the timing signature of other tasks that wait on the same lock. The waiting

tasks can only acquire the lock after it is released by the task holding it and thus the timing

intervals of the waiting tasks need to be adjusted accordingly to compensate for the time the task

is waiting for a lock.

Table 1: Deadlock example

State
Task 1

(𝑇1)

Task 2

(𝑇2)
…

Task n

(𝑇𝑛)

1: [𝐴𝐿1𝑚𝑖𝑛
, 𝐴𝐿1𝑚𝑎𝑥

] [𝐴𝐿2𝑚𝑖𝑛
, 𝐴𝐿2𝑚𝑎𝑥

] … [𝐴𝐿3𝑚𝑖𝑛
, 𝐴𝐿3𝑚𝑎𝑥

]

acquire(𝑳𝟏) acquire(𝑳𝟐) … acquire(𝑳𝟑)

2: [𝐴𝐿2𝑚𝑖𝑛
, 𝐴𝐿2𝑚𝑎𝑥

] [𝐴𝐿1𝑚𝑖𝑛
, 𝐴𝐿1𝑚𝑎𝑥

] … [𝑅𝐿3𝑚𝑖𝑛
, 𝑅𝐿3𝑚𝑎𝑥

]

acquire(𝑳𝟐) acquire(𝑳𝟏) …

3: [𝑅𝐿2𝑚𝑖𝑛
, 𝑅𝐿2𝑚𝑎𝑥

] [𝑅𝐿1𝑚𝑖𝑛
, 𝑅𝐿1𝑚𝑎𝑥

] …

release(𝑳𝟐) release(𝑳𝟏) …

4: [𝑅𝐿1𝑚𝑖𝑛
, 𝑅𝐿1𝑚𝑎𝑥

] [𝑅𝐿2𝑚𝑖𝑛
, 𝑅𝐿2𝑚𝑎𝑥

] …

release(𝐋𝟏) release(𝑳𝟐) … release(𝑳𝟑)

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 75 of 88 Public Final – v13

In a first step, the timing information is extracted from a timing analysis with aiT for each task in

isolation without considering the interference of other tasks. Because tasks holding the same

locking primitive can interfere with each other and change their timing signature accordingly, the

algorithm has to consider all possible interleavings of the time intervals for acquiring a lock. For

example, if task 1 acquires lock 1 first, task 2 blocks until task 1 releases the lock thus changing

the maximum time to acquire lock 1 of task 2 to: 𝑇2𝐴𝐿1𝑚𝑎𝑥
= max (𝑇2𝐴𝐿1𝑚𝑎𝑥

 , 𝑇1𝑅𝐿1𝑚𝑎𝑥
) . Six

possible interleavings between two threads and their timing intervals, necessary to acquire a

lock, are possible.

In a second step, the algorithm iterates over all locks in one task and calculates all possible

timing interleavings for acquiring a lock held by other tasks. If an interleaving with the same lock

in another task is found, timing intervals are adjusted for the current lock and task under

investigation. The adjustment of timing intervals is repeated for every lock in every task until

timing intervals reach a fixed point and do not change any further. If a fixed point is reached, a

deadlock cannot occur in the system. If the timing intervals do not stabilize, the maximum

execution time of a task violates the overall deadline (i.e., abort criterion) implying that a

deadlock is possible. The devised algorithm can only show that a possible deadlock (false

positive) cannot occur under given timing constraints or reveal that a set of tasks could violate a

global deadline in the presence of locking primitives.

Figure 29: Two scenarios with interleavings between two tasks

Deadlock
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A-L1-min A-L1-max R-L1-min R-L1-max

A-L2-min A-L2-max R-L2-min R-L2-max

A-L1-min A-L1-max R-L1-min R-L1-max

A-L2-min A-L2-max R-L2-min R-L2-max
Task2

Task1

L2

L1

L2

L1

Deadlock free
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A-L1-min A-L1-max R-L1-min R-L1-max

A-L2-min A-L2-max R-L2-min R-L2-max

A-L1-min A-L1-max R-L1-max R-L1-max

A-L2-min A-L2-max R-L2-min R-L2-max

L1

L2

Task1

Task2

L1

L2

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 76 of 88 Public Final – v13

Figure 30: Calculated timing intervals for the two scenarios

Figure 29 depicts two possible scenarios and Figure 30 the calculated timing intervals for them.

In the upper scenario of Figure 29, a deadlock occurs and the algorithm cannot calculate the

maximum execution time for the two tasks (annotated in red boxes in Figure 30, left) because

the timing intervals have a circular dependency leading to a violation of a global deadline. In the

lower scenario, a deadlock can be excluded based on timing constraints. The developed

algorithm can calculate the maximum execution time of each task because a fixed point, where

timing intervals do not change, is found. Figure 30, right, shows the calculated timing intervals

(green boxes) for this scenario.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 77 of 88 Public Final – v13

5. Race Detection by Instrumentation

Data races in a binary program can also be detected by augmenting the program with some

instrumentation code that detects and reports data races while the program is running. This

approach is followed by Turkish partners within ASSUME.

5.1. EmbedSanitizer: Race Detection for ARMv7 POSIX-Thread Applications

5.1.1. Introduction

As part of the ASSUME project, EmbedSanitizer has been developed by Koç University, a non-

profit private university in Istanbul, Turkey. The tool aims at detecting data races for Linux

POSIX-thread applications developed for the 32-bit ARMv7 architecture.

EmbedSanitizer is embedded into the LLVM compiler infrastructure. Since late 2014 Clang and

LLVM provide support for ARM Cortex-A17 and GCC. EmbedSanitizer expects C/C++ source

code of a program as input. During compilation stages, it identifies all shared memory accesses

and synchronization operations in the program and adds race detection callbacks to obtain a race

detection mechanism. The resulting instrumented source program is compiled to an instrumented

binary executable that runs natively on an ARM Cortex machine and collects information on

possible data races. Thus, the data race checking is on the fly; it takes place while the program

executes.

Just before the program terminates, a human readable data race report is generated that can be

accessed through a command-line interface and can be redirected to a file. In particular, the tool

reports where data races occur and other possible information to help the programmer fix the

data race bugs.

For analysis and instrumentation, the tool supports both interactive and batch modes. It can be

invoked through a special Clang compiler flag while compiling the C/C++ application for the Linux

ARM Cortex architecture. Since the tool is integrated in the Clang/LLVM compiler tool chain, its

mode of use is no way different from the compiler and its flags.

EmbedSanitizer is derived from ThreadSanitizer [67], an open-source industrial-level race

detection tool. Originally developed by Google, it is now part of the LLVM compiler infrastructure

(clang 3.2 and gcc 4.8), but only supports x86_64 as it relies on 64-bit address space for its

internal optimizations. In contrast, EmbedSanitizer supports 32-bit ARM programs. It is intended

to be modular; any race detection algorithm can be plugged-in and used. Possible algorithms are

FastTrack (see Section 5.3) and variants of lockset-based race detection algorithms (see Section

5.2).

Lastly, EmbedSanitizer is developed in C/C++ and is available as open-source through the

following website: https://github.com/hassansalehe/EmbedSanitizer

5.1.2. Method

EmbedSanitizer [40] is an improvement on ThreadSanitizer [67]. It can also be launched through

Clang's compiler flag -fsanitize=thread. To achieve this, we modified the LLVM/Clang compiler

argument parser to support instrumentation of 32-bit ARM programs when the relevant flag is

supplied at compile time. Next, EmbedSanitizer enhances parts of ThreadSanitizer to instrument

the target program. Furthermore, it replaces the 64-bit race detection at runtime with a custom

implementation of the efficient and precise FastTrack race detection algorithm, for 32-bit

https://github.com/hassansalehe/EmbedSanitizer

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 78 of 88 Public Final – v13

platforms. In this section, we discuss the important parts of EmbedSanitizer as well as its

simplified installation process.

5.1.2.1. Architecture and Workflow

The workflow of ThreadSanitizer and the changes done for EmbedSanitizer are described in

Figure 31. Figure 31(a) shows default and unmodified relevant components of ThreadSanitizer in

LLVM/Clang. In Figure 31(b) these parts are modified to enable instrumentation and detection of

races for 32-bit ARM applications.

At (1) in Figure 31(a), the Clang front-end reads the compiler arguments and parses them. If the

target architecture is 64-bit, Clang passes the program under compilation through the

ThreadSanitizer compiler pass for instrumentation (2). The pass then identifies all shared

memory operations in the program and injects relevant race detection callbacks which are

implemented in a race detection runtime library called tsan. Furthermore, the instrumented

application and the runtime are linked together by the linker (3) to produce an instrumented

executable (4). This executable runs on a target 64-bit platform and reports warnings about races

in the program. We modify components in the workflow as discussed next.

Figure 31: High level abstraction of ThreadSanitizer and EmbedSanitizer in LLVM/Clang.

(a) ThreadSanitizer: essential LLVM modules for race detection.

(b) EmbedSanitizer: same modules modified to instrument and detect races for 32-bit ARM

(a) Enabling Instrumentation of 32-bit ARM Code in LLVM/Clang:

We modify the argument parser of LLVM/Clang to support instrumentation once EmbedSanitizer

is in place, Figure 31(b). Therefore, if -fsanitize=thread is passed while compiling a program for

32-bit ARM code, the instrumentation takes place. To do this we identified the locations where

Clang processes the flag and checks the hardware before skipping the launching of the

ThreadSanitizer instrumentation module because of the unsupported architecture.

(b) Modifying the ThreadSanitizer Instrumentation Pass:

Despite its instrumentation pass, ThreadSanitizer has become complex, partly due to its

integration into the LLVM's compiler runtime. Therefore, we extended the available

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 79 of 88 Public Final – v13

instrumentation pass to identify and instrument synchronization events and inject relevant

callbacks and kept instrumentation of memory accesses as it is.

(c) Implementation of Race Detection Runtime:

The default race detection runtime in ThreadSanitizer uses memory shadow structures which rely

on 64-bit architectural support. Due to the complicated structure of ThreadSanitizer, it was not

possible to adopt its runtime for the 32-bit ARM platform. Therefore, we implemented a race

detection runtime by applying the FastTrack race detection algorithm. The library is then

compiled for 32-bit ARM and is linked to the final executable of the embedded program at

compile time through the LLVM/Clang compiler infrastructure.

5.1.2.2. Installation

Figure 32 shows the building process of the LLVM compiler infrastructure with EmbedSanitizer

support. To simplify this process, we developed an automated script with five steps. In the first

step, it downloads the LLVM source code from the remote repository. Then it replaces files of the

LLVM/Clang compiler argument (flags) parser with our modified code to enable EmbedSanitizer

support for ARMv7. Third, the LLVM code is compiled using GNU tools to produce a cross -

compiler which targets 32-bit ARM and supports our tool, EmbedSanitizer. Fourth, the race

detection runtime which we implemented is compiled separately and integrated into the built

cross-compiler binary. Finally, the built cross-compiler is installed which can eventually be used

to compile 32-bit ARM applications with race detection support. This whole process is applied

once.

Figure 32: Showing the automated process for the initial build of EmbedSanitizer

5.1.3. Evaluation

We evaluate EmbedSanitizer for detecting runtime data races for 32-bit embedded ARM

applications, based on two categories. First, we want to see how the precision of race detection

in EmbedSanitizer deviates from that of ThreadSanitizer since EmbedSanitizer extends it by

using its instrumentation features and implements a custom FastTrack algorithm for detecting

races. Second, we want to compare the overhead of EmbedSanitizer when running on a target

embedded device against when running on an emulator. The key motivation is to show that

running race detection on a target device is better than on emulation.

For experimental setup, we built LLVM/Clang, with EmbedSanitizer tool, as a cross-compiler in a

development machine running Ubuntu 16.04 LTS with Intel i7 (x86 64) CPU and 8GB of RAM. As

our benchmarks, we picked four (4) of the PARSEC benchmark applications. We adopted these

applications to the Clang compiler and our embedded system architecture. A short summary

about the applications we used for evaluation is given below.

• Blackscholes: parallelizes the calculation of pricing options of assets using the Black-

Scholes differential equation.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 80 of 88 Public Final – v13

• Fluidanimate: uses spatial partitioning to parallelize the simulation of fluid flows which

are modeled by the Navier-Stokes equations using the renowned Smoothed particle

hydrodynamics.

• Streamcluster: is a data-mining application which solves the k-means clustering

problem.

• Swaptions: employs the Heath-Jarrow-Morton framework with Monte Carlo simulation to

compute the price of a set of swaptions.

5.1.3.1. Tool Precision Evaluation

We compare the race reports detected by EmbedSanitizer against ThreadSanitizer. To do this we

run the same benchmark applications with ThreadSanitizer, as well as with EmbedSanitizer. The

instrumented program using ThreadSanitizer is run on an x86_64 machine, whereas the binary

compiled through EmbedSanitizer is executed on ARM Cortex A17 TV. In this setting of four

PARSEC benchmark applications, in an application where ThreadSanitizer reported races,

EmbedSanitizer also reported them. Therefore, EmbedSanitizer did not sacrifice any race

detection precision.

5.1.3.2. Tool Performance Evaluation

To compare the race detection overhead, we ran non-instrumented and instrumented versions of

the benchmarks on an embedded TV with ARM-Cortex A17 CPUs of 4 logic cores and 933MB of

RAM, and on a Qemu-ARM emulator running on a workstation. The slowdown is calculated as a

ratio of the execution time of the instrumented program with race detection on and the execution

time of the program without race detection. The number of threads was 3 because using the full

set of 4 logical cores was crashing the TV. Next, the input sizes were the same in each

benchmark setting. Results in Figure 33 show that detecting races in an emulator incurs between

13x and 371x slowdown whereas the slowdown in the TV is between 12x and 214x. In overall,

the results in Figure 33 suggest that detecting races in a target hardware is faster than in an

emulator.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 81 of 88 Public Final – v13

Figure 33: Slowdown comparison of race detection on ARMv7 vs on Qemu-ARM

5.1.4. Uses cases and requirements

Koç University, the developer of EmbedSanitizer, collaborates with Arçelik A.Ş. through the use

case ARC_UC02 which is about detecting data races in Personal Video Recorder (PVR) of

smart/connected TV. Figure 34 shows how EmbedSanitizer fits in when it detects data races for a

32-bit ARMv7 POSIX Threads smart TV software. The produced binary through instrumentation

by EmbedSanitizer is installed into the smart TV and then it is rebooted. The new instrumented

software reports race warnings while the TV is running the application software.

Figure 34: Alternative overview of EmbedSanitizer when used to detect data races in collaborator’s

32-bit ARMv7 smart TV software for use case ARC_UC02

Two requirements have been fulfilled in use case ARC_UC02: (1) Req_ARC_03 (partial):

Detection of race condition situations, and (2) Req_ARC_04 (partial): Provide detailed (race)

reports

5.1.5. Status w.r.t. KPIs

The main goal ARC_UC02_EC_01 – aid in finding bugs – has been reached. Moreover, the

following KPIs have been achieved:

KPI 2.1: Number and extent of error classes: EmbedSanitizer detects race conditions in

multithreads programs in 32-bit embedded systems. Thus, it contributes to this KPI by addressing

one class of errors by fully detecting data races.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 82 of 88 Public Final – v13

KPI 2.2: Precision of reported results: EmbedSanitizer relies on a precise and efficient happens-

before race detection algorithm called FastTrack.

5.2. Goldilocks

The Multicore Software Research Center of Koç University has been carrying out research on

dynamic and static tools for multicore concurrent software for over a decade. The Center has

developed verification tools such as the Goldilocks dynamic race detector and a series of

concurrent software proof systems, culminating in CIVL (concurrent Boogie).

Goldilocks is an efficient and precise lockset-based race detection algorithm. It employs both

happens-before concepts and locksets for efficiency and precision. Originally it was implemented

as runtime race checking tool for concurrent Java programs in a Java Virtual Machine called

Kaffe. It provides variants of lockset algorithms, can uniformly and naturally handle all

synchronization idioms such as thread-local data that later becomes shared, shared data

protected by different locks at different points in time, and data protected indirectly by locks on

container objects. There are variants of Goldilocks implementations that provide additional

capabilities, such as explicitly handling software transactions as a high-level synchronization

idiom, and distinguishing between read and write accesses. To improve efficiency, Goldilocks

uses techniques such as short-circuits for memory accesses and lazy evaluation for locksets.

Short-circuits aim at eliminating unnecessary lockset update rules by constant -time happens-

before relation checks for consecutive memory accesses of the same thread or protected by the

same lock for a long time.

The input of the tool is the Java object code that will be instrumented to identify shared variable

accesses and thread synchronization primitives. The algorithm callbacks are inserted at these

points. Once instrumented, the instrumented program with the tool is invoked simply by running it

inside a Java Virtual Machine (JVM). The race detection happens as the program executes and a

data race report is presented at the end of execution. Output of the tool will be in the form of

binary capture data that can be replayed after the completion of the run. In addition, it is planned

to generate a human readable report from the capture data as a secondary output.

5.3. FastTrack

FastTrack is a high-performance dynamic race detection algorithm that performs significantly

faster than most other precise dynamic race detectors. FastTrack uses an adaptive

representation for happens-before relations to provide constant-time fast paths for these common

cases without any loss of precision or correctness in the general case. In particular, it replaces

the linear-time vector clocks with simple structures which, for most of the cases, require constant

space and time without hurting precision of the algorithm. Being precise, it guarantees to find at

least one race for a racy memory in a given execution. It reports a race between concurrent

memory accesses to a variable without proper ordering or synchronization since, principally, it

relies on happens-before relations between events.

The input of the tool is either the Java byte code that will be instrumented for race detection in

run time or the java run time itself for dynamic instrumentation at run time. Output of the tool will

be in the form of binary capture data and a human readable report.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 83 of 88 Public Final – v13

5.4. DRDCheck Hybrid

5.4.1. Introduction

In this research, Ericsson and Yasar University have collaborated to develop a novel data race

algorithm. The existing DRDCheck tool [61] has been selected as starting point since the tool is

an open source on-the-fly detector of data races. The DRDCheck tool implements a Happens-

Before algorithm that uses a logging mechanism. Every shared memory access is logged to see

that it “happens before” prior accesses to the same location. Moreover, the Happens-Before

algorithm [63] is dependent on the scheduler and thread interleaving.

The DRDCheck tool is however vulnerable to false alarms, hence we have considered that

combining happens-before with a Lockset algorithm [62, 65] can improve detection accuracy.

5.4.2. Method

For simplicity, we decided to report READ-WRITE races only [64] and to ignore WRITE-WRITE

races, reference assignments, and data races from third-party codes. The main achievement of

our work in ASSUME is that we included a LockSet algorithm [62] into DRDCheck and thus

created a new Hybrid algorithm inside the DRD Check tool.

The new tool combining happens-before and LockSet is called DRDCheck Hybrid Data Race

Detector. Ericsson use cases ENK_UC01 (NE) and ENK_UC02 (VRC MM) have been

investigated by the original DRDCheck tool and by the DRDCheck Hybrid Data Race Detector as

far as this was possible.

The Hybrid Data Race Detector has been developed in JDK 7. For the ENK_UC02 (VRC MM)

use case, a JDK 6 compliant version of the Hybrid agent would be needed. Creating such a JDK

6 compliant version is ongoing work.

5.4.3. Evaluation

[KPI 4.3] The original DRDCheck tool found 47 distinct races on the ENK_UC01 (NE) use case. A

closer examination revealed that 43 of these were false positives.

The Hybrid Data Race Detector found 30 distinct races on the ENK_UC01 (NE) use case. Only 2

of these were classified as false positives by a closer examination.

[KPI 4.2] The average latency was also measured and found to be 698 milliseconds for a

transaction in ENK_UC01 (NE) with the original DRDCheck tool, but only 70 milliseconds with the

Hybrid Data Race Detector.

In summary, utilizing the Hybrid tool, a significant reduction of false positives (from 91% to 6%) in

ENK_UC01 (NE) was achieved. Furthermore, the performance of the hybrid data race detector

got 10 times better than with the old DRDCheck tool for the same use case.

The work of extending DRDCheck to DRDCheck Hybrid was done in the third year of ASSUME.

Therefore, this section is new compared with D5.1.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 84 of 88 Public Final – v13

6. Conclusions and Discussion

This deliverable presents the state of various tools for the analysis of concurrent behaviour at the

end of the ASSUME project. The tools fall into different groups according to whether they operate

on the model level, on the level of C source code, or closer to the hardware, and whether they

perform static analysis or observe the runtime behaviour.

The deliverable covers the work of all partners active in WP5 during the project. It is based on

D5.1, which was delivered at Month 24, but contains substantial updates reflecting the work done

during the third year of the project.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 85 of 88 Public Final – v13

References

[1] Lukas Mäurer, Tanja Hebecker, Torben Stolte, Michael Lipaczewski, Uwe Möhrstädt, Frank
Ortmeier. “On Bringing Object-Oriented Software Metrics into the Model-Based World –
Verifying ISO 26262 Compliance in Simulink.” System analysis and modeling: models and
reusability, pp. 207-222. Springer International Publishing, Berlin, 2014.

[2] Yanja Dajsuren, Mark G.J. van den Brand, Alexander Serebrenik, Serguei Roubtsov.
“Simulink models are also software: modularity assessment.” Proceedings of the 9th
international ACM Sigsoft conference on Quality of software architectures, pp. 99-106. ACM,
New York, NY, 2013.

[3] William Vesely, Joanne Dugan, Joseph Fragola, Joseph Minarick, Jan Railsback. “Fault Tree
Handbook with Aerospace Applications.” NASA, Washington, DC, 2002.

[4] Sander Stuijk, Marc Geilen and Twan Basten. “SDF3: SDF For Free.” 6th International
Conference on Application of Concurrency to System Design (ACSD 2006), pp. 276-278, June
2006. SDF3 is available via www.es.ele.tue.nl/sdf3

[5] Edward A. Lee, David G. Messerschmitt. “Synchronous data flow.” Proceedings of the IEEE
75.9, pp. 1235-1245, 1987.

[6] Greet Bilsen et al. “Cycle-static dataflow.” IEEE Transactions on signal processing 44.2, pp.
397-408, 1996.

[7] Marc Geilen, Sander Stuijk. “Worst-case performance analysis of synchronous dataflow
scenarios.” Eighth IEEE/ACM/IFIP international conference on Hardware/software codesign
and system synthesis, 2010.

[8] Rajeev Alur, David L. Dill. “A theory of timed automata.” Theor. Comput. Sci. 126, 2, pp. 183-
235, April 1994.

[9] Marc Geilen. “Synchronous dataflow scenarios.” ACM Transactions on Embedded Computing
Systems (TECS) 10.2, 16, 2010.

[10] Simon Perathoner, Ernesto Wandeler, Lothar Thiele, Arne Hamann, Simon Schliecker, Rafik
Henia, Razvan Racu, Rolf Ernst, Michael González Harbour. “Influence of Different System
Abstractions on the Performance Analysis of Distributed Real-Time Systems.” Proceedings of
the 7th ACM & IEEE International Conference on Embedded Software, pp. 193-202, 2007.

[11] Ingo Stierand, Philipp Reinkemeier, Tayfun Gezgin, Purandar Bhaduri. “Real-Time Scheduling
Interfaces and Contracts for the Design of Distributed Embedded Systems”. 8th IEEE
International Symposium on Industrial Embedded Systems (SIES'13), pp. 130-139, 2013.

[12] George C. Necula, Scott McPeak, S. P. Rahul, Westley Weimer. “CIL: Intermediate Language
and Tools for Analysis and Transformation of C Programs.” Conference on Compiler
Construction (CC 2002), pp. 213–228, 2002.

[13] Kalmer Apinis. “Frameworks for analyzing multi-threaded C.” PhD thesis, Institut für Informatik,
Technische Universität München, June 2014.

[14] Wolfgang Ecker, Wolfgang Müller, Rainer Dömer. “Hardware-dependent Software.” Springer
Netherlands, 2009.

[15] Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: “Synchronization and linearity: an algebra
for discrete event systems”, 2001.

[16] Bekooij, M., Moreira, O., Poplavko, P., Mesman, B., Pastrnak, M., van Meerbergen, J.:
“Predictable Embedded Multiprocessor System Design”, pp. 77–91. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004.

[17] Bhattacharya, B., Bhattacharyya, S.: Parameterized dataflow modeling for DSP systems.
Signal Processing, IEEE Transactions on 49(10), 2408–2421 (Oct 2001)

[18] Bhattacharyya, S.S., Deprettere, E.F., Theelen, B.D.: Dynamic dataflow graphs. In:
Bhattacharyya, S.S., Deprettere, E.F., Leupers, R., Takala, J. (eds.) Handbook of Signal
Processing Systems, pp. 905–944. Springer New York (2013)

http://www.es.ele.tue.nl/sdf3

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 86 of 88 Public Final – v13

[19] Bhattacharyya, S.S., Deprettere, E.F., Theelen, B.D.: Dynamic Dataflow Graphs, pp. 905–944.
Springer New York, New York, NY (2013)

[20] Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J.: Cycle-static dataflow. Signal
Processing, IEEE Transactions on 44(2), 397–408 (Feb 1996)

[21] Buck, J.T.: Scheduling dynamic dataflow graphs with bounded memory using the token flow
model. Ph.D. thesis, EECS Department, University of California, Berkeley (1993)

[22] Dasdan, A., Irani, S.S., Gupta, R.K.: Efficient algorithms for optimum cycle mean and optimum
cost to time ratio problems. In: Proceedings of the 36th Annual ACM/IEEE Design Automation
Conference. pp. 37–42. DAC ’99, ACM, New York, NY, USA (1999)

[23] Deroui, H., Desnos, K., Nezan, J.F., Munier-Kordon, A.: Throughput evaluation of DSP
applications based on hierarchical dataflow models. In: International Symposium on Circuits
and Systems (ISCAS) (2017)

[24] Desnos, K., Pelcat, M., Nezan, J.F., Bhattacharyya, S.S., Aridhi, S.: PiMM: Parameterized and
interfaced dataflow meta-model for MPSoCs runtime reconfiguration. In: 2013 International
Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS). pp. 41–48 (July 2013)

[25] Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S.,
Xiong, Y.: Taming heterogeneity - the Ptolemy approach. Proceedings of the IEEE 91(1), 127–
144 (Jan 2003)

[26] Geilen, M.: Reduction techniques for synchronous dataflow graphs. In: Proceedings of the
46th Annual Design Automation Conference. pp. 911–916. DAC ’09, ACM, New York, NY,
USA (2009)

[27] Geilen, M., Tripakis, S., Wiggers, M.: The earlier the better: A theory of timed actor
interfaces. Tech. Rep. UCB/EECS-2010-130, EECS Department, University of California,
Berkeley (Oct 2010)

[28] Ghamarian, A.H., Geilen, M.C.W., Stuijk, S., Basten, T., Theelen, B.D., Mousavi, M.R.,
Moonen, A.J.M., Bekooij, M.J.G.: Throughput analysis of synchronous data flow graphs. In:
Proceedings of the Sixth International Conference on Application of Concurrency to System
Design. pp. 25–36. ACSD ’06, IEEE Computer Society, Washington, DC, USA (2006)

[29] de Groote, R., Kuper, J., Broersma, H., Smit, G.J.M.: Max-plus algebraic through-put analysis
of synchronous dataflow graphs. In: 38th Euromicro Conference on Software Engineering and
Advanced Applications. pp. 29–38 (Sept 2012)

[30] Ha, S., Oh, H.: Decidable Dataflow Models for Signal Processing: Synchronous Dataflow and
Its Extensions, pp. 1083–1109. Springer New York, New York, NY (2013)

[31] Heidergott, B., Olsder, G.J., Van Der Woude, J.: Max Plus at work: modeling and analysis of
synchronized systems: a course on Max-Plus algebra and its applications. Princeton
University Press (2014)

[32] Kavi, K.M., Buckles, B.P., Bhat, U.N.: A formal definition of data flow graph models. IEEE
Transactions on Computers C-35(11), 940–948 (Nov 1986)

[33] Nelson, A., Goossens, K., Akesson, B.: Dataflow formalisation of real-time streaming
applications on a composable and predictable multi-processor SOC. Journal of Systems
Architecture 61(9), 435 – 448 (2015)

[34] Piat, J., Bhattacharyya, S.S., Raulet, M.: Interface-based hierarchy for synchronous data-flow
graphs. In: 2009 IEEE Workshop on Signal Processing Systems. pp. 145–150 (Oct 2009)

[35] Ritz, S., Pankert, M., Zivojinovic, V., Meyr, H.: Optimum vectorization of scalable synchronous
dataflow graphs. In: Application-Specific Array Processors, 1993. Proceedings., International
Conference on. pp. 285–296 (Oct 1993)

[36] Sriram, S., Bhattacharyya, S.S.: Embedded Multiprocessors: Scheduling and Synchronization.
CRC Press, Inc., Boca Raton, FL, USA, 2nd edn. (2009)

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 87 of 88 Public Final – v13

[37] Stuijk, S., Geilen, M., Theelen, B., Basten, T.: Scenario-aware dataflow: Modeling, analysis
and implementation of dynamic applications. In: Embedded Computer Systems (SAMOS),
2011 International Conference on. pp. 404–411 (July 2011)

[38] Stuijk, S.: Predictable mapping of streaming applications on multiprocessors. Ph.D. thesis,
Eindhoven University of Technology (2007)

[39] Tripakis, S., Bui, D., Geilen, M., Rodiers, B., Lee, E.A.: Compositionality in synchronous data
flow: Modular code generation from hierarchical SDF graphs. ACM Trans. Embed. Comput.
Syst. 12(3), 83:1–83:26 (Apr 2013)

[40] Hassan Salehe Matar, Serdar Tasiran and Didem Unat. EmbedSanitizer: Runtime Race
Detection Tool for 32-bit Embedded ARM. The 17th International Conference on Runtime
Verification, September 13-16, Seattle, USA.

[41] Kenneth Y. Jørgensen, Kim G. Larsen, Jiří Srba. “Time-Darts: A Data Structure for Verification
of Closed Timed Automata”. 7th Conference on Systems Software Verification (SSV), pp. 141-
155, 2012.

[42] Johan Bengtsson, Wang Yi. “Timed Automata: Semantics, Algorithms and Tools”. Lectures on
Concurrency and Petri Nets: Advances in Petri Nets, pp. 87-124, 2004.

[43] Leslie Lamport. “Real-Time Model Checking Is Really Simple”. Correct Hardware Design and
Verification Methods: 13th IFIP WG 10.5 Advanced Research Working Conference, CHARME
2005, Saarbrücken, Germany, pp. 162-175, 2005.

[44] Elena Fersman, Paul Pettersson, Wang Yi. “Timed Automata with Asynchronous Processes:
Schedulability and Decidability”. Tools and Algorithms for the Construction and Analysis of
Systems: 8th International Conference, TACAS 2002, Grenoble, France, pp. 67-82, 2002.

[45] Telkar, N., Chatha, K. S., Lee, Y., Gannod, G., & Wong, E. (n.d.). A Technique for Verification
of Race Conditions in Real-time Systems, 1–15.

[46] Coulouris, George (2012). Distributed Systems Concepts and Design. Pearson. p. 716. ISBN
978-0-273-76059-7.

[47] E. C. Coffman, Michael John Elphick, A. Shoshani: System Deadlocks. In: Computing
Surveys. Band 3, Nr. 2, 1971, S. 67–78.

[48] Engler, D., & Ashcraft, K. (2003). RacerX: effective, static detection of race conditions and
deadlocks. Race, 37(5), 237–252.

[49] J. Corbett. Evaluating deadlock detection methods for concurrent software. IEEE Transactions
on Software Engineering, 22(3), 1996.

[50] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A dynamic data
race detector for multithreaded programming. ACM Transactions on Computer Systems,
15(4):391–411, 1997.

[51] D. P. Helmbold and C. E. McDowell. A taxonomy of race detection algorithms. Technical
Report UCSC-CRL-94-35, 1994.

[52] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[53] G. Brat, K. Havelund, S. Park, and W. Visser. Model checking programs. In IEEE International
Conference on Automated Software Engineering (ASE), 2000.

[54] A. Miné. Static Analysis of Embedded Real-Time Concurrent Software with Dynamic Priorities.
Electronic Notes in Theoretical Computer Science, 331, 3–39, 2017.

[55] Z. Birnbaum: On the importance of different components in a multi-component system. In:
Multivariate Analysis, P. Krishnaiah Ed., New York: Academic Press, 581-592, 1969.

[56] W. E. Vesely, T. C. Davis, R. S. Denning, N. Saltos. Measures of Risk Importance and Their
Applications, NUREG/CR-3385, DE83 902819, 1983.

[57] Tripakis, Stavros, et al. "Compositionality in synchronous data flow: Modular code generation
from hierarchical sdf graphs." ACM Transactions on Embedded Computing Systems (TECS)
12.3 (2013): 83.

D5.2 – Advanced Concurrent Static Analysis Toolkit Description

Page 88 of 88 Public Final – v13

[58] Gaubert, Stéphane. "Performance evaluation of (max,+) automata." IEEE transactions on
automatic Control 40.12 (1995): 2014-2025.

[59] Geilen, Marc, et al. "Performance analysis of weakly-consistent scenario-aware dataflow
graphs." Journal of Signal Processing Systems 87.1 (2017): 157-175.

[60] Geilen, Marc, and Sander Stuijk. "Worst-case performance analysis of synchronous dataflow
scenarios." Proceedings of the eighth IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis. ACM, 2010.

[61] D. Tsitelov, and V. Trifanov. Dynamic Data Race Detection in Java-programs using
synchronization contracts. 2013 Tools & Methods of Program Analysis, 2013.

[62] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson. Eraser: A dynamic
data race detector for multithreaded programs. ACM Transactions on Computer Systems
(TOCS), 15(4), 1997.

[63] Lamport, L. 1978. Time, clocks and the ordering of events in a distributed system. Commun.
ACM 21(7):558-565.

[64] U. Banerjee, B. Bliss, Z. Ma, and P. Petersen. A theory of data race detection. In Workshop on
Parallel and Distributed Systems: Testing, Analysis, and Debugging (PADTAD), 2006.

[65] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: a dynamic data
race detector for multithreaded programs. ACM Trans. Comput. Syst., 15(4):391–411, 1997.

[66] Rajeev Alur, Limor Fix, Thomas A. Henzinger. A Determinizable Class of Timed Automata.

[67] The Clang Team. Clang 8 documentation: ThreadSanitizer
https://clang.llvm.org/docs/ThreadSanitizer.html

https://clang.llvm.org/docs/ThreadSanitizer.html

