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Abstract 

This document presents information about how to design and implement high-level data 
algorithms for smart traffic monitoring and advertising systems. 
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1. Executive Summary 

Cities have a long history of traffic monitoring tools, ranging from traditional traffic surveys to 

analyzing tickets, traffic cameras and road surface inductive loops. For a large part, traffic 

analysis relies on knowing where vehicles (and people) reside at any given moment, that is, 

analysis of location data [01]. A challenge in measuring and modeling city-scale traffic is the 

rapid variability of the ‘‘digital urban landscape,’’ with wireless technologies and traffic 

monitoring techniques becoming more or less popular over time.  

Recently, technologies such as GPS, WiFi, Bluetooth and mobile communication networks 

have facilitated collecting data on urban mobility. The constant evolution of the deployed 

technologies suggests that relying on any single urban technology for mapping traffic is likely 

to be short lived. For instance, while a lot of research has demonstrated the use of Bluetooth 

for mapping traffic [02, 03, 04], recent decisions of handset manufacturers to limit Bluetooth 

functionality suggest that this technique may soon be outdated. However, it is likely that 

location databases continue to grow with the emergence of new proximity technologies. 

Although proximity technologies offer opportunities for passive, infrastructure-centric 

monitoring, it should be noted that GPS data is valuable for accurate tracking in wide 

geographic areas and particularly when studying subjects that naturally lend themselves to 

continuous GPS tracking, such as taxis [05]. Therefore, instead of considering a single modality 

for capturing traffic, we require techniques for multi-modal traffic detection. In other words, 

tools are needed to systematically take advantage of multiple technologies, whatever those 

may be now or in the future, to effectively capture urban traffic. 

 

2. Related work 

Many projects have attempted to accurately reconstruct mobility patterns by exploiting 

people’s mobile devices. In the past, mobile phone tracking has been used as an approach to 

measure the flows of passengers between parts of a city and for estimating speeds and travel 

times [06, 07]. The results typically have low spatial resolution and are most effective for long-

distance segments such as highways. Lu [01] categorizes past research in geospatial analysis 

to three groups; first, in a data-driven approach, spatiotemporal patterns are mined from 

trajectory data. Another direction of research aims to analyze and model dynamic interactions 

between people. Third, ‘‘urban study’’ focuses on studying human and vehicular flows in cities. 

A very popular approach for mapping traffic has been the use of proximity-based technologies, 

such as Bluetooth or WiFi traces [08, 09, 10, 11, 12, 13, 14]. These studies suggest that due to 

its current popularity and widespread usage, Bluetooth technology is not only useful for 

capturing individual mobility traces, but can be also used to analyze the spatiotemporal 

behavior of masses. Gauging the popularity of a technology such as Bluetooth is challenging 

and is likely to be a moving target. It is important to note that Bluetooth devices may operate 

in non-discoverable mode, and hence not be detectable. This means that only a subset of 

existing Bluetooth devices is technically observable. Estimates show the ratio of observable 
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Bluetooth devices to range between 2 % for Bremen, Germany to 7 % for Bath, UK [15, 16]. 

These results indicate that while potentially a great subset of the population has Bluetooth-

capable devices, ceteris paribus only a small portion keeps their Bluetooth devices in 

discoverable mode. While 7 % is not necessarily a big portion of the population, nevertheless 

it is potentially greater than the approximate 3 % of the population that traditional transport 

surveys cover in any region. However, mobile handset manufacturers have recently opted to 

substantially limit the functionality on Bluetooth on their handsets. For instance, iOS devices 

by Apple are typically not detectable by Bluetooth, while recent Android devices are by default 

limited to a small-time window of a few seconds when they are detectable. Despite these 

developments, Bluetooth remains heavily used for traffic monitoring in the context of 

highways and major transport arteries, where the deployment of Bluetooth scanners at 

strategic locations allows for the approximation of macro-travel behavior [02, 03, 04]. 

Similarly, Barcelo et al. [17] made use of statistical methods (e.g., Kalman filtering) in order to 

estimate traveling time and origin–destination (OD) matrices in highways. In [18], 

opportunities for signal timing improvement were studied by identifying time periods with 

long travel times using Bluetooth-based vehicle re-identification, and in [19], Bluetooth was 

used to estimate when passengers get on and off a public transport bus. An important 

challenge that urban traffic sensor systems face is the threat of any single technology, such as 

Bluetooth, declining in popularity. For this reason, it is important to have techniques and 

methods to complement multiple modalities and use each one’s strength for improving our 

overall understanding of traffic and mobility. Most previous work that has relied on proximity 

technologies such as Bluetooth has used it as the sole modality, and possibly relied on manual 

observations for verification, or post-hoc correlation with other aggregated traffic data for 

cross-validation.  
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3. Multi Modal Traffic Data Management 

 

We will explore the urban traffic analysis based on the paper “Urban traffic analysis through 
multi-modal sensing”, Mikko Perttunen, Vassilis Kostakos, Jukka Riekki, Timo Ojala. Springer 
DOI 10.1007/s00779-015-0833-4. In this paper techniques to analyze traffic in the urban areas 
from sensor data are investigated with inductive loop traffic detectors and Bluetooth sensing. 
We will also go in exploring data fusion with additional modalities, such as WiFi and GPS, in 
order to study to which extent each additional modality improves the ability to reliably 
reconstruct movement trajectories in urban areas. Throughout this project and based on the 
paper given above, data mining techniques based on neural networks will be used for urban 
traffic analysis. 

3.1 Data Mining  

Data Mining is an analytic process designed to explore data (usually large amounts of data - 
typically business or market related - also known as "big data") in search of consistent patterns 
and/or systematic relationships between variables, and then to validate the findings by 
applying the detected patterns to new subsets of data. The ultimate goal of data mining is 
prediction - and predictive data mining is the most common type of data mining and one that 
has the most direct business applications. The process of data mining consists of three stages: 
(1) the initial exploration, (2) model building or pattern identification with 
validation/verification, and (3) deployment (i.e., the application of the model to new data in 
order to generate predictions).  

 

Stage 1: Exploration. This stage usually starts with data preparation which may involve 
cleaning data, data transformations, selecting subsets of records and - in case of data sets with 
large numbers of variables ("fields") - performing some preliminary feature selection 
operations to bring the number of variables to a manageable range (depending on the 
statistical methods which are being considered). Then, depending on the nature of the analytic 
problem, this first stage of the process of data mining may involve anywhere between a simple 
choice of straightforward predictors for a regression model, to elaborate exploratory analyses 
using a wide variety of graphical and statistical methods in order to identify the most relevant 
variables and determine the complexity and/or the general nature of models that can be taken 
into account in the next stage. 

 

Stage 2: Model building and validation. This stage involves considering various models and 
choosing the best one based on their predictive performance (i.e., explaining the variability in 
question and producing stable results across samples). This may sound like a simple operation, 
but in fact, it sometimes involves a very elaborate process. There are a variety of techniques 
developed to achieve that goal - many of which are based on so-called "competitive evaluation 
of models," that is, applying different models to the same data set and then comparing their 
performance to choose the best. These techniques - which are often considered the core of 
predictive data mining - include: Bagging (Voting, Averaging), Boosting, Stacking (Stacked 
Generalizations), and Meta-Learning. 

http://www.statsoft.com/textbook/data-mining-techniques/#pdm
http://www.statsoft.com/textbook/statistics-glossary/c.aspx?button=c#Cross-Validation
http://www.statsoft.com/textbook/data-mining-techniques/#deploy
http://www.statsoft.com/textbook/data-mining-techniques/#feature
http://www.statsoft.com/textbook/data-mining-techniques/#pdm
http://www.statsoft.com/textbook/data-mining-techniques/#bagging
http://www.statsoft.com/textbook/data-mining-techniques/#boosting
http://www.statsoft.com/textbook/data-mining-techniques/#stackedgen
http://www.statsoft.com/textbook/data-mining-techniques/#stackedgen
http://www.statsoft.com/textbook/data-mining-techniques/#meta
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Stage 3: Deployment. That final stage involves using the model selected as best in the previous 
stage and applying it to new data in order to generate predictions or estimates of the expected 
outcome. 

 

The concept of Data Mining is becoming increasingly popular as a business information 
management tool, similar like Smart Cities, where it is expected to reveal knowledge 
structures that can guide decisions in conditions of limited certainty. Recently, there has been 
increased interest in developing new analytic techniques specifically designed to address the 
issues relevant to business Data Mining (e.g., Classification Trees), but Data Mining is still 
based on the conceptual principles of statistics including the traditional Exploratory Data 
Analysis (EDA) and modeling and it shares with them both some components of its general 
approaches and specific techniques. 

 

However, an important general difference in the focus and purpose between Data Mining and 
the traditional Exploratory Data Analysis (EDA) is that Data Mining is more oriented towards 
applications than the basic nature of the underlying phenomena. In other words, Data Mining 
is relatively less concerned with identifying the specific relations between the involved 
variables. For example, uncovering the nature of the underlying functions or the specific types 
of interactive, multivariate dependencies between variables are not the main goal of Data 
Mining. Instead, the focus is on producing a solution that can generate useful predictions. 
Therefore, Data Mining accepts among others a "black box" approach to data exploration or 
knowledge discovery and uses not only the traditional Exploratory Data Analysis (EDA) 
techniques, but also such techniques as Neural Networks which can generate valid predictions 
but are not capable of identifying the specific nature of the interrelations between the 
variables on which the predictions are based. 

 

3.2. Neural Networks 

Neural Networks are analytic techniques modeled after the (hypothesized) processes of 
learning in the cognitive system and the neurological functions of the brain and capable of 
predicting new observations (on specific variables) from other observations (on the same or 
other variables) after executing a process of so-called learning from existing data. Neural 
Networks is one of the Data Mining techniques. 

 

The first step is to design a specific network architecture (that includes a specific number of 
"layers" each consisting of a certain number of "neurons"). The size and structure of the 
network needs to match the nature (e.g., the formal complexity) of the investigated 
phenomenon. Because the latter is obviously not known very well at this early stage, this task 
is not easy and often involves multiple "trials and errors." (Now, there is, however, neural 
network software that applies artificial intelligence techniques to aid in that tedious task and 
finds "the best" network architecture.) 

 

http://www.statsoft.com/textbook/classification-trees/
http://www.statsoft.com/textbook/data-mining-techniques/#eda
http://www.statsoft.com/textbook/data-mining-techniques/#eda
http://www.statsoft.com/textbook/data-mining-techniques/#neural
http://www.statsoft.com/textbook/data-mining-techniques/#mining
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The new network is then subjected to the process of "training." In that phase, neurons apply 
an iterative process to the number of inputs (variables) to adjust the weights of the network 
in order to optimally predict (in traditional terms, we could say find a "fit" to) the sample data 
on which the "training" is performed. After the phase of learning from an existing data set, 
the new network is ready and it can then be used to generate predictions. 

 

The resulting "network" developed in the process of "learning" represents a pattern detected 
in the data. Thus, in this approach, the "network" is the functional equivalent of a model of 
relations between variables in the traditional model building approach. However, unlike in the 
traditional models, in the "network," those relations cannot be articulated in the usual terms 
used in statistics or methodology to describe relations between variables (such as, for 
example, "A is positively correlated with B but only for observations where the value of C is 
low and D is high"). Some neural networks can produce highly accurate predictions; they 
represent, however, a typical a-theoretical (one can say, "a black box") research approach. 
That approach is concerned only with practical considerations, that is, with the predictive 
validity of the solution and its applied relevance and not with the nature of the underlying 
mechanism or its relevance for any "theory" of the underlying phenomena. 

 

However, it should be mentioned that Neural Network techniques can also be used as a 
component of analyses designed to build explanatory models because Neural Networks can 
help explore data sets in search for relevant variables or groups of variables; the results of 
such explorations can then facilitate the process of model building. Moreover, now there is 
neural network software that uses sophisticated algorithms to search for the most relevant 
input variables, thus potentially contributing directly to the model building process. 

 

One of the major advantages of neural networks is that, theoretically, they are capable of 
approximating any continuous function, and thus the researcher does not need to have any 
hypotheses about the underlying model, or even to some extent, which variables matter. An 
important disadvantage, however, is that the final solution depends on the initial conditions 
of the network, and, as stated before, it is virtually impossible to "interpret" the solution in 
traditional, analytic terms, such as those used to build theories that explain phenomena. 

3.3. Deep Learning 

  

Deep learning, while sounding flashy, is really just a term to describe certain types of neural 
networks and related algorithms that consume often very raw input data. They process this 
data through many layers of nonlinear transformations of the input data in order to calculate 
a target output. 

 

Unsupervised feature extraction is also an area where deep learning excels. Feature extraction 
is when an algorithm is able to automatically derive or construct meaningful features of the 
data to be used for further learning, generalization, and understanding. The burden is 
traditionally on the data scientist or programmer to carry out the feature extraction process 
in most other machine learning approaches, along with feature selection and engineering. 
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Feature extraction usually involves some amount dimensionality reduction as well, which is 
reducing the amount of input features and data required to generate meaningful results. This 
has many benefits, which include simplification, computational and memory power reduction, 
and so on. 

 

More generally, deep learning falls under the group of techniques known as feature 
learning or representation learning. As discussed so far, feature extraction is used to ‘learn’ 
which features to focus on and use in machine learning solutions. The machine learning 
algorithms themselves ‘learn’ the optimal parameters to create the best performing model. 

 

Paraphrasing Wikipedia, feature learning algorithms allow a machine to both learn for a 
specific task using a well-suited set of features, and also learn the features themselves. In 
other words, these algorithms learn how to learn! 

 

Deep learning has been used successfully in many applications, and is considered to be one of 
the most cutting-edge machine learning and AI techniques at the time of this writing. The 
associated algorithms are often used for supervised, unsupervised, and semi-
supervised learning problems. 

 

For neural network-based deep learning models, the number of layers are greater than in so-
called shallow learning algorithms. Shallow algorithms tend to be less complex and require 
more up-front knowledge of optimal features to use, which typically involves feature selection 
and engineering. 

 

In contrast, deep learning algorithms rely more on optimal model selection and optimization 
through model tuning. They are more well suited to solve problems where prior knowledge of 
features is less desired or necessary, and where labeled data is unavailable or not required for 
the primary use case. 

 

In addition to statistical techniques, neural networks and deep learning leverage concepts and 
techniques from signal processing as well, including nonlinear processing and/or 
transformations. You may recall that a nonlinear function is one that is not characterized 
simply by a straight line. It therefore requires more than just a slope to model the relationship 
between the input, or independent variable, and the output, or dependent variable. Nonlinear 
functions can include polynomial, logarithmic, and exponential terms, as well as any other 
transformation that isn’t linear. 

Many phenomena observed in the physical universe are actually best modeled with nonlinear 
transformations. This is true as well for transformations between inputs and the target output 
in machine learning and AI solutions. As mentioned, input data is transformed throughout the 
layers of a deep learning neural network by artificial neurons or processing units. The chain of 
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transformations that occur from input to output is known as the credit assignment path, 
or CAP. 

The CAP value is a proxy for the measurement or concept of ‘depth’ in a deep learning model 
architecture. According to Wikipedia, most researchers in the field agree that deep learning 
has multiple nonlinear layers with a CAP greater than two, and some consider a CAP greater 
than ten to be very deep learning. 

 

While a detailed discussion of the many different deep-learning model architectures and 
learning algorithms is beyond the scope of this article, some of the more notable ones include: 

• Feed-forward neural networks 

• Recurrent neural network 

• Multi-layer perceptrons (MLP) 

• Convolutional neural networks 

• Recursive neural networks 

• Deep belief networks 

• Convolutional deep belief networks 

• Self-Organizing Maps 

• Deep Boltzmann machines 

• Stacked de-noising auto-encoders 
 

It’s worth pointing out that due to the relative increase in complexity, deep learning and 
neural network algorithms can be prone to overfitting. In addition, increased model and 
algorithmic complexity can result in very significant computational resource and time 
requirements. It’s also important to consider that solutions may represent local minima as 
opposed to a global optimal solution. This is due to the complex nature of these models when 
combined with optimization techniques such as gradient descent. 

 

Given all of this, proper care must be taken when leveraging artificial intelligence algorithms 
to solve problems, including the selection, implementation, and performance assessment of 
algorithms themselves. While out of scope for this article, the field of machine learning 
includes many techniques that can help with these areas. 

 



D3.1 – Multimodal Data Management and Processing 
  

ITEA3: INSIST  12 

References 

 

01. Lu Y, Liu Y (2012) Pervasive location acquisition technologies: opportunities and challenges 
for geospatial studies. Comput Environ Urban Syst 36(2):105–108  

02. Haghani A, Hamedi M, Sadabadi KF, Young S, Tarnoff P (2009) Data collection of freeway 
travel time ground truth with bluetooth sensors. Transp Res Rec 2160(–1):60–68 

03. Martchouk M, Street NC, Suite NE (2010) Analysis of freeway travel time variability using 
bluetooth detection. J Transp Eng 2051(July):1–30  

04. Quayle S, Koonce P (2010) Arterial performance measures using MAC Readers-Portland’s 
experience. Kittelson & Associates, Inc., Portland  

05. Liu L, Andris C, Ratti C (2010) Uncovering cabdrivers’ behavior patterns from their digital 
traces. Comput Environ Urban Syst 34(6):541–548 

06. Caceres N, Wideberg JP, Benitez FG (2007) Deriving origin– destination data from a mobile 
phone network. Eng Technol 1(1):15–26 

07. Gonzalez MC, Hidalgo CA, Barabasi A-L (2008) Understanding individual human mobility 
patterns. Nature 453(7196):779–782  

08. Balazinska M, Castro P (2003) Characterizing mobility and network usage in a corporate 
wireless local-area network. ACM Press, New York, pp 303–316 

09. Chaintreau A, Hui P, Crowcroft J, Diot C, Gass R, Scott J (2007) Impact of human mobility 
on opportunistic forwarding algorithms. IEEE Trans Mob Comput 6(6):606–620 

010. Eagle N, Pentland A (2006) Reality mining: sensing complex social systems. Pers 
Ubiquitous Comput 10:255–268 

011. Kostakos V, Nicolai T, Yoneki E, O’Neill E, Kenn H, Crowcroft J (2009) Understanding and 
measuring the urban pervasive infrastructure. Pers Ubiquitous Comput 13:355–364 

012. McNett M, Voelker GM (2005) Access and mobility of wireless PDA users. ACM 
SIGMOBILE Mob Comput Commun Rev 9(2):40  

013. Nicolai T, Kenn H (2007) About the relationship between people and discoverable 
bluetooth devices in urban environments. In: Mobility. ACM, New York, pp 72–78  

014. Versichele M, Neutens T, Delafontaine M, de Weghe NV (2012) The use of bluetooth for 
analysing spatiotemporal dynamics of human movement at mass events: a case study of the 
ghent festivities. Appl Geogr 32(2):208–220  

015. Nicolai T, Yoneki E, Behrens N, Kenn H (2006) Exploring social context with the wireless 
rope, vol 4277. Springer, Berlin 

016. O’Neill E, Kostakos V, Kindberg T, Schieck AF gen, Penn, Fraser ADS, Jones T (2006) 
Instrumenting the city: developing methods for observing and understanding the digital 
cityscape. In: Ubicomp, vol 4206. Springer, pp 315–332  

017. Barcelo J, Montero L, Marques L, Carmona C (2010) Travel time forecasting and dynamic 
od estimation in freeways based on bluetooth traffic monitoring. Transp Res Rec 2175(1):19–
27  



D3.1 – Multimodal Data Management and Processing 
  

ITEA3: INSIST  13 

018. Day CM, Haseman R, Premachandra H, Brennan TM, Wasson JS, Sturdevant JR, Bullock 
DM (2010) Visualization and assessment of arterial progression quality using high resolution 
signal event data and measured travel time. Transp Res Rec 10–0039(2192):1–30 


