

D6.2: Asset Verification Automation
Technologies PoC 1.0 Implementation

Author Affiliation

Jacques Robin Université Paris 1 Panthéon-Sorbonne
(UP1PS)

Damir Nesic Jonas Westman, Dilian Gurov Kungliga Tekniska Högskolan

Sascha El-Sharkawy Stiftung Universität Hildesheim

Sebastian Reiter, Anton Paule FZI Forschungszentrum Informatik

Ali Parsai Universiteit Antwerpen

Matthieu Pfeiffer Magillem

Borja Lopez, Elena Gallego Knowledge-Centric Solution
The Reuse Company

Anne Augustin, Linda Schmuhl Model Engineering Solutions

Last edited by Jacques Robin on 31/08/2018

2

Page 2 of 25

Executive summary

D6.2 delivers the first versions of the implementation of REVAMP’s verification automated tools

which architectural designs were delivered in D6.1. These tools are currently stand-alone tools, not

integrated in a tool-chain. This integration will be delivered in D6.4.

This tool set currently include 8 tools, 5 research Proof-of-Concept (PoC) demonstrators developed

by academic partners and 3 commercial tool prototypes developed by industrial partners. Among

those tools 2 perform formal verification, while the others rather focus on computing various quality

analysis metrics. One tool focuses on analysing product line variability models, while the others

focus on analysing reusable product line artefacts such as requirements model, hardware models,

source code and test sets as well as the relationships holding between those artefacts themselves

and between those artefacts and variability models.

In this deliverable we quickly present the implementation of each of these tools in turn. For each

one we remind its objectives, the kind of input artefacts that it accepts as input to verification, the

kinds of properties that it can verify on these artefacts and the kinds of verification results and

quality metrics that it is able to produce as output. We also clearly identify any discrepancy that

may exist between the functionalities and architecture of the tools as specified in the desig n model

delivered in D6.1 and those actually implemented in the first implementation version now delivered

in D6.2. We explain the causes of these discrepancies and whether they are planned to be resolved

in the future D6.3 design 2.0 and D6.4 implementation 2.0 to be delivered in 2019.

We also state what programming language, libraries and application frameworks were used to

implement them, and what versions of these. Finally, we indicate where to find a copy of the code

of these tools to download for testing purposes, and where to find training material to learn how to

use them.

3

Page 3 of 25

Table of Contents

EXECUTIVE SUMMARY.. 2

TABLE OF CONTENTS .. 3

ACRONYMS .. 4

1. OVERVIEW OF THE DELIVERABLE .. 5

2. PROOF-OF-CONCEPT TOOLS .. 7

2.1. Formal verification tools .. 7
2.2. Quality metric computation tools ... 15

3. COMMERCIAL TOOLS ... 19

3.1. Quality metric computation tools ... 19

BIBLIOGRAPHY .. 25

4

Page 4 of 25

Acronyms

FZI Forschungszentrum Informatik

KCS Knowledge-Centric Solution

KTH Kungliga Tekniska Högskolan (Royal Institute of Technology)

MES Model Engineering Solutions

PL Product Line

PLE Product Line Engineering

PoC Proof-of-Concept

RT Round-Trip

RQS Requirement Quality Suite

SIS Software-Intensive System

SUH Stiftung Universität Hildesheim

SUT System-Under-Test

TRC The Reuse Company

UA Universiteit Antwerpen

UP1PS Université Paris 1 Panthéon-Sorbonne

5

Page 5 of 25

1. Overview of the deliverable

D6.2 delivers the first versions of the implementation of REVAMP’s verification automated tools

which architectural designs were delivered in D6.1. By verification here we mean verification in the

broadest sense of the activities carried out in the V&V (Verification and Validation) step of a SIS

engineering lifecycle. Its scope is thus much wider than formal verification of the SIS properties,

including other forms of V&V such as quality analysis metric computation and testing.

Table 1 below gives an overview of REVAMP’s V&V automation tools, including their name, the

REVAMP partner providing its input, output and implementation platform.

Class
Input Asset

kind

Verified

properties
Name TRL Provider

Implementation

Platform

Formal

Verification

Feature model
Presence of

defects
VariaMos PoC UP1PS

Java archive

C code, formal

requirements

Conformity of

C code to

formal

requirements

KTH C code

verifier
PoC KTH

C?

C code, build

information

(e.g., make

files), variability

model (e.g.,

feature models)

Consistency

of code and

variability

model

KernelHaven PoC SUH

Java

Quality

metric

computation

Requirements

following

domain

ontology

constrained

semi-natural

language

templates

Correctness

Consistency

Completeness

RQS
Commercia

l product

KCS-

TRC

C#.NET

C code, build

information

(e.g., make

files), variability

model (e.g.,

feature models)

Smell

detection
KernelHaven PoC SUH

Java

HW legacy

assets,

products

description,

SoC,

architecture, IP

Consistency

and

completenes

s of assets

Magillem

Crystal Bulb

Commercia

l product
MDS

Web application server

(Spring Boot + Angular)

Coded in Java

6

Page 6 of 25

Class
Input Asset

kind

Verified

properties
Name TRL Provider

Implementation

Platform

description and

features,

configurability,

memory maps

IP-XACT and

HDL files

Syntactic and

semantic

checkers

Magillem

Platform

Assembly

Commercia

l product
MDS

Eclipse based tool

Testing

MATLAB

Simulink

model,

software

requirement

specification

Requirement

conformity
MTest

Commercia

l product
MES

MATLAB

Java Software

(production

code, test

code, build and

test

environments)

Test Quality LittleDarwin
OpenSourc

e Product
UA

Python

Virtual

prototype

(SystemC/C++-

Code) of the

SPL, variability

model (e.g.,

feature models)

Test case

generation
ViTAmineE PoC FZI

Java

Table 1: REVAMP V&V automation tool set overview

In the rest of this document, we elaborate the key properties of the first implementation of this tool

in order. We start presenting by the research Proof-of-Concepts (PoC) tools before presenting the

commercial tools. Within each of these categories, we start by presenting the tools that perform

some formal verification, before presenting those performing only quality analysis metric

computations.

7

Page 7 of 25

2. Proof-of-Concept tools

2.1. Formal verification tools

2.1.1. VariaMos (UP1PS)

2.1.1.1. Objectives summary

VariaMos aims to integrate the following services:

- Graphical edition of variability models following the built-in VariaMos product line feature model

meta-models (abstract syntax and concrete syntax meta-models)

- Interactive product design space exploration by iterative selection of features by the designer

from the options represented in the variability model, followed by automatic elimination of feature

options by cross-feature constraint propagation

- Automated product derivation from the point selected in the design space

- Feature model verification by detection and localization of defects in the feature model

2.1.1.2. Input artefacts

The verification services of VariaMos take as input a feature model (problem space) and an asset

model (solution space) both constructed and linked together with the VariaMos feature modelling

graphical edition service;

2.1.1.3. Verified properties

The properties verified are the absence of the following set of defects that can be encountered in

feature models:

- Void feature model, i.e, feature model for which no valid configuration exists due to over-

constrained constraint set

- False product line, i.e., a feature model for which only a single valid configuration exists and

therefore does not represent any genuine variability;

- Dead features, i.e., features that due to other constraints cannot appear in any valid

configuration;

- False optional features: i.e., features that are defined as optional in the feature tree and yet

due to other constraints appear in all valid configurations;

- Wrong cardinalities, i.e., locally specified cardinality upper and lower bound for a set of sub-

features in the feature tree that, due to other constraints are incorrect, for example a locally

specified lower bound that is lower than the minimum number of the sub-features present in any

valid configuration or a locally specified upper bound that is higher than the maximum number

of such sub-features present in any valid configuration

- Multiple root feature tree

2.1.1.4. Computed quality metrics

The quality metrics currently computed on a feature model are:

• Number of valid products measures the size of the valid configuration space;

• Product line homogeneity is defined as 1 − #𝑓 #𝑝⁄ where #𝑓 is the number of features

appearing in a single product divided and #p is the total number of valid products derivable from

the feature model;

• Product line variability factor measures the degree of independence of the features it is

defined as #𝑝 2#𝑓⁄ where #p is the total number of valid products derivable from the feature

model and #𝑓 is its number of features

8

Page 8 of 25

• Extra constraint representativeness measures the density of cross-tree constraints among

features, defined as #𝑐 #𝑓⁄ where #𝑐 is the number of features involved in a cross-feature

constraint and #𝑓 is the total number of features in the tree;

2.1.1.5. Implemented elements from design model delivered in D6.1

The current version of VariaMos 1.0.1.18 differs from the design model delivered in D6.1 in several

subtle ways. Let us review them in turn for the three main sub-components of VariaMos:

- The VariaMos Model Editor

- The general VariaMos Variability Model Verification component and its specialization VariaMos

Feature Model Verification component

- The VariaMos Product Line (PL) Configuration component

Concerning the VariaMos Model Editor, the main discrepancy between the designs modelled in

figure 11 of D6.1 and the implementation delivered in D6.2 is that the latter does not separate model

edition functionalities from the diagram edition functionalities in two different components.

Consequently, the current User Interface (UI) does not include as idealized at design-time a model

element hierarchy editor pane separated from the various diagram edition tabs as asset modelling

tools such as Modelio provide. This is due to the choice of reusing the open-source JGraphX1 library

for the UI which is a powerful diagramming UI tool but not a full-fledge modelling tool providing this

distinction out-of-the-box. The distinction must thus be programmed around JGraphX rather than

leveraging it. This is a major and complex implementation effort that could not be delivered for D6.2.

It will be considered for inclusion in D6.4. As a result, the showElt and hideElt operations of the

VariaMos Diagram Editor component of figure 11 in D6.1 are not yet implemented as distinct from

the newElt and delElt operations.

Others yet unimplemented operations include cloneProp and mvProp from the VariaMos Model

Editor component, which would allow cloning and moving selected properties from one model

element to another by a dragging action. This would require be able to show all properties of every

element on the diagram which is also not currently supported. Some properties are only displayed

and edited in the property editor but not in the diagram.

In terms of diagram layout operations of the VariaMos Diagram Editor, only the translate operation

is currently implemented. The other such operations in figure 11 of D6.1 rotate, scale, align,

equiSpace and equiSize to respectively rotate a diagram element, scale it, align multiple elements

along a line, and make their size or the space between them uniform will be considered for D6.4.

They provide convenience for precise graphical layout. But they also risk of overcrowding the menu

bar with an overwhelming number of options, so there is a usability trade-off involved. We will base

our decision to invest the resources needed to add them or not from feedback from VariaMos users

within the REVAMP2 consortium.

Concerning the models of the generic VariaMos Variability Model Verification component and its

specialized VariaMos Feature Model Verification component shown in figure 14 of D6.1, all their

operations were implemented except for the redundant constraint verification option. This option

was not prioritized since, in contrast to all the other verification option, it does not identify a semantic

defect that can result in the generation of an invalid configuration. It is merely identified as a

presentation conciseness defect, which is why its implementation was left for the next iterations.

Concerning the model of the VariaMos PL Configuration component shown in figure 12 of D6.2, all

operations are implemented.

1 https://github.com/jgraph/jgraphx.

https://github.com/jgraph/jgraphx.

9

Page 9 of 25

Since the main original contribution of VariaMos in the REVAMP toolchain concerns the verification

automation WP6 work package, we decided to prioritize implementing the verification automation

operations of the design model of D6.1 over the completeness of the feature model UI editor

operations.

2.1.1.6. Implementation technologies

Programming language: VariaMos is implemented in Java 8 and it relies on SWI-Prolog 7 as the

underlying constraint solver.

Application frameworks: VariaMos UI is implemented using the JGraphX open-source

diagramming library which itself relies on the Java Swing GUI widget toolkit

Data integration facilities: None so far. VariaMos can import and export files in formats that are

specific to VariaMos:

- .vmum files to import and export variability models;

- .vmsm files to import and export variability language abstract syntax meta-models;

- .vmom files to import and export variability language operational semantics meta-models

- .conf to import and export a (partial or complete) configuration of a variability model

.vnum, .vmsm and .vmom files are XML files following the convention of the JGraphX to serialize a

JGraphX graph into an XML file. The most nested levels in these XML files contain XML elements

that correspond to the meta-classes and meta-attributes of the meta-models of a VariaMos

variability model, a VariaMos syntactic meta-model or a VariaMos operational semantics meta-

models tree schemas. This approach was the simplest to implement but present the drawback of

not separating these meta-models from their graphical representation as a JGraphX graph. The

.conf file is a JSON flle with one value for each option in the variability model.

Control integration facilities: None so far. VariaMos is currently a monolithic program that can

only be used through it graphical UI. Overcoming this limitation to allow VariaMos services to be

called programmatically from outside should be the main focus of D6.4.

2.1.1.7. Implementation and documentation location

The source code of the current implementation. VariaMos 1.0.1.20 can be downloaded at the

following URL: https://variamos.com/home/variamos/configuration/

A short video tutorial of the feature model verification and configuration can be found at the

following URL: https://www.youtube.com/watch?time_continue=34&v=VEvROmikSnY

https://variamos.com/home/variamos/configuration/
https://www.youtube.com/watch?time_continue=34&v=VEvROmikSnY

10

Page 10 of 25

2.1.2. Kernel Haven (SUH)

2.1.2.1. Objective summary

KernelHaven is an open infrastructure for Software Product Line (SPL) analysis. It is intended both

as a production-quality analysis tool set as well as a research support tool, e.g., to support

researchers in systematically exploring research hypothesis. For flexibi lity and ease of

experimentation KernelHaven components are plug-ins for extracting certain information from SPL

artefacts and processing this information, e.g., to check the correctness and consistency of

variability information or to apply metrics. A configuration-based setup along with automatic

documentation functionality allows different experiments and supports their easy reproduction.

2.1.2.2. Input artefacts

The core components of KernelHaven are three extraction pipelines, the data processing, and a

pipeline configurator as illustrated in Figure 1 and described in this section.

Figure 1: KernelHaven architecture.

Each extraction pipeline extracts and provides information of a particular type of artefact typically

considered in variability-based analyses:

• The code pipeline in the upper part of Figure 1 extracts information from code files or files

used for code generation. The result is a set of element trees. An element tree represents

a single code file and provides information about the available code elements on different

levels of abstraction.

• The build pipeline in the middle of Figure 1 extracts and provides information from build

files. The result of this extraction is a map of files and their presence condit ions (PC in

Figure 1). These conditions define constraints, which must be satisfied to compile and link

or, in general, build a specific (set of) file(s).

• The (variability) model pipeline in the lower part of Figure 1 translates information from

variability model files into a list of features and propositional formulas. They repres ent the

features and constraints, which define the planned products of the SPL.

11

Page 11 of 25

2.1.2.3. Verified properties

The basic infrastructure of KernelHaven does not provide any verification capabilities. Instead, its

plug-in architecture allows extending KernelHaven by static analysis and verification concepts. The

following verification plug-ins are currently publicly available:

• DeadCode Analysis: This is a re-implementation of the dead code analysis as published

by Tartler et al. (Tartler, et al., 2011) and realized in the Undertaker tool (Undertaker, 2018).

The DeadCode Analysis verifies whether configurable code blocks are indeed configurable

with respect to the underlying variability model.

• Configuration Mismatch Analysis: This is a more general analysis than the DeadCode

Analysis as it verifies whether configurable code is always intended by the variability model

or whether it becomes unconfigurable in some configurations (El-Sharkawy, et al., 2017).

• Incremental Verification: This is a commit-wise DeadCode Analysis, which analyses the

delta to a previous commit to determine which parts require a new analysis. The result is a

much faster DeadCode Analysis (~10x speed up) suitable to be integrated into a continuous

integration environment.

• Code Metrics: This is an extension to KernelHaven, which currently provides seven code

metrics in over 7.300 different variations. The novel combination of information from

variability model artefacts with dependency information from code artefacts allows detecting

complex variability structures, which cannot be detected with existing approaches (El-

Sharkawy, et al., 2018).

2.1.2.4. Computed quality metrics

KernelHaven supports seven variability-aware code metrics (MetricHaven, 2018). Most of this

metrics may be applied to non-variable code parts, variations points only, or to both kinds of code

elements at once to analyse the impact of variability information:

• Number of Internal/External Variables per Function (Ferreira, et al., 2016): This metric

measures the number of variables or features, which are used to configure a code function.

Variations of the metric are to analyse how many variables are used outside of the function,

e.g., to include the code file or the function within a code file, or how many variables are

used inside the function for fine-grained customizations.

• Cyclomatic Complexity (McCabe, 1976): This metric measure the complexity of control

structures used in the programming language, variation points, or the combination of both.

• DLoC: This metric measures the delivered lines of code used for implementing a function,

the delivered lines of code surrounded by variation points, or the fraction of both.

• Nesting Depth: This metric measures the maximum and average nesting depth of

statements within control structures, variation points or the combination of both.

• Fan-In/Out: This metric measures the number of function calls within a function or how

often a function is called by other functions. In addition, function calls may be weighted

based on variables used in variations points, which are used to en-/disable the function calls

(Ferreira, et al., 2016).

• Tangling Degree: This metric measures tangling degree values (number of distinct feature

variables used in variation points) for each CPP block with an expression (no else

statements) and sums them up for each function.

• Blocks per Function: This metric measures the number of (nested) variations points per

function.

In addition, each code metric, which operates on variation points, may be combined with information

from the variability model:

12

Page 12 of 25

• Scattering Degree: Determines for each feature in how many variation points (i.e., c pre-

processor blocks) or code files it is used in.

• Cross Tree Constraint Ratio: Determines for each feature in how many constraints it is

used in.

• Feature Definition Distance: Computes the distance in the file system between usage of

a feature in a code file and its definition in the variability model.

• Feature Types: Allows specifying weights for features based on their data types, for typed

variability modelling techniques (e.g. Kconfig).

• Feature Hierarchies: Weights features based on their hierarchy level in the feature model,

as deeply nested features are harder to maintain than top-level features (Bagheri, et al.,

2011).

• Variability Model Structures: Considers the number of edges between features in the

variability model, e.g., edges of nesting structures but also edges created through

constraints.

2.1.2.5. Implementation in D6.2 vs. Design in D6.1

Since the D6.1 deliverable, KernelHaven was extended as follows:

• Preparators: This interface allows applying a normalization to artefacts before their

analyzation. For instance, for the analyzation of code artefacts of the Bosch PS-EC product

line, a preparatory may be used to transform numerical expressions into Boolean formulas

(El-Sharkawy, et al., 2018; Krafczyk, et al., 2018).

• Extension of Metric Framework: Further metrics and combinations were implemented in

order to support more than 7.300 metric combinations as described in Section 2.1.2.3.

• DIMACS Importer: A DIMACS importer was realized to provide import capabilities for

pure::variants models. This interface allows a formal analysis, whether modelled constraints

of the variability model are consistent to implemented dependencies of code assets.

• Realization of Incremental Verification Framework: A framework for supporting the

commit-wise verification of product line assets while reusing partial analysis results from

previous analyses was implemented. As first prototype, the DeadCode Analysis (cf. Section

2.1.2.3) was ported to run as incremental analysis.

• Oberserver Interface for External Tools: This extension allows third party tools to use

KernelHaven as library and to receive directly desired analysis results via an observer

interface.

• Export to SQLite: This export capability was implemented to provide additional integration

capabilities. This is currently used by ScopeSET to visualize analysis results of

KernelHaven.

2.1.2.6. Implementation technologies

Programming language:

KernelHaven is implemented in Java 8 and may be configured through property-files.

Application frameworks:

The KernelHaven infrastructure does not use any third party library, but some of the plug -ins may

use third party content:

• KconfigReaderExtractor: This extractor make use of the kconfigreader tool2.

2 https://github.com/ckaestne/kconfigreader

https://github.com/ckaestne/kconfigreader

13

Page 13 of 25

• UndertakerExtractor: This extractor make use of the Undertaker tool3.

• TypeChefExtractor: This extractor make use of the TypeChef tool4.

• srcMLExtractor: This extractor make use of the srcML tool5.

• KbuildMinerExtractor: This tool make use of the KbuildMiner tool6.

• CnfUtils: This utility framework uses the following libraries: Apache Commons Lang (v. 2.6),

Google Guava (v. 14), Jbool Expressions (v. 1.13), Sat4J (v 2.3.5)

• IOUtils: This utility framework uses the following libraries: Apache Commons IO (v. 2.5),

Apache Commons Lang 3 (v. 3.6), Apache POI (v. 3.17)

Data integration facilities:

The following data formats can be handled by KernelHaven:

• Comma Separated Values (CSV): CSV-files can be used for importing and exporting data.

• Excel Spreadsheets (XLS, XLSX): Excel documents can be used for importing and

exporting data.

• SQLite: SQLite can be used for exporting data.

• DIMACS: Feature models expressed in the DIMACS format may be imported into

KernelHaven. This includes pure::variants feature models, which can be converted to the

DIMACS format using the DIMACS Exporter tool7 developed by.

Control integration facilities:

KernelHaven may be used as a library by other Java-based programs. In this case, the calling

application may register itself as a processing unit to receive analysis results.

2.1.2.7. Implementation and documentation location

• Sources, the infrastructure, plug-ins as well as pre-packed bundles of KernelHaven may be

obtained from its repository: https://github.com/KernelHaven/KernelHaven

• The pre-packed bundles are shipped with a manual, which is also online available as a wiki

here: https://github.com/KernelHaven/KernelHaven/wiki

In addition, the following video tutorials are available:

• A short tutorial about its concepts (~5 Minutes): https://www.youtube.com/watch?v=IbNc-

H1NoZU

• A more detailed video explaining how to use KernelHaven (~23 Minutes):

https://www.youtube.com/watch?v=xKde6tPY_jA

2.1.3. KTH C Code Verifier

2.1.3.1. Objective summary

The purpose of the tool is to take as input a C implementation file already annotated with

contracts for the functional requirements, and produce as output the same annotated C file but

also annotated with auxiliary annotations needed for successful verification. The tool can also

then automatically verify this file using VCC as backend.

3 https://vamos.informatik.uni-erlangen.de/trac/undertaker/
4 https://ckaestne.github.io/TypeChef/
5 https://www.srcml.org/
6 https://github.com/ckaestne/KBuildMiner
7 Available in the REVAMP SVN folder
https://svn.fzi.de/svn/revamp/WP4%20PL%20extraction/tools/PV2DIMACS

https://github.com/KernelHaven/KernelHaven
https://github.com/KernelHaven/KernelHaven/wiki
https://www.youtube.com/watch?v=IbNc-H1NoZU
https://www.youtube.com/watch?v=IbNc-H1NoZU
https://www.youtube.com/watch?v=xKde6tPY_jA
https://vamos.informatik.uni-erlangen.de/trac/undertaker/
https://ckaestne.github.io/TypeChef/
https://www.srcml.org/
https://github.com/ckaestne/KBuildMiner
https://svn.fzi.de/svn/revamp/WP4%20PL%20extraction/tools/PV2DIMACS

14

Page 14 of 25

2.1.3.2. Input artefacts

A C implementation file already annotated with functional requirements (in the annotation

language of VCC).

2.1.3.3. Verified properties

The tool can verify that a C implementation adheres to its contract, which includes functional

requirements and absence of run-time exceptions.

The result of verification is that either the contract is fulfilled or it is not.

2.1.3.4. Computed quality metrics

Correctness (w.r.t functional requirements)

Termination (in most cases)

Absence of run-time exceptions

2.1.3.5. Implementation in D6.2 vs. Design in D6.1

The design described in D6.1. included also a design of a requirement specification tool, and a

tool for translating requirements and generating annotations for them in the C-file. We have a

prototype implementation for this, but it is highly domain-specific, and in an early stage of

development. We plan to generalize and further improve this implementation.

2.1.3.6. Implementation technologies

Programming language:

C# (version 7.0)

F# (version 4.1)

Application frameworks:

VCC

Standard libraries for C# and F#

Data integration facilities:

Input: C source files (with or without VCC annotations)

Output: C source files (with VCC annotations)

Control integration facilities:

Used from the command line and takes a C source filename as input.

There are flags for whether annotation and/or verification should be performed, as well as for

specifying an output filename (optional).

2.1.3.7. Implementation and documentation location

For information on how to use the tool, there is a help flag available from the CLI (command line

interface). For information on how to specify functional properties, see the VCC user manual. Tool

implementation can be found in the ReVaMP repository together with D6.2 deliverable.

15

Page 15 of 25

2.2. Quality metric computation tools

2.2.1. ViTAminE/Dragonfly (FZI)

2.2.1.1. Objective summary

Beside formal verification, simulation-based testing is an important part in the qualification of SIS

PLs. The main difference between both approaches is that simulation need an input vector to

stimulate the system under test (SUT). This can be viewed as verifying a single point of the input

space of the SUT. If the SUT is an instance of a PL, the problem is aggravated, because the

simulation verifies only one single point/instance of the PL. Summarizing, running one simulation

verifies one SIS PL instance with one dedicated input. For an efficient testing, a strategy for

selecting these instances (PL and input space) is required. With regard to SIS PL testing,

nowadays a set of input vectors is applied to each SIS PL instance separately, resulting in many

unnecessarily execution of test cases.

The objective of this PoC is to provide an iterative algorithm to select feasible instances from the

input and PL space for testing. With the help of simulations, a quality metric or more precise, an

objective function, such as the execution delay of a SIS, is determined. The mapping of the

objective function over the search space is called fitness landscape. Based on this sampling of

the fitness landscape, the PoC selects new test vectors. The assumption is that the fitness

landscape is partial continuous, enabling the derivation of the most critical and therefore the

subset of representative test cases for the SIS PL, with regard to the objective function. By taking

both the input space and the PL space into account, we assume that the overall test effort for the

complete SIS PL can be reduced, by iteratively narrowing down the representative test cases.

The PoC consists of an editor to specify the simulation model of the SIS PL, code generators, a

simulation framework, to support the execution of multiple simulations as well as the exploration

algorithm for simulation instance selection.

2.2.1.2. Input artefacts

The main input is the simulation model of the SIS PL. The PoC focuses on simulation models

based on SystemC/C++. To support the user and reduce the effort for executing a single

simulation, the PoC provides mechanism such as a runtime configuration approach and code

generation steps. Nevertheless, the simulation models are application specific and have to be

provided for each SIS PL. The framework supports the user in the creation and managing of the

simulation models.

The second input is the variability specification of the SIS PL, more precise the variability of the

simulation model. The variability specification covers the variation points, the possible values of

configuration parameters as well as dependencies between variation points. This specification is

used to describe the valid search space used for test case generation. The PoC uses the same

format to specify the variability of the SIS PL as well as the variability of the input space.

Technically there is no differentiation between input variability and PL variability.

2.2.1.3. Verified properties

The verified properties are based on the simulation models. In current studies, the focus is on

timing evaluation of PLs. This is possible if the simulation models contain annotations about the

expected execution time of the software. Approaches for timing prediction in the context of PLs

are researched in WP5.

16

Page 16 of 25

2.2.1.4. Computed quality metrics

The PoC generates test cases that can be executed to verify the specified properties, such as

timing. To support the easy execution of multiple simulation runs, the PoC generates a

configuration file that can be read by the simulation during runtime. The configuration file is based

on IP-XACT.

2.2.1.5. Implementation in D6.2 vs. Design in D6.1

The model of deliverable D6.1 sketches the overall structure of the PoC. In D6.2 a running version

of the editor, to specify the simulation model and a configuration file are provided. The required

code generators for the SystemC/C++ simulation models as well as for the IP-XACT based

configuration files are integrated. With the current version of the PoC it is possible to specify t he

simulation model of a SIS PL with the help of UML diagrams. Code generators derive structural

code, with mock up functions. Additionally, the configuration file can be specified with an UML

diagram and the required IP-XACT file can be generated.

Figure 2 specifies the ViTAminE/Dragonfly framework. On top, the graphical UML-based editor is

shown. The UML diagrams specify the simulation model and the simulation instance. The

annotation of variability information is subject for future work. Code generation steps are used to

derive the simulation model with extensions for runtime configuration. The functional

implementation has to be done manually by the user. After the manual extension, the model is

compiled, resulting in the so-called simulation library. It is an executable that can be configured

with a configuration file during runtime to execute a simulation instance. This simulation library

covers all instances of the SIS PL, which can be instantiated with the configuration file. The

current focus is on runtime variability, because this can be easily mapped to the simulation library

approach. Compile time variability can be used too, but in this case, multiple executables have to

be provided or the variation point has to be mapped to runtime variability. There are case, where

this re-mapping fails.

For future versions (> D6.3) the variability specification is integrated into the UML editor. Current

discussions within the project consortia indicate the usage of VEL for the specification of

variability. Future work will focus on the integration of VEL and the cooperation with the

exploration algorithm, which was developed in parallel.

2.2.1.6. Implementation technologies

Programming language:

Figure 2: Structure of the ViTAminE/Dragonfly framework

17

Page 17 of 25

The PoC is implemented as Eclipse plug-ins that extend the Eclipse Papyrus editor. The Plug-Ins

and code generators are implemented in Java.

Application frameworks:

SystemC/C++ for the simulation models (currently used 2.2.3)

Eclipse Modeling Tools Luna 4.4.2

Papyrus 1.0.2

Xtext 2.8.1

Data integration facilities:

- IP-XACT compatible configuration file

- Eclipse UML importer/exporter

Control integration facilities:

No public interfaces. Integration via Eclipse Plug-Ins is possible.

2.2.1.7. Implementation and documentation location

For more information and access to the tool contact sreiter@fzi.de.

2.2.2. LittleDarwin (UA)

2.2.2.1. Objective summary

Mutation testing is a well-studied method for increasing the quality of a test suite. Lit tleDarwin is

designed as a mutation testing framework able to cope with large and complex Java software

systems, while still being easily extensible with new experimental components. LittleDarwin

addresses two existing problems in the domain of mutation testing: having a tool able to work

within an industrial setting, and yet, be open to extension for cutting edge techniques provided by

academia. LittleDarwin already offers higher-order mutation, null type mutants, mutant sampling,

manual mutation, and mutant subsumption analysis. There is no tool today available with all these

features that is able to work with typical industrial software systems.

2.2.2.2. Input artefacts

LittleDarwin takes as input a complete Java Software Environment. This includes production code ,

test code, test harnesses, build system, and the required external libraries.

2.2.2.3. Verified properties

LittleDarwin assesses the quality of a test suite using mutation testing. Mutation testing is the

process of injecting faults into a software system to veri fy whether the test suite detects the

injected fault. Mutation testing starts with a green test suite — a test suite in which all the tests

pass. First, a faulty version of the software is created by introducing faults into the system

(Mutation). This is done by applying a known transformation (Mutation Operator) on a certain part

of the code. After generating the faulty version of the software (Mutant), it is passed onto the test

suite. If there is an error or failure during the execution of the test suite , the mutant is marked as

killed (Killed Mutant). If all tests pass, it means that the test suite could not catch the fault, and the

mutant has survived (Survived Mutant). By discovering the survived mutants, mutation testing

provides a method to find the weaknesses in a test suite, and provides targets for the test

developer to address.

mailto:sreiter@fzi.de

18

Page 18 of 25

2.2.2.4. Computed quality metrics

Mutation testing allows software engineers to monitor the fault detection capability of a test suite

by means of mutation coverage. Mutation coverage is the percentage of the survived non-

equivalent mutants to all non-equivalent mutants. A test suite is said to achieve full mutation test

adequacy whenever it can kill all the non-equivalent mutants, thus reaching a mutation coverage

of 100%. Such test suite is called a mutation-adequate test suite.

2.2.2.5. Implementation in D6.2 vs. Design in D6.1

2.2.2.6. Implementation technologies

Programming language:

LittleDarwin is written in Python version 2.7.

Application frameworks:

LittleDarwin is mainly self-reliant, however, it requires the existence of an underlying local

database technology in Python to support Shelve.

Data integration facilities:

Control integration facilities:

2.2.2.7. Implementation and documentation location

LittleDarwin’s source code and manual can be found at https://littledarwin.parsai.net/

https://littledarwin.parsai.net/

19

Page 19 of 25

3. Commercial tools

3.1. Quality metric computation tools

3.1.1. Magillem Crystal Bulb & EDA tools (Magillem)

3.1.1.1. Objective summary

Crystal Bulb is a platform running on a central server, providing access to information that has to

be exchanged daily between the various stakeholders (architects, designers, verification

engineers, marketing, SW & tools developer, etc.), through a lightweight client in a web br owser.

The information is structured in catalogs for products, SoC and IP. Links between objects are

automatically created during the population of the database, to check the coherency between data

and to allow the navigation inside the catalogs.

The specific information regarding the hardware description of SoC or IP objects is extracted from

the IP-XACT description and/or legacy assets in other formats (e.g. Excel, csv, …), for which

verification are performed. From Magillem Crystal Bulb, the authorized user will be able to

checkout, edit and modify IP-XACT information in the appropriate EDA tools associated with the

dedicated API and generators (e.g. “diff and merge” operation with other IPXACT files is realized

within the EDA tool environment).

3.1.1.2. Verified properties

• Verification of extracted assets

o Correctness and completeness of the HW assets (Products, SoC, IP)

o Consistency of assets to with regards to the defined referential

o Availability of features in the extracted products

o Pinout consistency checkers

• IP-XACT compliance

o Syntactic and semantic checkers

3.1.1.3. Computed quality metrics

Number and type of assets extracted (Products, SoC, IP)

Number of errors & warnings detected during import

Number of inconsistencies detected

3.1.1.4. Implementation in D6.2 vs. Design in D6.1

Regarding the design in D6.1, the implementation has been focused on Magillem Crystal Bulb

3.1.1.5. Implementation technologies

Programming language:

The Magillem tool suite is developed in Java.

Application frameworks:

Magillem Platform Assembly and Magillem Content Publisher are Eclipse-based tools.

Magillem Crystal Bulb is a web application server, based on Spring Boot & Angular frameworks.

Data integration facilities:

Inputs that can be imported:

- IP-XACT files for description of IP and SoC

20

Page 20 of 25

- CMSIS for description of SoC and register maps

- Legacy of assets and their features can be imported as Excel or csv files

- Word documentation related to HW assets can be imported in MCP

Control integration facilities:

• Magillem Crystal Bulb (MCB) (web application server) includes an API to get information

related to HW assets. At present it only allows to read information. The API will be

extended to be able to write information while ensuring consistency of assets as a whole.

• Magillem Content Publisher (MCB) (Eclipse based tool) embeds an API that enables to

trigger the actions allowed by the tool i.e. creation, verification and consolidation of

documentation.

▪ Magillem Platform Assembly (MPA) (Eclipse based tool) includes an API to handle IP-

XACT items, named Tight Generator Interface and

3.1.1.6. Implementation and documentation location

Information about the tools can be found on Magillem website at the following locations:

• Magillem Crystal Bulb

www.magillem.com/products-areas/magillem-crystal-bulb

• Magillem Content Publisher

www.magillem.com/products-areas/magillem-content-publisher

• Magillem Platform Assembly

www.magillem.com/products-areas/magillem-platform-assembly

The Magillem tools involved in REVaMP² are available to partners for use within the context of the

project. Tools and the corresponding licences can be requested by email to

pfeiffer@magillem.com and license@magillem.com

3.1.2. RQS (KCS-TRC)

3.1.2.1. Objective summary

The purpose of the verification process implemented in VERIFICATION Studio is to provide

evidence that a work-product or set of them fulfils its specification and characteristics.

The verification process can be done at work-product level and at specification level. These two

levels match the two levels of quality computing that VERIFICATION Studio has:

▪ Correctness: it’s performed at work-product level. Verifications at this level can be

implemented as new type of correctness metric and will be named Correctness Checklist

▪ Completeness: it’s performed at specification level. Verifications at this level can be

implemented as new type of completeness metric and will be named Completeness

Checklist

This verification process must be defined manually by filling a quiz composed of checks or

checklists. Every correctness checklist will verify a single work-product, meanwhile every

completeness checklist will verify a set of work-products by means of completing a checklist

related to a specification.

http://www.magillem.com/products-areas/magillem-crystal-bulb
http://www.magillem.com/products-areas/magillem-content-publisher/
http://www.magillem.com/products-areas/magillem-platform-assembly
mailto:pfeiffer@magillem.com
mailto:license@magillem.com

21

Page 21 of 25

As a result, a verification action is intended to serve as a mean to provide objective evidence that

a work-product has (or not) been verified. The verification action is a case of process to be

defined at work-product level that don’t have to be applied to all items in a specification.

During the whole process, a scoreboard with the results and statistics will be available.

Figure 3. Mockup dashboard for Verification Actions

3.1.2.2. Input artefacts

Requirements, Models, Simulations, Feature Models, OSLC-based sources

3.1.2.3. Verified properties

VERIFICATION Studio analyses work-products from two different perspectives:

▪ Correctness: it’s performed at work-product level. Verifications at this level can be

implemented as new type of correctness metric and will be named Correctness Checklist

▪ Completeness: it’s performed at specification level. Verifications at this level can be

implemented as new type of completeness metric and will be named Completeness

Checklist

3.1.2.4. Computed quality metrics

The Checklist evaluation process will summarize a checklist in a single value depending on the

ranges defined.

The results for a correctness checklist metric will be composed by several tabs:

▪ Statistics:

- Pie chart about the number of requirement per quality level

- List question in the checklist and num. of requirements answered (yes, no, n/a &

empty) with detail of the requirements in each answer.

▪ Requirements: the quality for every requirement along with the issues and summary

▪ Filtering: the graphics and lists of requirements matching and not matching the filters

given in the metric configuration

The results for a completeness checklist metric will be composed by several tabs:

22

Page 22 of 25

▪ Metric result: Pie chart

▪ Checklist: list of questions and answers

VERIFICATION Studio will be able to generate Verification Actions (at work-product level) out of

the result of all the checklists. Every single verification action is intended to serve as a mean to

provide objective evidence that a work-product has (or not) been verified. The verification action

has the following attributes:

▪ Verifiable item: the work-product that is being verified and in which the verification action

is being defined

▪ Source items: A selection of work-products

▪ Verification technique: One of the following: Inspection, analysis, demonstration, test,

analogy or similarity, simulation, sampling, V&V Studio Quality Analysis, other

▪ Decomposition Level: One of the following: SOI, Subsystem, component

▪ Objective: Free text

▪ Activity to perform: Free text

▪ Expected evidence: The expected results as free text

▪ Expected numeric result: Number

▪ Obtained evidence: The obtained results as free text

▪ Obtained numeric result: Number

▪ Performed by: The organization of responsible for the verification activity as free text

▪ Starting date: date

▪ Ending date: date

▪ Estimated Time (Days)

▪ Time (Days)

▪ Estimated Time (hours/person)

▪ Labour (hours/person)

▪ Estimated Funds (€/$)

▪ Funds (€/$)

▪ Facility resources: free text

▪ Verified: Penta-state (YES, NO, SUGGESTED YES, SUGGESTED NO, EMPTY, N/A)

▪ Verified date: date

▪ Verified agent: Free text

▪ Automatic verification rule: a function able to compare the expected and the obtained

numeric result in case of guide suggestion for the “Verified” attribute

- One of the list: <, <=, =, >, >=, !=>=,!=

▪ Or manual verification using a checklist

▪ Specific attributes list: a list of names and values

3.1.2.5. Implementation in D6.2 vs. Design in D6.1

From the implementation point of view, D6.1 stands for RQS (Requirements Quality Suite) to

analyse correctness properties out of requirements. In D6.2, the input artefacts have been

redefined, so that the tool becomes VERIFICATION Studio to analyse not only requirements but

also another artefact types (enumerated in a previous section). Also, the properties to analyse are

redefined in D6.2 to include completeness and consistency checklists.

3.1.2.6. Implementation technologies

23

Page 23 of 25

Programming language:

The whole tool suite is developed in .NET Environment (C# and VB.NET) under the .NET

Framework 4.6.1

Application frameworks:

.NET Framework 4.6.1

DevExpress v17.2 for the UI

Data integration facilities:

▪ ReqIF for requirements import/export

▪ MS Excel for requirements and ontology import/export

▪ MS Access, MySQL and SQL Server for the assessment results

Control integration facilities:

VERIFICATION Studio can be used as a native library for other .NET tools.

Interoperability:

▪ OSLC-KM based services to import/export work-products

▪ REST service for ontology management

▪ REST service for quality assessment

3.1.2.7. Implementation and documentation location

VERIFICATION Studio is not released yet. The former RQS v15.1 together with documentation

can be found at www.reusecompany.com

http://www.reusecompany.com/

24

Page 24 of 25

3.1.3. MTest (MES)

3.1.3.1. Objective summary

The MES Test Manager® (MTest) is a model test management framework that supports ISO

26262-compliant, requirements-based unit testing of Simulink®, Embedded Coder®, and

TargetLink® models. The tool supports MiL, SiL, PiL, back-to-back and regression testing, and

test case definition methods using measured data, classification trees in CTE/TESTONA, and

MTCD (a test specification language for model testing developed by MES).

Beside a precise test stimuli definition, the assessment of the simulation outputs is a key criterion

of the test quality. MTest provides the possibility to define both separately. Thus, the test oracle

(requirement observers) can be derived directly from the requirements and will be used

automatically for the evaluation of the system behaviour in each test case. When using the

formalized natural-language requirement language MARS (MTest Assessable Requirement

Syntax), these observers are generated automatically. A set of system variants typically shares a

lot of requirements, so all derived artefacts from these can be reused easily. By contrast, the

variant-specific requirements need to be handled separately. In a first development stage, the

variations in the requirement specification are transferred into a MARS specific requirement

definition which then can be used in universal requirements valid for all variations of the system.

For a specific variant, the corresponding requirement definitions are applied to specialize the

requirement observers. The specialized requirement observers then are used for the evaluation of

the SUT’s behaviour.

3.1.3.2. Input artefacts

The main input artefact for MTest is the SUT (system under test) in form of a Simulink model.

Additionally, requirement specifications are the base for deriving test cases as well as

requirement observers. Test cases are the stimulus for the SUT, requirement observers model the

expected behaviour of the SUT and evaluate the correctness of the execution outputs according

to the respective requirements.

Requirement-based testing assesses the conformity of the system’s behaviour to the

corresponding requirement specification. For system variations, variation-specific evaluations are

needed to assess the conformity of the selected variant. Computed quality metrics

MTest provides important metrics concerning the test quality. These include particularly the

requirements coverage. For each requirement, it is determined whether the simulation of each

test stimuli leads to the expected behaviour, represented by the evaluation of the corresponding

generated requirement observers. If only one requirement observer fails the requirement is

marked as violated. Additionally, coverage metrics on model and code measure the broadness of

the test stimuli. In combination, these metrics are a measure for the quality of the executed tests

regarding the requirement base.

3.1.3.3. Implementation in D6.2 vs. Design in D6.1

3.1.3.4. Implementation technologies

Programming language:

MTest is mainly implemented using MATLAB’s programming language in combination with

different in-house Java libraries. It supports MATLAB from version 7.5 up to the current version.

Application frameworks:

Data integration facilities:

25

Page 25 of 25

Requirements can be imported from Excel. If they are not compliant to MARS, they need to be

transformed into valid MARS requirements first in order to be able to generate the expected

output of the SUT (requirement observers) automatically.

Test cases can be defined as classification trees, MTCD scripts as well as MATLAB-specific mat-

files containing signal curves. Each will be used to generate test data for simulating the SUT. The

simulation outputs and evaluation results are documented in an HTML report and can as well be

exported in a Test XML.

Control integration facilities:

3.1.3.5. Implementation and documentation location

If you need further information or require access to MTest please contact linda.schmuhl@model-

engineers.com.

Bibliography
Bagheri Ebrahim and Gasevic Dragan Assessing the Maintainability of Software Product Line

Feature Models Using Structural Metrics [Journal] // Software Quality Journal. - 2011. - 3 : Vol.

19. - pp. 579-612.
El-Sharkawy Sascha [et al.] Reverse Engineering Variability in an Industrial Product Line:

Observations and Lessons Learned [Conference] // Proceedings of the 22nd International

Systems and Software Product Line Conference (SPLC '18) - Volume A. - [s.l.] : ACM, 2018. -

accepted.

El-Sharkawy Sascha, Krafczyk Adam and Schmid Klaus An Empirical Study of Configuration

Mismatches in Linux [Conference] // Proceedings of the 21st International Systems and Software

Product Line Conference (SPLC '17) - Volume A. - [s.l.] : ACM, 2017. - pp. 19-28.

El-Sharkawy Sascha, Yamagishi-Eichler Nozomi and Schmid Klaus Metrics for Analyzing

Variability and Its Implementation in Software Product Lines: A Systematic Literature Review

[Journal] // Information and Software Technology. - [s.l.] : Elsevier, 2018. - In Press, Accepted

Manuscript.

Ferreira G. [et al.] Do #ifdefs Influence the Occurrence of Vulnerabilities? An Empirical Study of

the Linux Kernel [Conference] // In Proceedings of the 20th International Software Product Line

Conference (SPLC). - Beijing, China : ACM, 2016. - Vol. I. - pp. 65-74.

Krafczyk Adam, El-Sharkawy Sascha and Schmid Klaus Reverse Engineering Code

Dependencies: Converting Integer-Based Variability to Propositional Logic [Conference] //

Proceedings of the 22nd International Systems and Software Product Line Conference (SPLC '18)

- Volume B. - [s.l.] : ACM, 2018. - accepted.

McCabe T. J. A Complexity Measure [Journal] // IEEE Transactions on Software Engineering. -

[s.l.] : IEEE, 1976. - Vols. SE-2.

MetricHaven KernelHaven: [Online]. - 2018. - https://github.com/KernelHaven/MetricHaven.

Tartler Reinhard [et al.] Feature Consistency in Compile-Time Configurable System Software

[Conference] // Proceedings of the EuroSys 2011 Conference (EuroSys '11). - [s.l.] : ACM, 2011. -

pp. 47-60.

Undertaker [Online]. - 2018. - https://vamos.informatik.uni-erlangen.de/trac/undertaker.

