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Executive summary4: 

Numerical stability is a key aspect in co-simulation of physical systems. Decoupling a system into 
independent sub-models will introduce time delays on interface variables. By utilizing physical time 
delays for decoupling, adverse effects on the numerical stability can be avoided. This requires 
asynchronous communication, where variables are interpolated for the time where they are needed. 
The current FMI for co-simulation standard have no support for interpolating input variables inside 
an FMU. Some modifications to the FMI standard for improved handling of interpolation are 
suggested. One- and two-dimensional mechanical models are used to demonstrate the problem and 
the need for interpolation. It is shown that the suggested improvements are able to stabilize the 
otherwise unstable connections. A proposal for extending FMI with callbacks for intermediate inputs 
and outputs has been submitted. 

 
  

                                                 
1 Access classification as per definitions in PCA; PU = Public, CO = Confidential. Access classification per deliverable stated in FPP. 
2 Deliverable type according to FPP, note that all non-report deliverables must be accompanied by a deliverable report. 
3 Due month(s) according to FPP. 

4 It is mandatory to provide an executive summary for each deliverable. 



 
 

D2.4 Adapting FMI CS to Numerically Stable TLM Couplings 

 

OPENCPS, ITEA3 Project no. 14018 Page 2 of 11 

 

Deliverable Contributors: 

 Name Organisation 
Primary role 
in project 

Main 

Author(s)5 

Deliverable 

Leader6 
Robert Braun AB SKF T2.4 Leader X 

Contributing 

Author(s)7 

 

 

Dag Fritzson AB SKF   

    

    

    

    

    

    

    

    

    

    

Internal 

Reviewer(s)8 
Robert Hällqvist Saab AB   

 Lennart Ochel LiU   

 Adeel Asghar LiU   

 Jan Hartford AB SKF   

 
Document History: 

Version Date Reason for Change Status9 

0.1 2018-11-19 First Draft Version Draft 

1.0 2018-11-30 Final Version Released 

    

    

    

  

                                                 
5 Indicate Main Author(s) with an “X” in this column. 

6 Deliverable leader according to FPP, role definition in PCA. 

7 Person(s) from contributing partners for the deliverable, expected contributing partners stated in FPP. 
8 Typically person(s) with appropriate expertise to assess deliverable structure and quality. 

9 Status = “Draft”, “In Review”, “Released”. 



 
 

D2.4 Adapting FMI CS to Numerically Stable TLM Couplings 

 

OPENCPS, ITEA3 Project no. 14018 Page 3 of 11 

 

 

CONTENTS 

ABBREVIATIONS ............................................................................................. 3 
1 INTRODUCTION ................................................................................... 4 

2 PROBLEM DESCCRIPTION ................................................................. 4 
2.1 Related Work ........................................................................................... 5 
3 PROPOSED SOLUTIONS ...................................................................... 5 
3.1 Constant Extrapolation ............................................................................. 5 
3.2 Coarse-Grained Interpolation ................................................................... 6 

3.3 Fine-grained Interpolation ....................................................................... 7 

3.4 One-step Functions .................................................................................. 7 

5 IMPLEMENTATION IN OMSIMULATOR .......................................... 8 
6 PROPOSED CHANGES TO FMI STANDARD .................................... 9 
7 CONCLUSIONS .................................................................................... 10 
REFERENCES .................................................................................................. 11 

 

ABBREVIATIONS 

List of abbreviations/acronyms used in document: 

 

Abbreviation  Definition 

FMI   Functional Mock-up Interface 

FMU   Functional Mock-up Unit 

MST   Master Simulation Tool 

TLM   Transmission-Line Method 
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1 INTRODUCTION 

Numerical robustness is a key factor in simulation solver coupling. Using different solvers for 

different parts of a simulation model will cause variables that are shared by multiple solvers to 

be delayed in time. This may result in numerical errors and instability. One solution to is to 

introduce physically motivated time delays in the model equations. In this way, all time delays 

become a natural part of the model. Hence, no non-physical time delays will need to be inserted. 

Experiments have been conducted to investigate how the Functional Mockup Interface (FMI) 

standard [1] can be combined with physically motivated model decoupling. Four different 

methods for extrapolation and interpolation of interface variables have been implemented and 

compared. Based on the results, some improvements to the FMI standard are suggested. 

2 PROBLEM DESCCRIPTION 

Transmission Line Modelling (TLM) is a well-known technique for decoupling of simulation 

models [2]. The basic idea is that, in real physical systems, information always propagates with 

finite speed. This includes for example stress waves in materials or pressure waves in fluids. 

Hence, every physical element has a natural time delay. By including physical time delays in 

the model, equations can be separated without affecting numerical stability. In this way, sub-

models can be numerically isolated from each other. As shown in Figure 1, this enables 

independent solvers, independent time variables and independent step-size control. A 

mechanical TLM element with its equations is shown in Figure 2: A TLM element with its 

equations.Figure 2. 𝐹 is the force, 𝑣 velocity, Δ𝑡 the time delay and 𝑍𝑐 characteristic impedance. 

The corresponding equations apply to other physical domains as well. An existing co-

simulation framework using TLM has been developed by SKF [3]. This will be merged with 

the OMSimulator and used for the TLM connections. The implementation is based on 

asynchronous socket communication. Each slave tool has independent time variables and step 

sizes. Due to the physical time delays, input data is available not only at the beginning of the 

step but can also be interpolated during the step. Slave tools use callback functions for receiving 

inputs and sending outputs for specified time instances. Thus, input variables are kept up-to-

date even during internal iterations performed by the slave.  

 

For compatibility reasons, it is desirable to make the framework compatible with FMI by 

importing Functional Mock-up Units (FMUs) from other simulation tools. While FMI for 

model exchange easily can be adopted for TLM-based co-simulation, FMI for co-simulation 

induces several challenges concerning numerical stability. Since input variables can only be 

updated at the beginning of each communication step, the stability benefits of TLM are lost. 

 

Figure 1: TLM connections enable independent solvers, time variables and step-size control. 

 

FMU 1 

𝑡1, Δ𝑡1 𝑡2, Δ𝑡2 𝑡3, Δ𝑡3 

FMU 2 FMU 3 

Δ𝑡12 Δ𝑡23 

൝

𝑡1 ≠ 𝑡2 ≠ 𝑡3
Δ𝑡1 ≠ Δ𝑡2 ≠ Δ𝑡3
Δ𝑡12 ≠ Δ𝑡23
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Figure 2: A TLM element with its equations. 

 

2.1 Related Work 

A prototype of a master algorithm for FMI-based co-simulation was presented in [4]. Master 

algorithms combining FMI-based co-simulation with the High-Level Architecture (HLA) 

standard have also been developed [5] [6] [7]. A TLM-based co-simulation framework with 

FMI support was implemented in the Hopsan simulation tool [8]. In [9] it was shown that 

connecting two simulation tools with TLM elements using FMI without a master simulation 

tool is possible. The framework used in this paper differs from the previous experiments in that 

it uses asynchronous data communication. Consequently, each TLM connection can have its 

own independent time delay, and each FMU can use its own independent simulation step size. 

With synchronous communication, all connections must have the same time delay and each 

sub-model must be able to provide output variables at this interval. 

 

Decoupling a model without using physical time delays requires a numerical time delay, which 

may affect accuracy and numerical stability. Errors can usually be reduced by reducing the size 

of the delay, at the cost of a longer simulation time. One solution is to use adaptive 

communication step-size [10]. In contrast with physically motivated decoupling, this method 

requires the FMU to support saving and restoring FMU states. This is a feature that few FMI 

export tools support. 

3 PROPOSED SOLUTIONS 

Several solutions, both with and without modifications to the FMI standard, are implemented 

and analyzed. Three different variable estimation methods are used. With constant 

extrapolation, variables are kept constant during each communication step. Coarse-grained 

interpolation means that the value before and after the step, i.e. at the communication points, 

are used for interpolation. Fine-grained interpolation includes the values between 

communication points as well. Experiments are limited to linear interpolation. Higher order 

interpolation methods may be used but are not expected to improve numerical stability. Detailed 

stability analyses of the methods are provided in appendix B and C. 

 

Notice that annex C is yet to be submitted as a journal article and is therefore temporarily 

considered as confidential until the paper is accepted for publication. 

3.1 Constant Extrapolation 

The simplest method for exchanging variables is to use constant extrapolation, also known as 

zero-order hold, see Figure 3. Input variables are updated at the beginning of each step and 

remain constant during the step. This solution is fully supported by the current FMI for co-

simulation standard. However, numerical stability cannot be guaranteed. It is possible to 

𝐹1ሺ𝑡ሻ = 𝐹2ሺ𝑡 − Δ𝑡ሻ + 𝑍𝑐ሾ𝑣1ሺ𝑡ሻ + 𝑣2ሺ𝑡 − Δ𝑡ሻሿ 

𝐹2ሺ𝑡ሻ = 𝐹1ሺ𝑡 − Δ𝑡ሻ + 𝑍𝑐ሾ𝑣2ሺ𝑡ሻ + 𝑣1ሺ𝑡 − Δ𝑡ሻሿ 

𝑣1ሺ𝑡ሻ 

𝐹1ሺ𝑡ሻ 

𝑣1ሺ𝑡ሻ 

𝐹1ሺ𝑡ሻ 
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improve stability by using adaptive communication step size [10], but this assumes that the 

exporting tool supports saving and loading FMU states. 

 
 

𝑥ሺ𝑡𝑛 ≤ 𝑡 ≤ 𝑡𝑛+1ሻ = 𝑥ሺ𝑡𝑛ሻ 

Figure 3: Constant extrapolation of input variables. Black dots represent available time-stamped 

data in the interpolation table. 

 

3.2 Coarse-Grained Interpolation 

It is possible by provide an FMU with approximated time derivatives of input variables. These 

can be used by the FMU for interpolation or extrapolation, see Figure 4. For a delayed variable 

the value is known both at the beginning and at the end of the step. Hence, the first-order 

derivative can easily be approximated. However, the resolution of the interpolation will be 

limited since all data in the interpolation table will not be used. Also, the delayed variable is 

not the force, but the wave variable. Therefore, the FMU must include the TLM boundary 

equations, and compute the force internally. 

 
 

 
 

𝑥ሺ𝑡𝑛 ≤ 𝑡 ≤ 𝑡𝑛+1ሻ = 𝑥ሺ𝑡𝑛ሻ +
𝑥ሺ𝑡𝑛+1ሻ − 𝑥ሺ𝑡𝑛ሻ

𝑡𝑛+1 − 𝑡𝑛
ሺ𝑡 − 𝑡𝑛ሻ = 𝑥ሺ𝑡𝑛ሻ + �̂̇�ሺ𝑡 − 𝑡𝑛ሻ 

𝑡𝑛 𝑡𝑛+1 𝑡𝑛+2

𝑡𝑛 𝑡𝑛+1 𝑡𝑛+2
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Figure 4: Coarse-grained interpolation of input variables. Black dots represent available time-

stamped data in the interpolation table. 

 

3.3 Fine-grained Interpolation  

Here, fine-grained interpolation means that all points in the interpolation table are used, as 

shown in Figure 5. The actual interpolation can be performed either inside the FMU, or be 

provided by the master simulation tool from callback functions. 

 

 
 

𝑥ሺ𝑡𝑛 ≤ 𝑡 ≤ 𝑡𝑛+1ሻ = 𝑥ሺ𝑡𝑎ሻ + (𝑥ሺ𝑡𝑏ሻ − 𝑥ሺ𝑡𝑎ሻ)
𝑡 − 𝑡𝑎
𝑡𝑏 − 𝑡𝑎

,   {
𝑡𝑛 ≤ 𝑡𝑗 ≤ 𝑡𝑛+1
𝑡𝑛 ≤ 𝑡𝑘 ≤ 𝑡𝑛+1

 

Figure 5: Fine-grained interpolation of input variables. Black dots represent available time-

stamped data in the interpolation table. 

3.4 One-step Functions 

With FMI for co-simulation, each FMU writes output variables only after every completed 

communication step. Interpolation accuracy can be improved by letting each FMU provide 

output variables as often as possible. The FMI standard provides a function called 

fmi2doStep(), which tells the slave to simulate to a specified stop time. If the master could 

tell the FMU to take a step without specifying a stop time, the FMU could simulate until the 

next time it is able to provide output data and then return the actual stop time to the master. This 

would make it possible for the master to obtain output data as often as possible, which would 

enable more densely populated interpolation tables. Many numerical solvers, such as CVODE 

and IDA, already provide one-step execution. There are always two conditions for step size. 

One is the local error estimate. The other one is the maximum step size. If we have a solver 

which does not have a variable step size, we can always use the constant maximum step size. 

  

𝑡𝑛 𝑡𝑛+1 𝑡𝑛+2

𝑡𝑎 𝑡𝑏
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5 IMPLEMENTATION IN OMSIMULATOR 

Both coarse-grained and fine-grained interpolation have been implemented in OMSimulator. 

For now, a decision was taken to support the current FMI standard without any custom 

extensions. Consequently, neither callback functions nor one-step execution has been 

implemented. This ensures that the master simulation tool will be usable by third-party 

organizations using standard FMUs.  

 

Coarse-grained interpolation utilizes the FMI support for providing time derivatives of input 

variables. An estimated derivative is computed by drawing a straight line from the values at the 

beginning and at the end of the step. The FMU is then responsible for interpolating values using 

the value and its derivative. Only first order derivatives have been used. Higher order 

derivatives is neither expected to improve stability, nor supported by most tools. 

 

Fine-grained interpolation is implemented by providing the FMU with 10 data samples and 10 

corresponding time stamps for each wave variable. The FMU can then use these variables to 

interpolate internally. Fixed-size vectors must be used because the FMI standard does not 

support arrays of arbitrary length. Using 10 samples per communication step can be assumed 

to be stable when the time constants for two connected sub-models differs at most one order of 

magnitude. 

 

For FMUs without interpolation support, OMSimulator supports sub-stepping, i.e. using a step 

size inside the FMU which is smaller than the TLM communication delay. The FMU will then 

simulate multiple steps during each master communication step. This makes it possible to 

update input values more frequently, at the cost of reduced simulation performance.  

 

FMUs with interpolation support have been developed from OpenModelica and Dymola. 

Custom hand-coded FMUs have also been written in C++ for detailed evaluation. The Modelica 

code for fine-grained interpolation is using the built-in interpolation method from the Modelica 

Standard Library as shown in Listing 1. A 1D rotational TLM interface using fine-grained 

interpolation is shown in Listing 2. 

 

 

Listing 1: Interpolation for fine-grained interpolation using the Modelica Standard Library. 

 

function TLMGetInterpolatedEffort 

    input Real t "Simulation time"; 

    input Real v "Flow"; 

    input Real ci[10] "Wave vector"; 

    input Real ti[10] "Time vector"; 

    input Real Zc "Characteristic impedance"; 

    output Real f "Computed force"; 

    protected Real c "Interpolated wave"; 

algorithm 

    c := Modelica.Math.Vectors.interpolate(ti,ci,t); 

    f := -c + Zc*v; 

end TLMGetInterpolatedEffort; 
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Listing 2: A Modelica interface for a 1D rotational TLM connection using fine-grained 

interpolation. 

 

6 PROPOSED CHANGES TO FMI STANDARD 

A change proposal has been submitted to the FMI design group, see appendix A: “FCP 015: 

Callback Functions for Numerical Stability”. It was noted that some of the proposed changes 

overlaps with changes previously proposed in “FCP 010: Intermediate Output Values”, which 

was a result from the ACOSAR project. In short, the suggestion is to extend the 

“fmi2CallbackFunction” struct with two more functions: “setFlow” and “getComputedEffort”. 

 

It was first investigated how fine-grained interpolation can be supported more efficiently by the 

FMI standard. Interpolation inside the FMU with high resolution is possible only if the FMU is 

provided with the interpolation table. Interpolation data can be sent as normal variables, using 

the fmi2SetReal() function. However, this requires customized FMUs, and would not 

work with a general simulation tool. Furthermore, it requires a large amount of data exchange, 

which may affect simulation performance. If support for populating interpolation tables in 

FMUs could be incorporated into the standard, this could become a more general solution. A 

proposal of a function for setting time-stamped variables are shown in Listing 3.  

 

 

Listing 3: A proposal of a function for setting time-stamped variables. 

 

Like the coarse-grained interpolation, this approach would also require the FMU to include the 

TLM equations. Due to this restriction, this extension has not been further investigated. Instead, 

a proposal was made based on callback functions for reading and writing input variables at 

specified times. Interpolation can then be handled by the master tool. This would preserve the 

model FMITLMInterfaceRotationalFineGrained1D 

    Modelica.Mechanics.Rotational.Interfaces.Flange_a flange_a; 

    parameter String interfaceName = "fmitlm"; 

    parameter Boolean debugFlg = false; 

    output Real w; 

    input Real c[10](start = zeros(10)); 

    input Real ti[10](start=linspace(-1.0,0.0,10)); 

    input Real Zcr; 

    output Real phi; 

    Real tau(start = 0); 

algorithm 

    phi := flange_a.phi; 

    w := der(flange_a.phi); 

    tau := FMITLM_Functions.TLMGetInterpolatedEffort(time,w,c,ti,Zcr); 

    flange_a.tau := tau; 

end FMITLMInterfaceRotationalFineGrained1D; 

 

fmi2Status fmi2SetReal (fmi2Component c,  

                        const fmi2ValueReference vr[], 

                        size_t nvr,  

                        const fmi2Real value[],  

                        const fmi2Real time[]); 
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guaranteed stability provided by TLM, while exposing only a minimal interface consisting of 

intensity and flow variables. The exporting tool would not need any adaption for TLM.  

 

An alternative solution to callback functions is to use pure discrete-event simulation using FMI 

for model exchange. The slave can have its own custom solver internally, without exposing any 

continuous state variables to the MST. Whenever an interpolated input variable is required, or 

an output variable is available, the slave informs the MST by using time events. With the current 

API, however, it is not possible to distinguish input data events from output events. The API 

would thus have to be extended with an additional flag in the fmi2EventInfo structure, as 

shown in Listing 4. This method has not been further investigated, as it is considered more 

complex compared to callback functions while not adding any additional benefits. 

 

 

Listing 4: A proposal to add an additional event info flag for events when output variables are 

not available. 

7 CONCLUSIONS 

It is shown that fine-grained interpolation is required to achieve stable connection in all 

investigated models. Variables can be interpolated either locally inside the FMU or be handled 

by the master simulation tool. The first method requires the FMU to be provided with the 

complete interpolation table. This leads to a large amount of data exchange, which may reduce 

simulation performance. Meanwhile, the second method would require a callback function from 

where the slaves can request interpolated data from the master. Three possible improvements 

to the FMI standard that would facilitate asynchronous data exchange have been identified: 

• Improved support for exchanging interpolation tables 

• Support for callback functions from FMU to MST 

• Event flag for only updating input variables 

Fine-grained interpolation would be facilitated by the first two suggestions. Support for easily 

exchanging interpolation tables would enable interpolation of input variables inside an FMU. 

Callback functions on the other hand will provide the FMU with access to variables interpolated 

in the master simulation tool. An advantage with a callback function is that it is not limited to 

pure interpolation. In addition, it can include simple expressions, for example the TLM 

boundary equations. Finally, one-step execution mode will enable more densely populated 

interpolation tables, and thereby improve accuracy in the interpolated variables. 

 

A change proposal for extending the FMI standard with callback functions for intermediate 

inputs and outputs has been submitted. 

  

typedef struct{ 

  fmi2Boolean newDiscreteStatesNeeded; 

  fmi2Boolean terminateSimulation; 

  fmi2Boolean nominalsOfContinuousStatesChanged; 

  fmi2Boolean valuesOfContinuousStatesChanged; 

  fmi2Boolean outputsNotAvailable; 

  fmi2Boolean nextEventTimeDefined; 

  fmi2Real nextEventTime; 

} fmi2EventInfo; 
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