TLM-based Asynchronous Co-simulation with
the Functional Mockup Interface

Robert Braun', Robert Hillqvist?, Dag Fritzson®

! Div. of Fluid and Mechatronic Systems, Linkoéping University, Sweden,
robert.braun@liu.se,
2 Dept. of Systems Simulation and Concept Analysis, Saab Aeronautics, Sweden,
robert.hallgvist@saabgroup.com,
3 SKF Group Technology, AB SKF, Sweden,
dag.fritzson@skf.com

Abstract. Numerical stability is a key aspect in co-simulation of physi-
cal systems. Decoupling a system into independent sub-models will intro-
duce time delays on interface variables. By utilizing physical time delays
for decoupling, affecting the numerical stability can be avoided. This re-
quires interpolation, to allow solvers to request input variables for the
time slot where they are needed. The FMI for co-simulation standard
does not support fine-grained interpolation using interpolation tables.
Here, various modifications to the FMI standard are suggested for im-
proved handling of interpolation. Mechanical and thermodynamic models
are used to demonstrate the need for interpolation, as well as to provide
an industrial context. It is shown that the suggested improvements are
able to stabilize the otherwise unstable connections.

Keywords: co-simulation, FMI, TLM, numerical stability

1 Introduction

Numerical robustness is a key factor in simulation solver coupling. Using different
solvers for different parts of a simulation model can be of great benefit in terms
of increasing simulation speed and robustness. However, all variables shared by
more than one solver will need to be delayed in time. This may result in numerical
errors and instability. One solution is to decouple the model where significant
physically motivated time delays are present. In this way, all time delays are a
natural part of the model and no non-physical time delays will thus need to be
inserted.

The Functional Mock-up Interface (FMI) is a tool-independent standardized
interface for connecting simulation models from different modelling and sim-
ulation tools [3]. A model is exported as a Functional Mock-up Unit (FMU),
containing executable C code and an XML description file. Co-simulation is
conducted by importing multiple FMUs to a master simulation tool (MST) and
connecting them in a composite model. FMUs can be either for co-simulation

2 Robert Braun, Robert Hallqvist and Dag Fritzson

(FMI CS) or for model exchange (FMI ME). With FMI CS, each FMU has
its own internal solver and exchanges data only at pre-defined communication
points. This enables discrete-time co-simulation, where each FMU internally
may use continuous-time simulation. With FMI ME, the MST must provide a
solver. Derivatives of state variables can then be updated at any time, which
enables continuous-time co-simulation. Experiments have been conducted to
investigate how the FMI standard can be combined with physically motivated
model decoupling. Four different methods for extrapolation and interpolation of
interface variables have been implemented and compared. Based on the results,
some improvements to the FMI standard are suggested.

This paper uses a domain-independent notation of the exchanged variables.
All physical connections use intensity and flow variables. For the mechanical
and fluid domains, intensity would equal force and pressure while flow would
equal velocity and volume flow.

1.1 Problem Description

Transmission Line Modelling (TLM) is a well-known technique for decoupling of
simulation models [IT]. The basic idea is that in reality information propagation
speed is always limited. This includes, for example, stress waves in materials or
pressure waves in fluids. Hence, every physical element has a natural time delay.
By including physical time delays in model variables, equations can be sepa-
rated without affecting numerical stability. A TLM element and its equations
are shown in fig. [I] F' is the force, v velocity, At the time delay and Z. charac-
teristic impedance. The delayed information traversing the element is denoted
the wave variable. A co-simulation MST using TLM has been developed by SKF
[14]. The implementation is based on asynchronous socket communication. Each
slave tool has fully independent time variables and step sizes. Due to the phys-
ical time delays, input data is available not only at the beginning of the step
but also during the step via interpolation. Slave tools use callback functions for
receiving inputs and sending outputs for specific time instances. Input variables
are thus kept up-to-date even during internal iterations performed by the slave.

The FMI standard aims to reduce overhead costs associated with simulation
tool coupling by means of a standardized interface. FMI is stipulated to en-
hance and simplify model export and integration in both industry and academia.
It is therefore desirable to make the MST compatible to the FMI standard.
This would enable simulation of multiple connected Functional Mock-up Units
(FMUs) exported from any simulation tool with FMI support. While FMI for
model exchange can easily be adapted for the TLM-based co-simulation MST,
FMI for co-simulation induces several challenges concerning numerical stability.
Since input variables can only be updated at the beginning of each communica-
tion step, the stability benefits of TLM are lost.

TLM-based Asynchronous Co-simulation with FMI 3

01(t) =B Fi(t) = Ba(t — At) + Ze [o1(t) + va(t — At)] [v2(t)
Fi(t) < Fa(t) = Fi(t — At) + Ze [v2(t) + v1(t — At)] > (1)
Fig.1: A TLM element with its equations.

1.2 Related Work

A prototype of a master simulation tool for FMI-based co-simulation was pre-
sented in [2]. Master algorithms combining FMI-based co-simulation with the
High-Level Architecture (HLA) standard have also been developed [§][1][12]. A
TLM-based co-simulation MST with FMI support was implemented in the Hop-
san simulation tool [5]. In [4] it was shown that it is possible to connect two
simulation tools with a TLM element, using FMI, without a master simulation
tool orchestrating the simulation. The MST used in this paper differs from the
previous experiments in that it uses asynchronous data communication. Conse-
quently, each TLM connection can have its own independent time delay, and each
FMU can use its own independent simulation step size. With synchronous com-
munication, all connections must have the same time delay and each sub-model
must be able to provide output variables at this interval.

Solving two parts of a simulation model simultaneously on different solvers
without using physical time delays requires incorporating numerical time delays,
which may affect accuracy and numerical stability. Errors can usually be reduced
by reducing the size of the delays, at the cost of a longer simulation time. One
solution to reduce the resulting negative impact on simulation time is to use
adaptive communication step-size [I3]. In contrast to physically motivated de-
coupling, this method requires the FMU to support setting and getting FMU
states.

2 Numerical Solutions

Several solutions, both with and without modifications to the FMI standard,
are implemented and analysed. Three different variable estimation methods are
used, see fig. [2] With constant extrapolation, variables are kept constant during
each communication step. Coarse-grained interpolation means that the value at
the beginning and at the end of the step, i.e. at the communication points, are
used for interpolation. Fine-grained interpolation includes the values between
communication points as well. Experiments are limited to linear interpolation.
Higher order interpolation methods may be used to improve accuracy further,
but has not been considered further in this paper.

2.1 Constant Extrapolation

The simplest method for exchanging variables is to use constant extrapolation,
see fig. 2a] Input variables are updated at the beginning of each step and remain

4 Robert Braun, Robert Hallqvist and Dag Fritzson

1
1 1
e

1 1 1

1 1 1 . 1 1

1 Ge— 1 1 1 1

1 1 (I 1 1 - ® 1 1 (I

1 . 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 L] 1 1 1 1 1 1 1 1

b — 1 1 1 1 1

o 1 1 M 1 1 ® 1 1

1 1 1 1 1 1 1 1 1
(a) Constant extrapola- (b) Coarse-grained inter- (¢) Fine-grained interpo-
tion polation lation

Fig. 2: Three variable estimation methods are used to stabilize the connecitons.

constant during the step. This solution is fully supported by the current FMI
for co-simulation standard. However, numerical stability cannot be guaranteed.
If the FMU supports saving and loading FMU states, it is possible to improve
stability by using adaptive communication step size [I3]. Unfortunately, this
feature is optional in the standard and many exporting tools do not support
it. Stability can then only be achieved by using a sufficiently small constant
communication step size during the entire simulation. This induces a severe
performane penalty. Furthermore, it is not possible to tell in advance whether
or not the step size is small enough.

2.2 Coarse-grained Interpolation

It is possible to provide an FMU with the approximated values of input variable
time derivatives. These can be used by the FMU for interpolation or extrapola-
tion, see fig. For a delayed variable the value is known both at the beginning
and at the end of the step. Hence, the first-order derivative can easily be ap-
proximated. The resolution of the interpolation, however, will be limited since
all data in the interpolation table will not be used. Furthermore, the delayed
information will consist of the wave variable and not the intensity variable. The
FMU must therefore include the TLM boundary equations, and compute the
intensity internally. While technically possible, it makes it harder to generalize
the method for FMUs from arbitrary generation tools.

2.3 Fine-grained Interpolation Inside the FMU

Here, fine-grained interpolation means that all points in the interpolation table
are used, as shown in fig. The actual interpolation can either be performed
inside the FMU or provided by the master simulation tool from callback func-
tions.

Interpolation inside the FMU with high resolution is possible only if the
FMU is provided with the interpolation table. Interpolation data can be sent as
normal variables, using the fmi2SetReal () function. However, this requires
customized FMUs and manual adjustments will therefore be required, and it will
not work for all simulation tools.

TLM-based Asynchronous Co-simulation with FMI 5

Furthermore, it requires a large amount of data exchange, which may affect
simulation performance. If support for populating interpolation tables in FMUs
could be incorporated into the standard, this could become a more general and
computationally efficient solution. A proposed function for setting time-stamped
variables is shown in listing Like the coarse-grained interpolation, this ap-
proach also requires the FMU to include the TLM equations.

Listing 1.1: A proposal for extending the FMI API to support time-stamped
variables

fmi2Status fmi2SetReal (fmi2Component c,
const fmi2ValueReference vr([],
size_t nvr,
const fmi2Real valuel[],
const fmi2Real timel[]);

Callback functions for reading and writing input variables at specified times
could be provided to the FMUs. Interpolation can then be handled by the MST.
This would preserve the guaranteed stability provided by TLM, while exposing
only a minimal interface consisting of intensity and flow variables. The exported
models would not need any adaption for TLM. However, this method requires
an extension to the current FMI standard. A proposal for such an extension is
shown in listing |1.2)

Listing 1.2: A proposal for extending the FMI API with callback functions for

requesting interpolated inputs

typedef fmi2Real (*xfmi2GetRealCb) (fmi2ValueReference,
fmi2Real,
fmi2Real) ;

fmi2Status fmi2SetGetRealCb (fmi2Component c,
const fmi2GetRealCb cb);

An alternative solution to callback functions is to use pure discrete-event simu-
lation using FMI for model exchange. The slave can have its own custom solver
internally, without exposing any continuous state variables to the MST. In this
way, FMI ME can be used for co-simulation with distributed solvers, in con-
trast to FMI ME for continous-time simulation, where the MST must provide
the solver. Whenever an interpolated input variable is required or an output
variable is available, the slave informs the MST by using time events. With the
current API, however, it is not possible to distinguish input data events from
output events. The API would thus have to be extended with an additional flag
in the fmi2EventInfo structure, as shown in listing

6 Robert Braun, Robert Hallqvist and Dag Fritzson

Listing 1.3: A proposal for extending the FMI event info class for events with

only inputs

typedef struct({
fmi2Boolean newDiscreteStatesNeeded;
fmi2Boolean terminateSimulation;
fmi2Boolean nominalsOfContinuousStatesChanged;
fmi2Boolean valuesOfContinuousStatesChanged;
fmi2Boolean outputsNotAvailable;
fmi2Boolean nextEventTimeDefined;
fmi2Real nextEventTime;

} fmi2EventInfo;

2.4 One-step Functions

With FMI for co-simulation, each FMU writes output variables only after every
completed communication step. Interpolation accuracy can be improved by let-
ting each FMU provide output variables as often as possible. The FMI standard
provides a function called fmi2doStep (), which tells the slave to simulate to
a specified stop time. If the MST could tell the FMU to take a step without
specifying a stop time, the FMU could simulate until the next time it is able
to provide output data and then return the actual stop time to the MST. This
would make it possible for the MST to obtain output data as often as possible,
which would enable more densely populated interpolation tables. Many numer-
ical solvers, such as CVODE and IDA, already provide one-step execution [10].
It is, however, unclear how this function would work for FMUs not based on
differential equations.

3 Numerical Experiments

Four example composite models are used to illustrate the need for and to ver-
ify the feasibility of the proposed solutions. The first model is a one-dimensional
spring-mass system. The second two models are two-dimensional pendulums. 2D
mechanics models are usually more stiff and put stricter requirements on numer-
ical stability. Finally, a thermodynamic connection extracted from an industrial
use case is investigated.

The first three examples are implemented using custom FMUs, written in
plain C++4. The FMUs support first order input derivatives for coarse-grained
interpolation. Interpolation tables are provided to FMUs by repeatedly calling
the standard fmi2setReal () function. The FMI API is extended to support
a prototype of callback functions. Discrete event simulation is tested by (in-
correctly) using the valuesOfContinuousStatesChanged flag to indicate whether
output variables are available or not. Finally, the thermodynamic model is used

TLM-based Asynchronous Co-simulation with FMI 7

to compare simulations implementing constant extrapolation, coarse-grained and
fine-grained interpolation using FMUs exported from the commercial Modelica
tool Dymola. Interpolation is implemented as Modelica code. A function for
coarse-grained interpolation is shown in listing [T.4] This makes it possible to use
input derivatives even if the FMU does not support the native FMI function for
this. Fine-grained interpolation is performed by an interpolation model and two
functions, see listings [I.5] to [I.7] The FMU is provided with wave variables and
corresponding time variables. Then, the actual value is obtained by using the
built-in Modelica function interpolate (t,c,tc).

Listing 1.4: A Modelica function for interpolating input variables in Dymola
using first order time derivatives

function LinearInterpolation
input Real t "Time variable";
input Real c "Wave variable";
input Real dCdt "Time derivative of wave variable";
input Real tc "Current time";
output Real ci "Interpolated wave variable";

algorithm
ci:=c+dCdt« (tc-t);

end LinearInterpolation;

Listing 1.5: A Modelica model for interpolating input variables in Dymola

model Interpolate
Modelica.Blocks.Interfaces.RealVectorInput cl[n];
Modelica.Blocks.Interfaces.RealVectorInput tl[n];
Modelica.Blocks.Interfaces.RealOutput pi;
Modelica.Blocks.Interfaces.RealInput gl;
Modelica.Blocks.Interfaces.RealInput Zc;
parameter Integer n;

protected
Real ci;

equation
ci = PopulatelInterpolate(tl,cl,time);
pi = getPressure (ci, Zc,ql);

end Interpolate;

8 Robert Braun, Robert Hallqvist and Dag Fritzson

Listing 1.6: A Modelica function for interpolating the wave variable in Dymola

function PopulateInterpolate
input Real t[:] "Time variable vector";
input Real c[:] "Wave variable vector";
input Real tc "Current time";
output Real ci "Interpolated wave variable";

algorithm
ci:=Modelica.Math.Vectors.interpolate(t,c,tc);

end PopulateInterpolate;

Listing 1.7: A Modelica function for requesting pressure variable at a specific

time in Dymola

function getPressure
input Real c "Wave variable";
input Real g "Volume flow";
input Real Zc "Characteristic impedance";
output Real p "Pressure";

algorithm
p:=Zcxg+tc;

end getPressure;

3.1 1D Three-mass System

An example composite model consisting of a three-mass system separated into
two FMUs is presented in fig. 3] Simulation results verify the proposed method
with second order dynamics in one dimension. One of the FMUs has internal
dynamics with two different resonance frequencies. The composite model is sim-
ulated with a communication step size (i.e. TLM time delay) of 0.4 ms. After 0.1
s, a step force of 100 N is applied on the first mass. Parameters are intention-
ally chosen to make the simulation unstable when using constant extrapolation.
Simulation results using constant extrapolation, coarse-grained interpolation, in-
terpolation and callback functions are shown in fig. 4] Constant extrapolation
and coarse-grained interpolation methods are unstable. Fine-grained interpola-
tion is able to stabilize the coupling both when computed in MST and locally
inside the FMU.

TLM-based Asynchronous Co-simulation with FMI 9

M = 0.005 kg ky = 90 N/m
B =0.2 Ns/m ky = 140 N/m

Fig. 3: A test model consisting of a three-mass system is divided into two FMUs.

< a0f Z a0

£ £

£ —a0f £ —a0f

Q Q

S 8

5 —100 & > —100 &
0 time [s] 0.5 0 time [s] 0.5

(a) Constant extrapolation (b) Coarse-grained interpolation

z 3

El 20 El 20

£ —40 £ 40

Q Q

2 2

= —100 L 4 2 —100k J
0 time [s] 0.5 0 time [g] 0.5

(c) Fine-grained interpolation inside FMU (d) Fine-grained interpolation in MST

Fig. 4: Velocity against time at the left side of the TLM connection. Red dashed
line is the exact reference solution.

3.2 2D Double Pendulum

The second example composite model consists of a two-dimensional double pen-
dulum, see fig. |5l Double pendulums exhibit chaotic motion and are sensitive to
initial conditions. This makes it an interesting example for verifying simulation
techniques. The two arms are connected through a TLM element with a time
delay of At = le — 3 s and a characteristic impedance of Z. = 1e5 for X and
Y directions. This corresponds to a spring of stiffness K, = 1e8 N/m. Rota-
tional impedance is set to zero. Hence, the TLM element represents a revolute
joint with some flexibility. Simulation is initiated with both arms pointing hori-
zontally. Results from simulations implementing the four different methods are
shown in fig. [6] Blue and orange curves represent vertical and horizontal posi-
tion, respectively. Black dashed curves are the exact reference solutions. Constant
extrapolation and coarse-grained interpolation are both unstable. Fine-grained
interpolation results in stable simulation.

10 Robert Braun, Robert Hallqvist and Dag Fritzson

ZC,JCv Zc,ya Zc,rot

B; =20Ns/m L;=05m
By =10Ns/m L, =0.5m
Zeqw = 1€b Ns/m Z.,, = 1e5 Ns/m Z ;ot = 0 Nms

M; = 100 kg
M, = 100 kg

Fig.5: A double pendulum is modelled as two arms connected by a TLM element.
Impedance in the rotational dimension is set zero to allow free rotation.

(c¢) Fine-grained interpolation inside FMU

s}
=
[N}
wo -

0

— 127 T — 1.2 —
~ \ - ~ \ P
g 06 SN g 06 R 7]
3) O | \\\ ,/ \\ b 0 /// /// _
§ —0.6 [- Wy e o § —O.GN s | »‘,\// .
) A N .) RPN N
> 192 \ \ \ \ > 19 | | |
1 2 3 4 0 2 3 4 5
time [s] time [s]
(a) Constant extrapolation (b) Coarse-grained interpolation
o 1.2 C T ' 1.2 L T
~ ~
g 06 g 06
2 0 2 0
3 —06 3 —0.6
))
- —1.2 - —1.2 :
2 3 4 5

(d) Fine-grained interpolation in MST

Fig. 6: Vertical and horizontal positions of the lower end of the double pendulum

model. Dashed lines are the exact reference solutions.

TLM-based Asynchronous Co-simulation with FMI 11

3.3 2D Single Pendulum

The final example composite model also consists of two pendulum arms con-
nected through a TLM element. However, unlike the previous example model,
the TLM element now has a rotational inertia of Z. = le4. In this way the TLM
element represents a fixed attachment rather than a joint. Hence, the two arms
are attached to each other and will swing together like a single pendulum, see
fig. [7] In general, single pendulums are less demanding to simulate compared to
double pendulums. This model is included to verify the methods against a rigid
TLM connection, which is locked in all dimensions.

M17BlaL1

Zc,aca Zc,y, Zc,rat
M27 BQa L2

My, =100 kg B; =20Ns/m L;=05m
My =100 kg By =10Ns/m L, =0.5m
Zey =1eb Ns/m Z.,, = 1eb Ns/m Z, o, = led Nms

Fig.7: A single pendulum is modelled as two arms connected by a stiff TLM
element. Impedance is non-zero in all three dimensions.

Simulation is initiated with the two arms pointing horizontally. Results with
the four different methods are shown in fig. [§] Blue and orange curves repre-
sent vertical and horizontal position, respectively. Black dashed curves are the
exact reference solutions. In consistence with results from the previous compos-
ite models, extrapolation and coarse-grained interpolation are both unstable.
Fine-grained interpolation results in stable simulation.

12 Robert Braun, Robert Hallgvist and Dag Fritzson

0 1.2 L. T T o0 12 C

~ \ 27N ~

g 06 7T 4 8 06

% 0 L \\\ : s 3 //L ? 0

.—48 _0’6 7\\\ \/\// \/\// /'/\\ \’:>:/ | .—48 _0'6

= AN NG - =

- —1.2 : : : ‘ - —1.2

1 2 3 4)
time [s]
(a) Constant extrapolation (b) Coarse-grained interpolation

= 1.2 = 1.2

g 06 4 & 06

0 Az o

O /)

S —0.6 - S —06

C !

- —1.2 * * > 1.9 |

0 1 2 3 4 5 0 1 2 3 4 5

(¢) Fine-grained interpolation inside FMU (d) Fine-grained interpolation in MST

Fig. 8: Vertical and horizontal positions of the lower end of the single pendulum
model. Dashed lines are the exact reference solutions.

3.4 Thermodynamic connection

The presented industrial application consists of two connected FMUs for co-
simulation generated from one Modelica model. The two FMUs are connected
via a TLM element with a characteristic impedance of Z. = 700000 sPa/m3
and At = 0.24 ms. These transmission line settings stem from a pipe with an
approximate length of 0.1 m in which an ideal and incompressible gas flows.
The physical quantities not accounted for in the TLM connection, in this case
specific enthalpy and two phase water content, are passed in both directions
directly between the two FMUs as delayed signal connections.

FMU 1: Source FMU 2: Sink

Fig.9: Schematic description of industrial use-case. Two FMUs are connected
via a TLM element. The FMUs originate from one Modelica model that is
parametrized such that it can represent a source and a sink. The FMU is ex-
ported from the commercial Modelica-based modelling tool Dymola [6].

TLM-based Asynchronous Co-simulation with FMI 13

In fig. [0} the left-hand side FMU instantiation acts as a source generating an
oscillating mass flow to the second instantiation which acts as a sink. The FMU
sink and source specific characteristics are specified via input parameters. The
Modelica model in the application example is developed in the Modelica library
Modelica Fluid Light (MFL) [7]. MFL is particularly used for modelling of differ-
ent industry-grade aircraft cooling and aircraft coolant distribution systems such
as the aircraft vehicle systems simulator presented in [9]. The use-case in fig. [9]
is relevant as its FMU interface is principally equivalent to its more complex
counterparts. MFL is an in-house library developed by Saab where information
of mass flow, pressure, water content, and enthalpy are passed between resistive
and capacitive components. The application example comprises several different
differential and algebraic equations (DAEs). The resistive components, in this
example the pipes, describe the mass flow as a function of component pressure
drop by means of an algebraic equation. The capacitive components, in this case
the volumes, express the system dynamics by means of a first order differential
equation relating net mass flow to the pressure time derivative.

250 —r 250
£ 200 et & o
i~ 22,

S 150 1 10
Z 100 z 100
S 50 50
A O L L L I & O

0 1 2 3 4 0 1 2 3 4
time [s] time [s]

(a) Constant extrapolation (b) Coarse-grained interpolation

9250
£ 200
=
o 150
é 100
< 50 |-
& 0 . L L I
0 1 2 3 4 5
time [s]

(c) Fine-grained interpolation

Fig. 10: Pressure in the TLM connection of the thermodynamic model. Dashed
line is the Modelica simulation reference solution.

The composite model presented in fig. [J] is simulated using constant extrapola-
tion, coarse grained interpolation, and fine-grained interpolation inside the FMU.
The latter two are achieved by means of modifying the Modelica model prior

14 Robert Braun, Robert Hallgvist and Dag Fritzson

to FMU export. Two different adaptors are added to the Modelica model. The
adaptor presented in listing [I.5] receives information on wave variables from the
MST. These values are equally distributed in time across the macro step. An in-
terpolation table in the adaptor is populated at the start of each communication
step; the pressure input to the original model is then available at all necessary
internal times by means of linear interpolation. The adaptor presented in listing
listing receives information on wave variables and their corresponding time
derivatives from the master at the beginning of each communication step. The
composite model input pressure can then be estimated for any necessary inter-
nal times by means of the forward Euler method. Figure clearly visualizes
the advantage of having interpolated input information available as numerical
stability is maintained when using fine-grained interpolation. Coarse-grained in-
terpolation and constant extrapolation results in obvious stability issues. The
simulation is terminated prematurely as a result of the severe stability issues
resulting from constant extrapolation.

4 Conclusions

It is shown that fine-grained interpolation is required to achieve stable connec-
tions for all the presented composite models. Variables can either be interpolated
locally inside the FMU, or be handled by the master simulation tool. The first
method requires the FMU to be provied with the complete interpolation table.
This leads to a large amount of data exchange, which may reduce simulation
performance. Meanwhile, the second method would require a callback function
from where the slaves can request interpolated data from the master simulation
tool. Three possible improvements to the FMI standard that would facilitate
asynchronous data exchange have been identified:

— Improved support for exchanging interpolation tables
— Support for callback functions
— Support for one-step execution mode

Fine-grained interpolation would be facilitated by the first two suggestions. Sup-
port for simple exchange of interpolation tables would enable interpolation of
input variables inside an FMU. Callback functions on the other hand will pro-
vide the FMU with access to variables interpolated in the master simulation
tool. An advantage with a callback function is that it is not limited to pure in-
terpolation. In addition, it can include simple expressions, for example the TLM
boundary equations. Having the interpolation table in the MST also significantly
reduces the amount of data transfer compared to what is necessary if the tables
are located inside the FMU. On the other hand, adding support for exchanging
interpolation tables would constitute a far less comprehensive modification to
the current standard. Finally, one-step execution mode will enable more densely
populated interpolation tables and thereby improve accuracy in the interpolated
variables.

TLM-based Asynchronous Co-simulation with FMI 15

References

10.

11.

12.

13.

. Muhammad Usman Awais, Peter Palensky, Wolfgang Mueller, Edmund Widl, and

Atiyah Elsheikh. Distributed hybrid simulation using the HLA and the functional
mock-up interface. Industrial Electronics Society, IECON, pages 7564—-7569, 2013.
Jens Bastian, Christoph Clauf3, Susann Wolf, and Peter Schneider. Master for co-
simulation using FMI. In 8th International Modelica Conference, Dresden. Citeseer,
2011.

T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clau8}, H. Elmqvist, A. Jung-
hanns, J. Mauss, M. Monteiro, T. Neidhold, D. Neumerkel, H. Olsson, J.-V. Peetz,
and S. Wolf. The Functional Mockup Interface for tool independent exchange of
simulation models. In 8th International Modelica Conference 2011, Como, Italy,
September 2009.

Robert Braun, Liselott Ericsson, and Petter Krus. Full vehicle simulation of for-
warder with semi active suspension using co-simulation. In ASME/BATH 2015
Symposium on Fluid Power and Motion Control, October 2015.

Robert Braun and Petter Krus. Tool-independent distributed simulations using
transmission line elements and the Functional Mock-up Interface. In SIMS 54th
Conference, October 2013.

Dag Briick, Hilding Elmqvist, Sven Erik Mattsson, and Hans Olsson. Dymola for
multi-engineering modeling and simulation. In Proceedings of modelica, volume
2002, 2002.

Magnus Eek, Hampus Gavel, and Johan Olvander. Definition and implementa-
tion of a method for uncertainty aggregation in component-based system simula-
tion models. Journal of Verification, Validation and Uncertainty Quantification,
2(1):011006, 2017.

Atiyah Elsheikh, Muhammed Usman Awais, Edmund Widl, and Peter Palensky.
Modelica-enabled rapid prototyping of cyber-physical energy systems via the func-
tional mockup interface. In Modeling and Simulation of Cyber-Physical Energy
Systems (MSCPES), 2013 Workshop on, pages 1-6. IEEE, 2013.

Robert Hallgvist, Robert Braun, and Petter Krus. Early insights on fmi-based
co-simulation of aircraft vehicle systems. In The 15th Scandinavian International
Conference on Fluid Power.

Alan C Hindmarsh, Peter N Brown, Keith E Grant, Steven L Lee, Radu Serban,
Dan E Shumaker, and Carol S Woodward. SUNDIALS: Suite of nonlinear and dif-
ferential /algebraic equation solvers. ACM Transactions on Mathematical Software
(TOMS), 31(3):363-396, 2005.

P Krus. Robust system modelling using bi-lateral delay lines. In Proceedings of
the 2 Conference on Modeling and Simulation for Safety and Security, Linkdping,
Sweden, 2005.

Himanshu Neema, Jesse Gohl, Zsolt Lattmann, Janos Sztipanovits, Gabor Kar-
sai, Sandeep Neema, Ted Bapty, John Batteh, Hubertus Tummescheit, and Chan-
draseka Sureshkumar. Model-based integration platform for fmi co-simulation and
heterogeneous simulations of cyber-physical systems. In Proceedings of the 10 th
International Modelica Conference; March 10-12; 2014; Lund; Sweden, pages 235—
245. Linkoping University Electronic Press, 2014.

Tom Schierz, Martin Arnold, and Christoph Clauf}. Co-simulation with commu-
nication step size control in an FMI compatible master algorithm. In 9th Int.
Modelica Conf., Munich, Germany, pages 205-214, 2012.

16 Robert Braun, Robert Hallqvist and Dag Fritzson

14. Alexander Siemers, Dag Fritzson, and Iakov Nakhimovski. General meta-model
based co-simulations applied to mechanical systems. Simulation Modelling Practice
And Theory, 17(4):612-624, 2009.

	TLM-based Asynchronous Co-simulation with the Functional Mockup Interface

