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1 Introduction

The use of virtual prototyping methods in product development has become an indispensable
tool to manage the complexity of competitive modern products and industrial processes. Mod-
eling the dynamic behaviour of such products and processes often requires considering sys-
tems that are composed of physical subsystems (from different physical domains) together
with computing and networking. These kinds of systems are nowadays often termed Cyber-
Physical Systems (CPS). In general these products critically rely on software to provide their
functionality. However, the development and validation of such software functions is tightly
interleaved with the behavior of the interacting physical systems. Hence, it is no longer suffi-
cient to develop self-contained software components without adequately accounting for more
global system interactions.

The Modelica language, [ ], allows to integrate discrete-time dynamics (embedded control
software) and continuous-time dynamics (process behaviour). However, a frequent problem
in larger industrial projects is that although component level models are available, it is a big
hurdle to integrate them in larger system simulations. This is because different development
groups and disciplines, e.g., electrical, mechanical, hydraulic, software, efc., often use, and are
required to do so, their own approach and tools for modeling and simulation.

To improve interoperability of behavioral models the MODELISAR project’ (initiated by the
Daimler AG) developed the Functional Mock-up Interface (FMI) as a standardized exchange
format for behavioral models. Figure 1 illustrates the basic concept: Model components are
exported as Functional Mock-up Units (FMUs) from their respective discipline specific tool,
another simulator tool can import the FMUs and integrate them into a Functional Mock-up
using a suitable master algorithm for coupling the individual units. In October 2014 an im-
proved version (FMI v2.0) was released to the public [ ]. The FMI technology ex-
perienced a formidable market uptake and is nowadays supported by more than 100 tools
(https://www.fmi-standard.org/), among them OpenModelica.
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Figure 1: Model integration using FMI (source: https://www.fmi-standard.org/).

The motivation behind FMI is easily understood, however, coupling different simulator codes
is a major challenge and an active research area. Modular simulation of a global system by

“MODELISAR consortium, MODELISAR - From System Modeling to S/W running on the Vehicle, ITEA 2
Office, Jul 2008 — Dec 2011, https://itea3.org/project/modelisar.html.
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coupling different simulator codes may easily result in an unstable integration or may require
proceeding in prohibitive small time steps [ ]. Successful co-simulation needs

(a) a suitable module interface (this is what FMI standardizes) and
(b) a suitable master algorithm for coupling the modules (not standardized in FMI).

In previous work, Transmission Line Modeling (TLM) was integrated as one possible approach
to co-simulation in OpenModelica [ ], and also considered as one approach to gain speed-
up by simulation parallelization during the RTSIM project [ ] (however, this was not
based on FMI). OMSimulator now integrates both TLM and FMI into the same framework,
enabling parallelization using TLM.

Difficulties arise if discrete-time models (e.g., control software) are included within a co-
simulation setup (hybrid co-simulation). The latest FMI v2.0 standard was shown to be not
fully satisfactory for hybrid co-simulation. Different proposals to amend the found deficiencies
are discussed, e.g., [ , , , ].

Already at its early conception the FMI standard was also intended to be usable on real-time
embedded systems [ ]. Such FMUs typically have additional requirements (e.g., memory
efficiency, real-time constraints, cross-compilation) compared to standard FMUs, but they can
share the same interface which allows a smoothly integrated development process for cyber-
physical systems. Despite that, it appears the practical use of FMUs on embedded systems
remained limited (with notable exceptions where the embedded target system is rather a PC
than a severely constrained microcontroller, e.g., [ ]). This can be partly attributed
to missing appropriate tooling support as well as on limitations in the standard with respect to
typical requirements for more resource-constrained embedded systems, which has been investi-
gated in [ ]. Nevertheless, the interest in leveraging the standard for such applications
remained active which is particularly evident by the recently started ITEA3 project EMPH-
YSIS'? (budget: 14 M€) which major goal is to develop an extension to the FMI standard with
the working name FMI for embedded systems (eFMI) which addresses the aforementioned
needs.

There is not yet a generally accepted solution to the problem of hybrid co-simulation of FMUs
needed for many industrial real-time applications, and suitable methods need to be devised.
Furthermore, those algorithms need to be adapted to support real-time and distributed simu-
lation scenarios. Moreover, compilation and simulation methods need to be improved using
parallelization to generate code which fulfils tighter real-time deadlines. This report describes
an approach for co-simulation interoperability of discrete-time (real-time) control applications
and physical plant models based on the OpenModelica environment and the FMI standard. This
approach can also be used for non real-time applications.

2 FMI for Co-Simulation

The FMI v2.0 standard defines two interfaces [ , p- 4l

(a) FMI for Model Exchange (FMI-ME): The intention is that a modeling environment can
generate C code of a dynamic system model that can be utilized by other modeling and

IOEMPHYSIS consortium, EMPHYSIS - Embedded systems with physical models in the production code soft-
ware, ITEA 3 Office, Sep 2017 — Aug 2020, https://itea3.org/project/emphysis.html.
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simulation environments.

(b) FMI for Co-Simulation (FMI-CS): The intention is to provide an interface standard for
coupling of simulation tools in a co-simulation environment.

The two interfaces share common parts and concepts, in particular:

* FMI C-application programming interface (API): All computations are evaluated by call-
ing standardized C-functions.

* FMI Extensible Markup Language (XML) description schema: The schema describes the
structure and content of an XML file (named modelDescription.xml) generated by the
modeling environment which exports an FMU. This modelDescription.xml file contains
the definition of all variables and other structural information of an FMU in a standard-
ized form.

* The FMU is delivered as one zip file which contains the XML description file, the code
that provides the C-API either in binary form (shared library, Dynamic Link Library
(DLL)) or as source code, as well as potential additional resources like tables, model
icon, or documentation.

Basically, FMI-ME differs from FMI-CS in that it requires that the importing tool provides
a numerical solver for simulating the FMU. These solvers require vectors for states, deriva-
tives and zero-crossing functions which are exposed by the FMI-ME API. In contrast, FMI-CS
does not require the importing tool to provide numerical solvers. Instead, if the FMU requires
solvers, they are embedded within the FMI-CS and the related information is not exposed by
the FMI-CS API.

This work is concerned with co-simulation aspects, thus the following discussion is based on
FMI-CS rather than FMI-ME.

2.1 Overview

A schematic view of an FMU is shown in Figure 2.

fo, p, inital values (a subset of v(zg)) | v A
Enclosing Model +

t time
p parameters of type Real, Integer, Boolean, String
u inputs of type Real, Integer, Boolean, String

U 51 v oall exposed variables y_>
y outputs of type Real, Integer, Boolean, String

FMU Instance

Figure 2: Data flow between the environment and an FMU. Red arrows: Values provided 7o the
FMU; Blue arrows: Values provided by the FMU.

The FMI defines setter (fmi2SetXXX (..)) and getter (fmi2GetXXX (..)) functions
for setting and getting values from an FMU where XXX denotes the data type and is either

OPENCPS, ITEA3 Project no. 14018 Page 7 of 25
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Real, Integer, Boolean, or String. Initialization must be done within a dedicated
initialization mode. After leaving the initialization mode, time is progressed within the FMU
by calling the function fmi2DoStep (. .) which has as one of its arguments the desired time
step size.

For illustration consider the simple scenario in Figure 3 in which two FMUs are connected
in a loop. In FMI-CS terminology these two FMUs are called slaves. Each FMU has one
continuous real input and one continuous real output. Further, it is assumed that there is no
algebraic dependency between input and output of each FMU. Note that OMSimulator can
handle algebraic loops and will also use the dependencies inside the model description to detect
false loops. However, the parallel execution algorithms do not support algebraic loops yet.

u
1 c1 Y1

2
y2 uz

Figure 3: Connection graph of the FMUs.

The FMI specification provides a pseudo C-code example for the scenario from above (see
[ , Section 4.2.5]). The code demonstrates the most basic (simplest) master algorithm
which after initialization simply periodically invokes the fmi2doStep (..) function using
a constant communication step size (without allowing repetition of any communication steps).
For convenience this pseudo C-code example is reproduced in Listing 1.

Listing 1: Pseudo C-code example for a basic master algorithm (source: FMI v2.0 specifica-
tion).
SIS S

//Initialization sub-phase

//Set callback functions,
fmi2CallbackFunctions cbf;

cbf.logger = loggerFunction; //logger function
cbf.allocateMemory = calloc;

cbf.freeMemory = free;
cbf.stepFinished = NULL; //synchronous execution
cbf.componentEnvironment = NULL;

//Instantiate both slaves

fmi2Component cl = cl_fmi2Instantiate ("Tooll" , fmi2CoSimulation,
GUID1, "", fmi2False, fmi2False, &cbf, fmi2True);
fmi2Component c2 = c2_fmi2Instantiate ("Tool2" , fmi2CoSimulation,

GUID2, "", fmi2False, fmi2False, &cbf, fmi2True);

if ((cl == NULL) || (c2 == NULL)) return FAILURE;

OPENCPS, ITEA3 Project no. 14018 Page 8 of 25
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// Start and stop time
startTime = 0;
stopTime = 10;

//communication step size
h = 0.01;

// set all variable start values (of "ScalarVariable / <type> /

start")
cl_fmi2SetReal/Integer/Boolean/String(cl, ...);
c2_fmi2SetReal/Integer/Boolean/String(c2, ...);

//Initialize slaves
cl_fmi2SetupExperiment (cl, fmi2False, 0.0, startTime,
stopTime) ;
c2_fmi2SetupExperiment (cl, fmi2False, 0.0, startTime,
stopTime) ;
cl_fmi2EnterInitializationMode (cl);
c2_fmi2EnterInitializationMode (c2);
// set the input values at time = startTime
cl_fmi2SetReal/Integer/Boolean/String(cl, ...);
c2_fmi2SetReal/Integer/Boolean/String(c2, ...);
cl_fmi2ExitInitializationMode (cl);
c2_fmi2ExitInitializationMode (c2);

SIS S
//Simulation sub-phase

tc = startTime; //Current master time

while ((tc < stopTime) && (status == fmi20K)) {
//retrieve outputs
cl_fmi2GetReal(cl, ..., 1, &yl);
c2_fmi2GetReal (c2, ..., 1, &y2);
//set inputs
cl_fmi2SetReal(cl, ..., 1, &y2);
c2_fmi2SetReal (c2, ..., 1, &yl);

//call slave cl and check status
status = cl_fmi2DoStep(cl, tc, h, fmi2True);
switch (status) {

case fmi2Discard:

fmi2True,

fmi2True,

fmi2GetBooleanStatus (cl, fmi2Terminated, &boolVal);

if (boolvVal == fmi2True)

printf ("Slave cl wants to terminate simulation.’

case fmi2Error:
case fmi2Fatal:
terminateSimulation = true;
break;
}

if (terminateSimulation)

OPENCPS, ITEA3 Project no. 14018
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break;

//call slave c2 and check status as above
status = c2_fmi2DoStep(c2, tc, h, fmi2True);

//increment master time
tc += h;
}
SIS S S S
//Shutdown sub-phase
if ((status !'= fmi2Error) && (status !'= fmi2Fatal)) {
cl_fmi2Terminate (cl);
c2_fmi2Terminate (c2);

}

if (status != fmi2Fatal) {
cl_fmi2FreelInstance (cl);
c2_fmi2Freelnstance (c2);

}

Listing 1 should provide a rather intuitive grasp of how an FMI-CS based co-simulation works
and thus provide enough background for moving to the formalization in the following section.
Details about the used API functions and data structures can be found in the specification
document.

2.2 Formalized Notation

The formalized notation in this section is based on the proposal by Broman et al. [ ].
The formalization facilitates focusing on the principles of the FMI-CS by introducing a higher
level of abstraction and a more succinct notation.

Table 1 defines a more succinct notation for FMI-CS. Notice that the doStep,. function extends
the FMI-CS standard by allowing communication step sizes of &, = 0, while the standard re-
quires i, ' > 0. This extension is part of the proposal described in [ ] and allows updat-
ing the state of FMU instances without advancing physical time, enabling a superdense model
of time (which is needed for supporting consecutive chains of events at the same continuous-
time instant ¢;).

3 Deterministic Composition of Hybrid Co-Simulations

A rollback master algorithm for deterministic composition of hybrid co-simulations was first
described by Broman et al. [ , Algorithm 2]. The advantage of that algorithm is that it is
rather simple and only requires minimal extensions to FMI-CS v2.0. The required extension is
to allow communication time steps of value zero (h > 0) for enabling a superdense time model
in which a consecutive chain of events can be handled without progressing the simulation time.
Furthermore, the rollback strategy requires all participating FMUs to support state serialization
which is an optional feature in FMI v2.0 (capability flag canGetAndSetFMUstate must
be true). One disadvantage of that algorithm is that the rollback mechanism is computationally

OPENCPS, ITEA3 Project no. 14018 Page 10 of 25
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Table 1: Formalized notation for FMI-CS.

\% Set of values that a variable may take on (ignoring typing issues).
Set of FMU instances in a model.

ceC FMU instance identifier.

Se¢ Set of (all possible) state valuations for instance c. Further, let

sc € S. denote the current state valuation for instance c.

U, Set of input port variables for instance c.
Y, Set of output port variables for instance c.
D.CU.xY, I/O dependencies for instance c. (u,y) € D, means that output y
of ¢ is directly dependent on input u of c.
s= U s Current state of all FMU instances.
ceC
U= U U, Set of all input variables in a model.
ceC
Y=yr Set of all output variables in a model.
ceC
D= U D, Set of all I/O dependencies.
ceC
X=UUY Set of all input and output variables in the model.
Cx Denotes the (unique) FMU instance ¢ € C to which x € X belongs.
P:U—=Y Port mapping. Maps every input variable u € U to exactly one
(unique) connected output variable y € Y.
set.: S, xU.xV — S, Given (s¢,u,v) € (S¢,U,V) return updated state s’. € S,.. Formally,

the updated state s’. = s[u := ] is identical to s., except that s/. as-
signs value v to variable u. Corresponds to fmi2Set XXX (..).

get.:S.xY. —»V Given (s¢,y) € (S.,Y) return value v € V of output variable y.
Corresponds to fmi2Get XXX (. .).

doStep, : S. x R>9g — S. xR>9 Given  (s.,h) € (S;,Rxp), where  h  corresponds
to the communicationStepSize argument  of
fmi2DoStep (. .), return (s., /') € (S;,R>0) and 0 < /' < h.
Notice that this is an extension to the FMI-CS standard, because
the standard requires h,h’ > 0. This formalization allows
h,h' > 0, enabling a superdense time model.

expensive and exporting FMUSs with the required rollback capability can be a difficult task (if
even possible) for simulation tool vendors.

In order to mitigate the disadvantages of the basic rollback master algorithm, Broman et al. pro-
pose an extension [ , Algorithm 3], which supports a more efficient execution scheme
and allows to integrate (at most) one “legacy FMU” (i.e., an FMU without the extensions dis-
cussed above) into the co-simulation environment. However, this algorithm requires to extend
the FMI-CS v2.0 API with an additional function to retrieve the maximum step size an FMU can
accept, before doing the step. Follow-up research related to this publication proposes further
improvements, e.g., by arguing for a superdense model of time using integers [ ].

The problem of hybrid co-simulation based on FMI-CS v2.0 was also investigated by Tavella
et al. [ ], who proposed a different extension with a focus on computational perfor-
mance and parallel execution of FMUs. Furthermore, there is ongoing work within in the
FMI group discussing improved support of hybrid systems for future versions of the FMI-CS
standard.

OPENCPS, ITEA3 Project no. 14018 Page 11 of 25
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The following sections will briefly present a basic rollback master algorithm based on [
Algorithm 2].

3.1 Scheduling the Access to Input and Output Ports

The port variable dependencies for the system of connected FMUs is given by the set of I/O
dependencies D in combination with the port mapping P.

For illustration consider the simple connection graph from Figure 3 and assume that there is
a direct dependency between u; and y;, but not between u; and y,, hence D = {(u;,y;)} and
P ={(u; — y2),(up — y1)}. Figure 4 depicts the resulting dependency graph from which the
valid schedule for accessing the ports is given by its topological ordering. That ordering can be
directly read from the pictorial view of this graph as the sequence (y2,u1,y1,u2).

()—Cn)
()

Figure 4: Dependency graph for Figure 3 assuming D = {(uy,y1)}.

Definition 1 (Port Dependency Graph). The port dependency graph G = (V,E) is a directed
graph, where the vertices V are represented by the port variables X and the edges E are repre-
sented by (directed) variable dependencies (v,v2) € X x X, meaning that v, is directly depen-
dent on v;. The set of all edges E is then constructed by E = DU {(y,u)|u € U AP(u) = y}.

A topological ordering of G is possible if and only if the graph has no directed cycles, that is, if
it is a directed acyclic graph (DAG). In this case Algorithm 1 returns a valid ordered sequence
X in which the port variables X can be accessed (in general there exists more than one valid
ordering).

Algorithm 1 Order-Variables

Require: Port dependency graph G is a DAG
Ensure: Returns X, which is an ordered sequence of valid variable accesses
1: ¥ := TOPOLOGICAL-SORT(G) > Algorithms are known for constructing a topological
ordering of any DAG in linear time

As a final remark on the port dependency graph it should be noted that the graph used in the
initialization phase may differ from the graph used during the simulation phase. The following
discussion assumes a successful initialization phase and is only concerned with the simulation
phase.

3.2 Rollback Master Algorithm

This section briefly presents the rollback master algorithm by Broman et al. | , Algo-
rithm 2].

OPENCPS, ITEA3 Project no. 14018 Page 12 of 25
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The basic rollback master algorithm for deterministic composition of hybrid co-Simulations
requires that the port dependency graph is acyclic (i.e., no support of algebraic loops between
FMU instances). In this case Algorithm 1 yields an ordered sequence of port variables X, which
is required as input to the MASTER-STEP function which is reproduced in Algorithm 2.

Algorithm 2 Master-Step

1: function MASTER-STEP(C, X, P, iy, S) > C is the set of FMU
instances, X is an ordered sequence of valid variables accesses (from Algorithm 1), P is the
port mapping, 4, the proposed time step, and s the current state of the FMUs

2: for all u € ¥ (in order) where u € U do > Set value for all input variables
3: y:=P(u)

4: v:=get, (sc,,y)

5: Se, i= Sete, (Sc, U, Y)

6: ri=s > Save the states of all FMUs to enable rollback
7: h = hyax > Set communication step size to an initial default value
8: for all c € Cdo > Find h acceptable by all FMUs
9: (s',1') := doStep,(s¢, hmax)
10: h:=min(h,)
11: sei=s
12: if h < hy,,, then > roll back and perform step &
13: for all c € Cdo
14: (s’ 1) := doStep,_(rc, h)
15: Se =45

16: return s,2 > s is the updated state of the FMUs, £ is the actually achieved time step

Properties of Algorithm 2 like determinism or progress are explored in detail in [ ].

4 Parallel simulation

There are many cases where simulation applications need to interact with their environment.
Typical examples are Hardware-in-the-Loop (HIL), Human-in-the-Loop (HITL) or Software-
in-the-Loop (SIL) simulators. In case of real-time this imposes real-time constraints on the
simulation, meaning that the simulation always must meet its timing deadlines. Typically, in-
puts and outputs of a real-time simulation need to be processed at regular intervals. The time
duration of such an interval is called the simulation frame time. The worst case computation
time needs to be less than the simulation frame time. For FMI-CS the regular simulation frame
can be straightforwardly mapped to executing the doStep(..) function using a constant com-
munication step size. For non real-time applications these constraints are not necessary.

4.1 Overview

The goal of parallel (real-time) simulation is to leverage multiple CPU cores in order to im-
prove simulation performance. Further performance gains may be achieved if the different
FMUs are executed using different rates which fit their dynamic properties, hence, FMUs with
slower dynamics at lower rates, and FMUs with faster dynamics at higher rates. This tech-
nique is termed multiframing or multi-rate integration. In previous work Thiele et al. have

OPENCPS, ITEA3 Project no. 14018 Page 13 of 25
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investigated multi-rate and multi-method simulation within the clocked synchronous modeling
framework provided by the Modelica language [ ]. The following paragraph reproduces
typical execution schemes.

For real-time simulation the sequence in which the computation of fast and slow frames are
interspersed is important. Ledin [ ] describes three typical execution schemes. The timing
diagram in Figure 5 shows that execution schemes by means of an example where the ratio of
the slow and the fast step size, k, is k = 3. The three schemes are described briefly below:

1. Multiframing in a single task with no fast-frame real-time /0. The slow frame rate is
treated as a “master” frame rate in which the slow frame is executed first, followed by
a burst of the k fast frames. This scheme is only acceptable if the fast frames do not
perform any real-time 1/O.

2. Multiframing in a single task with fast-frame real-time I/0. The fast frames are executed
at fixed intervals of iy length. The computations needed in the slow frame are split
into several subframes which are interspersed after the fast frame calculations. However,
splitting the slow frame into several suitable subframes is rarely a simple thing to do.
This is a serious drawback of this method.

3. Multiframing in a multitasking environment with rate monotonic scheduling (RMS). In
this case the scheduler will give CPU access to the task with the higher priority (compu-
tation of fast frames) and interrupt the lower priority task (computation of slow frames)
until the higher priority task has finished its computations. During the times in which
the higher priority task is idle, the CPU access is given back to the lower priority task to
resume its computations. No (manual) splitting into subframes is needed which is a huge
advantage compared to the previous method.

Single task with no fast-frame I/O
« hy

Slow R ool Running
Frame | Idle
Fast : e Running
Frame | B | | \— Idle

In In+1

Single task with fast frame I/O
« hs
Slow _—[——I—_l——l : ,———I : Running
Frame . . . . 5 . . . . . Idle
« hy :I
Fast ____I . ! . . |,__| . . . |—__| . . . Running
Frame ) ) L Idle

In . . . . Int1
Multitasking environment with RMS

« hy

Slow | : | | R Running
Frame . . . . 5 . . . Idle

< hf :I
Fast . ! . . . . . . . . . Running
Frame ) ) - Idle

ty Time — Int1

Figure 5: Three different multiframing schemes for real-time simulation.
From the basic multiframing schemes, the third one, based on RMS, will be investigated closer
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in the context of FMI-CS.

It may be noteworthy that more complex schemes for targeting real-time multi-core systems
exist which are rather closely related to Modelica’s clocked synchronous language extension.
Adapting such a conceptual framework as advocated by Forget et al. [ ] could allow
for a very flexible and powerful composition of FMI-CS based real-time simulations. How-
ever, it would also add considerable complexities, possible requiring a dedicated architecture
composition language. Therefore, such an extension is considered as out of the scope of this
work.

4.2 Multi-Rate Master Algorithm

This section presents a single-thread multi-rate master algorithm. It introduces a concept of
communication channels between input and output ports. Section 4.3 extends those algorithms
to parallel versions. Table 2 extends the notation from Table 1 with notations for clocks and
channels.

Table 2: Clock and communication channel notation (extends Table 1).

heRx> Time interval in seconds.

he € R>g Time interval (communication step size) for FMU instance ¢ in
seconds.

A Set of (all possible) state valuations of a periodic clock. The pe-
riodicity of a clock is given by a time interval 4. A clock starts
(first clock tick) at the begin of the simulation.

tick,: A - A Progress clock a € A one tick from the current time instance ¢; to
the next time instant ¢, | =t; + h.

a. €A Clock with interval 4, for FMU instance c.

Opase € A The base clock of the model with interval sipase € R>g. It is re-

QO = Olpase U U (07
ceC

_=_:AXA—>B

quired that all clocks ¢, in a model are integer multiples of its
base clock (i.e., h. = k- hpase, k € N).
Current state valuation of all clocks in a model.

The comparison operator “="" checks if two clocks synchronize,
i.e., both clocks are active (tick) at this instant.

0 Set of all possible channel states.

qeQ Current state of channels.

Qu Denotes the current state of the channel between input u# € U and
output y € Y (notice that any input has exactly one corresponding
output).

M:Y—Q Channel mapping. Maps every output y € Y to n connected com-

munication channels g,,, i =1,2,---n.

write : O x U xV — Q Write value v € V to channel g,, u € U.

read: O xU — O xV  Reconstruct a value v € V from channel g, u € U from a number
of m > 1 values that are stored in the channel (using extrapolation
or interpolation techniques).

A channel is an object which holds data and provides functions for updating the channel and
retrieving information. In particular, it may hold m > 1 values inserted by the write(..) function
and use extrapolation or interpolation techniques for reconstructing a value v(t;) € V at sim-
ulation time instant #; as an approximation to the continuous-time simulation value v(t;) € V
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at that instant (the simulation value may not be available at the (real-time) communication in-
stant when it is needed). Figure 6 illustrates that each channel g,, may hold several values and
may use different reconstruction strategies (e.g., g,, returns the mean of its stored values, g,
only holds one value which it returns, g,, stores two values but only returns the second value).

Vi V2 141 141 Va | ... Uy — v
up — U322 up vy | uz— v
qu, qu, Qus qu,

Figure 6: Illustration of the communication channel concept. Each channel g, may hold several
values and may use different reconstruction strategies.

Algorithm 3 uses these new concepts. The concrete semantics depend on the semantics given
to the communication channels.

Algorithm 3 Multirate-Step
1: function MULTIRATE-STEP(C, X, s, o, q, M) > C is the set of
FMU instances, X is an ordered sequence of valid variables accesses (from Algorithm 1), s
the current state of the FMUs, o the current state of clocks, g the current channel state, M

is the channel mapping.

2: for all {x € ¥ | 0t;, = Olpase} do

3: if x € Y then

4: v:= get. (sc,,x)

5: for all ¢, € M(x) do

6: qu = write(g,,v) > Write value for output x to channel g,
7: else if x € U then

8: (gx,v) :=read(gy) > Read value of output y from channel
9: Se, := sete (8¢, X, V)
10: for all {c € C | o, = Otpase} do
11: h. = interval (o)
12: (sc,h.) := doStep,(sc, hc)
13: assert(h. = h.)
14: o, := tick(a)
15: Opase = tick(Qpase)
16: return s,,q > s updated state of the FMUs, o updated clocks, g updated channels

4.3 Parallel Multi-Rate Master Algorithm

In a next step Algorithm 3 and the communication channel concept from Section 4.2 will be
extended for allowing parallel execution of the co-simulation.

First, an extension of the channel concept is needed.
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Definition 2 (Channel). A channel Q, = (r,k,n,my, m.,v) connects an output y € ¥ with an
input u € U. The set of all possible channel states is denoted by Q. There are three rate
transition cases r that are discriminated:

fastToSlow The clock of output y is faster than that of input u,
r = 4 slowToFast The clock of output y is slower than that of input u,

same The clocks of y and u run at the same rate.

Since any input u is connected to exactly one output y a channel instance g, can be uniquely
identified by its connected input u € U. The remaining elements in the tuple Q,, are:

k € N 1is the activation ratio, defined as
k — AOCslow
AO‘fast
where Aoow 1S the interval of the slow clock and Aoy, is the interval of the fast clock.
Only integer ratios are supported.

n € Ny A counter with the property n < k.

my, € {locked,unlocked} isa mutex supporting operations lock(..) (locks the mutex, blocks
if the mutex is not available) and unlock(..) (unlocks the mutex).

m, € {locked,unlocked} is a mutex, same as above.
v € V/ storage place for j values. For the algorithms described below j = 1.

Two functions, write(..) and read(..), need to be defined for interacting with channels. They
are defined in Algorithm 4.

Algorithm 5 sets up the necessary channels before spawning one task for each FMU instance in
line 14. The scheduler can use a rate monotonic scheduling (RMS) algorithm with the task pri-
orities being picked, so that tasks with faster clocks have a higher priority. For avoiding priority
inversion problems the RMS algorithm should further have support for priority inheritance.
Notice that only integer ratios k € N between fast and slow clocked FMUs are supported

Finally, Algorithm 6 describes the periodic task which is executed for each FMU instance.
Line 15 denotes the synchronization with the real-time clock.

4.4 Implementation

Three master algorithm variants of the communication channel based approach to parallel
multi-rate co-simulation have been implemented as an experimental extension to the OMSim-
ulator'! tool. The OMSimulator is an FMI-based co-simulation environment developed by
OpenCPS partners: LiU and SICSEast under the umbrella of the OpenModelica project and
the Open Source Modelica Consortium (OSMC).

OMSimulator is internally implemented in C++ and exposes a pure C API which facilitates
developing high-level interfaces to popular scripting languages. At present there are interfaces
to the Lua and the Python scripting languages.

The master algorithm can be set by calls to the function oms2_setMasterAlgorithm(..).
The implemented channel based master algorithm variants are

'OMSimulator Github repository, https:/github.com/OpenModelica/OMSimulator.
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* pmrchannelm: This variant uses mutexes for synchronization. It is an implementation
of the algorithm outlined in Section 4.3.

* pmrchannela: This variant use atomic variables for synchronization. The algorithm
is described in Appendix A.

* pmrchannelcv: A variant which uses C++ condition variables for synchronization.
The algorithm is not described in this document.

The implementation is still experimental and the API is likely to change.

First experiments have been made using a basic dual-mass oscillator example model which was
split into two FMUs. For that example a significant speed-up (~1.5x, see table 3) could be ob-
served for the pmrchannela variant, but not for the pmrchannelm and pmrchannelcv
variant. It is expected that the observed speed-up will depend strongly on the ratio of the com-
putational effort within an FMU and the communication/synchronization overhead introduced
due to the parallelization. Therefore, suitable benchmark models need to be developed in fu-
ture work in order to gain meaningful insight about potential performance gains for practically
relevant use-cases.

Runs standard (s) pmrchannela (s) pmrchannelcv (s) pmrchannelm (s) pctpl (s)‘

1 9.174 5.733 12.217 11.374 19.500
2 9.163 5.858 12.138 11.663 19.801
3 9.124 6.539 12.142 11.425 19.894

Table 3: Benchmark of parallel execution for test DualMassOscillatorEq_cs_oms?2.lua, stop-
Time at 5s. Computer: Intel(R) Core(TM) 17-4702MQ CPU at 2.20GHz (4 cores), 16Gb RAM,
Ubuntu 16.04 LTS.

5 Conclusion

This report describes several master algorithms for co-simulation based on the FMI standard.
In particular it presents a channel based communication concept for realizing algorithms that
support parallel and/or multi-rate co-simulation schemes. It further discusses constraints under
which real-time co-simulation can be supported by the presented master algorithms. Several
variants of the channel based master algorithm have been implemented in C++11 as an experi-
mental feature of the OMSimulator tool. They differ in the technical solution which was used
for synchronizing the communication: Mutexes, atomic variables, or condition variables. First
experiments with a basic dual-mass oscillator example model which was split into two FMUs
only showed performance speed-up for the variant using atomic variables. However, more thor-
ough experiments with realistic real-world models need to be conducted in future work to gain
meaningful insight about potential performance gains. This work will be part of the 4-months
limited project extension.
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D5.6 - Parallel FMU Execution

Algorithm 4 Write and read

1:
2
3
4.
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:

17:

function WRITE(g, v)

qm, = lock(qm,)
if g, = fastToSlow then
qy =V
qn ' =¢qn+1
if g, = q; then
Gm, = unlock(gm_ )
else
dm,, := unlock(gm, )
else if g, = slowToFast then
qy =V
qn:=0
Gm, ‘= unlock(gm, )
else
qv =V
Gm, = unlock(gn, )
return g

18: function READ(q)

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

34

Gm, = lock(gm,)
if g, = fastToSlow then
Vi=gqy
qn:=0
G, := unlock(gm, )
else if g, = slowToFast then
Vi=gqy
gn ' =qn+1
if g, = q; then
qm,, := unlock(gm, )
else
Gm, ‘= unlock(gm, )

else

Vi=4qy

G, := unlock(gm, )
return g, v

> g € Q, is a channel instance, v € V a value

> g € Q, is a channel instance
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Algorithm 5 Spawn-Tasks

Require: Global model initialization done.
Require: All FMU instances have a task priority s, for RMS assigned, faster clocks have a
higher priority

1: function SPAWN-TASKS(C, X, P, s, o, q)
2 for all u € x (in order) where u € U do
3 y:=P(u)
: i Aoy
4. if Ad, < 1 then
5: r:=fastToSlow
— Agy
6 k -_A Aay
7: else if Ag—" > 1 then
r:=slowToFast
ko= Aay
: T Aoy,
10: else
11: r:= same
12 k:=1
13: assert(k € N)
14: qu = (r,k,0,unlocked,locked, tinitia]) > Uinitial 1S the value from the initialization
15: for allc € C do
16: spawn(TASK-INSTANCESCp (¢, %, P,s¢, 0, q,M)> Spawn task with RMS priority s,

for real-time task scheduling

Algorithm 6 Task-Instance

1: function TASK-INSTANCE(c, X, P, s., Qc,q,M) >
c is the FMU instance identifier, X is an ordered sequence of valid variables accesses (from
Algorithm 1), P is the port mapping, s. the current state of the FMU, ¢, the current state
of the clock, ¢ the current state of communication buffers, M is the buffer mapping.

2: loop

3: forall {xcx|xecX.}do

4: if x €Y then

5: v:=get, (sc,,X)

6: for all g, € M(x) do

7: qu := WRITE(qy, V) > Potentially blocking
8: else if x € U then

9: (gx,v) := READ(qy) > Potentially blocking
10: Se, i=sete (8¢, x,v)
11: h. = interval (o)
12: (s¢,h.) := doStep, (s, h.)
13: assert(/. = h,)
14: o, = tick(a) > Progress clock for instance ¢
15: wait(a, = rtclk) > Synchronize clock for instance ¢ with real-time
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A Parallel Multi-Rate Master Algorithm using Atomic Op-
erations

This sections presents an alternative multi-rate master algorithm which uses atomic operations
instead of the mutex based approach from Section 4.3. First performance tests comparing
the mutex based implementation with the atomic operations based implementation suggest a
significantly better performance for the atomic operations based approach. However, the mutex
based approach allows to avoid priority inversion problems by using a standard RMS algorithm
with priority inheritance support which is important in a multi-rate real-time context (the “fast
frames” need to be executed with a higher priority as the “slow frames” and if a “slow” task
blocks a resource needed by a “fast” task, the priority of the “slow” task needs to be raised, see
also Section 4.1). Hence, the decision to present the mutex based algorithm more prominently
in the main part of the document.

In case all FMUs are executed with the same rate the priority inversion problem does not exist
and the performance of the atomic operations based algorithm is likely to be better. The channel
definition from Definition 2 (page 17) needs to be slightly adapted.

Definition 3 (AtomicOpsChannel). A channel Q, = (r,k,n,p,v) connects an output y € Y with
an input u € U. The set of all possible channel states is denoted by Q. There are three rate
transition cases r that are discriminated:

fastToSlow The clock of output y is faster than that of input u,
r = { slowToFast The clock of output y is slower than that of input u,

same The clocks of y and u run at the same rate.

Since any input u is connected to exactly one output y a channel instance g, can be uniquely
identified by its connected input # € U. The remaining elements in the tuple Q,, are:

k € N is the activation ratio, defined as
k — Al1ow

Al
where Aoow 18 the interval of the slow clock and Ao, is the interval of the fast clock.
Only integer ratios are supported.

n € No A counter with the property n < k.

p € B is aflag (B = {false,true}). It is an atomic object, meaning that if one task writes to
it while another task reads from it, the behavior is well-defined.

v € V/ storage place for j values. For the algorithms described below j = 1.

Two functions, write(..) and read(..), need to be defined for interacting with channels. These
functions provide semantic variation points, since different definitions of these functions allow
different communication semantics.

Algorithm 7 provides basic definitions for the functions write(..) and read(..) in which v € V.
These definitions are sufficient for the parallel multi-rate master algorithm developed in this
section.

Algorithm 8 sets up the necessary channels before spawning one task for each FMU instance
in line 14. Notice that the third argument “k — 17 is only relevant if r = fastToSlow, where it
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D5.6 - Parallel FMU Execution

Algorithm 7 Write and read (atomic operations variant)

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:

15:

function WRITE(gq, v)

while g, do
yield()
if g, = fastToSlow then
qy =V
Gn:=qn+1
dp ‘= qn = 4k
else if g, = slowToFast then
qy =V
qn:=0
gp ‘= true
else
qy =V
qp ‘= true
return g

16: function READ(q)

17:
18:

19:
20:
21:
22:

23:
24
25:
26:
27:
28:
29:

30:

while —g;, do

yield()
if g, = fastToSlow then
Vi=4qy
gn:=0
qp = false
else if g, = slowToFast then
Vi=qy
gn=qn+1
qp = ~(qn = qx)
else
Vi=qy
qp ‘= false
return g, v

> g € Q, 1s a channel instance, v € V a value
> Busy-waiting while g, = true
> Hint to the scheduler to allow other threads to run

> g € Qy 1s channel instance
> Busy-waiting while g, = false
> Hint to the scheduler to allow other threads to run

ensures that flag p = true after the first write. Notice that only integer ratios k € N between
fast and slow clocked FMUs are supported.

Finally, Algorithm 9 describes the periodic task which is executed for each FMU instance.
Line 15 denotes the synchronization with the real-time clock.
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Algorithm 8 Spawn-Tasks (atomic operations variant)

Require: Global model initialization done.

1:
2:

3
4
5:
6

® X

10:
11:
12:
13:
14:

15:
16:

function SPAWN-TASKS(C, X, P,s,Q,q)
for all u € x (in order) where u € U do

y:=P(u)
if 3o < 1 then

r:=fastToSlow

ko= Al

= Aa

else if 7o > 1 then

r:=slowToFast

k= %
else
r = same
k=1
assert(k € N)
qu = (r,k,k—1,false, uinitial) D> Uinitial 18 the value from the initialization

for all c € Cdo
spawn(TASK—INSTANCESCp (¢, %, P, ¢, O, q,M)> Spawn task with RMS priority s,
for real-time task scheduling

Algorithm 9 Parallel-Instance (atomic operations variant)

1:

10:

12:
13:
14:
15:

D A O

function PARALLEL-INSTANCE(c, X, P, S¢, O¢,q, M) > ¢ FMU
instance identifier, ¥ is an ordered sequence of valid variables accesses (from Algorithm 1),
P is the port mapping, s. the current state of the FMU, ¢, the current state of the clock, ¢
the current state of communication buffers, M is the buffer mapping.
loop
forall {xcx|xecX.}do
if x €Y then
v i= get, (s, %)
for all g, € M(x) do

qu = write(q,,v) > Potentially blocking
else if x € U then
(gx,v) :=read(gy) > Potentially blocking

Se, i=sete (8¢ ,x,V)
h. = interval (o)
(sc,h.) := doStep,(sc, he)
assert(/. = h,)
o, := tick( o) > Progress clock for instance ¢
wait (o, = reclk) > Synchronize clock for instance ¢ with real-time
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