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[bookmark: _Toc434579001][bookmark: _Toc398225039]Executive Summary
Work in WP4 is organized in 4 clusters, according to participation in case studies. General principles, common to multiple clusters, have been identified, such as the reliance on formal methods, or the use of data-flow formalisms. However, early on in the project it has been recognized by partners that the various classes of industrial applications covered in the project need specific tools and methodologies. This explains the clear partition of WP4 partners among 4 clusters corresponding to different applicative fields:
· Avionics. WP4 participants: Inria, ENS, AbsInt, Kalray, ESTEREL TECHNOLOGIES. Use case providers: Airbus, Safran Aircraft Engines SAS, Safran Electronics & Defense.
· Fault tolerant vision. WP4 participants: Tue, NXP, UT, Recore. Use case providers: NXP/Recore.
· Safe vehicle control: WP4 participant: Verum, UT, TNO. Use case providers: TNO, VDL.
· Consumer electronics. WP4 participants: Koç University, Koç Sistem. 
This clustered organization is also followed in the structure of this deliverable. 
[bookmark: _Toc398225040]Avionics cluster
The development of avionics embedded applications is subject to strict certification requirements, which resulted in highly formalized and largely automated development processes. Our work seeks to improve these processes by providing solutions to the following problems:
· Safe and efficient automatic parallelization of avionics applications onto multi-/many-core platforms.
· Providing formal correctness guarantees for avionics software.

[bookmark: _Toc398225041]Analysis of industrial use cases and requirements 
For the first 24 months of the project, work of the avionics cluster has focused on three case studies:
· AIR_UC01 (from Airbus) – control/command synchronous application of high criticality
· SAF_UC01 (from Safran) – synchronous application of high criticality
· SAF_UC2 (from Safran) – mixed criticality application 
These applications share key features:
· High-level data-flow functional modelling (SCADE, Simulink, or an in-house formalism).
· They are either high criticality or mixed criticality applications, meaning that code generation must aim for high integrity implementations.
On all 3 applications the common objective is safe and efficient automatic parallelization, with Kalray MPPA as the preferred initial execution platform. In addition to parallelization, depending on the case study, main objectives are:
· Formal verification of the correctness of the implementation flow, either by compiler verification or by translation validation methods. Formal correctness proofs can be useful even on sequential code generators.
· Parallelization under real-time requirements.
· Safe interaction between software components of different criticalities.

[bookmark: _Toc398225042]Methodology principles
Following long-standing practice in the avionics industry, the design methodology we propose is based on the use of synchronous languages for the high-level functional specification of applications. More specifically, we shall be using various dialects of the Lustre synchronous data-flow language, whose industrial version SCADE is commercialized by ESTEREL TECHNOLOGIES. The standardization of the functional specification level is essential allowing the cost-effective construction of tools. When the industrial process requires the use of a functional specification formalism different from Lustre/SCADE, process-specific automatic translation tools are needed to ensure seamless integration by translation into a Lustre/SCADE dialect.
For parallel and/or real-time implementation, our methodology also requires the formalization of the non-functional specification. Non-functional specification is formed of a description of the execution platform and a set of non-functional requirements of various types. The content of the non-functional specification depends on the code generation objectives. It can range from a few parallelization annotations, when the objective is to produce multi-threaded C code, to complex descriptions of both the execution platform (topology, arbitration, timing characterization) and the non-functional requirements (real-time, partitioning, allocation, etc.). 
Starting from the high-level functional and non-functional specifications, our methodology requires the use of high-level compilers to produce C code and, if needed, OS configuration files. Resulting C code is then compiled, along with legacy business code and with platform libraries to produce the executable code of the implementation. 
The result is a seamless flow of automatic transformations going all the way from high-level specification to running implementation. Such a flow of transformations ensures the correctness of the resulting implementation with respect to the high-level specification provided that:
· the platform description faithfully describes the behaviour of the execution platform (HW, libraries, and possibly OS)
· the high-level compiler and C compiler are correct
· the (optional) process-specific importer tool is correct

[bookmark: _Toc398225043]Proposed tool flow and desired tool extensions
We have integrated the tools of the various partners to fit the global methodology defined above and to address the needs expressed through the industrial use cases. To this end, work has advanced on several axes:
1. Formally proved compilation from Scade/Lustre to sequential executable code. The formally proved compiler velus (Verified Lustre) from a dialect of Lustre to C has been completed and interconnected with the CompCert C compiler. The Scade KCG compiler has been extended with a back-end producing the C dialect accepted by CompCert (Clight).
2. Generating parallel code for the industrial use cases and the project platforms (including, but not restricted to Kalray MPPA), for both real-time and non-real-time targets. 
a. The Scade KCG compiler has been extended to allow parallel code generation and manual allocation of the parallel threads onto the target MPPA256 platform. 
b. The Heptagon/Lopht tool flow has been improved with a simpler language for specifying non-functional requirements. A formally proved translation validation tool has been developed for a restricted version of the Lopht tool.The Lopht tool has been extended to provide static guarantees of respect of the real-time requirements on the Kalray MPPA256 platform.
In both cases, code generation targets simple APIs facilitating the retargeting of the code generator.
3. Design of run-time communication and synchronization primitives facilitating scheduling and code generation. These primitives can be verified against weakly consistent shared memory models (Kalray MPPA, Arinc 653), using the Litmus tool.
4. Construction of process-specific automatic translation tools, application to use cases, and providing feedback to use case providers (Airbus and Safran).
Work along these axes resulted in the tool flow whose current structure is presented in Fig. 1. The tool flow incorporates the tools of all cluster partners. 
The inputs of the tool flow, on the left, can be roughly divided in 2 categories:
· Functional specification (blue boxes) is provided in a dialect of Lustre/Scade, possibly extended to allow a more natural modelling of multi-rate or multi-period systems. For the Velus (verified Lustre) compiler, this language is called itself Velus, and it is a strict sub-set of Lustre. The other dialects (Scade, Lustre, Heptagon) are quite close to one another in syntax and expressive power, to the point where some tools (e.g. the Heptagon compiler) can already take several of them as input without changes in the internal data structures. The results of the ASSUME project may lead to further convergence between these formalisms, but specific aspects should remain, given that Scade is designed by ESTEREL TECHNOLOGIES as part of a commercial product, whereas Heptagon and Lustre are academic tools. 
· Non-functional specification is divided between platform descriptions (in red) and non-functional requirements (in purple). Typical non-functional requirements are real-time requirements, allocation requirements, etc. Typical platform description features include the number and type of processors, the memory hierarchy, the on-chip networks, etc. During the duration of ASSUME, both Scade and Heptagon were extended with annotations allowing the specification of non-functional requirements (e.g. parallelization, allocation, or real-time). This means that the frontier between the functional and non-functional specifications becomes increasingly blurred.

[image: ]
Figure 1 Tool flow organization of the WP4 avionics cluster
The functional and non-functional specifications are used by the three high-level compilation tools whose development embodies efforts on the various R&D axes:
· Velus focuses on formally verified compilation
· The extended Scade v6 compiler focuses on generation of parallel code where allocation is manually specified.
· The Heptagon/Lopht compiler flow allows the generation of parallel real-time code for which allocation and real-time scheduling is automatically synthesized.
In all 3 cases, the output of the high-level compiler is C code, and possibly some configuration information directed to the lower-level tools (loader) and to the runtime. In addition to generated code, intermediate artefacts can be output, such as the scheduling tables or allocation information, facilitating external verification of the system correction. 
If the objective is to provide formal correctness guarantees, then the C code output by the high-level compilation tools must be in turn compiled using CompCert (but gcc is currently used on the Heptagon/Lopht branch, as it allows very precise control over memory allocation and optimization). 
The Litmus tool is needed to validate efficient communication/synchronization primitives against the model of the memory sub-system. 
The following sub-sections present the current status and desired tool extensions of the individual partners’ tools.
[bookmark: _Toc398225044]Verified Lustre	
Solid progress has been made on turning the Vélus compiler into a practical tool that can run on real code. An overview of the current state is shown in Figure 2. Most recently, we have implemented a parser and elaboration routine, added the scheduling pass, improved the ability to display intermediate results, and refined the final correctness lemma. These results are explained in more detail in the following.  
The parser was implemented using the menhir software which also generates proofs of completeness and correctness in the Coq proof assistant. The elaboration routine turns an unannotated syntax tree into one annotated with types and clocks. In the context of a verified compiler like ours, it also verifies the correctness of these annotations and several other required invariants. That is, it formally validates assumptions used in later passes and their proofs of correctness.  
[image: ]
Figure 2. Velus toolchain status
The scheduling pass orders the dataflow equations based on their interdependencies. The semantics of these equations is independent of their order, but this order is maintained in the generation of imperative code whose semantics does depend on it. Our implementation calls an external OCaml routine to find a suitable schedule or print an error message explaining why this is impossible. The reordering itself is done by a verified sorting routine (from the Coq standard library) and then validated by a verified decision procedure. This approach gives greater liberty in implementing equation scheduling and maintains the same high level of correctness guarantees but without requiring complicated proofs. Besides satisfying the data dependencies, the scheduler tries to place similarly activated equations together to increase the effectiveness of a later fusion optimization on the imperative (Obc) code. Finding an optimal ordering is NP-hard, so we implement a greedy algorithm based on simple heuristics.  
We have implemented several “pretty printers” to display the results of intermediate compilation passes. This is straightforward and standard practice, but greatly aids debugging and practical evaluation of the tool chain.  
The final correctness lemma gives a guarantee that the assembly code generated by our compilation passes coupled with the CompCert ones correctly implements the dataflow semantics of the input program. This end-to-end proof has now been stated and proved. Arriving at this point involved solving several technicalities around coinductive proofs and a change from the “big step” semantics used in the proof of correctness for the code generation pass (from Obc to Clight) to the “small step” semantics necessary to state the final lemma.  
The new results described above and those of our earlier report on the translation and generation passes have been accepted for publication at the PLDI 2017 conference.  
The current version of the compiler functions with an end-to-end correctness guarantee, but it only accepts a subset of “normalized” Lustre programs. During the project extension we will be working on implementing the normalization pass (from Lustre to N-Lustre) and proving its correctness. This task is non-trivial. It requires implementing rewriting by successive substitutions, introducing a new semantic model for the Lustre language, and showing the correctness of the rewriting with respect to the semantics.

[bookmark: _Ref471989483][bookmark: _Toc398225045]Scade KCG6 parallel
An extension of our safety-critical qualified code SCADE Suite KCG generator has been prototyped. This prototype allows efficient code generation for multi/many core targets. The parallelization is currently user-driven. The user identifies parallel regions formed of operator instances that can be executed in parallel, splitting the model into independent components well balanced with respect to their WCET.
This prototype generates tasks that communicate with one-to-one channels (i.e. Kahn process networks). One task is generated for the root operator and one task for each instance of operator in a parallel subset. The generated C code is target agnostic, macros are used for all operations (communication, synchronisation, …). A dedicated integration step is in charge of generating the main function and the macros definition for a given target. To verify the portability, we have developed instantiation for Pthread and Win32 API with semaphores.  We also worked with Kalray to have an instantiation for their MPPA many-core architecture.
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[bookmark: _Ref470092077]Figure 3: Scade Multi-Core Code Generation Flow

[bookmark: _Toc398225046]Heptagon/Lopht/aiT for Kalray MPPA256
Heptagon is both a Lustre dialect and an open-source compiler for this language. For the scope of this section, we shall disambiguate between the two by using the name heptc for the compiler. The heptc compiler can be used for two types of tasks:
· Generating sequential C code from synchronous programs (nodes) written in a Lustre dialect (much like SCADE KCG or Velus). Accepted Lustre dialects include Heptagon and Scade v4. The Scade front-end has been added during ASSUME to allow the handling of case studies. 
· Translating Heptagon programs into the non-hierarchic data-flow language taken as input by the Lopht tool. In this case, an extension of heptc  takes as input an extension of the Heptagon language, called Heptagon+NFP, where program annotations allow the specification of non-functional requirements, as described below, in section 2.4.3. We name this extension heptc+NFP.
The Lopht tool takes as input the non-hierarchic data-flow and the non-functional requirements output by heptc, a description of the execution platform (topology, WCETs of library primitives, etc.), and a non-functional characterization of the Lustre/Scade functions produced by the static analysis tool aiT. It either produces parallel implementation C code that is both functionally correct and respects the non-functional requirements, or reports why it was not able to produce such an implementation.
The non-functional characterization of the Lustre/Scade functions is produced by the aiT static analysis tool of AbsInt. I addition to the WCET estimation, this characterization also includes worst-case number of accesses to the various code and data sections, enabling the computation by Lopht of safe upper bounds on the time interferences due to memory access.
Given the capabilities of the tools, we use them following the methodology and tool flow of Fig. 4. The flow starts with an importer tool that translates the industrial specification into Heptagon input. This tool is needed, as industrial use case specifications from both Airbus and Safran do not fit directly into the synchronous model (both in term of format and of underlying computational model. We have developed a tool that generates a functionally equivalent Lustre code from these specifications. This convertor tool is currently based on the specifications provided for the AIR_UC01 use case, where specification is done in a formalism specific to the Airbus process. This work will be extended to fit the needs of the Safran SAF_UC01 use case. 
This tool builds internally a dependence graph between the different tasks of the application. Because both of these use cases have computation distributed across multiple periods, the values passed between tasks of different periods might not be deterministic: for example, if a data is written twice while being read once, we have to determine which value is used. The importer tool makes these decisions by referring to a sequential schedule and mirroring the decisions about which value is to be read. We plan to use this graph to analyse the application and to perform some transformation, such as retiming. We chose to write directly by hand the corresponding Lustre code for the SAF_UC2 use case of Safran, with a focus on the in-place FFT component of this use case.
The generated Lustre code is multi-periodic and uses a hierarchy of periodic clocks, each period being associated with a set of clocks with different offsets. We normalize this code by contracting all periods into the slowest one. This transformation has two steps. First we expose the internal states of the nodes as new inputs and outputs. This step is similar to the Heptagon code generation strategy and generates a reset and a step function per stateful function. Then, we duplicate the nodes on the faster periods in order to transfer them into the slowest period  Finally, the resulting deterministic normalized Lustre program is given to the Lopht tool.. 
[image: ]
Figure 4. Heptagon/Lopht tool flow
The Heptagon code is divided in two parts: the specification of the sequential tasks and the integration specification. A task specification consists of a synchronous component that must be separately compiled into one piece of sequential code. It contains no non-functional annotations. Compilation can either be done using heptc or (modulo Lustre dialect adaptations) with SCADE KCG or Velus. The integration specification is the system-level specification that defines the dependencies between tasks and contains all non-functional requirements (hence the mixed blue+purple color). All data-flow parallelism in the integration specification can be exploited by Lopht during allocation and real-time scheduling. Heptagon has been extended with language constructs allowing the specification of multi-periodic systems, whose behaviours are a sub-set of the n-synchronous behaviours of (Cohen et al., 2006). The heptc compiler has been extended to allow the compilation of extended programs to either sequential C code, or to Lopht input. The non-functional annotation language of Heptagon has been improved.
A new back-end for the Lopht tool has been written to generate code using the Kalray MPPA 256 API defined in section 2.4.1. 

[bookmark: _Ref471989525][bookmark: _Toc398225047]CompCert
Since 2015, the CompCert compiler is commercially available. What sets CompCert apart from any other production compiler is that it is formally verified, using machine-assisted mathematical proofs, to be exempt from miscompilation issues. In other words, the executable code it produces is proved to behave exactly as specified by the semantics of the source C program. This level of confidence in the correctness of the compilation process is unprecedented and contributes to meeting the highest levels of software assurance. In particular, using the CompCert C compiler is a natural complement to applying formal verification techniques (static analysis, program proof, model checking) at the source code level: the correctness proof of CompCert C guarantees that all safety properties verified on the source code automatically hold as well for the generated executable.
CompCert has been developed by INRIA and licensed by AbsInt for commercial exploitation. In ASSUME, AbsInt is working at improving the usability of the compiler to make it competitive in this respect with existing compilers. Since Deliverable D4.0, the following improvements have been implemented:
· The robustness of the frontend has been improved. Now more cases of invalid inputs are treated with proper error messages.
· New command line options have been introduced that allow for better control of the diagnostic output produced by CompCert. It is now possible to activate or suppress certain warnings and additionally to mark them as error.
· CompCert now fully supports C11 anonymous compound types. Such types are considered as transparent for their components so that their named parts may be accessed directly.
· CompCert supports a mechanism to transfer annotations written on the source-code level to the machine-code level where they can be read by AbsInt's aiT timing analyzer. CompCert places these annotations in a special section of the ELF binary, from which they can be extracted by aiT. The source-code annotations may refer to source-level variables, which are automatically replaced by the corresponding registers or memory cells.
· The CompCert compiler was evaluated on Safran's projects TVB2 and HPT16. These projects could be compiled and the resulting executable could be analysed by the TimingProfiler variant of aiT, which could automatically resolve all computed calls. This successful evaluation did not trigger any modifications of the objectives.
In ASSUME, INRIA is extending the CompCert compiler and its verification to new target architectures of interest to the ASSUME industrial partners. This includes 64-bit architectures such as the PowerPC 64 bits, and also the Kalray MPPA architecture, a VLIW manycore processor.  The following improvements were achieved during the ASSUME project and are available in the current release 3.3 of CompCert:
· Generic support for 64-bit target platforms was added, including pointers that are 64-bit wide, and the ability to use 64-bit integer registers and arithmetic operations. This support does not replace but comes in addition to CompCert's original support for 32-bit target platforms, with 32-bit pointers and emulation of 64-bit integer arithmetic using pairs of 32-bit integers. In terms of C data models, CompCert used to be restricted to the ILP32LL64 model; now it also supports I32LP64 and IL32LLP64.
· The x86 port of CompCert was extended to produce x86-64 bit code in addition to the original x86-32 bit (IA32) code. This is the first instantiation of the new support for 64-bit targets described above. Support for x86-64 is currently available for Linux and macOS.
· As another instantiation, CompCert was ported to generate code for the RISC-V architecture, both in 32 bits and in 64 bits mode.
· The specifications and proofs of the last passes of the compiler back-end (those that are closest to the target processor but still target-independent) were made more general and more flexible with respect to the target processor's register model and stack frame layout. This extra flexibility helps with the 64-bit support described above.
Another CompCert improvement that was developed as part of ASSUME to address concerns raised by Airbus is an overhaul of the proof of semantic preservation to account for separate compilation and linking. At the beginning of the project, CompCert's semantic preservation proof applied only to programs composed of a single source file, compiled in one go. Separate compilation and linking was supported but not formally proved sound. Since release 2.7, the proof now considers a set of C compilation units (source files), separately compiled to assembly then linked. It then shows that the resulting assembly program preserves the semantics of the C program that would be obtained by syntactic linking of the source C compilation units.
Finally, INRIA also investigated the generation of Kalray MPPA2 code from CompCert and identified difficult technical issues with this architecture.  The plans for MPPA2 support have been dropped because it will soon be replaced by MPPA3, a 64-bit evolution of Kalray's architecture that will be much easier to support in CompCert.


[bookmark: _Toc398225048]ESTEREL TECHNOLOGIES SCADE KCG and CompCert Coupling
Esterel Technologies has prototyped a SCADE KCG and CompCert coupling (see Fig. 2). The objective is to have a direct connection from Scade KCG compiler to CompCert frontend. This provides a seamless path from a qualified/certified Scade compiler to a proven C compiler.
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Figure 2: Scade KCG / CompCert coupling architecture
KCG-CompCert is operational; for a Scade model that uses no external elements, the backend outputs an asm file, the corresponding .h and a mapping file. The coupling has been developed with the academic version of CompCert, published as a Git repository at https://github.com/AbsInt/CompCert . Development is based on the source code of release 3.0.1 under the terms of the INRIA Non-Commercial License Agreement (granting the rights to use for research purposes).
CompCert has several C-like languages in its frontend (CompCert C, Clight, C#minor, Cminor). Kcg-CompCert targets the Clight language as it is near the entry point in the certified compilation chain (its definition is in Coq).
The following table documents the status of KCG command line options related to the generated code. Options that have no influence on the code generation backend are omitted (for instance the operator expansion options).

Several options have the Not Implemented (NI) status. These options are not essential for the purpose of this work. They select some variations in the way the code is generated — supporting them would pose no particular technical difficulty.

	-probes
	OK
	

	-header
	NI
	

	-short_circuit
	
NO
	No short-circuit operators in the Clight AST, we would need to target the preceding Csyntax AST.

	-keep_asserts
	NI
	

	-separate_io / -no_separate_io /
-separate_io_all
	
OK
	

	-observe / -no_observe /
-debug
	
OK
	

	-wrap_c_ops
	N/A
	This option is meant to customize the implementation of C operators via. C preprocessor macros ; it doesn’t apply for KCG-CompCert which outputs the assembly code directly.

	-name_length / -significance_length
	N/A
	This option is meant to accommodate C compilers that have constraints on the length of identifiers ; CompCert doesn’t have such limits.

	-user_config
	N/A
	This option instructs KCG to include a user-supplied .h file in the generated headers so as to let him override some definitions. Again, this relies on the C preprocessor and doesn’t apply to KCG-CompCert since it outputs assembly.

	-input_threshold
	N/A
	This options modifies the API of the generated code by “packaging” arguments in structures to work around the limitations of some C compiler regarding the maximum number of arguments for a function. CompCert does not have such limitations.

	-static
	NI
	

	-global_root_context
	NI
	

	-globals_prefix
	NI
	

	-state_vector
	NI
	



Testing is done using the qualified KCG 6.6 compiler as a reference. The code produced by KCG 6.6 and KCG-CompCert should have the same behavior. Testing has been done on a Linux host, using the x86_64 target of CompCert.

We test KCG-CompCert using KCG’s extensive test suite: we have test Scade models and scenarios (~ 2300 tests) along with the expected results. The test infrastructure has been updated to accommodate KCG-CompCert instead of KCG.

KCG-CompCert has also been exercised with SET1, our in-house program generating random Scade models. We compare the results of the execution of the code generated by KCG and KCG-CompCert on a random Scade model, applied to a random input vector. We see a low occurrence of difference in behavior: only 6 occurrences for a run of 100 000 random models.
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[bookmark: _Toc398225049]Litmus
The tool litmus is part of the diy tool suite <http://diy.inria.fr>: a set of software tools for the design and testing of weak, shared, memory models. More specifically, litmus runs test over actual hardware and collect results. Such tests are violations of the Sequential Consistency model and can be written by hand or, more conveniently, generated by the various generators of the diy tool suite. Those tests are usually written in assembly: supported architectures being ARMv7, ARMv8, PowerPC, MIPS and x86. Litmus consists in a 'compiler' part that translate the test instructions into a specific C file, using inline assembly entangled with specific code that, for instance forks threads, repeat experiments etc. That specific C file is linked with other C file that provides OS support or fixed non-changing infrastructure such as the data structure to collect results.
For exploring Kalray MPPA, we have written a few tests totally by hand and succeeded in running our tests on one cluster of the MPPA only. 
[bookmark: _Toc398225050]Interface definitions
[bookmark: _Toc398225051]Common API for code generation on Kalray MPPA256
While the main execution platform targeted by the avionics cluster is the Kalray MPPA256 many-core, the ASSUME project is not meant to produce methods and tools fully tailored for only one platform. One particular aspect of platform-independence is code generation. The Kalray MPPA 256 platform provides multiple and complex communication, synchronization, and process management mechanisms in both hardware and software. Following an analysis of the industrial requirements and of the proposed code generation approaches, several partners have identified a minimal “bare metal” API that will be considered for code generation and which:
· Is simple, and thus easy to port on other platforms of interest.
· Is close to hardware, and thus is both efficient and facilitates predictable implementation.
· Is easy to characterize semantically, thus facilitating work on the proof of correctness for parallel code generation.
Our API currently covers code generation for single-cluster shared memory applications that communicate with their environment (other clusters and/or the exterior of the chip). The API consists in only 8 primitives, presented as library functions:
· Invalidation of instruction/data cache lines, and flush of data cache lines, both needed to ensure cache coherency.
· Global synchronization barrier, needed to ensure initial time synchronization of the processors in a cluster.
· Event-driven inter-processor synchronization using simplified binary semaphores (hardware locks).
· Time synchronization by waiting until a specific date (timer polling, not interrupt-based).
· DMA transfers between the SRAM memory of the computing cluster and its environment.
In addition to the API primitives, we also make assumptions on the form of the generated software. We assume that execution is non-preemptive, each processor running a single sequential thread.

[bookmark: _Toc398225052]Calling conventions used in SCADE KCG code generation
The developed prototype generates from an annotated Scade 6.6 model C code with tasks communicating through one-to-one channels. The main program runs the root operator of the Scade program. It runs in parallel with workers which repeat the following behaviour: 
· await a value on the input channel, 
· execute a function 
· and then send the result to the output channel.
The parallelization of the Scade model is specified using special occurrences pragmas of the form #par_name. All the operator calls with the same pragma are executed in parallel in fork-join parallelism. 
C code can be generated by running:
> kcg-task -root <root node> -target C <List of xscade/xscade files>

The code generated for the root operator is the same as usual, except that the calls to workers are replaced by macro calls to send the inputs and await the results on communication channels. 
The generated code uses macros defined in kcg_channel.h. It is thus independent from the target and from the allocation of workers to computation resources.
[bookmark: _Toc398225053]Input model annotations 
The purpose of the annotations is to group several operator instances in one or several parallel subsets: each instance in a subset is executed in parallel. No dependencies are allowed between instances of the same subset, so that they can be executed in parallel. The causality analysis has been extended to raise an error if this is not the case.
Instances of the same subset can be put in different operators (if they end up in the same unexpanded operator). Parallel subsets can be nested: an operator in a parallel subset can itself contain another parallel subset.
The annotations are occurrence pragmas of the form #par_name, where name is the name of the parallel subset. #par pragmas can also be put on map or mapi iterators. In that case, one worker will be created for each instance of the iterated operator.
It is possible to provide the annotations from an external file (named “Partitioning Information” in Figure ), given with the -pragma_file command-line option. It can be used to provide any pragma, including par pragmas. This file should contain lines of the form <pragmas> <model_path> where <pragmas> is a list of pragmas and <model_path> is the path of an element in the model. The syntax of pragmas and model path is given in ESTEREL TECHNOLOGIES SCADE KCG Tool Operational Requirements.

Example of external annotation file:
```
#par_1 root/(node1)
#par_1 root/(Node2)
```

Instances can also be described using their instance name (eg. (#bla)) or both the operator path and instance name ((N#1)). The pragmas are attached to all instances matching the path.

[bookmark: _Toc398225054]Communication primitives
Communication is abstracted using macros, which are defined in the kcg_channel.h file, which has to be provided by the user. A channel is a structure with several fields containing the values carried by the channel and a field called data of type kcg_channel_data type, which should be defined in kcg_channel.h`.
User must define the KCG_CHANNEL_RECV and KCG_CHANNEL_SEND macros. The generated code first writes to the fields of the channel and then calls KCG_CHANNEL_SEND to signal that values are ready. Conversely, it first calls KCG_CHANNEL_RECV to await values and then reads the fields of the channel. 
Example of generated code for a root operator
void root(inC_root *inC, outC_root *outC)
{
  N1_in_ch.i1 = inC->i1 - kcg_lit_int32(1);
  KCG_CHANNEL_SEND_N1_in_ch(N1_in_ch);
  F1_in_ch.i1 = inC->i2 * inC->i2;
  KCG_CHANNEL_SEND_F1_in_ch(F1_in_ch);
  KCG_CHANNEL_RECV_N1_out_ch(N1_out_ch);
  KCG_CHANNEL_RECV_F1_out_ch(F1_out_ch);
  outC->o = N1_out_ch.o1 + F1_out_ch.o1;
}

The KCG_DECL_SENDER and KCG_DECL_RECEIVER Macros are used by the generated code to declare a sender and a receiver on a given channel.
Note that implementations are provided in the `tools/tasks` directory for PThreads (`pthread/`), Windows threads (`windows/`), C++11 threads and mutexes (`cxx11`) and C11 atomics (`c11`).

[bookmark: _Toc398225055]Worker 
For each operator instance in a parallel subset, a worker called <operator>_worker is generated, which takes as input the context of the operator (if any) and:
· awaits a value on the input channel(s)
· executes the step function of the operator
· sends the result to the output channel(s).
Note that the worker only executes one step of the operator. Like the main operator, it has to be put inside a loop to obtain the final behaviour.
The code generated is independent from the target and from the allocation of workers to threads. A simple integration consists in creating one thread for each worker. But it is also possible to put several workers in the same thread.
[bookmark: _Toc398225056]Integration on Specific Targets
Integration to a new target platform consists in providing the code for the macros and instantiating the application (thread creation, memory allocation, …). The main function of the program has to setup the communication channels and run in parallel the main program and the workers.
To perform this task all required information (workers, communication channels, etc.) is stored in a mapping.xml file which contains traceability information between the input model and the generated code. The folder tools/mapping_file contains a Python API to access the mapping.xml file generated by ESTEREL TECHNOLOGIES SCADE KCG. The documentation of this API can be found in tools/mapping_file/doc. 

The script tools/mapping_file/examples/multicore/main_gen.py shows an example of how to generate a main file for Pthread and Win32 API using the mapping file API. The script takes as input an allocation of workers to threads (named “Scheduling / Target information” in Figure ). This script also implements more advanced features like:
· it checks that the order chosen for workers in each thread is correct according to the order in which the corresponding channels are used in the root operator (see check_scheduling function). This is necessary to avoid a deadlock at runtime.
· it generates a user_config.h file which overwrites the definition of communication macros for channels between workers executed in the same thread. In that case, no synchronization is needed.
· …
The tools/tasks folders contains several folders providing an implementation of `kcg_channel.h` for a given target.

[bookmark: _Toc398225057]Non-functional annotations in Heptagon
As explained above, the Heptagon language has been extended with annotations allowing the definition of non-functional requirements. These annotations allow the definition of the system-level integration specification introduced in section 2.3.3. We introduce annotations through the simple example of Fig. 5. In this figure, black program text provides the functional specification (in plain Heptagon language). Non-functional annotations use red text.
Annotations allow the specification of the following requirements:
· Period. A single period can be currently specified, at system level. This allows the specification of single-period systems (multi-period systems can be specified by using a hyper-period expansion).
· Release date and deadline. Each program statement can be associated a release date and a deadline. 
· Partitioning. Each program statement can be associated a partition. Partitions can later be used to define allocation requirements.
· Preemptability. On platforms that support preemptive execution, these annotations determine which computations can be pre-empted, and which not.
Heptagon-NFP programs are automatically translated into the input formalism of Lopht, described in (Carle, 2012).





open Externc

node main period(0x100000) () returns () 
var
  fs, hs: bool ;
  id, param: int ;
let
  partition(critical) release(0x80000)
                            fs = read_bool_sensor(0x1000) ;
  partition(critical)       hs = read_bool_sensor(0x2000) ;
  partition(noncriti) deadline(0x80000)
                            if hs then
			             preemptive id = g() ;
                            else
                              var x,y : int; in
                                y = 15 fby x ;
                         	id = f1(y) ;
                                x = f2(id) ;
                            end ;
  partition(critical)       if fs then
                              param = 12345 ;
                            else
                              param = id ;
                            end ;
  partition(critical)       () = act(param) ;
tel












Figure 5. Example of Heptagon+NFP integration specification with non-functional annotations

[bookmark: _Toc398225058]Fault tolerant vision cluster
The participants in the fault tolerant vision cluster (Recore, NXP, UT, Tue) worked on the creation of hardware components and analysis techniques for vision systems. Car-radar systems are also considered.
Concerning the hardware components the main focus is on fault tolerant processor design. The first step taken was to determine the vulnerability of the different components in a processor. The next step will be the selective introduction of redundancy to detect and correct errors. Furthermore, a technique based on role-back and re-computation at the software level is considered.
To relax the temporal requirements more robust state estimation and control techniques are under development in the cluster.  Concerning state-estimation a particle-filter based approach is explored which can deal well with the non-linear behaviour that is a result of non-periodic sampling. This particle filter based state estimation is relevant for video and radar object detection and tracking. Furthermore, particle filters have some inherent redundancy which makes them potentially interesting candidate to be combined with low-cost fault tolerant HW techniques. 

[bookmark: _Toc398225059]Analysis of industrial use cases and requirements 
The use-case  REC_UC01 is defined by NXP/Recore and concerns fault tolerant processing of a vision/radar systems. Recore is especially interested in fault tolerant hardware design techniques, whereas NXP is more interested in software techniques that improve the robustness of a radar system. This can be achieved by making use of estimators for object tracking. These estimators should be made robust against variation in the interval of time between subsequent samplings as well as hardware errors.  Variation in the interval between subsequent samplings can be a result of communication delay and variation in the execution time of the estimator.

[bookmark: _Toc398225060]Proposed tools and methods
No overall tool flow is planned because most of the tools do not require interaction with the other tools that are under development. Furthermore, this cluster works on hardware techniques as well.
[bookmark: _Toc398225061]HAPI dataflow simulator	
HAPI is a recently introduced dataflow simulator. The novelty is that it allows to simulated shared resources without introducing any over-approximation or under approximation in the analysis results. Therefore, it can be used to falsify analytical analysis techniques like the ones implemented in Xenoclea. Interfacing of Xenoclea and HAPI is desirable to guarantee consistency and simplify analysis of larger test-sets.  Furthermore, interfacing with the UPPAAL model checker is considered. Evaluation using practical case-studies will potentially result in the future in requests for extensions of HAPI. 
We deviated from the idea of interfacing Xenoclea with HAPI because support of TNO_UC01 was not well possible with the existing dataflow approach because the TNO system contains time-triggered components instead of data-driven components. These time-triggered components sample whether new data arrives. If no data has arrived, it is often the case that the previously received sample is repeated. Therefore, this time-triggered behaviour introduces non-determinism into the system. To analyse the effect of this sampling also the continuous time part of the system must be modelled. This can be done using hybrid-automata models. Therefore, we started to work on model-checking techniques for hybrid-automata. More precisely, we are developing more computational efficient model-checking techniques for a specific subclass of hybrid systems. This subclass should cover the use-case TNO_UC01 with a focus on guarantees instead of probabilistic assertions. An initial version of these model-checking techniques has been implemented in a tool. 
For a related reason, we also did not continue with extending the HAPI simulator. The reason is that for discrete-event systems guarantees could be provided with HAPI whereas this is not the case for hybrid-systems (discrete-event/continuous-time systems), For discrete-event systems a worst-case simulation trace could be generated using the HAPI simulator based on a refinement theory for discrete-event systems. Such a refinement theory does did not exist for Hybrid systems. In the draft of the PhD thesis of Philip Kurtin, a PhD within the ASSUME project, a refinement theory for hybrid systems is described. Key addition compared to existing refinement theories for discrete event systems are that it allows continuous time signals besides discrete event streams. Furthermore, it supports approximation of signals instead of bounding of signals. Approximation allows to define statistical relations between signals, e.g. that one signal has the same mean but a lower variance than another signal. For discrete event streams it had to be the case that for each individual sample the temporal and functional behaviour was bounded from above and below. 
Also another extension have been made to existing discrete event refinement theories. The extension allows to create abstractions besides refinements and is therefore called an abstraction-refinement theory. This extension required a completely new theory with different bounding-operators and the definition of components that do not accept all streams. The theory has been described in a conference and journal paper which have been accepted for publication. Furthermore, a more detailed report has been written and a gentle introduction can be found in the draft of the PhD thesis of Philip Kurtin
[bookmark: _Toc492644967][bookmark: _Toc398225062]Making (FPGA-based) Hardware Fault Tolerant using Error-Rate Assessment
[bookmark: OLE_LINK1][bookmark: OLE_LINK2][bookmark: OLE_LINK3]The main objective of this work is to design a fault tolerant hardware using the redundancy approach while the focus is to minimize overheads introduced by redundancy. In this work package, we therefore define techniques that improve the error resilience of a hardware. Towards this, the vulnerability of the hardware components to the error are estimated and the redundancy is selectively applied for only the elements with higher vulnerability. The hardware vulnerability is calculated in two popular scenario: first when soft version of the target application is executed on a processor and second when a dedicated FPGA-based hardware is implemented for the application. Already a PhD at TU/e has worked on a simulator for the evaluation of vulnerability for processor errors. Unfortunately, the PhD student has ended his contact, still his results are being used by a new PhD student hired to continue this work.
The key in generating error-rate estimates for processor is that all faults in a microarchitectural structure do not affect the final outcome of a program. The probability that a fault in a processor structure will result in a visible error in the final output of a program is defined as the structure’s Architectural Vulnerability Factor (AVF).
In this work, a simulation-based fault injection technique is implemented to calculate AVF. Faults are injected into the high-level model of processor e.g. VHDL model. 
Afterwards, given the response of the processor in the presents of faults the behavior of processor will be compared for both the fault-free processor and the faulty-processor. In this work, our focus is on single event upsets (SEUs) effect on processor behavior. SEUs are modelled with bit-flip in memory elements. In order to inject faults into the flip-flops (FFs), we replace them with injection-able modified version as shown in the Figure. 1.  

                               [image: ][image: ]
(a)                                   (b)
                                                 Figure 6 a) original flip flop, b) injection-able modified flip flop

Flowchart (1) also presents our method of calculating AVF. The memory elements of the netlist generated from VHDL model of processor are automatically replaced with the modified flip flops. Looking at the flowchart, if N is the number of flip-flops in a circuit and C is the number of clock cycles required for calculating a final output, the complete set of single faults in the processor is accordingly composed of NxC faults: a fault can be injected in any of the flip-flops, and for every flip-flop, it can be injected at any clock cycle. Currently, we developed a test-bench to perform the following steps: 

1) Run the testbench until the time that fault has to be injected. 
2) Inject the fault by flipping the value of the faulty flip-flop. 
3) Continue the testbench execution until the testbench is completely executed. 
4) Check the processor output and update the AVF.

AVF for each flip flop bit is calculated as following: The number of injection fault into this bit leads to failure divided by the total number of fault injections. We also define approximate AVF as the number of injection fault leads to faulty output with large error difference divided by total number of fault injection into this bit. The reason for defining approximate AVF is that for some applications, if the difference between faulty output and expected output is small enough, the faulty output will not be considered as a failure.  

[image: ]
Figure 7 General procedure of the AVF calculation using simulation-based fault injection

For the FPGA-based implementation of the application, in addition to estimate the error-rate for the memory elements (i.e flip flops), the error-rate is also calculated for the configuration memory which stores the circuitry of the design. The error-rate of configuration memory is defined as logic error-to-failure ratio which is calculated by dividing the number of critical configuration bits by the total number of configuration bits.  In order to compute the error-to-failure ratio, SEU fault is injected to one configuration bit of the circuit in each test bench run. Then if the final output of the faulty circuit is different with the expected output, that configuration bit is critical configuration bits. The FPGA (Zynq) based platform is implemented to test our fault injection approach and calculation of AVF is shown in the figure. The test bench controller is implemented on processing part and SEM IP core is used to inject faults in configuration memory.

[image: ]
Figure 8 Testbench platform for evaluating the effect of SEUs in configuration memory
For more information please refer to paper “M. Mousavi, H.Pourshaghaghi, M.Tahghighi, R. Jordans, H. corporaal, A Generic Methodology to Compute Design Sensitivity to SEU in SRAM-based FPGA, DSD2018”.

[bookmark: _Toc492644968][bookmark: _Toc398225063]Approximate DMR-based Reliable Vector Processor
In this section, a reliable vector processor is proposed which applies approximate Double Modular Redundancy (DMR) technology and can tolerate not only transient errors but also permanent errors. Approximate DMR is similar to DMR. The only difference is approximate DMR take a simplified copy as redundancy, which helps save costs. DMR and TMR are the most popular fault tolerant technologies in microarchitecture level. For error detection, DMR is better than TMR, as it saves energy and takes smaller area. For permanent error recovery, DMR and TMR are the same, as the broken components are always needed to be replaced. However, considering transient error recovery, TMR is better, as with TMR, the correct value can be figured out by the voter and roll-forward recovery can be applied which saves time. While with TMR, rollback recovery is required, which brings overhead in runtime. However, what if we can reduce the SER? Then, the overhead of rollback recovery is reduced and TMR becomes an optimal selection. To reduce the SER, we can do fault prevention by hardening the most vulnerable components of the vector processor with the guidance of AVF.
1) Transient fault
a) Detection: DMR
b) Recovery: Rollback
2) Permanent fault
a) Detection: DMR
b) Recovery: Replace with the spare PE and spare Date Memory as shown in Figure 8. Normally the spare PE is not linked into the circular PE network. When one PE is broken, the broken PE is left out, its two neighbor PEs are linked together and the spare PE joins the network and is linked with the first and last PE. Memory banks recovery is in the same way.
[image: ]
Figure 8 Reliable vector processor


[bookmark: _Toc398225064]Particle filter based state estimation algorithm	
A PhD student (Viktorio el Hakim) of the UT together with NXP have been looking into error resilient object detection and tracking. He has considered the problem of mitigating the effects of sampling uncertainty. This has resulted in the definition of a new particle filter based state estimation algorithm. Simulation has been used to determined effectiveness of the proposed approach. The approach and results have been described in a conference paper. Furthermore, a model checker have been developed to determine the worst-case behaviour and what is new also the stability of control loops under sampling uncertainty. This work has been described in a DSD conference paper that has been accepted for publication. NXP did study the use of similar estimation techniques to be applied in the radar context.


[bookmark: _Toc398225065]Fault-Tolerant Network-on-Chip architecture	
Recore Systems’ work concentrates on fault-tolerant hardware and software techniques in the on-chip interconnect of multi-processor systems-on-chip (SoC) architectures. In these SoCs there are lots of processing elements which communicate with each other. For the communication between these elements, various interconnect architectures like simple bus, hierarchical bus, ring based bus, etc. have been in use.
However, as the number of cores increases, traditional bus based architectures face problems like bus contention, arbitration, etc., which can be overcome with a Network-on-Chip (NoC) solution. Due to its flexible, computer network like architecture, a NoC can support concurrent communication between pairs of nodes in the network, and adapt to changing data transmission requirements.
The baseline architecture of a Fault-Tolerant Network-on-Chip architecture is defined. The NoC architecture design focuses mainly on the lower layers of the NoC, i.e. the data-link layer and the network layer. The NoC incorporates fault mitigation techniques and fault monitoring techniques.
The FT-NoC enables the creation of fault-tolerant multi-core SoC architectures enabling e.g. fault-tolerant vision processing.
[bookmark: _Toc520712953][bookmark: _Toc398225066]Fault tolerance in embedded real time multicore systems for dataflow applications	
We propose the design and implementation of a fault tolerance technique using the dataflow programming model. The technique is implemented for
1. Embedded systems and
2. Server-client systems.
However, the scheme is general enough to be implemented on various embedded systems. We have also analyzed the performance of this scheme by analyzing the recovery time. The scheme is later validated by several experiments, performed on the CompSOC platform.  
Traditionally, programming works on the idea of state, essentially a snapshot of system. These state information are comprehensive and often hidden from programmer. This state information becomes a trouble for the system when a fault occurs. For recovery, the system rolls back to the previous state. Therefore, for fault tolerance, snapshots are saved periodically. Periodic snapshots add complexity to the system. The complexity is in terms of time, space and computation. These snapshots are used for rollback of processes if fault occurs. Taking snapshots periodically add timing overhead. The additional work of checkpointing adds complexity to the software. In addition to that, a separate memory is required to save snapshotperiodically. That results in space overhead. 
Contrary to that, in dataflow programming, data is available explicitly in the buffer. It emphasizes the movement of data as a series of connections. In short, the basic properties of dataflow programming model can be listed as:
· Inputs and outputs are explicitly defined. An actor is able to fire as soon as input is available.
· Actors are stateless.
· All states are in channels. Thus, as long as channels are in a safe storage, actors can fail and be restarted. This explicit data definition also solves the space overhead problem.
· A producer produces data only if there is space in the buffer and a consumer consumes data only if data is available in the buffer. Therefore, using these listed properties, a fault tolerance technique can be designed for a dependable dataflow.

The proposed fault tolerance technique uses the explicit communication property of the dataflow programming model. This explicit communication property helps in designing a simple fault tolerance scheme because we do not need to take checkpoints periodically.
We implemented the technique for 
1. Embedded systems and
2. Server-client systems.

Furthermore, we discuss timeliness. In particular, many embedded systems execute real-time applications. Therefore, the deadline is an important aspect in deciding the correctness of a system. Even in failure conditions, tasks should meet the deadline, especially for safety critical or hard real time systems. Traditional checkpointing are not considered suitable for real time applications because periodic checkpointing can lead to a deadline miss. Therefore,we evaluate our fault tolerance algorithm in terms of the recovery time. The recovery time means the total execution time of the fault tolerance algorithm for the recovery of an actor. We propose a recovery time model for our fault tolerance technique. This recovery time is elapsed only when a failure happens. Otherwise, in normal execution mode, our algorithm does not add any timing overhead. The model confirms the predictability of our scheme.
Further details are available in:
Fault tolerance in embedded real time multicore systems for dataflow applications
Kunwar, S. (Author). 31 Aug 2017, available at: https://research.tue.nl/en/studentTheses/fault-tolerance-in-embedded-real-time-multicore-systems-for-dataf
[bookmark: _Toc398225067]Safe vehicle control cluster
The participants in the safe vehicle control cluster (Verum, UT, (VDL), (TNO))  work on tools for the creation of software  components and temporal analysis techniques for advanced driver assistance functionality in cars and coaches. The main focus is on distributed systems. 
Concerning analysis and synthesis of the functional behaviour in software the focus is on the use of the Dezyne tool of Verum. This tool allows the specification of state based event driven or concurrent  components; these can be verified for hidden defects, such as deadlocks, after which code can be generated that is guaranteed deadlock free. The main activity has been the identification of a suitable use-case together with VDL which can be realized despite all the restrictions vendors of embedded-compute-units (ECUs) for cars place concerning reprogramming of their units. Furthermore, additional functional verification features are under development for the Dezyne tool.
Concerning temporal analysis techniques, a new refinement theory has been developed and published which allows reordering of data as a result of for example data-parallel computation. Furthermore, the dataflow simulator HAPI has been developed which is able to simulate sharing of resources. Also a more accurate temporal analysis technique has been developed and published. These techniques enables accurate modelling of an application using the more expressive CSDF model. The analysis method has been implemented in an analysis tool which is called Xenoclea.
Furthermore, TNO has defined a use-case of a distributed control system in coach/truck which makes use of car-2-car communication using WLAN 802.11p. This use-case will be used for the valuation of the developed temporal analysis techniques and the dataflow simulator. TNO is interested to analyse worst-case temporal behaviour as well as the probabilistic temporal behaviour of the system using the developed tools. This temporal behaviour is very important in the considered system because it affects the stability of the control system that will be used for the controlling the distance in a platoon of trucks. To relax the temporal requirements more robust state estimation and control techniques have been developed in the cluster. Two papers of Viktorio el Hakim describe these approaches.

[bookmark: _Toc398225068]Analysis of industrial use cases and requirements 
Use-case TNO_UC01 is defined by TNO/VDL and its objective is to derive the worst-case and probabilistic temporal behaviour of a network of ECUs in truck platooning setup which is under development by TNO. One of the key challenges is the definition of a formal analysis model that captures the mix of time-triggered and event-driven processing. This model should unambiguously describe the temporal behaviour of the system despite shared resources (e.g. the communication network). Using the model, it should be possible to compute the worst-case behaviour as well as derive the probability density function which describes the end-to-end latency.
Use-case 2 is defined by VDL/Verum and concerns the definition of monitors and/or controllers for ECUs in CAN networks. Monitors should raise alarms when communication with the environment does not adhere to defined protocol/behaviour. Controllers add active communication to this, and as such influence the network. The current proposal is the usage of a separate ECU for monitoring and control because after a long investigation and consultation of the ECU vendor, no suitable way was found to program the ECUs in C that are currently in use by VDL.

[bookmark: _Toc398225069]Proposed tools and methods
In the safe vehicle control cluster there are no plans to define one overall tool flow that makes use of developed tools. The main reason is that most of the tools that are under development address different aspects of a design and do not benefit from results of other tools. One exception is probably the work on Xenoclea and HAPI where the simulator can be (and is) used to falsify analysis results. In the future it is likely that exchange of data with a model checker like Uppaal will be added.
[bookmark: _Toc398225070]Xenoclea
Xenoclea is a temporal analysis tool developed by the UT/NXP. This tool is suitable for the analysis of task graph running on multiprocessor systems in which the processors are shared. Different schedulers are supported including fixed priority preemptive. The task communicate using finite FIFO buffers resulting in a cyclic dataflow analysis model. The accuracy of the tool has been evaluated and compared to other state-of-the art approaches. A description can be found in the PhD thesis of Philip Kurtin. The overall conclusion is that it outperforms existing approaches in many cases for cyclic task graphs. The claim that it is the ultimate analysis approach cannot be made because the temporal analysis problem has been shown to be undecidable in general.

[bookmark: _Toc398225071]Dezyne
Dezyne is an event-driven modelling tool developed by Verum. The typical application of Dezyne in the automotive domain requires Dezyne models to be executed on an ECU in a CAN bus network. The CAN standard requires all nodes on the CAN network to be synchronized to sample every bit on the CAN network at the same time. Dezyne models with their discrete event-driven approach have to interface with the CAN oriented world. Such interfaces will be developed. 
Furthermore, we investigated the possibilities to extend Dezyne with a formalism for functional verification, where the user can specify certain properties of the observable behaviour of a design. A specification language for such properties is needed, and tooling to check the design against these properties.

[bookmark: _Toc398225072] Consumer electronics cluster
Smart devices and components has been widely employed in recent years. New and previously unforeseen application areas for smart components emerge frequently. Although application areas are different, efficiency and scalability is the common and premium requirement of the smart components. Hence, the underlying embedded controllers mostly rely on multi-core architectures or allow concurrent programs.
To achieve better performance, programs tend to adopt techniques that increase the level of concurrency. However, highly concurrent programs enable enormous number of possible interleavings and different executions which make reasoning about the correctness of the program difficult and make the programs error-prone. Some concurrency bugs occur in subtle and/or rare conditions and it is difficult to detect them by standard testing methods. Hence, formal treatment (verification or validation) is crucial for mission-critical or safety critical components of the programs. 
However, verifying a concurrent program by doing formal proofs and static analysis is not an easy task. The first difficulty arises because of the gap between the theory and practice. The widely accepted model for reasoning about the behaviors and semantics of concurrent programs is Sequential Consistency (SC) defined by Lamport (Lamport, 1979). In SC, all operations of an execution appear to be in some sequential order and operations from the same execution unit appear in this execution in the order specified by the program. SC is an elegant and powerful enough to describe concurrent programs but it is not realistic. Most modern hardware architectures (Intel x86, PowerPC, Arm …), including GPUs and programming language specifications (C, C++ 2011) allow “relaxations” which enable programs to produce more behaviors than SC ones. 
The relaxations in hardware and programming language specifications are necessary for performance reasons. Relaxations are diverse and there are still significant examples of programming languages and hardware architectures that lack the formal semantic model. In the recent literature, relaxations are described by allowing statement reorderings in SC, imposing some relations among program actions as constraints on the executions or adding machines and data structures to SC programs for an operational description.
Reasoning techniques and proof tools are well-developed for programs running on SC semantics. The well-known Owicki-Gries (OG) reasoning (Gries, 1976) can be utilized for checking correctness of local assertions and Lipton’s theory of reduction (Lipton, 1975) combined with abstraction techniques can be used for performing refinement proofs. However, there are no practically applicable tool or method for verifying programs running on relaxed semantics.
Our aim in the scope of this project is to develop a proof system that enables refinement and linearizability proofs for programs running on weak semantics. Core of our method is to start from the most abstract specification of the program and reach to a concrete program in which all of the atomic actions of the program correspond to actual assembly level instructions, via a sequence of refinement proofs. We aim to leverage the power of already existing proof methods for SC for performing the refinement proofs. We transform original program P to another program P’ by explicitly adding operational semantics of the relaxed memory model such that every relaxed execution of P is also an SC execution of P’. Hence, proving linearizability or refinement of the transformed program using the SC proof rules is sufficient for showing that the original relaxed programs refinement or linearizability.
We pick x86-TSO as our sample relaxed model since it describes the memory model of x86 Intel machines and a useful fragment of the C, C++ 2011 specification. Operationally, TSO can be described on SC as follows: each execution unit (thread or core) keeps a local stack for write (update) operations. Different from SC, write operations on global variables are not directly reflected to shared memory, but they are pushed to local stacks. These stacks can nondeterministically interfere into execution and perform pops. In addition, read operations on global variables first try to read from the local stack to check if there is a recent update on this variable that has not been reflected to shared memory yet. This model is simple enough to allow explicit program transformation, yet powerful enough to yield non-SC executions by delaying write operations.
[bookmark: _Toc469767677][bookmark: _Toc398225073]Benchmark Data Structures and Synchronization Primitives
Static analysis methods are robust and used for formal proofs about programs. However, performing proofs is a tedious task that mostly needs human effort and intervention since most of the problems considered are undecidable by their nature. Hence, they are used for verifying mission-critical or safety critical components of the programs. We pick important data structures and synchronization primitives from the literature to show applicability of our approach. The examples we pick are widely employed in real industrial applications and their correctness is crucial for correct functioning of the programs. In this section, we will present, analyse and show importance of these benchmark examples.
Spinlock: Locks are important synchronization primitives that are used to protect critical sections and provide synchronization among threads. Spinlock is a widely used CAS based locking mechanism. For this example we aim to show that spinlock adheres to its atomic specification under relaxed semantics.
Double Checked Locking: An optimized concurrent software engineering paradigm for initializing objects or assigning values to objects based on locking. We developed a simple procedure that performs assignment using double checked locking, utilizing a spinlock. We aim to verify that the method adheres to its atomic specification.
Send / Receive Example: A simple synchronization mechanism that allows execution units to communicate through a shared flag variable. Using this variable in a careful way, an execution unit prevents another execution unit to read shared variables before it reflects all of its changes. We provide sample sender and receiver methods in this example and aim to show that values read by the receiver method is exactly the ones updated by the sender by providing local assertions.
Chase-Lev Deque (CLDeq) (Lev, 2005): A double-ended queue (deque in short) is a concurrent data structure. A special thread called worker thread could perform put and take operations could insert and remove elements from the tail of the deque, respectively. Concurrently, other threads (called stealer threads) could perform steal operations that can remove elements from the head of the deque. Deque is a key data structure used in task-based concurrent platforms and its correctness is crucial for distribution of tasks. CLDeq is a high-performance, complicated deque implementation. It has been shown that non-SC behaviorus of CLDeq exist under TSO semantics. Hence, the usual deque specifications may not be satisfied by TSO executions of CLDeq. We aim to find tight enough (yet more relaxed than the original deque specs) atomic specifications and show that CLDeq refines these specifications. 
[bookmark: _Toc469767678][bookmark: _Toc398225074]Proposed tool flow and desired tool extensions
[bookmark: _Toc469767679][bookmark: _Toc398225075]Global toolflow organization
BoogiePL (Mike Barnett, 2005) is an intermediate verification language that is used for describing proof obligations from various domains and Boogie is the tool developed by Microsoft Research to translate proof obligations in Boogie PL to SMT formulae and check their satisfiability using SMT solvers. CIVL (Qadeer, Tasiran, & Hawblitzel, 2015) is an extension to Boogie that uses a dialect of BoogiePL developed by Microsoft Research and MSRC lab at KU for reasoning about concurrent programs. It allows a sequence of refinement proofs for SC programs in a layered structure utilizing Lipton’s reduction, abstraction techniques and OG reasoning.  Our aim is to extend CIVL and Boogie tool set for our purposes.
Proposed method for refinement proofs on relaxed memory models contains the following steps:
· Input to the method is the finest grained concrete program P written in CIVL-like language. The language we use both extends and restricts the original CIVL language. Atomic actions of the program and the global variables must obey the restrictions provided in Section 5.3.1. CIVL language is extended to allow TSO memory model specific constructs like barriers.
· Apply program transformation on P to obtain equivalent SC program P`. Program transformation involves explicit modelling of thread buffers and global shared memory. In addition, the lowest level atomic actions in P are replaced with TSO counterparts in P` and nondeterministic drains are introduced. The transformed program is totally in the language of CIVL.
· Use CIVL to perform refinement proofs on P`. Using the layered proof structure of CIVL, obtain abstract programs by performing refinement proofs until reaching the desired abstract specifications. In addition to existing OG, reduction/abstraction proof techniques, we develop and apply new proof rules special to TSO related actions for simplifying proofs.
· (Optional) Use adapted version of BoogieASM on P to obtain executable assembly program for the desired platform. Since BoogieASM is in an experimental stage now and its development directions are uncertain, we may skip employing BoogieASM and prefer to develop our own translation tool for this purpose in the future stages of the project.
[bookmark: _Toc469767680][bookmark: _Toc398225076]Tool status and needed extensions
CIVL is a tool that can be used for verifying SC concurrent programs. Currently, it does not have any support or proof techniques for the relaxed memory models. Our aim is to extend CIVL/ Boogie toolset so that it becomes convenient for TSO programs and semantics.
[bookmark: _Toc469767681][bookmark: _Toc398225077]CIVL \ Concurrent Boogie	
There are two crucial extensions needed on CIVL to make it suitable for our method:
· A translator / compiler that will take the relaxed program P written in the extended CIVL language described previously and that will produce the SC program P` in CIVL language.
· Modifications in the CIVL source code to adopt our TSO specific proof rules. Our TSO proof rules include generalizations of existing mover analysis and reduction rules as well as specific rules tailored for certain TSO actions that may occur in the transformed program P`.
[bookmark: _Toc469767682][bookmark: _Toc398225078]BoogieASM
BoogieASM is a tool that aims to generate executables from Boogie programs that are correct by construction. However, the tool is still in its infancy. It is not certain that what kind of semantic models will be supported by the tool and how it will be integrated to Boogie – CIVL. Depending on the future developments on BoogieASM, we aim to extend it for generating executables from Boogie programs that are verified through our methodology.
[bookmark: _Toc469767683][bookmark: _Toc398225079]Interface definitions
[bookmark: _Toc469767684][bookmark: _Toc398225080]Common Interface for CIVL and BoogieASM
In addition to the language allowed by CIVL, we require following restrictions / extensions on the input program P: 
· For simplicity, we initially allow two kind of base types for global variables inside the programs: integers and pointers. Integers are already a base type in CIVL. If pointers will be used by the programs, there should be a definition of Boogie type with the exact name xPointer:int in the program where x is another type name. If the defined type is just Pointer, we interpret it as the integer pointer. We allow composite types (records in Boogie) that may consist of base types or other composite types.    
· Thread identifiers are assumed to be of type Tid. They must be passed as linear arguments to the methods.
· Dynamic memory allocation from explicitly defined memory is possible. To achieve this, the lowest level method alloc must be defined inside the program and it should be called for dynamic memory allocation inside the other methods.
· For reading from a global variable x, the programmer must define and use the lowest level atomic procedure readX().
· For writing to a global variable x, the programmer must define and use the lowest level atomic procedure writeX(). 
· For performing a compare-and-swap action, programmer must define and use the lowest level atomic procedure CAS().
· The lowest level method name barrier() must be defined and used inside the methods for putting TSO fences inside the methods.
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