
PROPRIETARY RIGHTS STATEMENT

THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE ASSUME CONSORTIUM.
NEITHER THIS DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED
OR COMMUNICATED BY ANY MEANS TO ANY THIRD PARTY, IN WHOLE OR IN PARTS, EXCEPT WITH THE
PRIOR WRITTEN CONSENT OF THE ASSUME CONSORTIUM THIS RESTRICTION LEGEND SHALL NOT BE
ALTERED OR OBLITERATED ON OR FROM THIS DOCUMENT. THE RESEARCH LEADING TO THESE
RESULTS HAS RECEIVED FUNDING FROM VARIOUS NATIONAL AUTHORITIES IN THE FRAMEWORK OF
THE ITEA 3 PROGRAMME (PROJECT NUMBER 14014).

Affordable Safe & Secure Mobility Evolution

ASSUME Standardization Activities
Deliverable D6.7.1

Deliverable Information

Nature Document Dissemination
Level

Public

Project ASSUME Project Number 14014

Deliverable ID D6.7.1 Date 29.08.2018

Status Final Version 1.0

Contact Person Jan Steffen Becker Organisation OFFIS

Phone +49 (441) 9722 529 E-Mail jan.steffen.becker@offis.de

 D6.7.1 - Standardization Activities

Author Table

Name Company Email

Jan Steffen Becker OFFIS jan.steffen.becker@offis.de

Heiko Dörr MES doer@model-engineerings.com

Matthias Kern FZI matthias.kern@fzi.de

Frédéric Loiret KTH floiret@kth.se

Thomas Peikenkamp OFFIS thomas.peikenkamp@offis.de

Philipp Reinkemeier OFFIS philipp.reinkemeier@offis.de

Arturo Tejada Ruiz TNO arturo.tejadaruiz@tno.nl

Tino Teige BTC ES tino.teige@btc-es.de

Bernard Schmidt BOSCH bernard.schmidt@de.bosch.com

Carsten Sinz KIT carsten.sinz@kit.edu

Ferhat Erata UNIT ferhat@computer.org

Björn Koopmann OFFIS bjoern.koopmann@offis.de

Change and Revision History

Version Date Reason for Change
Affected

sections

0.1 09.05.2018 Initial version All

0.2 15.05.2018 SUP & Analysis Methods 3.1, 3.2

0.3 11.09.2018 Description of the ASC3F format 4

1.0 13.09.2018 Final version All

D6.7.1 - Standardization Activities

Page 3 of 48 Standardization Activities v1.0

Table of Contents

AUTHOR TABLE .. 2

CHANGE AND REVISION HISTORY ... 2

TABLE OF CONTENTS .. 3

1. EXECUTIVE SUMMARY ... 4

2. OVERVIEW ... 5

3. FORMAL REQUIREMENTS ... 6

3.1. Requirement Specification Languages .. 6
3.2. Requirement Analysis Methods ... 7

4. ANALYSIS RESULT EXCHANGE .. 11

4.1. ASSUME Static Code Analysis Tool Common Configuration Format 11
4.2. The SARIF Format.. 12

5. TOOL AND DATA INTEROPERABILITY .. 14

5.1. Interoperability of Safety Engineering Tools and Architecture and Design Tools 14
5.2. Interoperable Toolchain for Requirements-Driven Model-Based Development 16
5.3. Interoperability of Static Code Analysis Tools and Design Tools 19

6. STANDARDIZATION OF INTEROPERABILITY SPECIFICATIONS ... 22

7. CONCLUSION .. 23

REFERENCES ... 24

ANNEX A: THE ASC3F FORMAT .. 25

A.1. Configuration .. 25

A.2. Reports .. 34
A.3. ExampleConfiguration.xml .. 39

A.4. ExampleReport.xml .. 43

D6.7.1 - Standardization Activities

Page 4 of 48 Standardization Activities v1.0

1. Executive Summary

In order to consider and keep up with the up-to-date science and technology, related work and

tools are analyzed in each technical work package. The topic of this deliverable are the

standardization activities of the ASSUME project. This includes collecting the standards that are

used by the ASSUME project in the different work packages, as well as how the ASSUME project

contributes to existing standards or creates new ones.

D6.7.1 - Standardization Activities

Page 5 of 48 Standardization Activities v1.0

2. Overview

In summary, we have identified three main areas where the ASSUME projects builds upon

existing standards, extending them, as shown in Figure 1: formalization of requirements,

exchange of results of analysis tools, and tool and data interoperability.

Figure 1: Main Areas of ASSUME Standardization Activities

These standardization activities are mainly driven by the work packages 3 (System Engineering

Methodology), 2 (Scalable Zero-Defect Analysis for Single Core) and 5 (Scalable Zero-Defect

Analysis for Multi-Core). The standardization activities corresponding to these areas will be

reported in the subsequent sections of this document.

WG 1 - Formal
Requirements

•Requirement
Formalization
Standard

WG2 – Analysis
Result Exchange

•Analysis Tool
Interoperability
Standard

WG 3 - Tool and data
interoperability

• Specification of all
information needed
to build & test the
product

D6.7.1 - Standardization Activities

Page 6 of 48 Standardization Activities v1.0

3. Formal Requirements

Guaranteeing the validity of requirements in a safety-critical context like in automobiles or

airplanes is of utmost importance as failures of such systems often lead to life-threatening

situations. Checking that a system under test meets a set of requirements can be performed at

each level of the development, i.e., from the very beginning where just the natural-language

requirements are known, over the stages where a system model, a system implementation, and a

hardware virtualization exist, up to the final product. Since the process of requirements checking

is time-consuming and expensive, in particular, if malfunction is detected at some very late point,

there is an industrial trend to find system failures very early and preferably in an automatic way.

There exist a wide variety of solutions pioneered by academia, commonly referred to as formal

methods, being able to support this trend from a technological point of view. The off-the-shelf

application of formal methods in industry however is at an early stage due to the lack of (de facto)

standards and easy-to-use engineering tools. There are two main challenges to advise non-expert

industrial users to deploy the power of formal methods in their projects and applications: first,

providing intuitive description languages to formalize requirements given in natural language, and,

second, efficient methods to achieve requirements integrity at each stage of the production,

preferably just pushing a button.

To tackle these challenges, the ASSUME project also works on requirement specification

languages that are close to natural language, but having formal semantics, thus supporting the

transition from informal to formalized requirements. Once formalized, the requirements can be

interpreted by corresponding tools, which, for instance, allows automatic generation of test-cases

or checking for consistency of requirements.

3.1. Requirement Specification Languages

This section is on the Simplified Universal Pattern (SUP) that is one of the formal requirement

specification languages which have been used and/or developed in the ASSUME project.

Description languages for formalizing natural language requirements should be as intuitive as

possible, easy to understand, and preferably presented in a graphical way such that formalization

of human-readable to machine-readable requirements becomes a common engineering task

without being very prone to errors. BTC-ES devised such a specification method called simplified

universal pattern (SUP) which is implemented in its product BTC EmbeddedPlatform®. The SUP

approach is based on the observation that the clear majority of real-life safety-critical

requirements for components can be expressed by temporal trigger/action relationships such as

the textual requirement, “If the driver up or passenger up switch is pressed then the window has

to start moving up in less than 50 ms”. A SUP explicitly introduces artefacts like trigger and action

to close the gap between human intuition of a requirement and its formalized description ; i.e.,

artefacts that a requirement engineer talks about are directly reflected in the specification

formalism, as shown in the following figure. We remark that a trigger or an action itself is not

limited to be instantaneous but can have a temporal extent.

D6.7.1 - Standardization Activities

Page 7 of 48 Standardization Activities v1.0

Figure 2: Graphical Representation of an SUP

In brief, the semantics of a SUP is as follows. A trigger or action is started by consuming its start

event and successfully passed by accepting its end event in the specified time interval, while its

condition must hold in between. A trigger or action fails during processing if its condition became

false or its end event was not observed in the time interval. A SUP is successfully passed by an

execution if its trigger and action is successfully passed by this execution and their temporal

relation is met. A SUP is violated if there is some execution passing the trigger, for which the

action does not start in the specified time interval or for which the action fails after entering it.

For a brief example, consider the SUP from the figure above. Please note that whenever a trigger

or action is an instantaneous event then their respective start event, condition, and end event are

equal. In such cases, only the condition is depicted in the graphical SUP description for the sake

of clarity, compactness, and usability. One possible SUP execution is shown in the following

figure.

Figure 3: Possible SUP Execution

In step 2 the expression of the trigger condition driver_up || passenger_up holds as

driver_up is true, and thus the trigger is passed. The SUP is then ready to observe the action

which happens immediately as Sa1_move_up is also true in step 2. The SUP is successfully

passed and waits for a new trigger. The next trigger is consumed in step 4 due to

passenger_up. Since the expression of the action condition Sa1_move_up does not hold in the

following 5 steps/50 ms (where one step corresponds to 10 ms), the SUP is violated in step 9.

3.2. Requirement Analysis Methods

This section is on requirement analysis methods which have been used and/or developed in the

ASSUME project.

BTC-ES connects its specification language SUP with several applications and use cases in BTC

EmbeddedPlatform® to generate added values of specification efforts made by users.

Formal Test. Validating requirements by means of testing is a well-established industrial process

and always applicable if the system under test can be simulated. BTC EmbeddedPlatform ®

supports automatic validation of SUPs wrt. test executions resulting from Simulink®, TargetLink®,

D6.7.1 - Standardization Activities

Page 8 of 48 Standardization Activities v1.0

or production code as well as for imported test executions from external architectures, with

dedicated test reporting for all considered system architectures.

Although extensive and sophisticated tests passed on model and code level are a convincing

argument for system safety, the system behavior still is uncertain in its intended embedding

(hardware) environment. To achieve more confidence in a more realistic setting, dSPACE offers a

wide range of hardware-in-the-loop (HIL) simulators for processing large-scale Simulink® models

in real-time and in multi/many-core environments. BTC EmbeddedPlatform® provides a technical

solution to integrate SUP specifications into HIL systems with the objective of automatic online

testing of formalized requirements. It is worth to mention that in contrast to the “ideal” model view,

within the real-time testing phase, new aspects play an important role such as timing tolerances

for handling permissible computation and communication delays being easily expressible in SUP

by its nature.

We finally mention the use case of self-monitoring which goes one step further: a code

implementation of the specification probes the final product, e.g. a car, by monitoring the

correctness of the system during lifetime. BTC EmbeddedPlatform® provides source-code export

of SUP specifications to support this use case in principle.

Debugging. Counterexamples, i.e., system executions violating the specification, are very

precious in order to understand and eliminate possible malfunctions. Owing to its temporal nature,

counterexamples of SUPs can be illustrated in a very lucid and comprehensible way, linking each

execution step to the current status of the SUP as shown in Figure 3.

Requirement Coverage. If formal testing of all requirements was successful, i.e. , all SUPs are

not violated by the existing test suite, it often remains the question of how comprehensive the

requirements are covered by the test suite. The system execution from Figure 3 covers two test

scenarios, namely the one where driver_up holds but not passenger_up and where

passenger_up holds but not driver_up (the latter actually revealing a requirement violation).

The test where both signals are true however is not covered. Note that a test scenario where the

trigger condition is false is pointless in the sense that the entire SUP is not touched. Thus, a

useful notion of requirement coverage should deal with such “interesting” test cases and give a

reliable measure of how good the requirements are covered by the test suite.

BTC EmbeddedPlatform® offers the notion of trigger coverage. Intuitively, we want to measure

how many different ways a trigger can be processed were actually seen by the formal test. More

precisely, from the expressions of the trigger events and condition, new goal expressions are

derived that encode “interesting” waypoints through the trigger as indicated in the following figure.

D6.7.1 - Standardization Activities

Page 9 of 48 Standardization Activities v1.0

Figure 4: Example of a Covering Execution

For instance, from the trigger start event a||b the goal expressions a&&!b, !a&&b, and a&&b are

derived. Trigger coverage then aims at visiting each of the waypoints of the trigger while

afterwards successfully passing (or violating) the SUP. An example of a covering execution is

shown in blue in the figure above.

Formal Verification. A significant test suite that fully covers the safety-critical requirements both

on model and code level is an important achievement and boosts confidence of the product

quality. It is, however, clear that testing cannot be exhaustive due to the fact that system errors

may remain undetected even for only rare occasions. To detect such remaining erroneous

behavior the system can be exhaustively checked against specification by using so-called model

checking techniques. In case an error was found by model checking, a counterexample is

generated supporting the debugging process. Although model checking is a very active research

area in academia and also successfully applied in industry with increasing frequency, it must be

often tailored to the corresponding application, domain, or use case for the sake of efficacy and

efficiency. BTC EmbeddedPlatform® provides model checking technology that is particularly

tailored to check TargetLink®-generated production C code against SUP specifications.

Test Case Generation. Finding test cases that yield a convincing requirement coverage most

often is a manual and hence very time-consuming task. Moreover, if some test goals are not

covered by the test suite then it is not always clear whether the test goals can be reached at all or

whether some test cases are missing. BTC EmbeddedPlatform® automatically generates test

cases for requirements with the objective of achieving full requirement coverage. Since model

checking techniques are employed, test goals can also be certified as unreachable. Test case

generation from requirements can be performed at a very early level, namely when just the

formalized SUP specifications are known, or at a level where the system implementation is

already present.

Consistency Analysis. In early design phases, formalized requirements shall be checked for

consistency. Intuitively, a consistency analysis discovers conflicts between requirements that

prevent the specification from being implementable. For the SUP, we propose the use of formal

methods here. The following formal definitions of consistency have been prototypically

implemented for the SUP on top of state-of-the-art model checkers. The most basic definition of

consistency is basically existential consistency [1]: A set of requirements is existentially consistent

D6.7.1 - Standardization Activities

Page 10 of 48 Standardization Activities v1.0

if there exists at least one execution that satisfies all the requirements. Triggered existential

consistency extends this notion by requiring that in this satisfying execution also every trigg er of a

formal requirement is seen at most once. This is further extended in [2]: Here, the testcase

generation feature by BTC EmbeddedPlatform® described above is used. A set of requirements is

considered consistent if a test coverage of 100% (wrt. some coverage metric) is possible. The

coverage metrics used are the same as above. As another enhancement of existential

consistency, partial consistency [3] has been developed in ASSUME. For partial consistency the

temporal constraints in SUP instances are analyzed for critical cases. Such a critical case might

be if triggers of different requirements occur simultaneously. Requirements are partially consistent

if, for every identified critical case, an execution exists where all requirements are still satisfied.

D6.7.1 - Standardization Activities

Page 11 of 48 Standardization Activities v1.0

4. Analysis Result Exchange

In view of safety and security, the traceability between all safety relevant design artifacts shall be

possible in order to provide rationale for the complete safety case. Thus the ISO26262:2011

claims, for instance, “Safety requirements shall be traceable...” ([4], 6.4.3.2) or “The traceability

of safety-related hardware elements shall be ensured,...”([4], 7.4.5.3). Furthermore, the

traceability between design, implementation, validation and test results should be possible to

ensure that all data is valid in every point in time. In the context of static code analysis,

traceability should be achieved between the analysis results of the tool and the corresponding

software components, model artefacts such as Matlab/Simulink or Enterprise Architect, and

requirements.

To enable automatic verification using static code analysis and formal methods, the tools need to

be integrated into existing workflows. For obtaining the best possible results, it is suitable to

combine various tools having different strengths.

To this end, first, the static analysis tools’ outputs (e.g., reported potential errors) have to be

comparable, i.e., the reported error categories have to be standardized. Secondly, also the input

to the tools should be defined only at a central location once, to be able to compare the

verification results in a meaningful way. This is currently difficult to achieve since there is no

standardized interchange format for static code analysis tools. Actually, there is a need for two

interchange formats: one for the analysis results and one for the configuration that describes the

target system. Typical inputs are, for example, environment configurations and used platform. The

standardized input and output enable usage of these tools in different stages of the development

flow. It also allows combination of different checks, e.g., when uncertain results of a first check

are proven in a second check with a different tool or approach.

4.1. ASSUME Static Code Analysis Tool Common Configuration Format

The ASSUME Static Code Analysis (SCA) Tool Common Configuration Format (ASC3F) serves

two purposes: defining a common file format to specify program verification tasks, as well as the

assumptions underlying the verification, and, defining a common file format to specify program

verification results. The format is laid down in the form of XML Schema Definitions (XSD) with

additional semantical annotations. Having a common exchange format simplifies both cooperation

between different tools as well as integrating tools into a larger tooling workf low.

To this end, the configuration format must allow the specification of analysis tasks as

independent from the specifics of individual tools as possible. For example, a common mean of

configuring the interpretation of programs needs to be established. Furthermore, the SCA tool

configuration should facilitate the specification of machine-independent configurations, e.g., hiding

differences in the concrete paths of source code files. As a secondary goal, the configuration

should be specified in a modular way, facilitating reuse of configurations.

With regards to the report format, we aim to establish a common hierarchy of check categories

with accompanying check semantics, making results obtained from different tools directly

D6.7.1 - Standardization Activities

Page 12 of 48 Standardization Activities v1.0

comparable. Finally, the format needs to be extensible, allowing the addition of language support

and analysis feature configuration later.

For the format design, we therefore use a set of guiding policies:

• Common semantics, e.g. for checks, should be defined as needed, but based on the

semantics used by existing SCA tools where no conflicts arise.

• The format may allow tool-dependent configuration, but the amount of necessary tool-

dependent configuration needs to be minimized. Users should be able to perform analysis

tasks without any tool-specific configuration at all.

• The format may allow machine-dependent specification of paths but needs to provide

means to the user to create configurations where any machine-dependent settings are as

isolated from the rest of the configuration as possible.

• The format should consist of lightweight, reusable structures. Language-dependent

structures should be isolated and their integration into the format must allow the addition

of new language-dependent structures without breaking backward compatibil ity.

• Configurations should be composed of small, reusable and extensible parts, which may be

aggregated to form a complete SCA tool configuration.

The details of ASC3F are specified in Appendix A.

4.2. The SARIF Format

Over the course of the ASSUME project, another format for exchanging results from static

analysis tools emerged, mainly driven by Microsoft: The Static Analysis Results Interchange

Format1 (SARIF), which defines a standard format for the output of static analysis tools . However,

compared to the ASSUME exchange format, it only covers some aspects mainly dealing with tool

results, but not with tool setup. The SARIF format is already well-documented, possesses a

mature language design and comes with an SDK to facilitate its use. The format’s maintainers just

initiated a standardization initiative2 through OASIS (https://www.oasis-open.org).

We started to examine a unification of the two formats by performing a gap analysis and by

contacting the initiators of the SARIF format. This work is still ongoing. The preliminary results of

the gap analysis are summarized in the following illustration:

1 https://sarifweb.azurewebsites.net

2 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sarif

https://www.oasis-open.org/
https://sarifweb.azurewebsites.net/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=sarif

D6.7.1 - Standardization Activities

Page 13 of 48 Standardization Activities v1.0

Figure 5: Comparison of ASC3F and SARIF

ASC3F
SARIF

• Generic output format and
easy conversion
• Handling of different
programming artifacts: code,
object code, …

• Logical structure: function,
class, namespace

• Pysical structure: location of

Collaboration between different
SA tools

Aggregating analysis results of
different SA tools

• Common configuration and
reporting format
• Modularization of static
analysis tasks

• Tool-internal communication

• Consolidated view on SA
results

SARIF focuses on a common format for analysis results whereas ASSUME also considers internal
collaboration between different SA tools during their execution, their configuration, reporting and
modular composition as well as embedded platforms and languages.

Aggregating analysis results of
different SA tools

Focus on X86/AMD64 and .NET
based languages (C, C++, C#)

Focus on arbitrary (embedded)
platforms and languages

D6.7.1 - Standardization Activities

Page 14 of 48 Standardization Activities v1.0

5. Tool and Data Interoperability

The heterogeneity and complexity of modern industrial products requires the use of many

engineering software tools, needed by the different engineering disciplines (such as mechanical,

electrical, embedded systems and software engineering), and throughout the entire development

life cycle (requirements analysis, design, verification and validation, etc.). Unless interoperability

mechanisms are developed to connect information across the engineering tools, one may well end

up with isolated “islands of information”, given the natural distribution of information across the

many tools and data sources involved. As an example from the automotive industry, the functional

safety standard ISO 26262:2011 [4] mandates that requirements and design components are

developed at several levels of abstraction; and that a clear traceability exists between

requirements from the different levels, as well as between requirements and system components.

The earlier practice, in which development artefacts are handled as text-based documentation,

rendered such traceability ineffective – if not impossible. Even with the adoption of model-driven

engineering, it remains a challenge to trace between the artefacts being created by the various

engineering tools, to comply with the standard.

In summary, current development practices need a faster shift from the localized document -based

handling of artefacts, towards a Federated Information-based Development Environment (F-IDE),

where the information from all development artifacts is made accessible, consistent and correct

throughout the development phases, disciplines and tools.

5.1. Interoperability of Safety Engineering Tools and Architecture and

 Design Tools

In safety-critical domains such as automotive, railway, and avionics, even a small failure of a

system might cause injury to or death of people. Several international safety standards are

introduced as guidelines for system suppliers to keep the risk of systems at an acceptable level,

such as IEC 61508 (multiple domains), ISO 26262 (automotive domain), DO 178C (avionic

domain), CENELEC railway standards (railway domain). In the automotive domain, currently the

ISO 26262 standard, which is a goal-oriented standard for safety-critical systems within the

domain of road vehicles, is the state of the art. This is, of course, the applicable standard for the

Dutch (VDL) use case, which is the driver for TNO’s developments in the ASSUME project.

After its introduction in 2011, ISO 26262 has attracted more and more attentions in the automotive

domain. There are more than 120 work products generated through out safety lifecycle suggested

by this standard. This makes managing traceability and consistently of the information an

absolutely necessity for assuring safety and compliance. In order to be able to maintain the

abovementioned traceability when designing a vehicular system, it is important to have a well-

structured process in place. This is already partly ensured when ISO 26262 is followed, however

the norm still leaves a lot open aspects for interpretation and itself cannot guarantee quality of a

design process.

TNO uses an existing commercial tool called Enterprise Architect (EA) to perform system design

and analysis in a structured way. To achieve this, a specific “way of working” was set up by

D6.7.1 - Standardization Activities

Page 15 of 48 Standardization Activities v1.0

customizing the EA user interface and by connecting it with several other software tools (e.g.,

Excel, PLAATO, etc.). Enterprise Architect supports design and architecture of a system at

several levels of abstraction. It also supports traceability to documentation, code simulation and

centralization of the design. One way to ensure that traceability is maintained is to make it very

easy to connect design diagrams and documentation to the development software and developed

code. EA contains native solutions to link to documentation and developed code.

By making use of different diagrams that contain specific information for specific people, a natural

layered and ordered representation of a system design can be presented to the user. This

together with EA’s tools for maintaining traceability ensures that documentation about the design,

the design decisions, and other project information is kept very close to the actual system

development.

Within the ASSUME project, TNO has made an extension to EA that enables a specific form of

analysis once the right information is entered into a database. This database is typically filled by

drawing diagrams with elements in EA that contain specific information about the system. This

information is supplied by the system designers. A very important aspect of the system

architecting tool is that it can be used from the start of the project and it acts as a central

reference point to the latest developments done throughout a project. This also makes sure that

the tool and the diagrams including all information are used with the latest state o f the

architecture.

As mentioned above, our development enables the user to deliver design input through a

graphical representation of the system. To this end, three diagram templates have been added to

those that are already available in Enterprise Architect:

- The first diagram is a function description diagram that shows which functions are present

in the system. It captures information about what these functions do and the specific

details about the information that is exchanged between these functions.

- The second diagram is a hardware description diagram that captures details on how

hardware is interconnected and what properties the hardware has. It also defines the

interfaces that are used to communicate between hardware components. Next to that also

properties required for fault tree generation (e.g., failure probability or failure rate).

- The third diagram is the deployment diagram that contains information on how functions

are deployed or mapped to the hardware. In this way, an engineer can conduct

experiments with deploying multiple functions on one or more Electronic Control Units

(ECUs) or shift tasks between ECUs.

When all information is correctly entered, it can be exported to Matlab for further processing. This

is done by a plug-in of EA developed by TNO, which exports an “.m” file as input for Matlab. This

file is then executed, yielding a representation in Matlab of the system deployment.

This representation allows the user to perform system analysis using a custom-made Matlab

graphical user interface (GUI). This GUI can be used to generate a fault tree using the information

that was entered in the model diagrams. When information is missing, the tool will try to guide the

user to enter all required information in EA. Once everything is correct , the fault tree can be

D6.7.1 - Standardization Activities

Page 16 of 48 Standardization Activities v1.0

analyzed structurally as well as quantitatively. The structural analysis can be performed from a

very early stage in the project as numbers are not strictly required only the structure of the system

will suffice. The quantitative analysis requires actual numbers such as failure rates or importance

metrics of specific elements in the system. The GUI offers the user several options for both forms

of analysis, however specific knowledge of the analysis methods is required to be able to interpret

the results.

For structural analysis the tool offers the ability to look at:

- Modules in the tree. These are independent regions which will show how a certain part of

the tree is independent of other parts of the tree. This can indicate containment regions, in

which failures will not propagate to other branches of the tree. These modular regions can

be emphasized by the tool.

- Minimal cut-sets. These are the smallest terms of the logical formula (Boolean expression)

that corresponds with a tree. The expression describes how the Basic Events contribute to

failure of the top node of the tree. Basic events are considered to be the smallest

elements that can fail in the system. By looking at the expressions one gets insight in

which events may result in system failures, if there are only few (or only one), it means

that few faults are required to trigger a system failure.

- The actual tree and structure of the tree can be seen as making a graphical

representation. This will allow the analyst to visually inspect the tree.

For quantitative analysis the tool offers the ability to look at:

- Failure probabilities of the basic events and how these are distributed with respect to each

other.

- Failure probabilities of the intermediate events and top event. These probabilities have to

be calculated by finding the probability expression from the logical formula. The tool can

perform these calculations.

- Importance metrics. The tool offers the ability to calculate importance metrics that will give

information about the relative importance of the basic events in the tree. The tool supports

the Birnbaum and the Fussel-Vesely importance measures.

The Matlab tool allows the user to store results in “.mat” files to be used for later analysis. Node

properties can be adapted with the tool once the tree is generated. Additionally, one can build

fault-trees directly in EA. A tree can then be exported to an “.m” file and be analyzed in the tool.

This way the fault-tree generation step can be skipped.

5.2. Interoperable Toolchain for Requirements-Driven Model-Based

Development

In this section we present a sample toolchain that provides solutions for ensuring consistency,

correctness, model quality, centralized quality monitoring, and partially traceability. The toolchain

has been evaluated on an example from automotive industry that has been initially developed in

the SPES_XT project and has been extended with code generation to fit the needs of ASSUME. A

more comprehensive description of the toolchain, with more details about the tool functionalities,

D6.7.1 - Standardization Activities

Page 17 of 48 Standardization Activities v1.0

can be found in [5]. Although the running example has low safety criticality, the methods for

analysis and test demonstrated in the toolchain are usually applied to safety critical systems.

They are recommended in ISO 26262 for any element that needs compliance with the standard.

The example represents an automotive adaptive light system (AL) which contains functionality

such as adaptive high and low beam, turn signaling, cornering lightning, and ambient lightning.

The functionality chosen to elaborate the interoperable toolchain is the cornering light. Cornering

light is illuminating the area ahead and to the side of the vehicle to look around the bend. This

functionality is activated when the indicator or turn the steering wheel is operated during night -

time driving.

Figure 6: Overview of the Collaborative Toolchain from a Process Perspective

In general, the functionality represented by the running example is highly distributed on various

ECUs that communicate via the car’s vehicle busses, such as CAN, LIN, and Automotive -Ethernet

in an AUTOSAR environment. The running example abstracts this environment, as in context of

the interoperable toolchain, the textual (informal) requirements and model representation are in

focus. Containing 113 selected functional and non-functional requirements it is still big enough to

show up realistic challenges. The implementation is done using the model-based development

tools Simulink® and TargetLink® where TargetLink® is used to generate ANSI-C source code.

An overview of the collaborative toolchain is provided above. The workflow starts with textual

requirements describing the cornering light. Implementation (Simulink®) and build information to

generate ANSI-C code are initially present in our running example. In a real-world workflow,

design and environment models would be used as well. In the example we start directly with an

implementation model. Since the example system has little interaction with the environment, we

include the most important environment constraints (e.g., value ranges) in the specification but do

D6.7.1 - Standardization Activities

Page 18 of 48 Standardization Activities v1.0

not model the environment’s behavior. As we did not use design and implementation models in

the case study, they have been greyed-out in the figure. The textual requirements are formalized

within BTC EmbeddedPlatform® (BTC EP) by using the graphical specificat ion language

simplified universal pattern (see Section Fehler! Verweisquelle konnte nicht gefunden

werden.). Then the formal requirements are checked for consistency, and afterwards the

implementation is verified against them using requirements-based testing of BTC EP. Since we

omit a design model in our example, we run MIL and SIL tests directly against the implementation

model. The inputs of the system are fully defined in the test cases, therefore we can run the tests

without implementing an environment model. Using generated test cases, these are correct by

construction with respect to the formal requirements. In a complete workflow, the correctness of

design-models could be proven by the formal verification feature of BTC EP.

Besides checking correctness and consistency, we evaluate the model quality using guidelines

and metrics in MES Model Examiner® and MES M-XRAY®. Results from all steps are collected

and displayed with the help of the MES Quality Commander® which tracks quality over all

revisions of the development cycles. The different tools used in the collaborative toolchain are

integrated to enable an information exchange for a better analysis and presentation of test results.

Figure 7: Interfaces Between the Tools

The component diagram above shows which tools have interfaces to each other. The data

between tools is exchanged as XML files as depicted by the lollypop notation in the diagram: The

consistency analysis consumes XML files from BTC EP; MES Quality Commander® consumes

XML files from all the other tools in the chain. This reduces the overall manual effort of data

maintenance to a one-click file export and import. Formal specification and requirement based

testing are part of one tool, BTC EP, and hence share the same database. The BTC EP integrates

with Simulink/TargetLink via a plugin in the MATLAB environment – the communication between

BTC EP and MATLAB is fully automated and hidden from the user. There is no need for an

D6.7.1 - Standardization Activities

Page 19 of 48 Standardization Activities v1.0

interface between BTC EP and MES MXAM/M-XRAY® since the model quality analysis is

independent from formal testing.

The XML formats used are natively supported formats of the industrial tools: The BTC EP

provides the XML export out of the box. Also, the XML format for migrating qual ity data is natively

used by MQC. Enough documentation for implementing the export/import functionality in the

Consistency Analysis has been provided by the tool vendors. To avoid a semantical gap between

the tools, the SUP semantics has been provided by BTC-ES to OFFIS in a more mathematical

form compared to user documentation. This formal definition of the SUP semantics has been

transformed into the internal representation of the consistency analysis prototype with a

computer-aided and mathematically sound process.

Requirement quality has been the starting point for quality metrics being captured in the general

exchange format for quality assessments. Further quality aspects along the line of development

have been covered in and supported by the general exchange format. During the project ,

information provision has been realized for numerous tools spanning requirements quality

analysis (e.g., consistency analysis), static analysis of models (e.g., MES Model Examiner, MES

M-XRAY), or test tools (e.g., BTC Embedded Tester, MES Test Manager). All tools provide

information on the quality of artefacts under investigation. These quality results will be collected,

aggregated and visualized using the quality dashboard. During the project, the exchange format

has been further evolved to meet the structures defined in ISO 25010 on quality measurements

for software products. As a result of the project’s research, the quality data exchange format will

fit into the family of standard on quality measurement.

Implementation and evaluation of the tool chain showed that it is possible to use existing XML

formats for data exchange between tools. Using formats already supported in some of the tools of

the chain reduces development effort: There is no need to define a new exchange format and

implementation is already done for one end of each tool connection. In case of our example

toolchain all relevant data has been present in the exchange formats from the beginning; there

was no need to extend the XML formats. However, in case of vendor specific formats the

semantics must be communicated carefully.

5.3. Interoperability of Static Code Analysis Tools and Design Tools

The initiative Open Services for Lifecycle Collaboration (OSLC) offers specifications for a

connection between tool data which addresses the application lifecycle management (ALM) and

the product lifecycle management (PLM). There are implementations for OSLC like OSLC4J for

Java. Furthermore, there is a model-based development tool, namely Lyo Modeler which is a tool

created by KTH. The Lyo Modeler enables the model-based development of so-called adaptors.

One Adaptor transfers the tool data in so-called resources, which are represented in the resource

description format (RDF). RDF is a common format for Linked Data, where a resource called

“subject” is linked via a property with another resource called “object”. Each resource has a

unified resource identifier (URI). The object itself can also be a subject in another context. With

such triplets, it is possible to describe distributed and linked data. The RDF data are stored in a

special data base called triple-store.

D6.7.1 - Standardization Activities

Page 20 of 48 Standardization Activities v1.0

OSLC offers amongst other specifications for requirement-management, quality-management

(QM), and architecture-management. With the architecture-management specification, data from

modeling-tools can be mapped to resources. Data form a testing tool can be mapped with the help

of the QM specification. However, a specification for the mapping of results from a static code-

analysis-tool is missing. Therefore, a resource definition based on the QM specification and the

ASC3F format was created. The use case for this resource definition is the connection of static

code analysis-tools with other tools, so that all artefacts from the requirements, model artefacts,

and generated source code, to the point of static code analysis results are traceable.

Even though the source code is typically complemented with the help of an integrated

development environment (IDE), it is managed within a versions-management tool like Git. For an

initial demonstration of this concept the connection between a version control system and a static

code analysis tool was implemented. We assumed that the static code analysis tool delivers its

results in the ASCF3 Format. For the implementation we used the static code analysis tool QPR-

Refine and the version control system Git with GitLab. Furthermore, we used the Lyo Modeler for

the implementation of the so-called Analysis Adaptor which offers the analysis resources and for

the Code-Adaptor, which offers version-managed C-files from Git. Figure 8 depicts the resulting

resource definition, which based on the OSLC QM specification as well as on the ASCF3 Format.

class Analysis Adaptor Resources

Test Case (Analysis Case)

+ identifier: String

+ type: Resource

+ title: XMLLiteral

+ description: XMLLiteral

+ contributor: Resource

+ created: DateTime

+ creator: Resource

+ serviceProvider: Resource

Test Result (Analysis Result)

+ identifier: String

+ status: String

+ created: DateTime

+ modified: DateTime

Files

+ identifier: String

+ path: String

+ type: fi leType

Locations

+ identifier: String

+ lineNo: int

+ colNo: int

+ type: locationType

Check

+ identifier: String

+ status: Resource

+ category: Resource

+ description: XMLLiteral

+ annotation: String

1

macro, realLocation

0..*

0..*
reports on

1

1

includes

0..*

1

refer to head version of fi le

1..*

1

refers to

1..*

0..*

contributes to

1

D6.7.1 - Standardization Activities

Page 21 of 48 Standardization Activities v1.0

Figure 8: Resource Definition for the Analysis Adaptor

The orange boxes represent resources which are adapted from the OSLC QM specification. The

gray boxes represent resources which based on the ASCF3 Format.

The new name of the adapted resources stands in brackets behind the original name from the

OSLC QM specification. The Analysis Case is linked with all files which should be analyzed and

contains the configuration for the static code analysis. The Analysis Result contains all so -called

Checks of one analysis report. There can be different Analysis Results for different versions of the

source code files. One Analysis Result refers to a specific Analysis Case.

Checks name the problems and are linked with the Locations where the problems occur. A

Location gives the line and column number in the code where a problem was located. The

Location is linked with the appropriate file, or with another location in the case of that the location

is a macro location. Therefore, the Analysis Cases are traceable from its results up to the source

code of a specific version. This approach offers potential for an automated analysis, similar to

well-known continuous integration approaches and gives the possibility to compare different

analysis results.

D6.7.1 - Standardization Activities

Page 22 of 48 Standardization Activities v1.0

6. Standardization of Interoperability Specifications

Activities related to standardization of Interoperability Specifications within ASSUME have been

mainly driven by KTH. In January 2018, KTH has officially launched the ICF3 (the “Interoperability

Coordination Forum”), supported by ARTEMIS-IA, which is chaired by Frédéric Loiret (WP3 leader

of ASSUME) and Martin Törngren from KTH. The aim of the ICF is to foster the dissemination and

industrial take-up of a set of interoperability specifications supporting the integration of IT and

Systems development tools across various European programs (mainly around the

ARTEMIS/ECSEL eco-system so far, but also with ITEA and H2020). During this first workshop,

pre-standardization activities performed within the ASSUME data exchange format, namely

ASCF3, has been presented. It is our objective to officially integrate these inputs into the ICF in

the coming months, in order to increase the visibility of our ASSUME activities to a wider

community. The ICF has been designed as a sustainable structure, funded by ARTEMIS-IA, and

as part of its Standardization Working Group, we will therefore continue to promote ASSUME

inputs on the long run.

KTH staff from the ASSUME project (Jad El-Khoury and Andrii Berezovskyi) are also actively

involved in the OASIS standardization body, in particular, the OSLC set of standards which have

been used as the cornerstone to ASSUME activities in the WP3. They are both active member of

the OASIS Lifecycle Integration Core (OSLC Core) Technical Committee4, and active member of

the OASIS OSLC Domains Technical Committee (Domains TC)5.

3 https://artemis-ia.eu/icf-workshop-2018.html

4 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=oslc-core

5 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=oslc-domains

https://artemis-ia.eu/icf-workshop-2018.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=oslc-core
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=oslc-domains

D6.7.1 - Standardization Activities

Page 23 of 48 Standardization Activities v1.0

7. Conclusion

This document reports on how standardization among system development tools has been

achieved in the ASSUME project. In the ASSUME project standardization needs for requirement

formalization, analysis result exchange, interoperability between tools and (configuration) data are

addressed.

The developed toolchain (Section 5.2) demonstrates that the Simplified Universal Pattern (Section

Fehler! Verweisquelle konnte nicht gefunden werden.) can be used to formalize functional

requirements, such that different analysis tools interpret them with the same unambiguous

semantics. Also, ASSUME shows how widely used industrial tools, such as Enterprise Architect

(Section 5.1), can be extended to support an integrated development process. Additionally, to

exploit data formats natively supported by third-party tools, a new exchange format (Section 0) for

tool configuration and analysis results has been developed that facilitates tool interoperability.

Adopting the exchange format for OSLC (Section 5.3) especially pushes tool integration and may

be subject to standardization beyond ASSUME.

D6.7.1 - Standardization Activities

Page 24 of 48 Standardization Activities v1.0

References

[1] C. Ellen, S. Sieverding and H. Hungar, "Detecting Consistencies and Inconsistencies of

Pattern-Based Functional Requirements," in Formal Methods for Industrial Critical Systems -

19th International Conference, FMICS 2014, Florence, Italy, September 11-12, 2014.

Proceedings, 2014.

[2] T. Bienmüller, T. Teige, A. Eggers and M. Stasch, "Modeling Requirements for Quantitative

Consistency Analysis and Automatic Test Case Generation," in Workshop on Formal and

Model-Driven Techniques for Developing Trustworthy Systems, 2016.

[3] J. S. Becker, "Analyzing Consistency of Formal Requirements," in Automated Verfification of

Critical Systems, AVoCS 2018, 2018.

[4] ISO 26262-1:2011-11, Road vehicles - Functional safety - Part 1: Vocabulary, Beuth Verlag

GmbH.

[5] J. S. Becker, V. Bertram, T. Bienmüller, U. Brockmeyer, H. Dörr, T. Peikenkamp and T. Teige,

"Interoperable Toolchain for Requirements-Driven Model-Based Development," in ERTS 2018,

2018.

D6.7.1 - Standardization Activities

Page 25 of 48 Standardization Activities v1.0

Annex A: The ASC3F Format

This appendix presents the ASSUME static code analysis tool exchange format (ASC3F) as of

August 2018.

ASC3F serves two purposes: Defining a common file format to specify program verification tasks,

as well as the assumptions underlying the verification (Sec. A.1); and, defining a common file

format to specify program verification results (Sec. A.2). The format is laid down in the form of

XML Schema Definitions (XSD) with additional semantical annotations. The XML Schema

Definitions will be made available for download.

A.1. Configuration

In this section, we present most aspects of the current state of the configuration format by

example (see ExampleConfiguration.xml at the end of the appendix).

A.1.1. Top-Level Structure

A configuration consists of three major parts:

1. The common configuration (belonging to the global configuration) describing configuration

items for all analysis tools and independent of machines executing the analysis tools;

2. the optional tool-specific configuration (also belonging to the global configuration) allowing

users to configure analysis tool behavior which cannot currently be specif ied in the

common configuration;

3. the local configuration, which is intended to allow users to specify, e.g., concrete directory

replacements for the respective placeholders used in the other parts of the configuration.

For now, the configuration schema is designed with the usage of XInclude in mind: place the

global and local configurations in separate files and create a configuration file by including both.

Users then only need to supply a customized local configuration file.

<?xml version="1.0" encoding="UTF-8"?>

<ascccf:Configuration xmlns:ascccf="http://example.com/ascccf"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

 xsi:schemaLocation="http://example.com/ascccf

ASC3F.xsd">

 <ascccf:GlobalConfiguration>

 <ascccf:CommonConfiguration>

 <<Meta information>>

 <<Hardware targets>>

 <<Language targets>>

 <<Source code modules>>

 <<Execution model targets>>

 <<Check targets>>

 <<Analysis tasks>>

 </ascccf:CommonConfiguration>

D6.7.1 - Standardization Activities

Page 26 of 48 Standardization Activities v1.0

 <<Tool-specific configuration>>

 <ascccf:GlobalConfiguration>

 <<Local configuration>>

</ascccf:Configuration>

A.1.2. Meta Information

Users can store a description of the configuration file in the metadata element. This element is

optional.

<<Meta information>> =

 <Meta configurationName="Example configuration for ASSUME"

version="1.0"

 description="This is an example for the ASSUME configuration

format.">

 <Maintainer>Felix Kutzner (KIT)</Maintainer>

 </Meta>

A.1.3. Hardware Targets

To allow modular configuration files, most bits of the configuration are stored in entities

identifiably by name, which can then be combined by to specify a concrete analysis configuration.

Hardware targets are descriptions of the hardware on which the code to be analyzed is intended

to run:

<<Hardware targets>> =

 <HardwareTargets>

 <HardwareTarget name="PPC32">

 <PhysicalHardwareTarget endianness="big"

 unalignedDereferenceSupported="false"

 pointerSize="32"

 functionPointerSize="32"/>

 </HardwareTarget>

 <HardwareTarget name="x86">

 <PhysicalHardwareTarget endianness="small"

 unalignedDereferenceSupported="false"

 pointerSize="32"

 functionPointerSize="32"/>

 </HardwareTarget>

 </HardwareTargets>

A.1.4. Language Targets

Language targets are named entities describing how to interpret source code of a given

programming language. Currently, the format only supports C language targets. However, the

D6.7.1 - Standardization Activities

Page 27 of 48 Standardization Activities v1.0

configuration format is designed with extensibility in mind: new language targets, e.g. for C++, can

be introduced at a later stage without affecting existing configuration files.

<<Language targets>> =

 <LanguageTargets>

 <LanguageTarget name="ISO C">

 <CLanguageTarget signedBitfields="true"

 signedEnums="true"

 fpRoundingMode="downward"

 fpConstantRoundingMode="downward"

 enumType="int"

 inlineAssemblyHandlingMode="ignore"

 standardRevision="ISO C">

 <Types>

 <Type name="char" size="8" alignment="8" atomic="false"/>

 <Type name="short" size="16" alignment="16" atomic="false"/>

 <Type name="int" size="32" alignment="32" atomic="false"/>

 <Type name="long" size="32" alignment="32" atomic="false"/>

 <Type name="long long" size="64" alignment="64"

atomic="false"/>

 <Type name="float" size="32" alignment="32" atomic="false"/>

 <Type name="double" size="64" alignment="64" atomic="false"/>

 </Types>

 </CLanguageTarget>

 </LanguageTarget>

A C language subtarget extends another C language (sub)target with preprocessor directives,

include directories, and individual include files needing to be prepended to all C source code files

which are analyzed using this C language subtarget. The latter may e.g. be used to include

compiler-specific header files. Paths need to be specified as URIs. Within URIs, substrings

matching $_[A-Z]*_$ are placeholders for concrete paths specified in the local configuration.

Include directories and files are used in the order of their appearance within the language targets.

Via the insertionMode attribute, the user needs to specify whether the list of include directo ries

resp. files needs to be prepended or appended to the subtarget parent’s list of include directories

resp. files (if applicable).

 <LanguageTarget name="ISO C with library includes">

 <CLanguageSubtarget superTarget="ISO C">

 <PreprocessorDirectives>

 <Definition identifier="STATIC_ANALYSIS"/>

 </PreprocessorDirectives>

 <IncludeDirectories insertionMode="append">

 <DirectoryURI>$_LIBCINCLUDES_$</DirectoryURI>

 </IncludeDirectories>

 <IncludeFiles insertionMode="prepend">

 <IncludeFile path="$_SYSINCLUDES_$/compiler_sys.h"

local="true"/>

 </IncludeFiles>

D6.7.1 - Standardization Activities

Page 28 of 48 Standardization Activities v1.0

 </CLanguageSubtarget>

 </LanguageTarget>

The basic idea is to have a generic C language target and more concrete language targets via

subtargets:

 <LanguageTarget name="LT for ExampleModule">

 <CLanguageSubtarget superTarget="ISO C with library includes">

 <IncludeDirectories insertionMode="append">

 <DirectoryURI>$_EXAMPLEMODULEPATH_$/include</DirectoryURI>

 </IncludeDirectories>

 </CLanguageSubtarget>

 </LanguageTarget>

 </LanguageTargets>

The LanguageTargets element is not the only place in which language subtargets may occur. For

example, within source code modules, language subtargets may be specified for individual files

(extending the language target which would otherwise be used to interpret that file).

A.1.5. Source Code Modules

Source code module elements are named entities describing sets of files needing to be analyzed.

Users may specify an optional root URI, relative to which relative SourceFile URIs are interpreted.

Within source code modules, source files are identifiable by an ID. Source code module elements

may also contain information about which parts of the code needs to be stubbed.

<<Source code modules>> =

 <SourceModules>

 <SourceModule name="ExampleModule" rootUri="$_EXAMPLEMODULESRC_$">

 <SourceFiles>

 <SourceFile uri="main.c" id="1"/>

Needing further preprocessor directives and header files not visible to other source code files, the

file dodgycode.c has an individual C language subtarget (extending the language target which

would otherwise be used to interpret that file):

 <SourceFile uri="dodgycode.c" id="2">

 <LanguageTargetExtension>

 <CLanguageSubtarget>

 <PreprocessorDirectives>

 <Definition identifier="SILLY_ADD" expansion="x+y"/>

 <Definition identifier="KBD_PORT_ADDR" expansion="0x60"/>

 <Definition identifier="KBD_STAT_ADDR" expansion="0x64"/>

 <Definition identifier="KBD_CMD_ADDR" expansion="0x64"/>

 </PreprocessorDirectives>

 <IncludeFiles>

 <IncludeFile path="HideProprietaryCExtensions.h"

local="true"/>

D6.7.1 - Standardization Activities

Page 29 of 48 Standardization Activities v1.0

 </IncludeFiles>

 </CLanguageSubtarget>

 </LanguageTargetExtension>

 </SourceFile>

 <SourceFile uri="shadycode.c" id="3"/>

 </SourceFiles>

Let’s say, the module ExampleModule requires function stubs. Since function stubbing is

language dependent, the format offers an optional RequiredCStubs element within source code

modules. There are three ways of requiring a C function to be stubbed: requiring a visibility

controlled stub means that the stub generator should create a skeleton stub for each visibility-

controlling macro identifier specified in the VisibilityControllingSymbols list, controlling

their visibility via corresponding #ifdef directives. Requiring a universal stub means requiring a

single stub skeleton to be generated, which is not „guarded“ by #ifdef directives. Furthermore,

autogen stubs should not be implemented in source code files, but be generated on-the-fly be the

analysis tool. (Note that the analysis tool only needs to interpret autogen stubs; the other

information may be used for manual stub implementation or by stub skeleton generators.)

Stubbed functions are identified via URIs. For C, the namespace cstub is used, which is

structured as follows:

• Functions func having external linkage are described by cstub://globalscope/func.

• Functions func having internal linkage for the file with ID fileID within source code module

module are described by cstub://filescope/module/fileID/func.

Stubs for functions with external linkage may be assigned to groups. Stub generators should

place all stubs of a group into the same file.

 <RequiredCStubs>

 <VisibilityControllingSymbols>

 <CVisibilityControllingSymbol name="ENABLE_LLBMC_STUBS"/>

 <CVisibilityControllingSymbol name="ENABLE_ASTREE_STUBS"/>

 </VisibilityControllingSymbols>

 <CUniversalStub uri="cstub://globalscope/open" group="posix_io"/>

 <CUniversalStub uri="cstub://globalscope/read" group="posix_io"/>

 <CUniversalStub uri="cstub://globalscope/write"

group="posix_io"/>

 <CVisibilityControlledStub uri="cstub://globalscope/fancy_rng"/>

 <CVisibilityControlledStub

 uri="cstub://filescope/ExampleModule/2/read_from_kbd"/>

 <CAutogenStub uri="cstub://globalscope/malloc"/>

 <CAutogenStub uri="cstub://globalscope/free"/>

 </RequiredCStubs>

 </SourceModule>

For each stub URI, at most one corresponding stub entry may be present in a RequiredCStubs

element.

D6.7.1 - Standardization Activities

Page 30 of 48 Standardization Activities v1.0

A stub module generated using the stub specification given in ExampleModule might look like this:

 <SourceModule name="ExampleModule_stubs"

rootUri="$_EXAMPLEMODULESTUBS_$">

 <SourceFiles>

groups/posix_io.c implements all stubs of the group posix_io. All stubs implemented in a

given source code file are listed using the ImplementsStubs element:

 <SourceFile uri="groups/posix_io.c" id="1">

 <ImplementsStubs>

 cstub://globalscope/open

 cstub://globalscope/read

 cstub://globalscope/write

 </ImplementsStubs>

 </SourceFile>

The stub fancy_rng was not assigned to a group, so it is placed in an individual file:

 <SourceFile uri="fancy_rng.c" id="2">

<ImplementsStubs>cstub://globalscope/fancy_rng</ImplementsStubs>

 </SourceFile>

Finally, the static function read_from_kbd has a location corresponding to its stub URI:

 <SourceFile uri="filescope/ExampleModule/2/read_from_device.c"

id="3">

<ImplementsStubs>cstub://filescope/ExampleModule/2/read_from_kbd

 </ImplementsStubs>

 </SourceFile>

 </SourceFiles>

 </SourceModule>

Having a module ExampleModule_stubs implementing the stubs for ExampleModule, we can

create a third module composed of the former two. To complicate things, let‘s assume that our

third module contains a file implementing the function fancy_rng, which is also implemented in the

stub module.

<SourceModule name="ExampleModule_joined"

rootUri="$_EXAMPLEMODULEJOINED_$">

 <SourceFiles>

 <SourceFile uri="someOtherFancyRNG.c" id="1"/>

 </SourceFiles>

 <RequiresModules>

We include all files from ExampleModule:

D6.7.1 - Standardization Activities

Page 31 of 48 Standardization Activities v1.0

 <RequiresModule name="ExampleModule"/>

We also include all of ExampleModule_stubs, however excluding all files implementing the stub

cstub://globalscope/fancy_rng:

 <RequiresModule name="ExampleModule_stubs">

 <ExcludingFilesProvidingStub

uri="cstub://globalscope/fancy_rng"/>

 </RequiresModule>

Alternatively, we could have used an <ExcludingFile module=“...“ id=“...“/> element

to specify a file to be excluded from the inclusion. Since the required module may require further

modules, it is necessary to specify the module name as well as the file’s identifier within that

module.

 </RequiresModules>

 </SourceModule>

 </SourceModules>

A.1.6. Execution Model Targets

Execution model targets are named entities specifying how software is executed, e.g.,

synchronous (only one thread running at the same time) vs. asynchronous (multi-threaded)

execution and entry points:

<<Execution model targets>> =

 <ExecutionModelTargets>

 <ExecutionModelTarget name="ExampleExecModel">

 <CSynchronousCExecutionModeTarget>

 <EntryPoints>

 <EntryPoint>main</EntryPoint>

 </EntryPoints>

 </CSynchronousCExecutionModeTarget>

 </ExecutionModelTarget>

 </ExecutionModelTargets>

A.1.7. Check Targets

Check targets are named entities in which the user can configure requirements for checks, e.g.

which runtime or MISRA checks need to be supported by the static analysis tool.

<<Check targets>> =

 <CheckTargets>

 <CheckTarget name="BasicChecks">

 <CCheckTarget>

 <RequiredRuntimeCheck>integer-arithmetic</RequiredRuntimeCheck>

 <RequiredRuntimeCheck>floating-point-

D6.7.1 - Standardization Activities

Page 32 of 48 Standardization Activities v1.0

arithmetic</RequiredRuntimeCheck>

 <RequiredRuntimeCheck>data-flow</RequiredRuntimeCheck>

 <RequiredRuntimeCheck>control-flow</RequiredRuntimeCheck>

 <RequiredRuntimeCheck>memory-access</RequiredRuntimeCheck>

 <RequiredRuntimeCheck>c-assertions</RequiredRuntimeCheck>

 </CCheckTarget>

 </CheckTarget>

 </CheckTargets>

A.1.8. Analysis Tasks

Analysis tasks are named entities representing combinations of hardware targets, source code

modules, language targets, check targets and execution model targets, thereby completing a

configuration (modulo tool-specific settings). For example, to analyze the source code module

ExampleModule_joined for x86 as well as for PPC processors, the user might create the

following analysis tasks:

<<Analysis tasks>>=

 <AnalysisTasks>

 <AnalysisTask name="analyzeExampleModuleOnPPC"

 hardwareTarget="PPC32"

 sourceModule="ExampleModule_joined"

 languageTarget="LT for ExampleModule"

 checkTarget="BasicChecks"

 executionModelTarget="ExampleExecModel"

 missingRequiredCapabilityHandlingMode="warning">

 <ReportGeneratorConfiguration documentFormat="assume"/>

 </AnalysisTask>

 <AnalysisTask name="analyzeExampleModuleOnX86"

 hardwareTarget="x86"

 sourceModule="ExampleModule_joined"

 languageTarget="LT for ExampleModule"

 checkTarget="BasicChecks"

 executionModelTarget="ExampleExecModel"

 missingRequiredCapabilityHandlingMode="warning">

 <ReportGeneratorConfiguration documentFormat="assume"/>

 </AnalysisTask>

 </AnalysisTasks>

A.1.9. Tool-Specific Configuration

Some parts of the configuration are too tool-specific to be specified in the common configuration:

for example, time- and memouts might be specified using different granularities, and some

settings such as loop bounds are dependent on the fundamental approach of the analysis tool.

Users may provide tool configurations containing basic parameters such as additional command

line arguments for the analysis tool and language target extensions containing e.g. further C

preprocessor directives (for a given source code file, the tool-specific language target extension

D6.7.1 - Standardization Activities

Page 33 of 48 Standardization Activities v1.0

extends the language target which would otherwise be used for the file. If the file has an individual

language target, the tool-specific language target extends that target and is used instead).

<<Tool-specific configuration>>=

 <ascccf:ToolConfigurations>

 <ToolConfiguration name="LLBMC" customParameters=“-x“>

 <ForAnalysisTasks>

 <AnalysisTaskName>analyzeExampleModuleOnPPC</AnalysisTaskName>

 <AnalysisTaskName>analyzeExampleModuleOnX86</AnalysisTaskName>

 </ForAnalysisTasks>

 <LanguageTargetExtension>

 <CLanguageSubtarget>

 <PreprocessorDirectives>

 <Definition identifier="STATIC_ANALYSIS"/>

 <Definition identifier="ENABLE_LLBMC_STUBS"/>

 </PreprocessorDirectives>

 </CLanguageSubtarget>

 </LanguageTargetExtension>

The content of the ToolSpecificConfiguration element is not defined by this configuration

format, but by the vendors of individual analysis tools. For example, in the case of LLBMC, such a

ToolSpecificConfiguration might look like this:

 <ToolSpecificConfiguration>

 <LoopBound>40</LoopBound>

 </ToolSpecificConfiguration>

 </ToolConfiguration>

 </ascccf:ToolConfigurations>

A.1.10. Local Configuration

Finally, the local configuration contains replacement rules for URI substrings, which need to be

applied to all URIs occuring in the global part of the configuration. For this configuration, a loc al

configuration might have the following rules:

<<Local configuration>>=

 <ascccf:LocalConfiguration>

 <URISubstitutionRules>

 <URISubstitutionRule token="$_LIBCINCLUDES_$"

 substitution="file:///usr/include/libc"/>

 <URISubstitutionRule token="$_SYSINCLUDES_$"

 substitution="file:///usr/include"/>

 <URISubstitutionRule token="$_EXAMPLEMODULEPATH_$"

 substitution="file:///ExampleProject"/>

 <URISubstitutionRule token="$_EXAMPLEMODULESRC_$"

 substitution="$_EXAMPLEMODULEPATH_$/src"/>

 <URISubstitutionRule token="$_EXAMPLEMODULESTUBS_$"

D6.7.1 - Standardization Activities

Page 34 of 48 Standardization Activities v1.0

substitution="$_EXAMPLEMODULEPATH_$/generatedStubs"/>

 <URISubstitutionRule token="$_EXAMPLEMODULEJOINED_$"

 substitution="$_EXAMPLEMODULEPATH_$/joined"/>

 </URISubstitutionRules>

 </ascccf:LocalConfiguration>

A.2. Reports

In this section, we present most aspects of the current state of the report format (also by

example).

A.2.1. Top-Level Structure

A report consists of six major parts:

1. a copy of the configuration used to obtain the results (see Section A.1),

2. a collection of execution reports,

3. a collection of source code file descriptions,

4. a collection of source code location descriptions,

5. a collection of check results,

6. and a collection of failure traces.

<?xml version="1.0" encoding="UTF-8"?>

<ascccf:Report xmlns:ascccf="http://example.com/ascccf"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 name="String"

 sourceVersion="String"

 xsi:schemaLocation="http://example.com/ascccf ASCCRF.xsd">

 <<Configuration>>

 <<Execution report collection>>

 <<Source file collection>>

 <<Source location collection>>

 <<Check result collection>>

 <<Failure trace collection>>

</ascccf:Report>

A.2.2. Execution Report Collection

An execution report is a named entity detailing which configuration has been used to configure the

analysis tool and contains information about the analysis tool execution, such as warnings. Since

the latter section remains to be designed, users can currently insert arbitrary XML data such as

<TODO_ConcreteExecutionReport/> in its place.

<<Execution report collection>> =

D6.7.1 - Standardization Activities

Page 35 of 48 Standardization Activities v1.0

 <ascccf:ExecutionReports>

 <ascccf:ExecutionReport

 name="Report for ExampleProject-on-PPC analysis"

 analysisTask="analyzeExampleModuleOnPPC"

 toolParameters="LLBMC"

 analysisBeginDate="2016-12-17T09:30:47Z"

 analysisFinishDate="2016-12-17T09:30:49Z"

 analysisComputerName="i11pc164"

 toolName="LLBMC 2016-12-10">

 <TODO_ConcreteExecutionReport/>

 </ascccf:ExecutionReport>

 </ascccf:ExecutionReports>

A.2.3. Source File Collection

To allow the identification of individual source files as well as e.g. include files not specified in

source code modules, reports contain a separate collection of source file descriptions – a list of

uniquely identifiable File elements. Where possible, these files are identified with their

corresponding source-module-level descriptions via the module name and their ID within that

module. Moreover, a hash sum can be stored for each source file. The source file descriptions

contain language-dependent data: for example, a C source file may be flagged as preprocessed,

while a C header file has an include directory attribute. Again, source file descriptions for other

languages can be added without breaking backward compatibility.

<<Source file collection>> =

 <ascccf:SourceFiles>

 <File id="1">

 <CSourceFile path="$_EXAMPLEMODULESRC_$/main.c"

 hashSum="1b826051506f463f07307598fcf12fd6"

preprocessed="false"

 originModule="ExampleModule" idInOriginModule="1"/>

 </File>

 <File id="2">

 <CSourceFile path="$_EXAMPLEMODULESRC_$/dodgycode.c"

 hashSum="3b5337aa426bb547efefb97edec54e3e"

preprocessed="false"

 originModule="ExampleModule" idInOriginModule="2"/>

 </File>

 <File id="3">

 <CSourceFile path="$_EXAMPLEMODULESRC_$/shadycode.c"

 hashSum="ff702f10bebfa2f1508deb475ded2d65"

preprocessed="false"

 originModule="ExampleModule" idInOriginModule="3"/>

 </File>

 <File id="4">

 <CHeaderFile path="$_EXAMPLEMODULEPATH_$/include/ExampleModule.h"

 hashSum="2f702f10bebfa2f1508deb475ded2d65"

D6.7.1 - Standardization Activities

Page 36 of 48 Standardization Activities v1.0

preprocessed="false"

 includeDirectory=""/>

 </File>

 <File id="5">

 <CHeaderFile path="compiler_sys.h"

hashSum="3f702f10bebfa2f1508deb475ded2d65"

 preprocessed="false"

includeDirectory="$_SYSINCLUDES_$"/>

 </File>

 <File id="6">

 <CHeaderFile path="HideProprietaryCExtensions.h"

 hashSum="4f702f10bebfa2f1508deb475ded2d65"

preprocessed="false"

 includeDirectory="$_EXAMPLEMODULESRC_$"/>

 </File>

 <File id="10">

 <CSourceFile path="$_EXAMPLEMODULESTUBS_$/groups/posix_io.c"

 hashSum="8633b81a334995b50b53df83581af093"

preprocessed="false"

 originModule="ExampleModule_stubs"

idInOriginModule="1"/>

 </File>

 <File id="11">

 <CSourceFile path="$_EXAMPLEMODULESTUBS_$/fancy_rng.c"

 hashSum="b06f74ff6378f4a2629621b3d8aa935f"

preprocessed="false"

 originModule="ExampleModule_stubs"

idInOriginModule="2"/>

 </File>

 <File id="12">

 <CSourceFile

path="$_EXAMPLEMODULESTUBS_$/filescope/EM/4/read_from_device.c"

 hashSum="c143a9ae806ab2c93ad4f4f593173bf0"

preprocessed="false"

 originModule="ExampleModule_stubs"

idInOriginModule="3"/>

 </File>

 <File id="20">

 <CSourceFile path="$_EXAMPLEMODULEJOINED_$/someOtherFancyRNG.c"

 hashSum="591d99a6a84b1e1dbb44395a3fa27d64"

preprocessed="false"

 originModule="ExampleModule_joined"

idInOriginModule="1"/>

 </File>

In the future, the SourceFiles element will probably renamed to SourceStorageCollection,

as source code may be stored outside of files, e.g., in preprocessor definitions:

D6.7.1 - Standardization Activities

Page 37 of 48 Standardization Activities v1.0

 <File id="30">

 <CFilelessPreprocessorDefinition identifier="SILLY_ADD"

expansion="x+y"/>

 </File>

 </ascccf:SourceFiles>

A.2.4. Source Location Collection

The source location collection contains locations identifying places within the files described in the

source file collection. The format supports multiple approaches of identifying such places: the C -

specific one (including support for macro expansion) is recommended for locations in C source

code. Additionally, support is provided for plaintext file/line/column and file/line location

specifications. Finally, ranges in source code can be specified using a special location t ype.

<<Source location collection>> =

 <ascccf:Locations>

A basic C soure code location (without need for macro expansion) is given by a file/line/column

triple:

 <Location id="1">

 <CRealLocation fileID="2" lineNo="22" colNo="8"/>

 </Location>

C macro expansions are represented by macro locations, consisting of a spelling location ID (the

location within the macro definition) and the expansion location ID (the location where the macro

is expanded).

 <Location id="10">

 <CRealLocation fileID="4" lineNo="10" colNo="12"/>

 </Location>

 <Location id="11">

 <CRealLocation fileID="3" lineNo="32" colNo="13"/>

 </Location>

 <Location id="12">

 <CMacroLocation spellingLocID="10" expansionLocID="11"/>

 </Location>

Ranges can be specified using a begin and an end location ID:

 <Location id="20">

 <CRealLocation fileID="2" lineNo="22" colNo="12"/>

 </Location>

 <Location id="21">

 <CRealLocation fileID="2" lineNo="22" colNo="20"/>

 </Location>

 <Location id="22">

D6.7.1 - Standardization Activities

Page 38 of 48 Standardization Activities v1.0

 <RangeLocation beginLocID="20" endLocID="21"/>

 </Location>

Finally, locations can be specified in plaintext files:

 <Location id="30">

 <PlaintextRealLocation fileID="20" lineNo="5" colNo="53"/>

 </Location>

 <Location id="31">

 <PlaintextLineLocation fileID="20" lineNo="5"/>

 </Location>

 </ascccf:Locations>

A.2.5. Check Result Collection

The check result collection contains a Check element for each performed check. We plan to

establish a common set of check categories (containing e.g. the category

integerarithmetic.divbyzero), onto which the tool-specific check categories (e.g.

Polyspace‘s ZDV) can be mapped. The check result (safe, unsafe or undecided) is given in the

check element’s status attribute. The tool may provide further details, e.g. reasons for an

undecided status, in the statusSupplement attribute. Furthermore, the tool‘s internal check

category and status are provided using the internalCategory rsp. internalStatus attributes. Finally,

the analysis tool may provide free-form information about the result in the annotation field.

<<Check result collection>> =

 <ascccf:Checks>

 <ResultsFor executionReport="Report for ExampleProject-on-PPC

analysis">

 <Check id="1">

 <CCheck category="integerarithmetic.divbyzero" status="unsafe"

 internalCategory="divbyzero" internalStatus="unsafe"

annotation="">

 <LocID>1</LocID>

 </CCheck>

 </Check>

 <Check id="2">

 <CCheck category="assertion.user" status="safe"

statusSupplement="locally"

 internalCategory="user.assertion" internalStatus="safe"

 annotation="locally">

 <LocID>12</LocID>

 </CCheck>

 </Check>

 <Check id="20">

 <CCheck category="assertion.user" status="undecided"

 statusSupplement="function-body-missing"

 internalCategory="user.assertion" internalStatus="safe"

D6.7.1 - Standardization Activities

Page 39 of 48 Standardization Activities v1.0

 annotation="function body missing">

 <LocID>22</LocID>

 </CCheck>

 </Check>

 </ResultsFor>

 </ascccf:Checks>

A.2.6. Failure Trace Collection

Finally, the failure trace collection provides additional information about the failed checks.

However, this section remains to be designed.

<<Failure trace collection>> =

 <ascccf:FailureTraces>

 <TODO_ConcreteFailureTraces/>

 </ascccf:FailureTraces>

A.3. ExampleConfiguration.xml

<?xml version="1.0" encoding="UTF-8"?>

<asef:Configuration xmlns:asef="http://todo.example.com/asef"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://todo.example.com/asef ASC3F.xsd">

 <asef:GlobalConfiguration>

 <asef:CommonConfiguration>

 <Meta configurationName="Example configuration"

 version="1.1"

 description="This configuration is an example.">

 <Maintainer>Felix Kutzner (KIT)</Maintainer>

 </Meta>

 <HardwareTargets>

 <HardwareTarget xsi:type="asef:HomogenousHardwareTarget" name="PPC32"

 endianness="big"

 unalignedDereferenceSupported="true"

 pointerSize="32"

 functionPointerSize="32"/>

 <HardwareTarget xsi:type="asef:HomogenousHardwareTarget"

 name="x86-64"

 endianness="small"

 unalignedDereferenceSupported="true"

 pointerSize="64"

 functionPointerSize="64"/>

 </HardwareTargets>

 <LanguageTargets>

 <LanguageTarget xsi:type="asef:CLanguageTarget" name="C99"

 signedEnums="true"

 signedBitfields="false"

 fpRoundingMode="downward"

 fpConstantRoundingMode="toNearest"

 enumType="int"

D6.7.1 - Standardization Activities

Page 40 of 48 Standardization Activities v1.0

 inlineAssemblyHandlingMode="ignore"

 initializeStaticVariables="true"

 enableVolatile="true"

 standardRevision="C99">

 <Types>

 <Type name="char" size="8" alignment="8" atomic="false"/>

 <Type name="short" size="16" alignment="16" atomic="false"/>

 <Type name="int" size="32" alignment="32" atomic="false"/>

 <Type name="long" size="32" alignment="32" atomic="false"/>

 <Type name="long long" size="64" alignment="32" atomic="false"/>

 <Type name="float" size="32" alignment="32" atomic="false"/>

 <Type name="double" size="64" alignment="64" atomic="false"/>

 </Types>

 </LanguageTarget>

 <LanguageTarget xsi:type="asef:CLanguageSubtarget"

 name="C99 with includes"

 superTarget="C99">

 <PreprocessorDefinitions overrideParentDefinitions="false">

 <Definition identifier="STATIC_ANALYSIS"/>

 </PreprocessorDefinitions>

 <IncludeDirectories insertionMode="append">

 <DirectoryURI>$_LIBINCLUDES_$</DirectoryURI>

 </IncludeDirectories>

 <IncludeFiles insertionMode="append">

 <IncludeFile path="$_SYSINCLUDES_$/compiler_sys.h" local="true"/>

 </IncludeFiles>

 </LanguageTarget>

 <LanguageTarget xsi:type="asef:CLanguageSubtarget"

 name="LT for ExampleModule"

 superTarget="C99 with includes">

 <IncludeDirectories insertionMode="append">

 <DirectoryURI>$_EXAMPLEMODULEPATH_$/include</DirectoryURI>

 </IncludeDirectories>

 </LanguageTarget>

 </LanguageTargets>

 <CheckTargets>

 <CheckTarget xsi:type="asef:CCheckTarget" name="BasicChecks">

 <CorrectnessCheckCategory name="numeric.divbyzero"

failureHandlingMode="wraparound"/>

 <CorrectnessCheckCategory name="mem.ptr.deref" failureHandlingMode="stop"/>

 <!-- ... -->

 </CheckTarget>

 </CheckTargets>

 <ExecutionModelTargets>

 <ExecutionModelTarget xsi:type="asef:CSynchronousExecutionModelTarget"

 name="ExampleExecModel">

 <EntryPoints>

 <EntryPoint>main</EntryPoint>

 </EntryPoints>

 </ExecutionModelTarget>

 </ExecutionModelTargets>

 <SourceModules>

D6.7.1 - Standardization Activities

Page 41 of 48 Standardization Activities v1.0

 <SourceModule name="ExampleModule" rootUri="$_EXAMPLEMODULESRC_$">

 <SourceFiles>

 <SourceFile uri="main.c" id="1"/>

 <SourceFile uri="dodgycode.c" id="2">

 <LanguageTargetExtension>

 <CLanguageSubtarget superTarget="auto">

 <PreprocessorDefinitions overrideParentDefinitions="false">

 <Definition identifier="ADD_MACRO" expansion="x+y"/>

 <Definition identifier="KBD_PORT_ADDR" expansion="0x60"/>

 <Definition identifier="KBD_STAT_ADDR" expansion="0x64"/>

 <Definition identifier="KBD_CMD_ADDR" expansion="0x64"/>

 </PreprocessorDefinitions>

 <IncludeFiles insertionMode="append">

 <IncludeFile path="HideProprietaryCExtensions.h" local="true"/>

 </IncludeFiles>

 </CLanguageSubtarget>

 </LanguageTargetExtension>

 </SourceFile>

 <SourceFile uri="shadycode.c" id="3"/>

 </SourceFiles>

 <RequiredCStubs>

 <VisibilityControllingSymbols>

 <CVisibilityControllingSymbol name="ENABLE_LLBMC_STUBS"/>

 <CVisibilityControllingSymbol name="ENABLE_ASTREE_STUBS"/>

 </VisibilityControllingSymbols>

 <CUniversalStub uri="cstub://globalscope/open" group="posix_io"/>

 <CUniversalStub uri="cstub://globalscope/read" group="posix_io"/>

 <CUniversalStub uri="cstub://globalscope/write" group="posix_io"/>

 <CVisibilityControlledStub

uri="cstub://filescope/ExampleModule/2/read_from_kbd"/>

 <CAutogenStub uri="cstub://globalscope/malloc"/>

 <CAutogenStub uri="cstub://globalscope/free"/>

 </RequiredCStubs>

 </SourceModule>

 <SourceModule name="ExampleModule_stubs" rootUri="$_EXAMPLEMODULESTUBS_$">

 <SourceFiles>

 <SourceFile uri="groups/posix_io.c" id="1">

 <ImplementsStubs>

 cstub://globalscope/open

 cstub://globalscope/read

 cstub://globalscope/write

 </ImplementsStubs>

 </SourceFile>

 <SourceFile uri="fancy_rng.c" id="2">

 <ImplementsStubs>cstub://globalscope/fancy_rng</ImplementsStubs>

 </SourceFile>

 <SourceFile uri="filescope/ExampleModule/2/read_from_device.c" id="3">

 <ImplementsStubs>cstub://filescope/ExampleModule/2/read_from_kbd

</ImplementsStubs>

 </SourceFile>

 </SourceFiles>

 </SourceModule>

D6.7.1 - Standardization Activities

Page 42 of 48 Standardization Activities v1.0

 <SourceModule name="ExampleModule_joined">

 <SourceFiles>

 <SourceFile uri="someOtherFancyRNG.c" id="1"/>

 </SourceFiles>

 <RequiresModules>

 <RequiresModule name="ExampleModule"/>

 <RequiresModule name="ExampleModule_stubs">

 <ExcludingFilesProvidingStub uri="cstub://globalscope/fancy_rng"/>

 </RequiresModule>

 </RequiresModules>

 </SourceModule>

 </SourceModules>

 <AnalysisTasks>

 <AnalysisTask name="analyzeExampleModuleOnPPC"

 missingRequiredCapabilityHandlingMode="abort">

 <ReportGeneratorConfiguration documentFormat="assume"/>

 <HardwareTarget>PPC32</HardwareTarget>

 <SourceModule>ExampleModule_joined</SourceModule>

 <LanguageTarget>LT for ExampleModule</LanguageTarget>

 <CheckTarget>BasicChecks</CheckTarget>

 <ExecutionModelTarget>ExampleExecModel</ExecutionModelTarget>

 </AnalysisTask>

 <AnalysisTask name="analyzeExampleModuleOnX86_64"

 missingRequiredCapabilityHandlingMode="abort">

 <ReportGeneratorConfiguration documentFormat="assume"/>

 <HardwareTarget>x86-64</HardwareTarget>

 <SourceModule>ExampleModule_joined</SourceModule>

 <LanguageTarget>LT for ExampleModule</LanguageTarget>

 <CheckTarget>BasicChecks</CheckTarget>

 <ExecutionModelTarget>ExampleExecModel</ExecutionModelTarget>

 </AnalysisTask>

 </AnalysisTasks>

 </asef:CommonConfiguration>

 <asef:ToolConfigurations>

 <ToolConfiguration name="LLBMC" customParameters="-x">

 <ForAnalysisTasks>

 <AnalysisTaskName>PPC32</AnalysisTaskName>

 <AnalysisTaskName>x86_64</AnalysisTaskName>

 </ForAnalysisTasks>

 <LanguageTargetExtension>

 <CLanguageSubtarget superTarget="auto">

 <PreprocessorDefinitions overrideParentDefinitions="false">

 <Definition identifier="STATIC_ANALYSIS"/>

 <Definition identifier="ENABLE_LLBMC_STUBS"/>

 </PreprocessorDefinitions>

 </CLanguageSubtarget>

 </LanguageTargetExtension>

 <ToolSpecificConfiguration>

 <LoopBound>40</LoopBound>

 </ToolSpecificConfiguration>

 </ToolConfiguration>

 </asef:ToolConfigurations>

D6.7.1 - Standardization Activities

Page 43 of 48 Standardization Activities v1.0

 </asef:GlobalConfiguration>

 <asef:LocalConfiguration>

 <URISubstitutionRules>

 <URISubstitutionRule token="$_LIBINCLUDES_$"

substitution="file:///usr/include/libc"/>

 <URISubstitutionRule token="$_SYSINCLUDES_$" substitution="file:///usr/include"/>

 <URISubstitutionRule token="$_EXAMPLEMODULEPATH_$"

substitution="file:///users/felix/projects/ExampleProject"/>

 <URISubstitutionRule token="$_EXAMPLEMODULESRC_$"

substitution="$_EXAMPLEMODULEPATH_$/src"/>

 <URISubstitutionRule token="$_EXAMPLEMODULESTUBS_$"

substitution="$_EXAMPLEMODULEPATH_$/verification/generatedStubs"/>

 <URISubstitutionRule token="$_EXAMPLEMODULEJOINED_$"

substitution="$_EXAMPLEMODULEPATH_$/verification/joined"/>

 </URISubstitutionRules>

 </asef:LocalConfiguration>

</asef:Configuration>

A.4. ExampleReport.xml

<?xml version="1.0" encoding="UTF-8"?>

<!--XML-Beispieldatei von XMLSpy generiert v2016 (x64) (http://www.altova.com)-->

<asef:Report xmlns:asef="http://todo.example.com/asef"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 name="ExampleProjectAnalysis" sourceVersion="3.1"

 xsi:schemaLocation="http://todo.example.com/asef ASCCRF.xsd">

 <asef:Configuration>

 <asef:GlobalConfiguration>

 <asef:CommonConfiguration>

 <Meta configurationName="Example report" version="1.1"

description="This configuration is an example.">

 <Maintainer>Felix Kutzner (KIT)</Maintainer>

 </Meta>

 <HardwareTargets>

 <HardwareTarget xsi:type="asef:HomogenousHardwareTarget" name="PPC32"

endianness="big" unalignedDereferenceSupported="true" pointerSize="32"

functionPointerSize="32"/>

 <HardwareTarget xsi:type="asef:HomogenousHardwareTarget" name="x86-64"

endianness="small" unalignedDereferenceSupported="true" pointerSize="64"

functionPointerSize="64"/>

 </HardwareTargets>

 <LanguageTargets>

 <LanguageTarget xsi:type="asef:CLanguageTarget" name="C99" signedEnums="true"

signedBitfields="false" fpRoundingMode="downward"

fpConstantRoundingMode="toNearest" enumType="int"

inlineAssemblyHandlingMode="ignore" initializeStaticVariables="true"

enableVolatile="true" standardRevision="C99">

 <Types>

 <Type name="char" size="8" alignment="8" atomic="false"/>

 <Type name="short" size="16" alignment="16" atomic="false"/>

 <Type name="int" size="32" alignment="32" atomic="false"/>

 <Type name="long" size="32" alignment="32" atomic="false"/>

 <Type name="long long" size="64" alignment="32" atomic="false"/>

 <Type name="float" size="32" alignment="32" atomic="false"/>

 <Type name="double" size="64" alignment="64" atomic="false"/>

 </Types>

D6.7.1 - Standardization Activities

Page 44 of 48 Standardization Activities v1.0

 </LanguageTarget>

 <LanguageTarget xsi:type="asef:CLanguageSubtarget" name="C99 with includes"

superTarget="C99">

 <PreprocessorDefinitions overrideParentDefinitions="false">

 <Definition identifier="STATIC_ANALYSIS"/>

 </PreprocessorDefinitions>

 <IncludeDirectories insertionMode="append">

 <DirectoryURI>$_LIBINCLUDES_$</DirectoryURI>

 </IncludeDirectories>

 <IncludeFiles insertionMode="append">

 <IncludeFile path="$_SYSINCLUDES_$/compiler_sys.h" local="true"/>

 </IncludeFiles>

 </LanguageTarget>

 <LanguageTarget xsi:type="asef:CLanguageSubtarget" name="LT for ExampleModule"

superTarget="C99 with includes">

 <IncludeDirectories insertionMode="append">

 <DirectoryURI>$_EXAMPLEMODULEPATH_$/include</DirectoryURI>

 </IncludeDirectories>

 </LanguageTarget>

 </LanguageTargets>

 <CheckTargets>

 <CheckTarget xsi:type="asef:CCheckTarget" name="BasicChecks">

 <!-- TODO -->

 </CheckTarget>

 </CheckTargets>

 <ExecutionModelTargets>

 <ExecutionModelTarget xsi:type="asef:CSynchronousExecutionModelTarget"

name="ExampleExecModel">

 <EntryPoints>

 <EntryPoint>main</EntryPoint>

 </EntryPoints>

 </ExecutionModelTarget>

 </ExecutionModelTargets>

 <SourceModules>

 <SourceModule name="ExampleModule" rootUri="$_EXAMPLEMODULESRC_$">

 <SourceFiles>

 <SourceFile uri="main.c" id="1"/>

 <SourceFile uri="dodgycode.c" id="2">

 <LanguageTargetExtension>

 <CLanguageSubtarget superTarget="auto">

 <PreprocessorDefinitions overrideParentDefinitions="false">

 <Definition identifier="ADD_MACRO" expansion="x+y"/>

 <Definition identifier="KBD_PORT_ADDR" expansion="0x60"/>

 <Definition identifier="KBD_STAT_ADDR" expansion="0x64"/>

 <Definition identifier="KBD_CMD_ADDR" expansion="0x64"/>

 </PreprocessorDefinitions>

 <IncludeFiles insertionMode="append">

 <IncludeFile path="HideProprietaryCExtensions.h" local="true"/>

 </IncludeFiles>

 </CLanguageSubtarget>

 </LanguageTargetExtension>

 </SourceFile>

 <SourceFile uri="shadycode.c" id="3"/>

 </SourceFiles>

 <RequiredCStubs>

 <VisibilityControllingSymbols>

 <CVisibilityControllingSymbol name="ENABLE_LLBMC_STUBS"/>

 <CVisibilityControllingSymbol name="ENABLE_ASTREE_STUBS"/>

D6.7.1 - Standardization Activities

Page 45 of 48 Standardization Activities v1.0

 </VisibilityControllingSymbols>

 <CUniversalStub uri="cstub://globalscope/open" group="posix_io"/>

 <CUniversalStub uri="cstub://globalscope/read" group="posix_io"/>

 <CUniversalStub uri="cstub://globalscope/write" group="posix_io"/>

 <CVisibilityControlledStub

uri="cstub://filescope/ExampleModule/2/read_from_kbd"/>

 <CAutogenStub uri="cstub://globalscope/malloc"/>

 <CAutogenStub uri="cstub://globalscope/free"/>

 </RequiredCStubs>

 </SourceModule>

 <SourceModule name="ExampleModule_stubs" rootUri="$_EXAMPLEMODULESTUBS_$">

 <SourceFiles>

 <SourceFile uri="groups/posix_io.c" id="1">

 <ImplementsStubs>

 cstub://globalscope/open

 cstub://globalscope/read

 cstub://globalscope/write

 </ImplementsStubs>

 </SourceFile>

 <SourceFile uri="fancy_rng.c" id="2">

 <ImplementsStubs>cstub://globalscope/fancy_rng</ImplementsStubs>

 </SourceFile>

 <SourceFile uri="filescope/ExampleModule/2/read_from_device.c" id="3">

 <ImplementsStubs>cstub://filescope/ExampleModule/2/read_from_kbd

 </ImplementsStubs>

 </SourceFile>

 </SourceFiles>

 </SourceModule>

 <SourceModule name="ExampleModule_joined">

 <SourceFiles>

 <SourceFile uri="someOtherFancyRNG.c" id="1"/>

 </SourceFiles>

 <RequiresModules>

 <RequiresModule name="ExampleModule"/>

 <RequiresModule name="ExampleModule_stubs">

 <ExcludingFilesProvidingStub uri="cstub://globalscope/fancy_rng"/>

 </RequiresModule>

 </RequiresModules>

 </SourceModule>

 </SourceModules>

 <AnalysisTasks>

 <AnalysisTask name="analyzeExampleModuleOnPPC"

missingRequiredCapabilityHandlingMode="abort">

 <ReportGeneratorConfiguration documentFormat="assume"/>

 <HardwareTarget>PPC32</HardwareTarget>

 <SourceModule>ExampleModule_joined</SourceModule>

 <LanguageTarget>LT for ExampleModule</LanguageTarget>

 <CheckTarget>BasicChecks</CheckTarget>

 <ExecutionModelTarget>ExampleExecModel</ExecutionModelTarget>

 </AnalysisTask>

 <AnalysisTask name="analyzeExampleModuleOnX86_64"

missingRequiredCapabilityHandlingMode="abort">

 <ReportGeneratorConfiguration documentFormat="assume"/>

 <HardwareTarget>x86-64</HardwareTarget>

 <SourceModule>ExampleModule_joined</SourceModule>

 <LanguageTarget>LT for ExampleModule</LanguageTarget>

 <CheckTarget>BasicChecks</CheckTarget>

 <ExecutionModelTarget>ExampleExecModel</ExecutionModelTarget>

D6.7.1 - Standardization Activities

Page 46 of 48 Standardization Activities v1.0

 </AnalysisTask>

 </AnalysisTasks>

 </asef:CommonConfiguration>

 <asef:ToolConfigurations>

 <ToolConfiguration name="LLBMC" customParameters="-x">

 <ForAnalysisTasks>

 <AnalysisTaskName>PPC32</AnalysisTaskName>

 <AnalysisTaskName>x86_64</AnalysisTaskName>

 </ForAnalysisTasks>

 <LanguageTargetExtension>

 <CLanguageSubtarget superTarget="auto">

 <PreprocessorDefinitions overrideParentDefinitions="false">

 <Definition identifier="STATIC_ANALYSIS"/>

 <Definition identifier="ENABLE_LLBMC_STUBS"/>

 </PreprocessorDefinitions>

 </CLanguageSubtarget>

 </LanguageTargetExtension>

 <ToolSpecificConfiguration>

 <LoopBound>40</LoopBound>

 </ToolSpecificConfiguration>

 </ToolConfiguration>

 </asef:ToolConfigurations>

 </asef:GlobalConfiguration>

 <asef:LocalConfiguration>

 <URISubstitutionRules>

 <URISubstitutionRule token="$_LIBINCLUDES_$"

substitution="file:///usr/include/libc"/>

 <URISubstitutionRule token="$_SYSINCLUDES_$" substitution="file:///usr/include"/>

 <URISubstitutionRule token="$_EXAMPLEMODULEPATH_$"

substitution="file:///users/felix/projects/ExampleProject"/>

 <URISubstitutionRule token="$_EXAMPLEMODULESRC_$"

substitution="$_EXAMPLEMODULEPATH_$/src"/>

 <URISubstitutionRule token="$_EXAMPLEMODULESTUBS_$"

substitution="$_EXAMPLEMODULEPATH_$/verification/generatedStubs"/>

 <URISubstitutionRule token="$_EXAMPLEMODULEJOINED_$"

substitution="$_EXAMPLEMODULEPATH_$/verification/joined"/>

 </URISubstitutionRules>

 </asef:LocalConfiguration>

 </asef:Configuration>

 <asef:ExecutionReports>

 <asef:ExecutionReport name="Report for ExampleProject-on-PPC analysis"

 analysisTask="analyzeExampleModuleOnPPC"

 toolParameters="LLBMC"

 analysisBeginDate="2016-12-17T09:30:47Z"

 analysisFinishDate="2016-12-17T09:30:49Z"

 analysisComputerName="i11pc164"

 toolName="LLBMC">

 <SourceCodeProcessingMessages>

 <SourceCodeProcessingMessage xsi:type="asef:FreeformSourceCodeProcessingMessage"

locationID="100" msg="warning: '&&' within '||'

[-Wlogical-op-parentheses]"/>

 </SourceCodeProcessingMessages>

 <CheckerMessages>

 <!-- ... -->

 </CheckerMessages>

 <ConfigDeviations>

 <!-- ... -->

D6.7.1 - Standardization Activities

Page 47 of 48 Standardization Activities v1.0

 </ConfigDeviations>

 </asef:ExecutionReport>

 </asef:ExecutionReports>

 <asef:SourceStorages>

 <Storage xsi:type="asef:CSourceFile" id="1" path="$_EXAMPLEMODULESRC_$/main.c"

hashSum="1b826051506f463f07307598fcf12fd6" preprocessed="false"

originModule="ExampleModule" idInOriginModule="1"/>

 <Storage xsi:type="asef:CSourceFile" id="2" path="$_EXAMPLEMODULESRC_$/dodgycode.c"

hashSum="3b5337aa426bb547efefb97edec54e3e" preprocessed="false"

originModule="ExampleModule" idInOriginModule="2"/>

<Storage xsi:type="asef:CSourceFile" id="3" path="$_EXAMPLEMODULESRC_$/shadycode.c"

hashSum="ff702f10bebfa2f1508deb475ded2d65" preprocessed="false"

originModule="ExampleModule" idInOriginModule="3"/>

 <Storage xsi:type="asef:CHeaderFile" id="4"

path="$_EXAMPLEMODULEPATH_$/include/ExampleModule.h"

hashSum="2f702f10bebfa2f1508deb475ded2d65" preprocessed="false"

includeDirectory=""/>

<Storage xsi:type="asef:CHeaderFile" id="5" path="compiler_sys.h"

hashSum="3f702f10bebfa2f1508deb475ded2d65" preprocessed="false"

includeDirectory="$_SYSINCLUDES_$"/>

 <Storage xsi:type="asef:CHeaderFile" id="6" path="HideProprietaryCExtensions.h"

hashSum="4f702f10bebfa2f1508deb475ded2d65" preprocessed="false"

includeDirectory="$_EXAMPLEMODULESRC_$"/>

 <Storage xsi:type="asef:CSourceFile" id="10"

path="$_EXAMPLEMODULESTUBS_$/groups/posix_io.c"

hashSum="8633b81a334995b50b53df83581af093" preprocessed="false"

originModule="ExampleModule_stubs" idInOriginModule="1"/>

 <Storage xsi:type="asef:CSourceFile" id="11" path="$_EXAMPLEMODULESTUBS_$/fancy_rng.c"

hashSum="b06f74ff6378f4a2629621b3d8aa935f" preprocessed="false"

originModule="ExampleModule_stubs" idInOriginModule="2"/>

 <Storage xsi:type="asef:CSourceFile" id="12"

path="$_EXAMPLEMODULESTUBS_$/filescope/ExampleModule/4/read_from_device.c"

hashSum="c143a9ae806ab2c93ad4f4f593173bf0" preprocessed="false"

originModule="ExampleModule_stubs" idInOriginModule="3"/>

 <Storage xsi:type="asef:CSourceFile" id="20"

path="$_EXAMPLEMODULEJOINED_$/someOtherFancyRNG.c"

hashSum="591d99a6a84b1e1dbb44395a3fa27d64" preprocessed="false"

originModule="ExampleModule_joined" idInOriginModule="1"/>

 <Storage xsi:type="asef:CFilelessPreprocessorDefinition" id="30" >

 <Definition identifier="ADD_MACRO" expansion="x+y"/>

 </Storage>

 </asef:SourceStorages>

 <asef:Locations>

 <Location xsi:type="asef:CSourceRealLocation" id="1" storageID="2"

lineNo="22" colNo="8"/>

 <Location xsi:type="asef:CSourceRealLocation" id="2" storageID="30"

lineNo="1" colNo="2"/>

 <Location xsi:type="asef:CSourceRealLocation" id="10" storageID="3"

lineNo="1" colNo="1"/>

 <Location xsi:type="asef:CSourceRealLocation" id="11" storageID="3"

lineNo="1" colNo="1"/>

 <Location xsi:type="asef:CSourceMacroLocation" id="12" spellingLocID="10"

expansionLocID="11"/>

 <Location xsi:type="asef:CSourceRealLocation" id="20" storageID="2"

lineNo="22" colNo="12"/>

 <Location xsi:type="asef:CSourceRealLocation" id="21" storageID="2"

D6.7.1 - Standardization Activities

Page 48 of 48 Standardization Activities v1.0

lineNo="22" colNo="20"/>

 <Location xsi:type="asef:RangeLocation" id="22" beginLocID="20" endLocID="21"/>

 <Location xsi:type="asef:PlaintextRealLocation" id="30" storageID="20"

lineNo="5" colNo="53"/>

 <Location xsi:type="asef:PlaintextLineLocation" id="31" storageID="20"

lineNo="5"/>

 </asef:Locations>

 <asef:Checks>

 <ResultsFor executionReport="Report for ExampleProject-on-PPC analysis">

 <Check xsi:type="asef:CCheck" id="1" category="integerarithmetic.divbyzero"

status="unsafe" internalCategory="divbyzero" internalStatus="unsafe"

annotation="">

 <LocID>1</LocID>

 </Check>

 <Check xsi:type="asef:CCheck" id="2" category="assertion.user" status="safe"

statusSupplement="locally" internalCategory="user.assertion"

internalStatus="safe" annotation="locally">

 <LocID>12</LocID>

 </Check>

 <Check xsi:type="asef:CCheck" id="20" category="assertion.user" status="undecided"

statusSupplement="function-body-missing" internalCategory="user.assertion"

internalStatus="safe" annotation="function body missing">

 <LocID>22</LocID>

 </Check>

 </ResultsFor>

 </asef:Checks>

 <asef:FailureTraces>

 </asef:FailureTraces>

</asef:Report>

