

Unrestricted

State of the Art Analysis
EMPHYSIS

Embedded systems with physical models
in the production code software

Date: Feb. 15, 2019

Editors: Oliver Lenord, Martin Otter, Reinhold Heckmann, Sascha Ridder, …

Contributors: Bosch, DLR, AbsInt, dSPACE, Siemens, UAntwerp

Reviewer: Yuri Durodie, Bert van Acker, Christian Bertsch

2

Document reference:

EMPHYSIS
State of the Art Analysis

Unrestricted

Document
version #

Date
(yyyy/mm/dd)

Changes

1.0 2019/02/15 Initial version

3

Document reference:

EMPHYSIS
State of the Art Analysis

Unrestricted

Contents
State of the Art Analysis ... 1

1 Introduction ... 4

1.1 EMPHYSIS Overview ... 4

1.2 EMPHYSIS Components ... 5

2 Related Projects .. 6

2.1 Related Collaborative Research Projects. ... 6

2.2 Conclusions ... 9

3 Related Standards ... 9

3.1 Automotive Standards .. 9

3.2 Model Exchange Standards ... 10

3.3 Conclusions ... 11

4 Related Technological Development ... 11

4.1 Modelling and Simulation Software .. 11

4.2 Controller Design Technologies and Software ... 13

4.3 ECU Software Development and Integration Tools .. 14

4.4 ECU Software Validation, Verification & Test Tools ... 16

4.5 Conclusions ... 16

5 Summary ... 16

4

Document reference:

EMPHYSIS
State of the Art Analysis

Unrestricted

1 Introduction
1.1 EMPHYSIS Overview
The major goal of the EMPHYSIS project is to enhance production code
of embedded control systems in automotive vehicles in order to improve
the performance of the underlying system:

• faster and safer operation,

• improved driving dynamics,

• driving automation,

• reduced energy consumption,

• reduced emission,

• reduced maintenance costs.

Additionally, cost and time for the software development of these embedded systems shall be
reduced. This is achieved by providing physics-based models in an automated way on electronic
control units (ECU), micro controllers, or other embedded systems.

A physics-based model consists of a physical model of the system to be controlled or monitored,
such as an engine or a powertrain, which is able to predict the behavior of the system in its whole
operating region. It is typically described by differential and algebraic equations. The physical
model is utilized in observers/virtual sensors, model-based diagnosis, or in advanced control
algorithms (e.g., inverse models, non-linear dynamic inversion, model-predictive control) to
achieve significantly better vehicle operations. There are several important applications, such as
the ESP (Electronic Stability Program) or virtual sensors within the engine control, in which
nonlinear physics-based models are already used on an ECU. Typically, this is hand-coded
software that was implemented and tested in an elaborate and time-consuming way.

The goal of the EMPHYSIS project is to simplify and automate this process considerably and
demonstrate the success by means of industrial automotive use cases. The major expected
outcomes are:

 A new, open standard, FMI for Embedded Systems (eFMI), that is an extension of the very
successful Functional Mock-up Interface (FMI, https://fmi-standard.org/) standard. It will use
the core functionality of FMI, together with new interfaces so that the very special
requirements of ECUs and micro controllers can be fulfilled.

 Seamless interoperability of eFMI with the automotive embedded system standard AUTOSAR,
in order that (a) tools specialized on physical systems modelling and (b) tools specialized on
AUTOSAR can work together using eFMI as the interface between the two very different
worlds.

 New code generation techniques so that physics-based models described on a high level can
be transformed to low level code fulfilling the requirements of ECU software and hardware.

Typical ECU: Bosch MDG1

https://fmi-standard.org/

5

Document reference:

EMPHYSIS
State of the Art Analysis

Unrestricted

This will boost the usage of advanced control and diagnosis functions within the ECU software
and the usage of modelling and simulation tools for control design.

Results of the EMPHYSIS project will be usable outside of the automotive domain by utilizing
eFMI components in non-automotive embedded systems. This requires support of eFMI on the
target embedded system and might require small adaptations of the eFMI standard.

1.2 EMPHYSIS Components
Within the scope of the described development workflow for physics-based functions one can
identify two different value chains as depicted in Figure 1. As of today these two value chains are
disconnected.

Value chain for modelling and simulation

Modelling and simulation tool vendors provide simulation software and model libraries to
simulation and control engineers at OEMs and suppliers. Control engineers use the (‘plant’)
models to design controllers and diagnosis functions to fulfil the system requirements. Advanced
software functions use physics-based models within the ECU software which can be designed
also in the offline simulation tools. Then the second value chain begins:

Value chain for production code ECU-software

OEMs and suppliers implement production code software in specialized graphical programming
environments or in C code. Tier-1 suppliers provide the ECU – often as a bundle of hardware,
base software and varying fractions of the application software. Physics-based models have to be
simplified, discretized and manually re-implemented for the ECU production code. This is done in
the typical ECU-software programming environments that are unaware of the special properties
and requirements of physics-based models.

Figure 1: Value market chains for ECU Software development

Physical simu-
lation model

ECU-SW
generation/

implementation

ECU-SW-
Integration

Modeling
and

simulation
tool vendor

ECU-SW
generation
tool vendor

ECU-SW-
validation

tool vendor

Controller design
model

simplification

ECU SW testing
and

calibration

ECU-SW-
testing

tool vendor

Tool vendors Task ECU SW developer

Su
pp

lie
rs

O
EM

s

manually

6

Document reference:

EMPHYSIS
State of the Art Analysis

Unrestricted

With the intended eFMI standard those two value chains can be combined providing new business
opportunities for modelling and simulation tools in the field of embedded software and new
capabilities and a significant efficiency gain for the ECU-software generation.

Based on this value proposition of the eFMU standard this state of the art document is
considering the technological developments in the field of

• Modelling and Simulation Software

• Controller Design Technologies and Software

• ECU Software Development and Integration Tools

• ECU Software Validation, Verification & Test Tools

with special emphasize on the interoperability and workflow integration of the corresponding tools.

2 Related Projects
2.1 Related Collaborative Research Projects.

Name, period,

(program)
Technical Focus Relationship

MODELISAR

2008 – 2010

(ITEA)

https://itea3.or
g/project/mod
elisar.html

Development of the FMI model exchange
and co-simulation standard for offline
simulation. It was planned to develop FMI
for embedded systems as well. This
turned out to be too ambitious and no
attempt was made to take the
requirements of embedded systems into
account. Only a feasibility study was
performed how FMI could be utilized in
AUTOSAR.

EMPHYSIS extends the FMI
standard for embedded
applications (= eFMI), e.g.
introduces an intermediate model
behavioral format (target
independent, mathematical
description) and a generic or
target dependent production code
format suited for ECUs.

AMALTHEA

2011 - 2014
(ITEA)

https://itea3.or
g/project/amal
thea.html

AMALTHEA defined an open platform for
embedded multicore systems. It provides
a framework, to partition an existing
software for multicore systems.

AMALTHEA does not address
code generation for physics-
based models, but there can be a
future usage of AMALTHEA
results for the distribution of very
large controllers with physics-
based models exported as
multiple runnables/eFMUs for
multicore systems

AMALTHEA AMALTHEA4public extends the Eclipse See AMALTHEA; general

7

Document reference:

EMPHYSIS
State of the Art Analysis

Unrestricted

Name, period,

(program)
Technical Focus Relationship

4public

2014 - 2017
(ITEA)

https://itea3.or
g/project/amal
thea4public.ht
ml

IDE for Automotive Software Developers
for multicore systems

availability through open source
Eclipse plug-in

SAFE

2011 - 2014
(ITEA)

https://itea3.or
g/project/safe.
html

SAFE focused on safety-relevant
automotive systems, extending the
AUTOSAR architecture with a system
description with the EAST-ADL language
to increase reliability

Safety analysis from SAFE can be
applied to safety critical model-
based components defined by the
planned eFMI standard of
EMPHYSIS.

MODRIO

2012 - 2016

(ITEA)

https://itea3.or
g/project/modr
io.html

Extends tools for system design to
system operation using nonlinear physical
models for state estimation and model
predictive control. The MODRIO
demonstrators are targeted for PC based
online applications in power plants and
for applications on rapid prototyping
hardware.

EMPHYSIS will use MODRIO
results and provides the missing
technology and tools to fulfil the
special requirements of
production code of model-based
diagnosis components and model-
based controllers on electronic
control units, micro controllers
and other embedded systems.

ACOSAR

2015 - 2018
(ITEA)

https://itea3.or
g/project/acos
ar.html

ACOSAR defines a distributed co-
simulation protocol for high performant
co-simulations via networks. It is
published in Feb. 2019 as Modelica
Association standard DCP and is further
developed via the Modelica Association.

No direct connection. ACOSAR
extends FMI for soft realtime,
distributed co-simulation of the
plant model part of HiL, ViL
systems, while EMPHYSIS
focuses on embedded systems.
Both technologies could be
combined for the validation of
ECUs with included eFMUs.

IMPROVE

2013-2016
FP7

New electric vehicle power and ICT
architecture: Multi-level tailored
integration of Amesim models in multiple
control system ranging from low-end ECU
(engine and subsystems controls) to

The link with EMPHYSIS is the
return of experience of multiple
types of model integration into
controls (full rolling vehicle
demonstrator) and the issues with

8

Document reference:

EMPHYSIS
State of the Art Analysis

Unrestricted

Name, period,

(program)
Technical Focus Relationship

telematics (eco-driving) and cloud (range
prediction). On-board embedded models
(ECU, telematics) involved several
reduction methods like linearization and
networks of response surfaces (complex
heat-pump based cooling system
combined with HVAC). Lowest target was
running below 80Mhz while supporting
the more complex model.

control-tailored model integration
which should be solved with eFMI.

OPENCPS

2015-2018
ITEA3

https://itea3.or
g/project/open
cps.html

The project focuses on interoperability
between the standards
Modelica/UML/FMI, improved execution
speed of (co-)simulation, and translation
validation of Modelica-generated code.

The improved technology for
Modelica code-generation and
FMI-based simulation (in
OpenModelica) will be taken as a
basis for the eFMI generation
from OpenModelica (T4.6).

Model based
force
measurement
s(MoForM)

01/02/2016 –
01/02/2020

Knowledge on (internal and external)
dynamic forces and torques is of crucial
importance, both during the prototype
development phases of mechatronic
products, machines and processes, as
well as during their operational lifetimes.
Measuring forces is a time consuming,
error-prone, expensive and often intrusive
process. Furthermore, it occurs regularly
that force measurements at the desired
locations are prohibited due to space
limitations or too harsh circumstances.
The main goal of the project is to develop
a breakthrough force/torque
measurement technology by adopting a
virtual sensing strategy. This involves the
evaluation and development of single
(Kalman filter based) and multistep
(Moving Horizon Estimation based)
estimators that combine high-fidelity
physical models and physically inspired
grey box models with affordable non-
intrusive sensors to retrieve unknown
forces in a fast (possibly real-time),

The link with EMPHYSIS is the
return of experience on the
deployment of high-performant
physics-based models on
restricted embedded platforms.

9

Document reference:

EMPHYSIS
State of the Art Analysis

Unrestricted

Name, period,

(program)
Technical Focus Relationship

accurate, in-situ and on-line manner. The
targeted performance is defined in
cooperation with industry and spans from
real-time in-situ force estimation with a 10
Hz bandwidth and a 20 dB dynamic range
to on-line in-situ force estimation with a
200 Hz bandwidth and an 80 dB dynamic
range. The estimation technologies
should be able to account for the non-
linear dynamic effects as encountered in
mechatronic drivetrains and systems.

2.2 Conclusions
Some of these projects have laid a good foundation to build upon, but none of the projects is or
has addressed the specific needs of the intended tool chain for designing physics-based functions
for embedded targets.

3 Related Standards
3.1 Automotive Standards

Name Technical Focus Relationship

Classic AUTOSAR

https://www.autosar.
org/standards/classi
c-platform/

Standardization for
automotive
development and
artefact exchange
between different
development
functions in the
development process

A standardized software framework providing a
set of specifications for classical static ECU
software architectures. Those describe basic
software modules, define application interfaces
and build a common development methodology
based on a standardized exchange format. The
standard is supposed to simplify the exchange
of development artefacts and hence enhance
the cooperation possibilities between OEMs and
suppliers.
One of the target production code environments
of eFMI is AUTOSAR.

Adaptive AUTOSAR

https://www.autosar.

Standardization for
automotive

A standardized software framework providing a
set of specifications for service-oriented

10

Document reference:

EMPHYSIS
State of the Art Analysis

Unrestricted

Name Technical Focus Relationship

org/standards/adapt
ive-platform/

development for high
performance and
non-safety and non-
time critical
applications and
artefact exchange
between different
development
functions in the
development process

software architectures (SOA). Those describe
basic software modules, define application
interfaces and build a common development
methodology based on standardized exchange
format. The standard is supposed to simplify the
exchange of development artefacts and hence
enhance the cooperation possibilities between
OEMs and suppliers.
It allows to dynamically link services and clients
during runtime, which is not possible with
Classic AUTOSAR. This is no target for the first
version of eFMI.

ASAM
Association for
Standardization of
Automation and
Measuring Systems

https://www.asam.n
et/

Standardization for
Automotive
Development

Additional set of automotive standards providing
tool-independent descriptions of protocols, data
models, file formats and application
programming interfaces (APIs) for use in the
development and testing of automotive
electronic control units.
eFMI is planned to be defined in such a way
that ASAM standards can be used (for example
to describe tables). Since most ASAM
standards are not publicly available, they will
not be utilized in eFMI which is planned to
become an open standard.

3.2 Model Exchange Standards

Name Technical Focus Relationship

FMI
Functional Mock-up
Interface
www.fmi-
standard.org

Low level, open
standard to exchange
simulation models for
model integration and
co-simulation
purposes

Basis for the new eFMI standard.

Modelica

https://www.modelic
a.org/

High level, open
standard to
conveniently model
complex physical
systems containing,
e.g. mechanical,

Modelica is one of the description forms in
which the physical models for eFMI are
provided. Some eFMI tools developed in the
EMPHYSIS project will transform Modelica
models to production code in eFMI format.

https://www.asam.net/
https://www.asam.net/
https://www.asam.net/
https://www.asam.net/
https://www.asam.net/nc/home/asam-standards.html
https://www.fmi-standard.org/
https://www.fmi-standard.org/

11

Document reference:

EMPHYSIS
State of the Art Analysis

Unrestricted

Name Technical Focus Relationship

electrical, electronic,
thermal, control,
process-oriented
subcomponents

VHDL-AMS

https://standards.iee
e.org/standard/1076
_1-1999.html

IEEE standard for the
description and the
simulation of
analogue, digital, and
mixed-signal
systems.

A high level description format for physical
models, targeted to the electrical domain. In the
EMPHYSIS project there are no tools planned
that transform VHDL-AMS models to production
code in eFMI.

3.3 Conclusions
None of the existing standards describes the exchange of physics-based models for embedded
targets as addressed by the new eFMI standard.

4 Related Technological Development
4.1 Modelling and Simulation Software
Modelling and simulation of physical systems is a large area ranging from system modelling and
simulation to finite element and computational fluid dynamics programs. Within EMPHYSIS the
focus is on using simplified, linearized and nonlinear physical models from system modelling
solutions, addressing 1D to 3D mechanics, engines, electrical, thermal and fluid domains.
Modelling and simulation technologies of such systems have reached industrial maturity and
several solutions are available as commercial and open source tools: These tools provide a
graphical user interface to define physical systems in a convenient way (for example as electric
circuit diagrams). Mathematically, the models are described by implicit Differential-Algebraic
Equations (DAE), 0 = 𝑓𝑓(�̇�𝑥(𝑡𝑡), 𝑥𝑥(𝑡𝑡), 𝑡𝑡), that are solved either directly by an implicit integration
method, or are first transformed in a pre-processing step to explicit Ordinary Differential Equations
(ODE) �̇�𝑥(𝑡𝑡) = 𝑓𝑓(𝑥𝑥(𝑡𝑡), 𝑡𝑡) that are then solved numerically by explicit or implicit integration methods.
There are single-domain tools that are primarily designed to model and simulate components from
one domain (and most of them can import models from other domains via the FMI standard).
These tools utilize typically dedicated numerical integration methods that take into account the
special model structure of the particular domain (for example, multi-body system tools determine
the first and second derivatives of constraint equations between parts and solve this
overdetermined DAE system). Examples:

 Tools to model three-dimensional multi-body mechanics, such as SIMPACK, MSC ADAMS,
RecurDyn.

 Tools to model electrical systems, such as PSpice.

http://www.simpack.com/
http://www.mscsoftware.com/product/adams
http://www.functionbay.org/
http://www.orcad.com/products/orcad-pspice-designer/overview

12

Document reference:

EMPHYSIS
State of the Art Analysis

Unrestricted

 Tools to model fluid systems, such as gPROMS, Flowmaster, Thermoflow

There are multi-domain tools that are capable to model and simulate components natively from
more than one domain. Examples are

 Tools based on proprietary modelling formats

‒ Simulink (for block diagrams) and Simscape (for physical models).

‒ GT-Suite

 Tools based on the VHDL-AMS standard, such as Saber, ANSYS Simplorer.

 Tools based on the Modelica standard, such as, Dymola, MapleSim, OpenModelica,
SimulationX, OPTIMICA Compiler Toolkit.

 Tools based on the Bond Graph theory, such as Amesim or 20-Sim.

Modelica-based multi-domain tools typically use symbolic transformation techniques, for example
by analytically differentiating constraint equations “sufficiently often” and by statically or
dynamically selecting continuous-time states for the ODE description form. With these techniques
it is possible, for example, to model multi-body systems (this is not possible with purely
numerically based multi-domain approaches, such as VHDL-AMS, or Simscape). Furthermore, it
is possible to exchange inputs and outputs of a nonlinear system and handle the resulting DAE
system. This requires typically that equations must be analytically differentiated one or more
times. Such inverse models can be utilized in nonlinear control systems, see below.

Within the ITEA project MODELISAR1 the Functional Mockup Interface (FMI)2 standard was
developed that primarily defines physical models described by ordinary differential equations,
algebraic and discrete equations on a low level with a combination of C code and XML. Here is a
short overview, based on the FMI 2.0 document3:

An FMI component (also called FMU - Functional Mockup Unit) is an input/output block, see
Figure 2, where either the environment must provide the integrator (= FMI for Model
Exchange) or the integration method is already embedded in the FMU (= FMI for
Co_Simulation). An FMU is distributed in one zip file. The zip file contains:

• An XML-file containing the definition of all exposed variables and other static
information (it is then possible to run the FMU on a target system without this
information, in other words with no unnecessary overhead).

• The C sources of the FMU, including the needed run-time libraries used in the model,
and/or binaries for one or several target machines, such as Windows dynamic link
libraries (.dll) or Linux shared object libraries (.so). The latter solution is especially
used if the FMU provider wants to hide the source code to secure the contained
know-how or to allow a fully automatic import of the FMU in another simulation
environment.

• Additional FMU data (like tables, maps) in FMU specific file formats.

1 https://itea3.org/project/modelisar.html
2 https://fmi-standard.org/
3 Functional Mock-up Interface for Model Exchange and Co-Simulation, version 2.0, July 25, 2014.

http://www.psenterprise.com/gproms.html
https://www.mentor.com/products/mechanical/flowmaster/
http://www.thermoflow.com/
http://www.mathworks.com/products/simulink/
https://www.mathworks.com/products/simscape
http://www.eda.org/twiki/bin/view.cgi/P10761
http://www.synopsys.com/prototyping/saber
http://www.ansys.com/Products/Simulation+Technology/Electronics/Electromechanical/ANSYS+Simplorer
https://www.modelica.org/
http://www.dymola.com/
http://www.maplesoft.com/products/maplesim
https://www.simulationx.com/
http://www.plm.automation.siemens.com/en_us/products/lms/imagine-lab/amesim
http://www.20sim.com/
https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.zip

13

Document reference:

EMPHYSIS
State of the Art Analysis

Unrestricted

A schematic view of an FMU is shown in the next figure:

Figure 2: Data flow between the environment and an FMU.

 Blue arrows: Information provided by the FMU.
 Red arrows: Information provided to the FMU.

As of December 2018, more than 120 tools support the FMI standard (https://www.fmi-
standard.org/tools). The FMI standard is used as basis for the EMPHYSIS project.

4.2 Controller Design Technologies and Software
The key technologies for EMPHYSIS are advanced controllers and monitoring devices utilizing
knowledge about the plants via physics-based models. Most interesting are physics-based models
that are able to describe the complete operating region. Typically, this is only possible by using
sets of linearized models and/or nonlinear physics-based models. The technology for using such
models within control systems is well-known in principle, such as

 utilizing nonlinear inverse models in the feedforward or feedback path (for example feedback
linearization, nonlinear dynamic inversion, flat systems),

 optimization based controllers such as linear or nonlinear Model Predictive Controllers (= in
every sample instant a trajectory optimization problem is solved where the control output is
determined such that the system output follows a reference trajectory as best as possible,
taking into account actuator limits),

 nonlinear state estimation (such as extended Kalman filter, unscented Kalman filter, moving
horizon estimator),

 as well as model-based diagnosis.

Besides the large number of software tools available for modelling and simulation, there is
currently no general purpose software available to utilize nonlinear physics-based models in
embedded control systems. Within the ITEA project MODRIO4 available modelling software is

4 https://itea3.org/project/modrio.html

u y

Enclosing Model

v 0 0, ,inital values (a subset of ())t tp v

t time
p parameters of type Real, Integer, Boolean, String
u inputs of type Real, Integer, Boolean, String
v all exposed variables
y outputs of type Real, Integer, Boolean, String

FMU instance
(model exchange or co-simulation)

https://www.fmi-standard.org/tools
https://www.fmi-standard.org/tools

14

Document reference:

EMPHYSIS
State of the Art Analysis

Unrestricted

extended to utilize physics-based models in online applications. Targets are PC based online
applications in power plants5 and for applications on rapid prototyping hardware.

4.3 ECU Software Development and Integration Tools
The ECU software can be split into Application Software and Basic Software according to the
AUTOSAR software architecture, see Figure 3:

Figure 3: AUTOSAR architecture. Source: www.autosar.org

AUTOSAR is used in more and more automotive ECU software projects and partially replaces
proprietary formats for ECU software components.

Application Software components realize “functions” of the system, for example, a controller
calculating actuator signals from sensor measurements. They can be implemented either

 Directly in a programming language such as C.

 Generated from a graphical programming environment:

5 Rüdiger Franke, Marcus Walther, Niklas Worschech, Willi Braun and Bernhard Bachmann: Model-based
control with FMI and a C++ runtime for Modelica. Modelica Conference 2015, Versailles.

http://www.autosar.org/
http://www.ep.liu.se/ecp/118/036/ecp15118339.pdf
http://www.ep.liu.se/ecp/118/036/ecp15118339.pdf

15

Document reference:

EMPHYSIS
State of the Art Analysis

Unrestricted

‒ Multi-purpose tools such as MATLAB/Simulink. Simulink is the most common tool for
model design and simulation purposes in the automotive industry. With additional
toolboxes such as the Embedded Coder by The Mathworks or dSPACE TargetLink ECU-
compatible C-code can be generated, where coding and automotive standards, e.g.
MISRA-C and AUTOSAR Standard are also supported. In both cases one has to restrict
the usage of blocks either to a very limited subset of blocks and typically uses special in-
house libraries or the mentioned 3rd party block sets to enable ECU-capable code
generation.

‒ Specialized tools for ECU-Software such as ETAS ASCET

‒ UML Statechart tools from which C code can be generated. Those tools are used in
industry, however, the scope of these is often limited to specific use cases.

Basic Software components comprise, e.g., hardware drivers and AUTOSAR service libraries
providing e.g. basic numerical functions such as linear interpolation or trigonometric functions.
The Basic Software is implemented typically in the C programming language or in Assembler.

The development of complex ECU software is often done in a distributed way by the collaboration
of an OEM, an ECU software and hardware supplier and possibly additional suppliers. Depending
on the form of the software exchange this is called model sharing (here model refers to a model of
the software, e.g. a block diagram in MATLAB/Simulink), source code sharing (e.g. C-code) or
object code sharing. The prerequisites for all of these possibilities are very high:
 to use exactly the same modelling tool by all partners for model sharing,
 to use the same coding guidelines and comply with all requirements of the importing system

(e.g., AUTOSAR) for source code sharing,
 to use the same object code generation tool chain so that it fits together with the rest of the

software for object code sharing.

The generation of a complete ECU-Software from the different components is performed with
specialized tool chains including code checking for coding guidelines for critical systems, such as
MISRA-C, with tools such as Astrée from AbsInt, as well as compilation with specialized compilers
and specialized linkers. For the generation of AUTOSAR ECU software, specialized tools are
used, e.g. for the creation of the AUTOSAR architecture and basic software configuration and the
creation of the run-time environment (RTE). Examples are

• the AUTOSAR Builder from Dassault Systèmes SE,

• the ISOLAR tool suite from ETAS.

Future ECUs will have more and more cores. For example the current Bosch ECU MDG1 has up
to six cores6. Parallelization of ECU-Software on different cores is a very difficult task addressed
by several research projects listed in section 2.1.

Software is growing and becoming more complex. Tools like Simcenter ESD help in further
decompose the (AUTOSAR) software architecture and evaluate the consistency and

6 Rüger, J.-J., Wernet, A., Kececi, H.-F., Thiel, T., MDG1: The New, Scalable, and Powerful ECU Platform
from Bosch, Proceedings of the FISITA 2012 World Automotive Congress - Volume 6: Vehicle Electronics,
Springer, 2014

http://www.etas.com/en/products/ascet_software_products.php
http://www.absint.com/astree/
http://www.3ds.com/products-services/catia/capabilities/embedded-systems/autosar-builder/
http://www.etas.com/en/products/isolar.php

16

Document reference:

EMPHYSIS
State of the Art Analysis

Unrestricted

completeness of the requirements and the software architecture. This will improve the integration
of the software as it will be divided over different internal and external suppliers. For this,
understanding the impact that the hardware properties will have on the (physics-based) model will
become crucial to provide meaningful requirements to both the controls engineers and the
software engineers early in the development process. The eFMU standard would enable to study
this in more detail.

4.4 ECU Software Validation, Verification & Test Tools
The release of a complete ECU-Software involves validating that it has the required properties.
This can be done in part by testing, in part by employing static program analyzers that check
properties of programs without actually executing them.

The Astrée tool is such a static program analyzer. It has been licensed from École Normale
Supérieure and is being extended and marketed by AbsInt. Astrée is a sound static analyzer that
finds potential run-time errors in C code (e.g. invalid pointer accesses and manipulations, index
out of bound, division by zero, arithmetic overflows, etc.), or proves that such errors cannot occur.
The tool can also check compliance to coding guidelines such as MISRA-C.

For some of the proofs the C code alone is not sufficient and more information has to be provided.
For example, in order to prove that no overflow can occur, bounds for all parameters and input
signals are needed. Such additional information can be provided by the user by means of special
Astrée directives. To avoid this manual overhead, Astrée has already been integrated with the
TargetLink code generator from dSPACE so that it can extract the necessary information from
TargetLink's data dictionary. However, Astrée does not provide any support for analyzing FMI or
eFMI code so far. Extending Astrée to support the analysis of code implementing eFMI
components is one of the goals of the EMPHYSIS project.

Physics based models are currently used in the software architectures, but there is no framework
for testing the validity of the model when they are adapted to serve the controllers need. This
allows the software engineer to change the model in such a way it might not represent the physics
anymore. eFMI could provide better boundaries in which the software engineers have space to
adapt the model to the hardware needs and raise possible problems. This would prevent errors
that would only show up at closed loop SIL or even worse will only show up during real testing.
Tools that support open and closed loop testing of the software like Simcenter ESD could benefit
from the eFMI framework to prevent errors early in the integration.

4.5 Conclusions
None of these current tools and tool chains covers the use case of porting a physics-based model
in a tool-independent way from a given modelling and simulation tool unaware of ECU-specifics to
an ECU.

5 Summary
The major goal of the EMPHYSIS project to develop the eFMI standard in order to enable a
seamless end to end workflow from physical models to ECU software is not addressed by any
other research project or technical development. The expected benefits of future tool chains

http://www.absint.com/astree/

17

Document reference:

EMPHYSIS
State of the Art Analysis

Unrestricted

based on the new eFMI standard can be confirmed. A significant gain in productivity in the
collaborative development of advanced ECU software functions can be expected enabling future
innovations in the modeling & simulation software market, ECU software market and the
automotive market.

According to this state of the art survey no other technology is foreseen to compromise or negate
the objectives of the EMPHYSIS project.

	State of the Art Analysis
	1 Introduction
	1.1 EMPHYSIS Overview
	1.2 EMPHYSIS Components

	2 Related Projects
	2.1 Related Collaborative Research Projects.
	2.2 Conclusions

	3 Related Standards
	3.1 Automotive Standards
	3.2 Model Exchange Standards
	3.3 Conclusions

	4 Related Technological Development
	4.1 Modelling and Simulation Software
	4.2 Controller Design Technologies and Software
	4.3 ECU Software Development and Integration Tools
	4.4 ECU Software Validation, Verification & Test Tools
	4.5 Conclusions

	5 Summary

