

ESTABLISH

D3.1 High level system architecture 1

D3.1 High Level System Architecture

Deliverable ID: D 3.1
Deliverable Title: High Level Architecture

Revision #: 1.0
Dissemination Level: Confidential
Responsible beneficiary: VTT
Contributing beneficiaries: All
Contractual date of delivery: 04.03.2019
Actual submission date: 19.02.2019

ESTABLISH

D3.1 High level system architecture 2

Version history
Date Contributor Contribution Version

19.06.2018 SIVECO D3.1 structure 1.0

07.08.2018 ETRI Contributions in chapters: 4.1 Storage; 2.0

18.08.2018 CUNI Contributions in chapters: 3.1 Presentation; 4.1 Storage; 2.0

21.08.2018 SIVECO Contributions in chaters: 3.1 Presentation; 3.2 Web and

Mobile Apps; 3.3 Business Logic; 4.1 Storage; 4.2.1

Advanced Analytics and Machine Learning; 5.2 IoT

Gateway Layer; 5.2.1 IoT Gateway Data Management

2.0

21.08.2018 IMA Contributions in chaters: 3.2 Web and Mobile Apps; 2.0

24.08.2018 CGI Contributions in chapters: 5.1.1 IoT Backend Data

Management, 5.1.2 IoT Backend Device Lifecycle

Management; 5.2.1 IoT Gateway Data Management;

5.2.2 IoT Gateway Logic

2.0

12.09.2018 Hi Iberia Contributions in chapters: 3.2 Web and Mobile Apps;

4.1 Storage; 4.2.1 Advanced Analytics and Machine

Learning

2.0

24.09.2018 DEKPROJECT Contributon in chapter 3.2 Web and Mobile Apps 3.0

25.09.2018 VTT Contribution in chapter 4.2.1. Advanced Analytics and

Machine Learning

3.0

19.10.2018 BEIA Contributions in chapters 5.1. IoT Backend Layer; 5.2. IoT

Gateway Layer; 5.2.1. IoT Gateway Data Management

3.0

31.10.2018 IMA Contributions in chapters 3.3 Business Logic; 5.1.1 IoT

Backend Data Management; 5.1.3. IoT Backend Protocol

Adapters

3.0

31.10.2018 Prodevelop Contributions in chapters 2. Define ESTABLISH Generic

components; 3.2 Web and Mobile Apps; 4.1.1 Storage for

indoor air quality management; 4.2.2. Complex event

processing; 5.2. Web Services; 5.3. OpenData

4.0

01.11.2018 CGI Contributions in chapters 3.3 Business Logic; 5.1. IoT

Backend Layer; 5.1.3. IoT Backend Protocol Adapters;

5.2.3. IoT Gateway Protocol Adapters

4.0

05.11.2018 Beia Contributions in chapters 3.2 Web and Mobile Apps; 5.1.1

IoT Backend Data Management; 5.1.3 IoT Backend

Protocol Adapters; 5.2.2 IoT Gateway Logic; 5.2.3 IoT

Gateway Protocol Adapters

4.1

09.11.2018 Turkgen Contributions in chapters 3.4 Business System Integration;

4.1.2 Storage for Tracking of Professional / non-

professional athletes with wearable sensors; 4.2.1

Advanced Analytics and Machine Learning; 4.2.2 Complex

event processing; 4.2.3 Event mediator

4.2

10.12.2018 SIVECO Technical revision 4.3

11.12.2018 SIVECO Contribution in Chapter 6.5 and final revision 5

17.12.2018 SIVECO Feedback implementation 6

18.12.2018 SIVECO Final revision 7

ESTABLISH

D3.1 High level system architecture 3

Table of Content

Version history ... 2

Table of Content .. 3

1. Introduction ... 5

2. Define ESTABLISH Generic components .. 6

3. Application and Presentation Layer ... 13

3.1 Presentation ... 13

3.2 Web and Mobile Apps ... 15

3.3 Business Logic ... 27

3.4 Business System Integration .. 30

4. Knowledge and Storage Layer .. 31

4.1 Storage ... 31

4.2 Knowledge layer - Analytics and processing ... 43

5 Acquisition / Interconnection Layer .. 51

5.1. IoT Backend Layer .. 51

5.2 IoT Gateway Layer ... 54

5.3 Web Services ... 58

5.4 OpenData ... 59

5.5 SOA Architecture “Decision support tools for behavioural choices and treatment options” 60

5.6 SOA Architecture layers ... 60

6 Constraints ... 62

Optimized City and Mobility Planning .. 62

Developing smart HVAC systems that ensure a healthy indoor environment 63

Promoting independence of specific vulnerable groups ... 65

7 Conclusions .. 69

8 References ... 70

ESTABLISH

D3.1 High level system architecture 4

Figure 1. ESTABLISH Logical View (architecture Layers) ... 7
Figure 2. ESTABLISH Development View mapped on Logical View ... 9
Figure 3. ESTABLISH Architecture, process view .. 11
Figure 4. ESTABLISH Architecture, physical view ... 12
Figure 5. EVIF architecture .. 14

Figure 6. MVC Architecture .. 16
Figure 7. Architectural design principle Model-View-Controller (MVC) .. 17
Figure 8. React Virtual DOM .. 20
Figure 9. Kibana charts .. 22
Figure 10. Grafana chart .. 22
Figure 11. The typical structure of a mobile application... 23

Figure 12. IoTLoRaWAN Web Application .. 26
Figure 13. Main layers .. 28
Figure 14. The indoor air quality system architecture .. 31

Figure 15. IAQ Sensors for Indoor Air Quality Management .. 32
Figure 16. Data management server and storage ... 33
Figure 17. Database schema .. 33

Figure 18. Flexible storage architecture, optimising MongoDB for unique application demands 37
Figure 19. Data management server and storage ... 39

Figure 20. Data transformation formulas ... 42
Figure 21. Architecture of Indoor air quality analytics .. 43
Figure 22. Real time analysis form ... 46

Figure 23. CEP overview .. 47
Figure 24. Event processing ... 49

Figure 25. Rule definition form .. 50
Figure 26. Rule application results .. 50
Figure 27. The ESTABLISH data flow mapped on logical architecture. ... 52

Figure 28. IoT Gateway Architecture .. 54

Figure 29. Soa based architecture .. 61
Figure 30. Azure App Service: Basic Service Plan .. 64
Figure 31. Azure SQL Database: Single database model .. 64

ESTABLISH

D3.1 High level system architecture 5

1. Introduction

In WP3 work package the main objective is to define, design and document a flexible, scalable and

open architecture based on the user needs and the functional and non-functional system requirements

identified in WP2. The design process – based on the technological value chain - will have an enhanced

focus on the security and privacy, since the architecture will be used in the health domain. Furthermore,

in order to attain a future-proof architecture that allows scalability; a strong emphasis will be put on

reusability, modularity and changeability. In addition, the WPs aims to develop an UI (User Interface)

and to produce a test plan.

The architecture definition task will specify the high level building blocks for the technical solutions that

will be developed in the ESTABLISH project. The detailed design of each component will be performed

in the corresponding tasks in subsequent work packages. The architectural specification will contain the

description of:

 The decomposition of the system into tiers, layers, components;

 Dependencies between components (external interfaces);

 Finding and binding of components (identification and communication);

 Semantics of the components;

 Integration of open source platforms (e.g. the sensor management framework and su itable

APIs);

 Important data structures;

 Synchronization aspects;

 Architectural design patterns and styles;

 Different external run-time support components and tools (servers, interpreters, libraries,

virtual machines, etc.);

ESTABLISH

D3.1 High level system architecture 6

2. Define ESTABLISH Generic components
ESTABLISH is a concept used to denote a central part of the system, having similar functionality and

similar role for all implementations, but the deployment and even the software components might be

different, according with the particular use case or particular hardware infrastructure.

The ESTABLISH platform is organized in the following layers:

 Application and presentation layer

 Knowledge layer

a. Storage sub-layer

b. Analytics and processing sub-layer

 Acquisition and interconnection layer

In this document ESTABLISH is referred and considered the common concept used in each

implementation. For particular components and deployments, we are specifica lly making reference to

the elements of each use case or implementation.

The presentation layer is the layer that users will see and with which they will interact, it is also called

the graphical user interface (GUI) of the platform and it is very important that it be clear, easy to use and

optimized.

The application layer contains the functionality the user interacts with. It is based on web and mobile

applications, which use a Model-View-Controller architecture
1
. The MVC architectural pattern has

existed for a long time in software engineering.

The knowledge layer consists of all the components used to s tore data and transform it to information

and knowledge. Here is referred the storage sub-layer and Analytics and processing sub-layer.

The Storage sub-layer comprises all SW components able to store any kind of data in the ESTABLISH

solution, which uses RDBMS and NoSQL systems.

The Analytics and processing sub-layer consists of components having functionality for

 Data Analytics (including time series processing)

 CEP (Complex Event Processing) engine

 Machine Learning (ML) unsupervised learning

The acquisition and interconnection layer contain all the components used for data acquisition from IoT,

wearable or other input devices. It also refers to the whole SOA based architecture used for data access

and interconnection.

The architecture of the system is presented considering 4 views, valid for all implementations and

deployments:

 Logical View

 Development View

 Process View

 Physical View

In the logical view we are presenting the main building blocks of the system. The other views are next

mapped on that logical view.

Considering a layered architecture, the logical view refers to:

 Application and presentation layer, which is the main interaction point with final clients. It

consists of web and mobile applications, based on the EVIF (ESTABLISH Visualisation Framework).

ESTABLISH

D3.1 High level system architecture 7

 The middle layer, called Knowledge Layer, consists of modules grouped together in the Storage

and BackeEnd. They are responsible for data storage and processing, and also as protocol adapters in

relation with devices used to collect data.

 The acquisition/Interconnection layer is responsible for collecting data from wearable and also

from the environmental devices. It is also responsible for exposing API and defining interfaces to which

further devices can be linked.

A special attention is considered here for defining the specifications common to all input devices, so

that, in the future, other devices for data acquisition can be used.

The layer contains the specifications for drivers to be designed for any other input device which in the

future can be plugged in. This is similar the way the printer drivers works for current operating system.

In the operating system there is a layer implementing common specifications for all printers. Then when

a new printer is designed and produced, the manufacturer will create a driver implementing the

specifications, and the printer can next be used by the host operating system.

Figure 1. ESTABLISH Logical View (architecture Layers)

The development architecture view maps the software components on the logical view.

It also explains how work packages will consider different software components.

ESTABLISH

D3.1 High level system architecture 8

On the application, an presentation layer, covered by WP5, the main components considered are:

 EVIF (ESTABLISH Visual Framework) which is at the basis of all UI

 Mobile applications

 WEB applications (Client side)

 Reports and Graphs

 Analysis visualisation tools

 User interaction system

On the Knowledge layer, considered in WP4 and WP5, we are distinguishing three main parts:

 Backend support system composed of

 CEP (Complex Event Processing)

 ML (Machine Learning)

 Big Data Analytics

 Storage (JPA based)

 Search Engine

 ESTABLISH Backend Components

 Data pre-processing (Normalisation, Filtering)

 IoT Data Process

 Wearable Data Process

 Life Cycle Management

 History and Audit

 Protocol adapters. They are components in the backend responsible for adapting the drivers of
input devices to the specifications of ESTABLISH. This is a very important part of the system, as it
allows system extension with any other devices. This part is implementing a common way of
treating input data, and considering that in future, the input (IoT or Wearable) will implement the
common specifications, data will be easy gathered. The protocol adapters developed are for

 Wearable(FITBIT)

 IoT (BEIA and ETRI

 Specifications for drivers, and Interface implementation

The acquisition and interconnection layer, considered in WP4, is implementing components for wearable
and IoT used by ESTABLISH. They are

 Wearable components: FITBIT

 IoT components: BEIA and ETRI

 Wearable and IoT logic

 Wearable and IoT data management

Establish system is offering also an API for external application, which allows the accest to process data
(Reports, commands) but also to raw data from IoT and wearable.

ESTABLISH

D3.1 High level system architecture 9

Figure 2. ESTABLISH Development View mapped on Logical View

ESTABLISH

D3.1 High level system architecture 10

API

AdminmistrtorFinal User Security
element

Application and presentation Layer

ESTABLIH
ESTABLIH

Mobile application
Mobile application

ESTABLIH
ESTABLIH

WEB applications
WEB applications

ESTABLIH
ESTABLIH

Reports and graphs
Reports and graphs

ESTABLIH
ESTABLIH

Analytics Visual Tools
Analytics Visual Tools

ESTABLIH
ESTABLIH

User feedback
User feedback

Knowledge layer

ESTABLIH
ESTABLIH

Complex Event

Processing

Complex Event

Processing

ESTABLIH
ESTABLIH

Machine Learning
Machine Learning

ESTABLIH
ESTABLIH

Big data Analytics
Big data Analytics

ESTABLIH
ESTABLIH

Storage
Storage

ESTABLIH
ESTABLIH

Search
Search

Backend Layer (IoT, Wearables)

ESTABLIH
ESTABLIH

IoT Process
IoT Process

ESTABLIH
ESTABLIH

Wearable Data

process

Wearable Data

process

ESTABLIH
ESTABLIH

Data Normalization and

filtering

Data Normalization and

filtering

ESTABLIH
ESTABLIH

History of Data
History of Data

ESTABLIH
ESTABLIH

Life Cycle

Management

Life Cycle

Management

Protocol addapters, Input

ESTABLIH
ESTABLIH

Wearable Protocol

addapters

Wearable Protocol

addapters

ESTABLIH
ESTABLIH

ESTABLISH Visualization Framework (EVIF)
ESTABLISH Visualization Framework (EVIF)

ESTABLIH
ESTABLIH

Iot Protocol adapters

(MQTT)

Iot Protocol adapters

(MQTT)

Acquisition/Interconnection Layer

ESTABLIH
ESTABLIH

Wearable Protocol

addapters

Wearable Protocol

addapters

ESTABLIH
ESTABLIH

Iot Protocol adapters

(MQTT)

Iot Protocol adapters

(MQTT)

ESTABLIH
ESTABLIH

IoT and Wearable Edge

data management

IoT and Wearable Edge

data management

ESTABLIH
ESTABLIH

IoT EdgeLogic
IoT EdgeLogic

ESTABLIH
ESTABLIH

Wearables Logic
Wearables Logic

ESTABLIH
ESTABLIH

Wearable Interfaces
Wearable Interfaces

ESTABLIH
ESTABLIH

IoT Interfaces
IoT Interfaces

Data collection

Presentation

ESTABLIH
ESTABLIH

Reports, Graphs,

Analytics

Reports, Graphs,

Analytics

ESTABLIH
ESTABLIH

Commands
Commands

W
P

3
 –

 S
ys

te
 A

rc
h

it
ec

tu
re

; W
P

6
 –

 U
se

 C
as

es

W
P

4
-S

en
so

rs

W
P

5
-D

at
a

A
n

al
ys

is

Interface Specifications

ESTABLISH

D3.1 High level system architecture 11

The process view explains how the main process of ESTABLISH are followed

This is described as:

First data is collected from wearable or IoT. Then it is preprocess (filtered, normalized, fill gaps, etc)

From normalized data, the defined features are computed. Next the features are processed by several
engines (CEP, ML, Decision Support). Finaly the end user can use the output of decision support mechanism
to take actions, or to plan actions.

Documents

Preprocessing
Stemming

Feature 1 Feature n

Feature Extraction
(Text features)

Preprocessing
Filtering
Convolutional

Feature 1 Feature n

Feature Extraction
(Environment parameters)

Wearable

Preprocessing
Normalization
Filtering
Transforms

Feature Extraction
(Health Parameters)

D
A

TA
 A

Q
U

IS
IT

IO
N

P
R

EP
R

O
C

ES
SI

N
G

FE
A

TU
R

E
EX

TR
A

C
TI

O
N

D
EC

IS
IO

N
 S

U
P

P
O

R
T

Feature 1 Feature n

Complex Event Processing

Decision Support

FE
A

TU
R

E
P

R
O

C
C

ES
IN

G

Environment
data

User 1User 1 User 2User 2 User ….User …. User nUser n

CaregiverCaregiver

Caregiver (Kineto)Caregiver (Kineto)

U
SE

R
 B

EH
A

V
IO

R

Features storage

Figure 3. ESTABLISH Architecture, process view

ESTABLISH

D3.1 High level system architecture 12

FitBit Cloud

MQTT Cloud

Libelium
Smart
Cities

FitBit Charge

FitBit Services

MQTT Broker

Centrul Stelutelor

Patient Home

Libelim Centralized Data Services

ESTABLISH Cloud Services

Kinetoterapist
Kinetoterapist

Administrator

Patient

Patient

FitBit Charge

Real-time AnalyticsLong-term Analytics

Figure 4. ESTABLISH Architecture, physical view

In the physical view, an example of deployment on physical component is presented, It is just an

example, as the system can be deployed also in other configurations to be defined on each pilot. The

example fits the Rehabilitation decision support pilot

ESTABLISH

D3.1 High level system architecture 13

3. Application and Presentation Layer

3.1 Presentation
The presentation layer is the layer that users will see and with which they w ill interact, it is also called

the graphical user interface (GUI) of the platform and it is very important that it be clear, easy to use and

optimized. We have approached responsive web design and implementation as current SOA standards

at the time of development. This approach will be beneficial in terms of compatibility and scalability,

making ESTABLISH optimized and usable on different devices and web browsers. The user interface is

based on Bootstrap, a HTML5/CSS3 front-end web framework. Other technologies like Primefaces (JSF

based), jQuery, jQuery UI and Modernizr could also be used to complete and extend the framework.

The presentation layer of ESTABLISH consist of several components. In a broad sense, these can be

divided to targeted use-case focused UI and general component used across the use-case focused UIs.

Both of these are indispensable because the use-case focused UI provides low-threshold and highly

intuitive interface to the end-users. The general components typically have more complex general

functionality, which however is less use-case specific, and thus at least from the configuration

perspective has a bit higher threshold to use.

ESTABLISH Visualization Framework (EVIF) represents one of the main general purpose components

that can be used across the use-cases. EVIF targets highly customizable visualizations and customized

reports. EVIF features visualization widgets (e.g. line chart, bar-chart, legend, 3D building browser), that

can be composed to create complex visualization. The creation of the visualization is performed via a

web-based administrative interface that EVIF provides.

The high-level use-case pattern for EVIF is thus as follows: (1) EVIF web-based administration interface

is used to develop targeted visualizations (e.g. historical comparison of temperature/humidity data

across all classrooms in a school), (2) URL of the panel showing the visualization is embedded in use -

case specific UI. The end-user thus perceives only the use-case specific UI in which EVIF’s advanced

visualizations seamlessly embedded.

ESTABLISH

D3.1 High level system architecture 14

Figure 5. EVIF architecture

From the technical point of view, the architecture of EVIF is as shown in the figure above. EVIF provides

(1) a server that takes care of sensor data indexation and post-processing, and (2) a web-based client

that visualizes the data provided by the server. Internally, EVIF is implemented in Javascript (both client

and server). For visualisations on the client side, it uses ReactJS and D3.

From the business perspective, EVIF recognizes three main types of users (shown in the figure).

The Technical Contractor is responsible for setting up visualization templates in which he/she exploits

EVIF’s visualization widgets. These widgets are glued together by simple Javascript code which is

entered via EVIF’s web-based administration UI. The technical contractor is required to have basic

knowledge of Javascript, HTML and CSS.

The Administrator is responsible for configuring and deploying panels. A panel in EVIF’s terminology is

an instantiation of a visualization template (previously provided by the Technical contractor) over a

particular set of sensor data. For example, the Technical contractor prepares a template to display

comparison of temperature, humidity and energy consumption across several school rooms. The

Administrator then configures several panels – a panel per rooms on the same floor, a panel per rooms

on the same side of the building, etc. The Administrator is not required to have knowledge of HTML or

any programming skills. He/she is assumed only to be a computer power-user.

The End user (e.g. building maintenance) views EVIF’s panels through the use-case specific UI to get

insights into which rooms exhibit abnormal behavior (e.g. because of broken gasket in windows).

EVIF significantly simplifies the development of visualization templates by providing a growing number

of reusable widgets. At this point the list includes: line chart, bar chart, pie chart, legend, time range

selector, data access. Widgets which are further envisioned include navigation widgets (3D building

browser, floor plan), and statistics charts (XY chart, violin plot, box plot).

ElasticSearch

End User
Views

visualizations

EV
IF

 D
at

a
se

rv
er

D3

High-level visualization
API client side

IoT Gateway
Se

cu
re

au
th

en
ti

ca
te

d
co

m
m

un
ic

at
io

n
(v

ia
 S

SL
 a

nd
 c

lie
n

t-
si

d
e

 c
e

rt
if

ic
a

te
s)

EVIF Web portal

React

Administrator
Creates visualizations by
instantiating visualization

templates

ESTABLISH Technical
Contractor

Creates visualization
templates for the given

domain/use-case

MySQL

Analytics plugins

Analytics
settings

Spark

High-level vis API
server-side

Se
rv

er
C

lie
nt

 (i
n

w
eb

br
o

w
se

r)

Use-case specific UI

EVIF-based
visualisation
(in IFRAME)

ESTABLISH

D3.1 High level system architecture 15

EVIF visualization framework (developed by CUNI) internally uses two types of storage: (1) permanent

master storage for signal data, and (2) temporary storage for fast data visualization. The master storage

is implemented over a MySQL database. It stores sensor data obtained from IoT gateways or other

ESTABLISH components (e.g. from LORAWAN portal – developed by IMA). The temporary storage is

implemented over Elasticsearch. It indexes all data from the master s torage and further keeps derived

data (i.e. data computed based on sensor readings via different analytics) – e.g. pre-computed future

trends, filtered and smoothed data for displaying seasonal trends.

The visualization requires a large number of aggregates (this is to avoid transferring all data to the

client, but only pre-computed points which are enough to draw a respective chart). This involves a lot of

computation that needs to be performed at real time. Elasticsearch is a solution specifically intend ed to

compute such aggregates in a highly scalable cluster.

It is an open-source, distributed, multi-tenant search engine implemented in Java. There are clients

available for most of commonly used programming languages (including Javascript). It has an HTTP

interface and works with schema-free JSON documents. Based on the DB-engines ranking
2
, it is the

most popular search engine and is used in many services (such as GitHub, Netflix, etc.).

As it offers near real-time searches, it can be considered as a distributed noSQL database however it

lacks distributed transactions. This is however not an issue as in EVIF, it is used primarily for data

retrieval.

A single Elasticsearch instance is called a node. A set of connected nodes forms a cluster. The nodes

can be of different types – depending on their functionality (Master-eligible node, Data node, Ingest

node, or Tribe node). Internally, Elasticsearch is based on Apache Lucene (information retrieval library).

Via it, Elasticsearch provides indexing of full text and fuzzy string searching. The indices are divided to

shards, which are distributed with their replicas over the nodes. Compared to traditional databases

(SQL), an index corresponds to a database, a type of a documents corresponds to a table, a document

to a row and a field in a document to a column. For queries, Elasticsearch provides own JSON -based

DSL ({ "filter" : { "term" : { "id" : "12345" } } }). There is also an experimental support for executing actual

SQL queries against Elasticsearch indices.

Elasticsearch further features integration with Hadoop via a bi-directional connector (called ES-Hadoop).

In particular, it has direct support for Spark framework which is used for performing cluster computation

over large sets of data and thus provides a convenient way of performing scalable data analytics. In

EVIF, the intended use is to perform analytics as Spark jobs over sensor data stored in Elasticsearch.

The analytics results are stored back in Elasticsearch from which they can include in visualizat ions in

the same way as original sensor data.

The choice of Elasticsearch thus not only brings a convenient API for computing the aggregates, but

also addresses to a great deal the scalability of EVIF and provides a platform that is ready for including

data analytics (themselves described in Section 4.2).

3.2 Web and Mobile Apps
Web and mobile applications use a Model-View-Controller architecture

3
. The MVC architectural pattern

has existed for a long time in software engineering. All most all the languages use MVC with slight

variation, but conceptually it remains the same. MVC stands for Model, View and Controller. MVC

separates application into three components - Model, View and Controller.

ESTABLISH

D3.1 High level system architecture 16

Figure 6. MVC Architecture

Model: Model represents shape of the data and business logic. It maintains the data of the application.
Model objects retrieve and store model state in a database.

View: View is a user interface. View display data using model to the user and also enables them to modify
the data.

Controller: Controller handles the user request. Typically, user interact with View, which in-turn raises
appropriate URL request, this request will be handled by a controller. The controller renders the appropriate
view with the model data as a response.

The following figure illustrates the interaction between Model, View and Controller implemented on the
server side.

ESTABLISH

D3.1 High level system architecture 17

Figure 7. Architectural design principle Model-View-Controller (MVC)

Model deals with data. All the codes and queries related to data retrieve or insert, updat e, delete are

placed in Models.

No business logic, algorithm or queries are suggested to place in Views. Only data that are needed and

codes that represents those data as user expectation (e.g: html tags in web apps) are kept in a View.

Controller is responsible to coordinate with Model and View. All the business logics, algorithms and

functions are placed in Controllers. When a user request something from View, it's handled by the

Controller first. If the request needs data from the database, controller re trieves it from the database

through Model and then throws it to View after necessary process. By this process user can view the

response according to his/her request.

When developing the IoT system then it's an immense need to consider about its maintenance, version

controlling and future development.

With MVC pattern, codes are easy to adorn since all are distributed according to category. So, the

coding standard can be maintained precisely.

It's easier to review or change all the codes when it comes to deal with requirement or version changes

or future development since the codes are already distributed in Model-View-Controller.

It is important to modularize all the features inside when the project is large. There are cases where all

the features are not important for all the users. In those cases, Model View and Controllers are created

according to particular modules so that it can be easier to give or revoke features as per the user need.

A level of system security can be maintained by following the MVC pattern. Though there are so many

things to consider for ensuring system security, MVC helps developer control access violation by

ESTABLISH

D3.1 High level system architecture 18

restricting user from accessing Model directly from View. So data access and manipulation is bit secure

here. In the meantime, database queries, all the logics and algorithms according to software features

and all other codes are arrange precisely which ensures the code security.

3.2.1 Web application candidate technologies and frameworks

BACKEND FRAMEWORK:

ESTABLISH Backend is a complex system responsible for

 Data acquisition from devices

 Data processing

 Rule engine

 ML system

 Analysis and presentation system

 API

It is a web application, running on top of TomEE server. [10]

The backend is also the place for deployment of the data models

The data Model contains the structures necessary to cover all the processes described.

We are grouping the individual components of the data model in the following groups”

 User account management

 Patients and caregivers

 Activities

 Collected data

 Rule engine and ML

 Nomenclatures

Access to data model is using JPA. The backend server is using EJB technologies. Security is using

OAuth 2.0 specifications.

Rule engine is based on DB stored procedures

ML is using clustering algorithms, and is developed in Java

Analysis and presentation is using Grafana

APIs are based on REST services.

FRONTEND FRAMEWORK:

Bootstrap is a responsive front-end web framework for designing websites and web applications. It

contains HTML- and CSS-based design templates for typography, forms, buttons, navigation and other

interface components, as well as optional JavaScript extensions. Bootstrap offers a large OS (operating

system) and browser compatibility pool as described in the tables below:

ESTABLISH

D3.1 High level system architecture 19

Table 1: Bootstrap mobile browser compatibility

Table 2: Bootstrap desktop browser compatibility

The current stable version is Bootstrap 4.0. By using Bootstrap web framework we can ensure both

modern browsers compatibility (eg. IE Edge +, Firefox, Safari and Chrome), and high flexibility in

design component changes, and the responsive design approach.

jQuery is a cross-platform JavaScript library designed to simplify the client-side scripting of HTML.

jQuery is the most popular JavaScript library in use today, with installation on 65% of the top 10 million

highest-trafficked sites on the Web.

jQuery UI is a collection of GUI (graphical user interface) widgets, animated visual effects, and themes

implemented with jQuery, Cascading Style Sheets, and HTML. According to JavaScript analytics

service, Libscore, jQuery UI is used on over 197,000 of the top one million websites , making it the

second most popular JavaScript library.

Modernizr is a JavaScript library which is designed to detect HTML5 and CSS3 features in various

browsers, which lets JavaScript avoid using unimplemented features or use a workaround such as a

shim to emulate them. Modernizr aims to provide this feature detection in a complete and standardized

manner.

PrimeFaces is an open-source user interface (UI) component library for JavaServer Faces-based

applications. PrimeFaces is a lightweight library, all decisions made are based on keeping PrimeFaces

as lightweight as possible. Usually adding a third-party solution could bring a overhead however this is

not the case with PrimeFaces. It is just one single jar with no dependencies and nothing to configure.

(Prime Faces, 2018)

CSS3 (Cascading Style Sheets) is a style sheet language used for describing the presentation of a

document written in a markup language. Although most often used to set the visual style of web pages

and user interfaces written in HTML and XHTML, the language can be applied to any XML document,

including plain XML, SVG and XUL, and is applicable to rendering in speech, or on other media. Along

with HTML and JavaScript, CSS is a cornerstone technology used by most websites to create visually

engaging webpages, user interfaces for web applications, and user interfaces for many mobile

applications.

HTML5 is a markup language used for structuring and presenting content on the World Wide Web. It is

the fifth and current version of the HTML standard. It was published in October 2014 by the World Wide

Web Consortium (W3C) to improve the language with support for the latest multimedia, whil e keeping it

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/JavaServer_Faces

ESTABLISH

D3.1 High level system architecture 20

both easily readable by humans and consistently understood by computers and devices such as web

browsers, parsers, etc. HTML5 is intended to subsume not only HTML 4, but also XHTML 1 and DOM

Level 2 HTML. HTML5 includes detailed processing models to encourage more interoperable

implementations; it extends, improves and rationalizes the mark-up available for documents, and

introduces mark-up and application programming interfaces (APIs) for complex web applications. For

the same reasons, HTML5 is also a candidate for cross-platform mobile applications, because it

includes features designed with low-powered devices in mind.

The technologies presented here will ensure an optimal format for content to be available through

commonly used web browsers, e.g. IE, Chrome, Firefox, in commonly used document formats, e.g. doc,

xls, ppt, pdf, and in compatibility with commonly used operating systems including mobile technology,

e.g. Windows, MAC, OS, iOS, Android, and Windows mobile.

D3 visualization library
4
, which is a data-driven document visualization library, is a JavaScript library

that provides interactive visualization of data on web pages. Using D3 with HTML, CSS and another

JavaScript, the developers are able to display data from different sources in advanced graphics and

create infographs with SVG objects. In other words, adding d3 functions to graphical objects like SVG

objects providing them with rich and dynamic features such as scaling, events, transitions, and

animations.

React
5
 is a JavaScript library for building interactive user interfaces (UIs) that is developed by

Facebook, Instagram and community. The design of UIs using React follows “Model -View-Controller”

(MVC) pattern and is component-based in which components are typically written in JavaScript

extension (JSX). Hence, the components are declarative which work as reusable APIs that build a

representation of the needed view. Therefore, it displays data dynamically without reloading the whole

page by rendering only the components that are effected by data changes. More specifically, React

introduces the concept of virtual DOM (Error! Reference source not found.), or virtual Document

Object Model, that manages the browser’s DOM for the developers in order to improve performance.

Thus, React computes the minimal needed changes using virtual DOM and then re-renders the

browser’s DOM.

Figure 8. React Virtual DOM

Vue.js
6
 is an open-source JavaScript front-end framework for building user interfaces. Integration into

projects that use other JavaScript libraries is simplified with Vue because it is designed to be

ESTABLISH

D3.1 High level system architecture 21

incrementally adoptable. Vue can also function as a web application framework capable of powering

advanced single-page applications.

The project focuses on making ideas in web UI development (components, declarative UI, hot -reloading,

time-travel debugging, etc.) more approachable. It attempts to be less opinionated and thus easier for

developers to pick up.

It features an incrementally adoptable architecture. The core library focuses on declarative rendering

and component composition and can be embedded into existing pages. Advanced features required for

complex applications such as routing, state management and build tooling are offered via officially

maintained supporting libraries and packages

JSX
7
 is inline HTML markup that is used to declare components in React applications. It is faster in

running on web browsers than JavaScript because of its generated code, safer since it is statically-typed

object oriented language, and easier than JavaScript.

SECURITY

OAuth
8
 2.0 is an open standard for access delegation, commonly used as a way for Internet users to

grant websites or applications access to their information on other websites but without giving them the

passwords. This mechanism is used by companies such as Google, Facebook, Microsoft and Twitter to

permit the users to share information about their accounts with third party applications or websites.

Generally, OAuth provides to clients a "secure delegated access" to server resources on behalf of a
resource owner. It specifies a process for resource owners to authorize third -party access to their server
resources without sharing their credentials. Designed specifically to work with Hypertext Transfer
Protocol (HTTP), OAuth essentially allows access tokens to be issued to third-party clients by an
authorization server, with the approval of the resource owner. The third party then uses the access
token to access the protected resources hosted by the resource server

SEARCH AND ANALYTICS

Elasticsearch is a distributed, RESTful search and analytics engine capable of solving a growing

number of use cases, and designed for horizontal scalability, maximum reliability, and easy

management. As the heart of the Elastic Stack, it centrally stores your data so you can discover the

expected and uncover the unexpected.

VISUALISATION

Kibana is a powerful visualisation tool. Kibana gives you the freedom to select the way you give shape

to your data. And you don’t always have to know what you're looking for. With its interactive

visualizations, start with one question and see where it leads you.

Kibana core ships with the classics: histograms, line graphs, pie charts, sunbursts, and more. They

leverage the full aggregation capabilities of Elasticsearch. Kibana developer tools offer powerful ways to

help developers interact with the Elastic Stack.

https://en.wikipedia.org/wiki/Open_standard
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Access_token

ESTABLISH

D3.1 High level system architecture 22

Figure 9. Kibana charts

Grafana
9
 is an open-source visualization tool that can be used on top of a variety of data stores such as

Graphite, InfluxDB, and also Elasticsearch. Grafana is a feature-rich replacement for Graphite-web, and

through its unique Graphite target parser can produce various types of dashboards with easy metrics

and function editing.

Figure 10. Grafana chart

3.1.2 Mobile application candidate technology and frameworks
A mobile application is usually structured as a multi-layered application consisting of presentation,

business, and data layers. The below figure illustrates a common rich client mobile application

architecture with components grouped by areas of concern.

ESTABLISH

D3.1 High level system architecture 23

Figure 11. The typical structure of a mobile application
10

When developing a mobile application, it is possible to choose developing a thin Web-based client or a

rich client. For a rich client, the business and data services layers are likely to be located on t he device

itself; and for a thin client, such layers are located on the server.

A mobile application generally contains user interface components in the presentation layer, and

perhaps may include presentation logic components. The business layer, if it ex ists, usually contains

business logic components, any business workflow and business entity components that are required by

the application, and, optionally, a facade. The data layer usually includes data access and service agent

components.

Mobile applications can be developed based on the following approaches:

 A Fully Native approach uses Apple and Google original tools respectively to specifically

target the mobile device. They are developed stand alone and use different languages and

development environments in each context.

 A Hybrid Cross Platform development framework is a set of development, configuration

and build tools that allow standard web technologies (HTML 5, CSS 3 and Javascript) to be

packaged and deployed onto a mobile device. Typically, the assets will be uploaded to the

Apple store for IOS or the Play store for Android. At run-time, the application uses the

mobile device browser (web view).

 A Native Cross Platform development framework offers the same as the Hybrid approach.

However, it cuts HTML and CSS from the equation and allows the packaged app to talk

directly to the mobile Operating System. This offers two advantages over the hybrid

platform: the apps can use native User Interface controls (rather than mimicked ones), that

makes development easier since there is consistency in devices; and the applications will

potentially run faster (since there is less processing to perform).

Due to differences in the underlying technology, each approach has inherent advantages and

drawbacks, development frameworks, and appropriate use cases, so a careful analysis is required to

ensure that an application is built using the right technology for the functionality required. The following

table summarizes the different approaches:

Development

Approach
Fully Native Native Cross platform Hybrid Cross Platform

Definition

and Tools

Build the app using native

frameworks:

 iPhone SDK

 Android SDK

 Windows Phone SDK

Build once, deploy on multiple

platforms as native apps:

 React Native

 Angular 2 Nativescript

 Xamarin

Building using standard web

technologies:

 Apache Cordova

 PhoneGap

 Ionic

ESTABLISH

D3.1 High level system architecture 24

Underlying

Technology

 iPhone: Swift/Objective C

 Android: Java

 Windows Phone: C#/Visual

Basic

 React Native: Javascript

 Angular 2 Nativescript:

Javascript/Typescript

 Xamarin: C#

 Apache Cordova:

HTML5, CSS3,

Javascript

 PhoneGap: HTML5,

CSS3, Javascript

 Ionic: HTML5, CSS3,

Javascript

Deployment App stores App stores Over the web

Key Use

Cases

 Apps requiring high-end

user experience, more

transactional in nature

 Large user base on one

device

 Offline usage

 Apps requiring extensive

device and/or OS functions

 Simpler apps, more

informational in nature

 Offline Usage

 Multiple device types

distributed across key

users

 Works well for a number

of enterprise applications

that do not require heavy

device functions

 Generic user

experience,

performance depends

on Internet connection

 Distributed user base

across smart phone

platforms

 Need to maintain single

code base

 Moderate amount of

device functions

Table 1. Development approach for mobile applications

FULLY NATIVE FRAMEWORK

Swift/Objective C (iOS)

Objective C has been the dominant language to develop for iOS for many years. It has a lot of support

on the devices in terms of libraries and, at the moment, the majority of applications are written in it.

Swift
11

 first appeared in 2014 and superseded Objective C for iOS devices. Development using both

languages is carried out using OSX using XCode.

Java (Android)

Java can be developed using Android Studio
12

 to target Googles Android operating system. It provides

a very good developer experience and great tooling and support.

C# (Windows Phone)

C# or Visual Basic can be used alongside Microsoft own tools
13

 to create windows phone apps.

NATIVE CROSS PLATFORM FRAMEWORK

React Native (Supported devices: iOS, Android)

React.js
14

 is an open source Single Page Application (SPA) framework that allows web developers the

ability to build large-scale JavaScript applications for the browser. It composes common application

ESTABLISH

D3.1 High level system architecture 25

requirements (such as rendering views) into a single framework that can be leveraged for productivity.

React Native
15

 is an extension of react that removes browser specific features and introduces mobile

specific knowledge. Facebook are key contributors to this project.

Angular 2 Nativescript (Supported devices: iOS, Android)

The newest release of the most popular SPA Angular 2 has built in support to Teleriks Nativescript.

Although developed by Telerik, Nativescript
16

 is open source. It allows development to target mobile

devices using JavaScript or Typescript
17

. The benefit is that Angular 2 is a very mature platform.

Xamarin (Supported devices: iOS, Android, Windows Phone)

Xamarin
18

 uses C# to target multiple devices. It comes with a powerful Integrated Development

Environment (IDE’s) and works well with Microsoft Visual Studio (via an extension).

HYBRID CROSS PLATFORM FRAMEWORK

Apache Cordova

Apache Cordova
19

 is a development framework that is command line driven, it includes build tools that

will take an input of (HTML, CSS and Javascript) and will produce something that runs on a mobile

device.

Phonegap (built on Cordova)

Phonegap
20

 is a development framework created by Adobe that is built on top of Apache Cordova. The

main benefit is the integration with the Adobe universe. For example, Adobe offers build tools that run in

the cloud.

Ionic (built on Cordova)

Ionic
21

 is another framework that is built directly on top of Apache Cordova. Ionics integrates the well-

known Single Page Application framework called Angular. Ionic is open source, so this means that the

focus is on the product itself (as opposed to the services offered around it like with Phonegap).

Web application IoTLoRaWAN monitors the status of the environment using the LoRa wireless network.

Effectively monitors:

 Environmental features

 CO2, temperature, humidity, dust, signal strength…

 Flow of water and air

 Sewerage, piping, air conditioning, chimneys...

 Existence of waste disposal facilities

 Dump stations, landfills, septic tanks, reservoirs...

 Remote readings of electronic meters

 Gas meters, electricity meters, water meters...

 Number, movement and behavior of people

 Attendance, pervasiveness, overcrowding...

ESTABLISH

D3.1 High level system architecture 26

Figure 12. IoTLoRaWAN Web Application

Get the data you need to optimize:

 Buildings and cities

Setting thermostat according to real demand, searching of insufficient volume of ventilation,

warning of critical values of toxic substances in air, soil or water...

 Alert of critical utility utilization values

Rapidly falling water in the water, clogged sewerage, clogged chimney…

 Waste removal frequency, septic tank cleaning etc.

 Quantification of the cost of the service

Readings of gas meters, water meters ...

 Security risks involved with the occurrence and movement of people

Cancellation of unused stops, adjustment of timetables, changes opening hours and so on.

3D building browser

A web application running on server: the 3D building browser visualizes a building as a 3D BIM model

(imported from IFC format). It allows a user to navigate in the building (by panning and zooming the

camera and by sliding building floors). This way, it allows a user to locate sensors in the building, select

them and investigate their data. This complements the traditional list view of sensors by allowing users

to locate a sensor by the intuitive understanding of approximate sensor location. Internally, the

application uses BIMsurfer, which it integrates in EVIF. The application accesses the browser via REST

API based on JSON.

ESTABLISH

D3.1 High level system architecture 27

Mobile application for citizens
This mobile application intends to provide citizens with useful predictions and recommendations about

mobility and pollution in the city in real time, which is produced by the cloud platform for data fusion and

data analysis; and it also allows them to have access to a route planner focused on calculating the most

ecological route considering the municipal open data.

This mobile application is an Android native application developed with the Android SDK framework in

Java, which acts as the front-end side of the cloud platform for data fusion and data analysis and the

multi-modal route planner.

The inputs of the mobile application are the results (recommendations and predictions) derived from the

cloud platform for data fusion and data analysis, and the results produced by the multi-modal route

planner when the user requests a certain route; while the outputs are the user requests to get a certain

route.

Web application for city authorities
This web application intends to help the city authorities in the decision-making about the urban mobility

planning in terms of pollution levels, by allowing them to predict the traffic loads and the pollutions and

analyse configurable situations/scenarios related to mobility and pollution through a traffic simulation

platform.

This web application is developed with the Foundation framework, while the main technologies used are

HTML5, CSS3 and JavaScript; and it acts as the front-end side of the traffic simulation platform.

Furthermore, it is required that this web application must have an easy-to-use user interface in order to

present the information in a comprehensible way and should be time responsiveness for basic user

interactions. 

The inputs of the web application are the results derived from the traffic simulation platform; while the

outputs are the user requests to carry out different simulations.

3.3 Business Logic
The business logic layer is a layer of code that implements the functionalities of the system. This layer is

responsible for accessing, processing and transformation of data. Additionally it manages the business

rules and assures the data consistency and accuracy. The business logic layer is accessed from the

presentation layer to make the functionalities available to the users and it can also offer the

functionalities to external information systems through the data exchange interfaces.

The business logic layer has following characteristics:

 It is completely independent from the presentation layer and from external applications that use

the data exchange interfaces.

 It has a completely modular architecture based on reusable components and abstract interfaces.

There must be no identical functions made by different components (e.g. data access).

 It contains and delimit the “business workflow” and “business entity” components.

 Access to business entity components will be done through business workflow components.

 The business entities are clearly defined at the business logic layer.

 Business entity components contain all data and business logic related to the business entity,

for undertaking the business operations, implementation of relevant business rules and for the

maintenance of the integrity and accuracy of contained data.

ESTABLISH

D3.1 High level system architecture 28

 The components related to business logic layer communicate through dedicated interfaces/

internal functions (tight coupling).

 The components of the business logic layer are accessible for external applications only through

the data exchange interfaces.

 The architecture of the business logic layer is allowing simultaneous access to the functionalities

of the system.

Rererence e.g. https://objcsharp.wordpress.com/2013/07/22/what-is-a-business-logic-layer-anyway/

and/or

https://www.ibm.com/support/knowledgecenter/en/SSZLC2_7.0.0/com.ibm.commerce.developer.doc/co

ncepts/csdbusinesslogicbase.htm

Business logic layer visualized. The blue boxes make up the user interfaces of the entire system.

Figure 13. Main layers

In the Establish project the business logic layer has three major components:

1. Web portal logic written in Java
2. A service sub-layer consisting in an instance of Elastic Search, a search engine working on

large databases (www.elastic.co)
3. Mobile app RESTful service, designed to push data to the UI of the mobile application

The components above mentioned will work with business records such patient and physical trainer

data, therapeutical programs and assigned or recommended activities, notification rules and conditional

static and behavioural, localisation algorithms, tracking and historical data management.

https://objcsharp.wordpress.com/2013/07/22/what-is-a-business-logic-layer-anyway/
https://www.ibm.com/support/knowledgecenter/en/SSZLC2_7.0.0/com.ibm.commerce.developer.doc/concepts/csdbusinesslogicbase.htm
https://www.ibm.com/support/knowledgecenter/en/SSZLC2_7.0.0/com.ibm.commerce.developer.doc/concepts/csdbusinesslogicbase.htm

ESTABLISH

D3.1 High level system architecture 29

Monitoring the quality of the internal environment has always been a priority for IMA s.r.o. since its

establishment in 1992.

The quality of the internal environment is a critical factor in both public and private sectors (schools,

offices, residential buildings and family homes).

We measure and evaluate a variety of variables that determine the quality of the indoor environment.

The most important ones are temperature (T), humidity (H) and especially carbon dioxide (CO ₂).

The highest acceptable value of carbon dioxide for public buildings is set to 1500 ppm. However, it is

known that even a slightly elevated carbon dioxide values of about 900-1000 ppm already result in

fatigue, headaches and reduced overall body activity.

IMA activities:

 Testing, measuring and evaluating the results of the deployed IoT sensors

 Daily operation

 LORAWAN mobile app created by IMA

 ImaWAN information brochure

Tests and measurements

IMA has been testing several different types of IoT sensors focused on measuring the internal

environment – temperature (T), humidity (H), levels of carbon dioxide (CO₂), airflow (A) and received

signal strength (RSSI). We´ve deployed two sensors to primary schools in Prague in March 2018 as a

part of the InAirQ project.

Objectives of the tests and measurements:

 To verify the expected development of air quality depending on the number of people present

 To compare the results of common IoT sensors with laboratory devices

A positive conclusion was achieved as both main objectives have been met, and therefore confirmed the

possibility of real-life deployment.

From development to business

Our systems and applications are designed as open, so we have the option to choose different

technologies. We can connect with any IoT sensor; and as for the transmission networks itself – we´re

able to communicate over LoRa, SigFox and NB IoT networks. Furthermore, we have an open custom -

made LoraWAN / imaWAN application that allows us to receive and visualize data and evaluate it. Real -

life applications and use cases are the primary building block of our entire system and the

representatives of the Czech Republic have always been positively evaluated.

Based on our testing experience regarding actual business, we have been more focused on public

buildings, especially primary schools and nurseries. Several primary school directors expressed their

interest in IoT sensors measuring the internal environment. However, some of those orders have been

postponed due to the lack of funding; despite the sensors´ reasonable pricing. That is why we had to

expand our business activities to other customers and segments.

We negotiated with a major insurance company about the possible deployment of IoT sensors in

households – to measure CO2 levels, a flooding alarm and a basic security system - door opening

sensor and motion detection sensor.

We also offered our IoT sensors to Czech Technical University in Prague and Brno University of

Technology - to monitor the internal environment in terms of study, research and tests in various types

of projects.

Currently, we are testing the networks for temperature and humidity measurement in a pharmaceuticals

storage segment.

We also offer monitoring and evaluation of the quality of the indoor environment and ventilat ion control

in public agencies and hospitals.

ESTABLISH

D3.1 High level system architecture 30

Use case on the CEZ Group premises

To measure and evaluate the current status of the indoor environment related to ventilation systems is a

frequent requirement.

We installed IoT sensors to measure the quality of the indoor environment on the premises of our major

client – the CEZ Group. We measure and evaluate the levels of T+H+ CO2 on a long-term basis. The

sensors had to be equipped with their own batteries, as our client wanted them to be mobile. Therefore

our IoT sensors came out as the best possible solution.

Our outputs were used to negotiate with the owner and administrator of the building to improve the

quality of the environment, where the real values of T+H+CO2 were being measured and graphically

evaluated over a long-term period.

Airflow and temperature IoT sensors are being installed in ventilation ducts at this time.

Furthermore, we are negotiating about the possible use of IoT sensors for electric meters, water meters

and gas meters.

3.4 Business System Integration

In the Establish project there are many different use cases according to Countries. One of the important

steps is Business System Integration that will ensure the alignment of the different use cases in one

platform. Business integration is a simple idea: all the use cases working together, so Establish may be

considered as one solution for different project ideas. The projects that are on the platform, can

communicate with each other.

What any good integration platform will do is acting as a data translator between different use cases.

The platform will simply translate data from one file format’s “language” to another.

ESTABLISH

D3.1 High level system architecture 31

4. Knowledge and Storage Layer

4.1 Storage
This sub-layer comprises all SW components able to store any kind of data in the ESTABLISH solution.

Particularly for the “Optimized City and Mobility Planning”, the following SW components for data

storage are used:

 A NoSQL database (MongoDB, Elasticsearch, Cassandra) to store the following information:

 Historical data coming from the open data sources

 Recommendations about mobility and pollution

o Predictions about mobility and pollution

 A SQL database (PostgreSQL) to store all those personal information related to the user.

Thereby, the stored data in the NoSQL database are the results (recommendations and predictions)

derived from the cloud platform for data fusion and data analysis and the historical data coming from the

open data sources; and the stored data in the SQL database are the user information entered from the

mobile application.

Finally, it is important to mention that both databases can be accessed through a REST API operating

over them.

4.1.1 Storage for indoor air quality management
The indoor air quality system consists of the following basic goals in order to keep indoor environment

healthy through environmental data analysis.

 IAQ/OAQ sensor device

 Data management server

 Analysis and adaptive control system

Figure 14. The indoor air quality system architecture

The key technologies for achieving the goals

 Efficient battery charging for OAQ sensor devices

ESTABLISH

D3.1 High level system architecture 32

 Low power consumption, minimum maintenance

 Flexible design of OAQ sensor devices for enduring tough outdoor weather

 Two-way communication between sensor devices and the backend server

 Data server system for managing environmental data

 Data analysis system

 Adaptive control of air purifier

IAQ and OAQ devices integrate many kinds of sensors to measure the various environmental

information into one hardware module. The devices also include the functions of the wireless

communication to transmit the measured information. Each IAQ sensor device for indoor air quality

measurements includes temperature, humidity, CO2, illuminance, noise, VOC (volatil e organic

compounds), Formaldehyde and dust sensors. An OAQ sensor device for outdoor air quality

measurements includes temperature, humidity and dust sensors. The OAQ sensor devices use solar

energy as its battery charging and they are designed to endure the tough outdoor weather.

The following figure shows indoor the specification of the air quality sensors:

Figure 15. IAQ Sensors for Indoor Air Quality Management

The data management server collects data from IAQ/OAQ sensor devices and stores them to its

storage. It is implemented with Spring framework over Apache Tomcat for HTTP processing and

PostgreSQL for environmental data storage. An IAQ sensor communicates with its subordinate OAQ

sensor through Radio Frequency (RF) to gather both IAQ and OAQ environmental data and send it to

the backend data server via Transmission Control Protocol (TCP). The backend server platform

communicates with the IAQ sensors via TCP in order to collect and store the data. In addition, the

server provides data access service with JSON query format describing various query constraints over

HTTP. The server uses Spring framework over Apache Tomcat for HTTP processing and PostgreSQL

for environmental data storage.

ESTABLISH

D3.1 High level system architecture 33

Figure 16. Data management server and storage

The system uses PostgreSQL for its data storage and some of database entities are as follows:

 building: this entity represents a building in which IAQ devices are installed.

 indoor_map: this entity represents the indoor map of a building

 iaq: this entity represents a IAQ device

 sensor: this entity represents the sensors belonged to a IAQ device

Figure 17. Database schema

ESTABLISH

D3.1 High level system architecture 34

Entity Column Description

building

name the name of the building

address the physical address of the building

indoor_map

id identifier of the map

type type of the map (ex, jpg, png)

path directory of the map

iaq

id identifier of the IAQ device

location the location of the IAQ device on the indoor map of

the building

manufacture the manufacture of the IAQ device

model the model of the IAQ device

sensor

id identifier of the sensor

type type of the sensor (ex, particle, co2, …)

unit unit of the sensor (ex, ug/m3, lux, dB, …)

maxValue maximum value of the sensor

minValue minimum value of the sensor

threshold threshold value of the sensor

Knowledge and storage layer is about storing and organizing data. Due the specific of the project data

acquisition part, in Establish data will be stored in two ways. One is the big data component, which will

be used to store industrial data organised as time-series and gathered from sensors and other detection

devices. The other one is the ore classical approach of a relational database management system

(RDBMS), used to store the relational data processed and stored inside the Establish solution. Of

course both storage layer components will communicate with the business logic layer and its sub-

components.

 noSQL component

First, because of large amount of diversified time series generated at a high speed by industrial

equipment as sensors and other devices, we have an industrial big data component, through what we

name nowadays as the Internet of things. Big data refers to data generated in high volume, high

variety, and high velocity that require new technologies of processing to enable better decision making,

knowledge discovery and process optimization. However, industrial big data should be also visible,

which refers to the discovery of unexpected insights of the existing assets and/or processes and in this

way transferring invisible knowledge to visible values. The most important characteristic of big data is

the obtained value. That implies that, due to the risks and impacts industry might face, the requirements

for analytical accuracy in industrial big data is much higher than other analytics, such as social media

and customer behaviour.

https://en.wikipedia.org/wiki/Internet_of_things

ESTABLISH

D3.1 High level system architecture 35

Industrial big data is usually more structured, more correlated, more orderly in time and more ready for

analytics. This is because industrial data is generated by automated equipment and processes, where

the environment and operations are more controlled and human involvement is reduced to minimum.

Proliferation of structural, semi-structural and no-structural data, has challenged the scalability, flexibility

and processability of the traditional relational database management systems (RDBMS). The next

generation systems demand horizontal scaling by distributing data over autonomously addable nodes to

a running system. For schema flexibility, they also want to process and store different data formats

along the sequence factor in the data. NoSQL approaches are solutions to these, hence big data

solutions are vital nowadays. But in monitoring scenarios sensors transmit the data continuously over

certain intervals of time and temporal factor is the main property of the data. Therefore the key research

aspect is to investigate schema flexibility and temporal data integration aspects together. We need to

know that: what data modelling should we adopt for a data driven real-time scenario; that we could store

the data effectively and evolve the schema accordingly during data integration in NoSQL environments

without losing big data advantages. We need to build a middleware based schema model to support the

temporal oriented storage of real-time data from sensors as hierarchical documents. We also need to

adopt a schema for the data integration by using an algorithm based approach for flexible evolution of

the model for a document oriented database, i.e, MongoDB. The proposed model must be logical,

compact for storage and seamlessly evolving upon new data integration.

IoT ecosystems want general storage mechanisms having structural flexibility to accept different data

formats arriving from a variety of sensory objects. The non-relational or NoSQL databases are schema-

free and allow storage of different data formats without prior structural declarations. However for the

storage we need to investigate the NoSQL models to design and develop besides flexibly preserving the

big data timestamped characteristics for the massive real-time data flow during acquisition processes.

Although all NoSQL databases have unique advantages, but document-oriented storage, as MongoDB

provides, is considered robust for handling multiple structural information to support IoT goals. This

rejects the relational structural storage and favours Java Script Object Notations (JSON) documents to

support dynamic schemas; hence provide integration to different data types besides scalability features .

 Time-series

The Establish system collects a large amount of data from several sensors and/or IoT gateways and

from other external interfaces. This significant volume of data should be recorded in a storage capacity

that allows fast data processing, almost in real time. The most important volume of data is managed as

a time-series structure. A time series is made of discreet measurements at timed intervals. The time

series pattern is a write optimization pattern made to ensure maximum write performance throughput for

a typical analytics application that stores data in discrete units of time, as is the measurement of the

temperature over a specific time interval.

 Time-series in medical data

Healthcare monitoring systems measure physiological and biological body parameters, using BAN, of a

patient’s body in real-time. Because timely information is an important factor to detect immediate

situations and to improve decision making processes, based on a patient’s medical history, so

considering temporal aspects are vital. Such sequence of values represent the history of an operational

context and is helpful in a number of use cases where history or order is required during the analysis.

This sequences of data flows in streams of different speeds and also needs proper management.

ESTABLISH

D3.1 High level system architecture 36

 Big data management frameworks

A big data management framework means the organization of the information according to the principles

and practices that would yield high schema flexibility, scalability and processing of the huge volumes of

data, but for which traditional RDBMSs are not well suited and becomes impractical. Therefore, there is

a need to devise new data models and technologies that can handle such big data. Recent research

efforts have shown that big data management frameworks can be classified into three layers that

consist of file systems, database technology, and programming models. However in this article we shall

focus upon database technologies only in context of the healthcare domain with real-time and temporal

perspective.

 NoSQL database categories

NoSQL also be interpreted as the abbreviation of “NOT ONLY SQL” or “no SQL at all” . Based on the

differences in the respective data models, NoSQL databases can be organized into following basic

categories as: key-value stores, document databases, column-oriented databases and graph databases

 Document databases

These are the most general models, which use use JSON (JavaScript Object Notation) or BSON (Binary

JSON) format to represent and store the data structures as documents for the data management.

Document stores provide schema flexibility by allowing arbitrarily complex documents, i.e. sub -

documents within document or sub-documents; and documents as lists. A database comprises one or

more collections, where each collection is a named group of documents. A document can be a simple or

complex value, a set of attribute-value pairs, which can comprise simple values, lists, and even nested

sub documents. Documents are schema-flexible, as one can alter the schema at the run time hence

providing flexibility to the programmers to save an object instances in different formats, thus supporting

polymorphism at the database level.

These databases store and manage volumes of collections of textual documents (e.g. emails, web

pages, text file books), semi-structure, as well as no structure and de-normalized data; that would

require extensive usage of null values as in RDBMS. Unlike key-value stores, the document databases

support secondary indexes on sub-documents to allow fast searching. They allow horizontal scaling of

the data over multiple servers called shards. MongoDB, CouchDB, Couchbase, ReThinkDB, and

Cloudant are some of the most popular document-oriented databases. Among these MongoDB is the

most popular one due to its efficiency, in memory processing and complex data type features. The other

databases such as Couchbase, ReThinkDB, Cloudant and CouchDB do not offer in-memory processing

features; although the former three offer a list of data types. MongoDB query languages more like the

SQL of RDBMS, so is easy to use for the programmers. MongoDB is good for the dynamic queries,

which the other document-oriented databases lack, such as CouchDB or Couchbase. Besides this there

are different object relational mapping middlewares available, to define out of the box multiple schemas

depending upon the application requirements.

 MongoDB

MongoDB, created by 10gen in 2007, is a document oriented database for today’s applications which

are not possible to develop using the traditional relational databases. It is an IoT database which

instead of tables (as in RDBMS) provides one or more collection(s) as main storage components

consisted upon similar or different JSON or BSON based documents or sub documents. Documents that

ESTABLISH

D3.1 High level system architecture 37

tend to share some of the similar structure are organized as collections, which can be created at any

time, without predefinitions. A document can simply be considered as a row or instance of an entity in

RDBMS, but the difference is that, in MongoDB we can have instances within instances or documents

with in documents, even lists or arrays of documents. The types for the attributes of a document can be

of any basic data type, such as numbers, strings, dates, arrays or even a sub-document.

Figure 18. Flexible storage architecture, optimising MongoDB for unique application demands

Flexible storage architecture, optimising MongoDB for unique application demands

MongoDB provides unique multiple storage engines within a single deployment and automatically

manages the movement of data between storage engine technologies using native replication.

It allows to build large-scale, highly available, robust systems and enables different sensors and

applications to store their data in a schema flexible manner. There is no database blockage, such as we

encounter during alter table commands in RDBMS during schema migrations. However in rare cases,

such as during the write-intensive scenarios in master-slave nature of MongoDB there may be blockage

at the document level or bottleneck to the system if sharding is not used, but these cases are avoidable.

MongoDB enables horizontal scalability because table joins are not as important as they are in the

traditional RDBMS. MongoDB provides auto-sharding in which more replica server nodes can easily be

added to a system. It is a very fast database and provides indexes not only on the primary attributes

rather also on the secondary attributes within the sub-documents even. For the cross comparison

analysis between different collections we have different technologies, such as aggregation framework,

MapReduce, Hadoop, etc.

 Elasticsearch

Elasticsearch is a search engine based on Lucene. It provides a distributed, multitenant -capable full-text

search engine with an HTTP web interface and schema-free JSON documents. Elasticsearch can be

used to search all kinds of documents. It provides scalable search, has near real-time search, and

supports multitenancy. Elasticsearch makes all its features available through the JSON and Java API.

Elasticsearch supports real-time GET requests, which makes it suitable as a NoSQL datastore,[7] but it

lacks distributed transactions.

https://media.springernature.com/full/springer-static/image/art:10.1186/s40537-017-0068-5/MediaObjects/40537_2017_68_Fig2_HTML.gif

ESTABLISH

D3.1 High level system architecture 38

 Relational component

The database and data management layer in Establish is implemented using the relational database
management system (DBMS). The characteristics for this type of knowledge and storage layer are the
following:

 the data model implemented at the persistence layer of the system it is following at least the third-

normal form for the database design, to reduce the duplication of data and ensure referential

integrity.

 the system data model is following the Common Data Modelling with a generic Data Model which

consists of generic types of entity like class, relationships, and others.

 the data at the knowledge and storage layer are accessed only through the business logic layer

and independent from the business logic layer.

 the data model implemented at knowledge and storage layer it is properly documented. The

documentation contains both the technical description of the data (e.g. entity-relationship

diagrams, structures of databases, objects in databases, etc.), and the semantic description

(association of data structures with business entities and their properties).

 the knowledge and storage layer must assure the integrity and accuracy of data (transaction

integrity).



POSTGRESQL is a powerful, open source object-relational database system with over 30 years of

active development that has earned it a strong reputation for reliability, feature robustness, and

performance.

PostgreSQL runs on all major operating systems, including Linux, UNIX (AIX, BSD, HP-UX, SGI IRIX,

Mac OS X, Solaris, Tru64), and Windows. It supports text, images, sounds, and video, and includes

programming interfaces for C / C++, Java, Perl, Python, Ruby, Tcl and Open Database Connectivity

(ODBC).

PostgreSQL supports a large part of the SQL standard and offers many modern features including the

following −

 Complex SQL queries

 SQL Sub-selects

 Foreign keys

 Trigger

 Views

 Transactions

 Multiversion concurrency control (MVCC)

 Streaming Replication (as of 9.0)

 Hot Standby (as of 9.0)

PostgreSQL can be extended by the user in many ways. For example by adding new −

 Data types

 Functions

 Operators

 Aggregate functions

 Index methods

PostgreSQL supports four standard procedural languages, which allows the users to writ e their own

code in any of the languages and it can be executed by PostgreSQL database server. These

procedural languages are - PL/pgSQL, PL/Tcl, PL/Perl and PL/Python. Besides, other non-standard

procedural languages like PL/PHP, PL/V8, PL/Ruby, PL/Java, etc., are also supported.

ESTABLISH

D3.1 High level system architecture 39

MySQL is developed by Oracle since 2010. In contrast to Microsoft SQL Server and Oracle, MySQL is

Open Source. It is provided under the GPL License and is supported by major operating systems like

Microsoft Windows, Linux and Mac OS X.

MySQL provides every feature a modern web application needs. In consideration of this fact MySQL is

used as database management system. It is used by various big companies like Google, Facebook or

CISCO
22

. It works seamlessly with many other applications including PHP or Apache web server and

provides a lightweight, fast and scalable database. MySQL provides many modern SQL aspects like

prepared statements, views, triggers and user-defined functions. To implement secure connections to

the database SSL is supported as well as a build in JSON support is available. Additionally it provides

Open Source tools for tasks like Database Design & Modelling, Database Administration or Database

Migration. The MySQL environment provides every feature which is need to implement a modern web

application and is therefore a good choice for a database management system.

The data storage can generally be divided to more traditional SQL databases and newer no -SQL

approaches, which are typically connected with cluster computing. In Smart HVAC pilot, we combine

these two approaches as per storage and computation needs of individual ESTABLISH components

used in the pilot.

The components, which provides the IoT data collection (via LORA) and end-user UI (LORAWAN

developed by IMA) exploit the Azure SQL database. Azure SQL Database is the intelligent, fully

managed relational cloud database service that provides the broadest SQL Server engine compatibility,

so we migrated our SQL Server databases.

Figure 19. Data management server and storage

Data collection takes place automatically at the frequency you choose yourself. The measured values

can be viewed as interactive graphs or numerical tables. If you need data for further use (calculations,

statistics, analytics, etc.), you can simply export them directly to a CSV, XLS or PDF data file.

4.1.2 Storage for Tracking of Professional / non-professional athletes with wearable

sensors
To realize Turkish use case, two parts should be deployed Local Zone and Cloud Zone. Local zone

includes some data analytics and data aggregation and manipulation steps, data acquisition from

sensors. Data can be collected in local storage mechanisms or data can be stream immediately to

Cloud Zone via IoT Gateway. There are Authentication and Authorization mechanisms on the data

transfer and monitoring. A REST API will be implemented to data transfer between zones. The API will

include Login and several pushData services.

ESTABLISH

D3.1 High level system architecture 40

Cloud zone will include some Big Data Analytics Components such as Cassandra, Machine Learning

Libraries & Tools, Spark, in-memory databases, Kafka etc. The core data analytics will realize in this

site of project. Of course there will be many open source technologies for the monitoring of te result and

information delivery to related people such as Apache Web Server, Dasboards, Reporting tools etc.

Data storage layer of Establish solution for Tracking of athletes with wearable sensors pilot includes

Cassandra as a NoSQL database.

Apache Cassandra

Apache Cassandra is a NoSQL database that manages large volumes of structured data on a series of

commodity servers. Cassandra is highly distributed, which allows for a high tolerance to node fai lure, as

well as processing large datasets while remaining available to thousands of concurrent users, making it

ideal for processing real-time transactional data. However, Cassandra does require its data to be at

least partially structured.

4.1.3 Storage for Tracking Promoting independence of specific vulnerable groups
For the “Promoting independence of specific vulnerable groups” use case, the following SW

components for data storage are used:

 A SQL database (PostgreSQL) to store

o all those personal information related to the users (patients, caregivers)

o Planned activities for recuperations programs

o Data coming from IoT

o Data coming from wearable

 A MQTT Broker user to temporarily store data coming from IoT (Libeliem)

 A provider cloud storage for wearable data (FitBit)

A REST API is developed to expose all data managed by the application.

Data collection
Data collection is the process of retrieving the data from wearable, and from sensors for indoor or for

outdoor parameters.

Data for wearable is the data retrieved from fit Bit devices. It is read by accessing FitBit cloud WEB

API.ESTABLISH backend is calling the RESTFULL services exposed by FitBit API. Authorization is

based on OAuth 2.0 specifications. (OAuth 2.0 official site, 2018)

A typical address is

GET https://api.fitbit.com/1/user/[user-id]/activities/date/[date].json

The data is in JSON format like in the example presented below:

"activities-heart": [

 {

 "dateTime": "2018-11-21",

 "value": {

 "customHeartRateZones": [],

 "heartRateZones": [

 {

 "max": 81,

 "min": 30,

https://api.fitbit.com/1/user/%5buser-id%5d/activities/date/%5bdate%5d.json

ESTABLISH

D3.1 High level system architecture 41

 "name": "Out of Range"

 },

 {

 "max": 114,

 "min": 81,

 "name": "Fat Burn"

 },

 {

 "max": 138,

 "min": 114,

 "name": "Cardio"

 },

 {

 "max": 220,

 "min": 138,

 "name": "Peak"

 }}}……

Data for outdoor sensors is received from devices installed in the location established for the pilot. Data

is first stored on a MQTT broker (is sent using WI-FI and MQTT protocol). (MQTT main page, 2018)

From the MQTT broker it is accessed by the ESTABLISH backend, on the base of MQTT protocol.

ESTABLISH backend is implementing a callback procedure, where the MQTT broker is publishing the

data.

Data received from outdoor sensor has the format:

Message: {

 "id": "34604091",

 "id_wasp": "SCP5",

 "id_secret": "3D4CA2E80593E4E0",

 "sensor": "TC",

 "value": "1.6699999570847",

 "timestamp": "2018-11-21T17:33:43+02:00"

}

Data received from indoor sensors has the format:

Message: {

 "id": "34604000",

 "id_wasp": "GAS_WiFi",

 "id_secret": "6B3037057C10549D",

 "sensor": "TC",

 "value": "18.190000534058",

 "timestamp": "2018-11-21T17:23:58+02:00"

}

Data collected is the pre-processed as described in the next chapter.

Pre-processing
Pre-processing is necessary in order to have a consistent and uniform set of data, expressed in

common used measure units.

The pre-processing of data refers to:

1. Data filtering. Data outside normal values is filtered (considered as erroneous data) and not

taken into account for further computations.

2. Data completion. Where data is not present (missing) it is filled in by the average value of last

and next registered values.

3. Data transformation. Data computed like in the figure bellow:

ESTABLISH

D3.1 High level system architecture 42

Figure 20. Data transformation formulas

ESTABLISH

D3.1 High level system architecture 43

4.2 Knowledge layer - Analytics and processing

4.2.1. Advanced Analytics and Machine Learning

Indoor air quality analytics
The indoor air quality analytics system classifies the user behaviors and extract user pleasant index with

some machine learning algorithms. The analyzed results are applied to air purifiers to clean the indoor

air quality in home and office buildings. The algorithms such as the machine learning and data mining

find out the indicators to improve the air quality by classifying the user life patterns and detecting the air

pollution sources. It can improve the effectiveness and minimize the management cost of air purifiers by

notifying the replacement cycle of filter parts, which are the core of the air purifier, through analysing the

contamination degree of the environment. The data analysis will exploit machine learning classification

algorithms such as SVM(Support Vector Machine), decision trees, etc for de tecting user activities.

Figure 21. Architecture of Indoor air quality analytics

The improvement indicators of the air quality are used for the program to interconnect the intelligent

management system of the air quality and the air purifiers. The field test can improve the reliability of

the developed system for the commercialization in the practical applications

Advanced analytics will use algorithms to perform statistical analysis of stored time series about the

patient behaviours and generate forecasts about these behaviours. Those algorithms will also generate

suggestions for the future therapeutical programs and activities that are supposed to be assigned to

patients by physical therapists. In this case we will use an unsupervised machine learning task by

inferring a function that describes the structure of "unlabeled" data (i.e. data that has not been classified

or categorized). Since the examples given to the learning algorithm are unlabeled, there is no

straightforward way to evaluate the accuracy of the structure that is produced by the algorithm—one

feature that distinguishes unsupervised learning from supervised learning and reinforcement learning.

Another category of time-series data that will be analysed is the measurements of sensor values, both

environmental and physiological, and that trigger notifications in the system on a certain occurrence.

This analyse will generate forecasts of the critical occurrences that could happen in the future and will

allow the physical trainers to better shape the therapeutical program of each patient or to avoid to

assign activities that will fail to be completed. We will use supervised learning algorithms that will build

https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Reinforcement_learning

ESTABLISH

D3.1 High level system architecture 44

decision-trees describing the optimal sequence of activities, in time that could be recommended to a

patient.

Cloud Platform for Data Fusion and Data Analysis from multiple sources
The cloud platform for data fusion and data analysis based on big data and deep learning techniques

intends to analyse the huge amount of heterogeneous information coming from the different municipal

open data sources (traffic, air pollution, weather etc) and to extract its meaning in order to infer and

produce easily understandable higher-level information about mobility and pollution to the applications

for stakeholders, allowing them to send predictions, recommendations and alerts for a dyna mic urban

mobility management to the citizens and city authorities in real time.

This SW component is based on three fundamental pillars:

 A data fusion approach using semantic technologies to deal with the heterogeneity of the

existing concepts in this domain knowledge and homogenise all of the incoming data and then,

to store them in a structured form at the same level. So, the main semantic technology for this

approach is Apache Jena, a Java framework which provides extensive Java libraries for helping

developers to develop code that handles RDF, RDFS, RDFa, OWL and SPARQL in line with

published W3C recommendations. Furthermore, Jena includes a rule-based inference engine to

perform reasoning based on OWL and RDFS ontologies, and a variety of storage stra tegies to

store RDF triples in memory or on disk.

 A big data analysis approach to extract useful information from a huge data set and transform

it into an understandable structure for further use. So, the main technology for this big data

approach is Hadoop MapReduce, which is a computational model and software framework for

writing applications which are run on Hadoop. These MapReduce programs are capable of

processing massive data in parallel on large clusters of computation nodes.

 A deep learning approach to learn and be able to predict from unlabelled or unstructured data.

Further details will be found in the final iteration of the deliverable D5.4 – Report on techniques

and algorithms for simulation.

The inputs of the cloud platform for data fusion and data analysis are the historical data and the real-

time data coming from the open data sources; while the outputs are the recommendations and

predictions about mobility and pollution produced by itself.

Analysis and processing over a Traffic Simulation Platform
This analysis and processing over a Traffic Simulation Platform intends to predict the evolution of traffic

loads and pollution levels in a city from historical municipal open data allowing to the city authorities to

make decisions on:

 the urban mobility planning based on the pollution levels,

 the contingency plans (protocols against the pollution), while simulating how such (new or

already established) protocols could evolve along the time.

Or to perform different analysis about:

 the future predictions of the pollution levels,

 the management between the pollution levels and the traffic in the city.

ESTABLISH

D3.1 High level system architecture 45

This analysis and processing over a Traffic Simulation Platform consists of a SW sub-component for

pre-processing data sources to be used by the Traffic Simulation Platform, and a SW sub-component for

post-processing the results generated to predict the evolution of traffic loads and pollution levels in a

city. Both SW sub-components are developed in Python and Bash to be integrated with the Traffic

Simulation Platform.

Such Traffic Simulation Platform is based on SUMO (Simulation of Urban Mobility), that is an open

source, highly portable, microscopic, multi-modal traffic simulation which allows to simulate how a given

traffic demand which consists of single vehicles moves through a given road network.

The inputs of analysis and processing over a Traffic Simulation Platform are the historical data coming

from the open data sources; while the outputs are the simulation results about traffic loads and pollution

levels produced by itself.

Multi-modal Route Planner
The multimodal route planning system is expected to support the optimization of citizen’s individual

transport. Being multimodal, it means that the system needs to contemplate different t ypes of transport

modes, or traverse modes, even in the same route.

The service will be available on different platforms, and it computes and suggests itineraries optimizing

different criteria, such as the cost, the duration, the length, the environmental friendliness (CO2

emissions) or the safety. Once the system provides a set of alternatives routes, the user will be able to

choose the one that fits better with his/her requisites.

The multimodal route planning system developed is built upon OpenTripPlanner platform, which is an

open source platform for multi-modal and multi-agency journey planning. It follows a client-server model,

providing several map-based web interfaces as well as a REST API for use by third-party applications.

OTP relies on open data standards including GTFS for transit and OpenStreetMap for street networks.

OTP deployments now exist around the world and OTP is also the routing engine behind several

popular smartphone applications. The base code used for OTP has been written in JAVA programming

language, and it can be obtained from the GitHub of Open Trip Planner Project .

The inputs of the multi-modal route planner are the historical data and the real-time data coming from

the open data sources; while the outputs are the calculated routes according to the user requests.

Data analysis for further knowledge

about the influence of indoor air quality on personal conditions
This data analysis SW component intends to extract new knowledge regarding influence of indoor air

quality on personal conditions and/or workability through data pre-processing techniques such as

checking data quality and extracting data features, and data analytics techniques such as correlation

analysis and recognition of interesting events, e.g., unusual personal motion patterns and/ or states of

personal discomfort.

Most of collected data are stored in PostgreSQL database and Azure table storage using NoSQL

database. Due to EU GDPR (data protection requirements), user IDs, locations etc. are anonymized

using random identifiers and hash tables; and the access to the data is only allowed for project

researches and for scientific purposes.

ESTABLISH

D3.1 High level system architecture 46

Analytics for Tracking of Athletes Use Case
In the Establish Cloud zone, there are some analytics on the data that is collected from environment,

athletes and their trainings. To realize the analytics of data many machine learning techniques could be

used according to data types. In Turkish use case the data is sensor data, so predictive analysis,

classification and some clustering algorithms can be applied. The aims of the analytics can be listed as

follow.

 Making predictions about athletes’ performance.

 Determine wrong / correct training techniques

 Tracking athletes

 Determine impact of environmental factors on athletes’ performance

Data analysis for further knowledge

about decision support tools for behavioural choices and treatment options
There are two types of data analysis performed:

 Real type analysis. Data received is analyzed, placed under Rule Engine or ML process, and

important information retrieved.

 Long term analysis. Historical data is analyzed, placed under Rule Engine or ML process, and

important information retrieved.

The presentation is in the form of charts and lists. For charts Grafana (Grafana, 2018)and Primefaces

(Primefaces, 2018) charts are used.

Figure 22. Real time analysis form

For the use case “Promoting independence of specific vulnerable groups”also Machine

learning algorithms are applied.
For the purpose of this system, unsupervised learning methods are used. More specifically, “Multilabel

classification” using k-means clustering algorithm applied on the time series of data collected from the

input devices. (Pattanayak, 2017)

The value of k selected after an extended test, was 8. This mainly represents the following periods of

day activity

1. Wake up

2. Morning

3. Between morning and noon

4. Noon

ESTABLISH

D3.1 High level system architecture 47

5. Afternoon

6. Evening

7. Late evening

8. Night

4.2.2. Complex event processing
Complex event processing (CEP) is a method of analysing streams of data, received in real time, about

 things that happen (events). CEP systems combine data from multiple sources to infer events or

patterns that suggest more complicated circumstances. The goal of complex event processing is to

identify meaningful events and respond to them as quickly as possible.

Complex Event Processor would take into account not only the data just received, but also the historical

data (events that happened in the past and are somehow relevant). Error! Reference source not

found. shows an overview of the structure of a CEP as it is currently understood.

Figure 23. CEP overview

 Dynamic Data usually consists of the recent input data and possibly some useful intermediate

derived data. It is stored in memory in order to apply the various rules on it. There is usually a

window time frame to determine for how long the historical data must be kept.

 Static Data is some other data that describes the business context and is generally unmodified

during the execution. Some examples could be data describing the infrastructure of an

organization, unmodifiable parameters that depend on the country's laws, etc. Rules are

expressions, usually with an if-then structure, written in some formal language. They are

permanently being checked, in order to at some point determine the existence of a new event.

 The Rule Engine is the core component. Its task is determining when the rules match their

condition and acting accordingly. Optimizing the amount of computations needed to achieve this

task is usually not easy.

 A Clock is added to the diagram to stress the fact that some rules use time frames in their

conditions, which means that the current time is also relevant for rule evaluation. Useful

Intermediate Events Detected are auxiliary pieces of data that the CEP optionally stores

temporarily (dynamic data) which are relevant in order to work with the rules. Data Stream is the

input to the CEP. It often needs a pre-process in order to convert it to the CEP internal data

ESTABLISH

D3.1 High level system architecture 48

model. Usually a timestamp is associated to it. Detected Events is the output of the CEP. It is

usually a series of time stamped data structures that describe some kind of event that is

relevant in the business context. Other components will take it as input.

Rule Administration Tool is an optional external component that establishes the rules to be used by the

CEP. It usually acts before the execution begins, though sometimes it is possible to update the rules on

the fly, and therefore the behavior of the CEP evolves dynamically by applying new rules to the c urrent

historical dynamic data.

During the execution of the establish project, the following CEP technologies have been used:

 Drools is an open-source Business Rules Management System (BRMS) written in Java that

provides, among other things, some powerful complex event processing features.

 WSO2 CEP is an open-source component that helps identify the most meaningful events and

patterns from multiple data sources, analyze their impacts, and act on them in real time.

Complex Event Processing is about getting better information, in real time.

CEP is based on the observation that in many cases actions are triggered not by a single event, but by

a complex composition of events, happening at different times, and within different contexts.

CEP is an approach that identifies data and application traffic as "events'' of importance, correlates

these events to reveal predefined patterns, and reacts to them by generating "actions" to systems,

people and devices.

Examples can be listed about complex event processing like following;

 Regulatory constraints

 Fraud detection

 Aggregation

 CRM

 Intelligent Routing.

In the Tracking of athletes with wearable sensors pilot will be defined the rule sets about the collected

data that is gathered from wearable sensors of athletes. Some actions will be triggered according to

these rules.

4.2.3. Event mediator
A Mediator is an object that coordinates interactions (logic and behaviour) between multiple objects. It

makes decisions on when to call which objects, based on the actions (or in-action) of other objects and

input. A mediator is best applied when two or more objects have an indirect working relationship, and

business logic or workflow needs to dictate the interactions and coordination of these objects.

The mediator extracts the workflow from the implementation details and creates a more natural

abstraction at a higher level, showing us at a much faster glance what that workflow is. We no longer

have to dig in to the details of each view in the workflow, to see what the workflow actually is.

http://www.drools.org/
http://wso2.com/products/complex-event-processor/

ESTABLISH

D3.1 High level system architecture 49

The event flow starts with the client sending an event to an event queue, which is used to transport the

event to the mediator. The event mediator receives the initial event and orchestrates that event by

sending additional asynchronous events to event channels to execute each step of the process. Event

processors, which listen on the event channels, receive the event from the even mediator and execute

specific business logic to process the event. It is important to note that the event mediator doesn't

actually perform the business logic necessary to process the initial event, rather, it knows of the steps

required to process the event. The event channels can be either message queues o message topics.

Figure 24. Event processing

For each initial event step, the event mediator creates a processing event, sends that processing event

and waits for the processing event to be processed by the corresponding event processor. This process

continues until all of the steps in the initial event have been processed.

Rule engine, for the use case “Promoting independence of specific vulnerable groups”
Data received from all input sources, after pre-processing, is placed under the application of rule

engines.

Rule engines are analyzing the input data, correlations between different parameters, and based on

that, are creating notifications, alerts or recommendations.

ESTABLISH

D3.1 High level system architecture 50

Figure 25. Rule definition form

Figure 26. Rule application results

ESTABLISH

D3.1 High level system architecture 51

5 Acquisition / Interconnection Layer

5.1. IoT Backend Layer

5.1.1. IoT Backend Data Management
Once the country pilots are done harvesting and pre-processing the data via their own processing

methods, it will be transferred to the common data platform for further analysis and processing. This will

be done using a gateway service of some sort, which will be defined on a per-pilot-basis. For example in

the Finnish Indoor Air Quality Improvement at Schools pilot the gateway service used will most probably

be Azure Data Factory, which is a cloud based data integration service that is available on the Azu re

Cloud Platform. Azure Data Factory makes the process of bringing the data from the pilot’s own NoSQL

Azure Table Storage to the common data platform not only significantly easier, but also automatic.

The data gathered can be divided into two types based on their structure. If the data is structured it will

be brought into a tabular storage service such as Azure Data Warehouse. If on the contrary it is

unstructured, it will be brought into a database that supports unstructured datatypes such as Azure Dat a

Lake Store. If the non-pre-processed data is deemed valueless, it can then be discarded and only the

pre-processed data kept.

The Romanian Use Case will use a proprietary connector in order to transfer the sensors data from the

physical Gateway, Meshlium, to Cloud Platform. Having an easy-to-use interface, Meshlium allows the

configuration of several cloud connectors.

After the data has been brought to a storage database of some sort, it can then be processed further.

This will be done using the analysis services the Azure Cloud Platform offers such as HDInsight, Azure

Machine Learning Studio and Azure Data Lake Analytics. These analytics services enable the obtaining

of further insights from the data. Once the data has been processed it can then be util ized by the

ESTABLISH Visualization Framework (EVIF) for visualizing and reporting. This is the most probable way

of handling the backend data management, but these procedures have not been consolidated yet. The

exact configuration of the data management will be verified when the deployment of the data platform

approaches. Further detail on the procedures of data management on the common data platform can be

found in deliverable 4.1 on the Data management platform architecture.

ESTABLISH

D3.1 High level system architecture 52

Data Provider

Sensor Observations

Visualization

Knowledge Base

Sink Connector Data Consumer

C
o

n
su

m
er

St
re

am

P
ro

ce
ss

o
r(

Sp
ar

k)

R
ES

T
C

lie
n

t
(J

A
X

-R
S

2
.0

JS

R
 3

3
9

)

R
ES

T
C

lie
n

t(
JA

X
-R

S
2

.0
 J

SR
 3

3
9

)

So
u

rc
e

C
o

n
n

ec
to

r(
M

Q
TT

)

Data Persistence (JPA based)

Services
Real-time AnalyticsTransformation and

Validation
Docker based Container

Long-term Analytics

Model Store

batch

REST Proxy

Reporting

User Information

Client content preparation

Dashboards

Logic-Based Reasoning

Processing
Docker based container

streaming

batch

Services

User accounts

A
I,

 B
ig

 D
at

a,
 A

n
al

yt
ic

al

Se
n

si
n

g

External Systems (Weather
Forecast, AIQ, etc.)

Data

UI

Rule Engine

Self
Training

AI
Elements

Machine
Learning,Rule

Engine

Services

Sensors

Weara
bles

Secure Interoperability Storage Layer

Infered
Knowledge

Clinical
Knowledge

Security Layer

Servers Servers

Cinician Admin Patient

UI

Continuous Integration Tools
App Builder

Artefacts repository Versioning

Release management

Code inspectors

Bug Tracking

Backlog Management

Container Management

API

RS API

Message
Brokers

Authentication.
Authorization

Callbacks

Service Repository

Service Discovery

API

Acquisition Layer Knowledge Layer-Analysis
Knowledge Layer-Support

Application and
Presentation Layer

Application Logic

CEP Engine

Machine Lerning

Adminmistration

Dashboards

REST Proxy

streaming

Services

Figure 27. The ESTABLISH data flow mapped on logical architecture.

After receiving information from the sensors and processing it, the data is stored in special tables .

 A Data Table represents one table of in-memory relational data. The data is local to the .NET-

based application in which it resides, but can be populated from a data source such as Microsoft

SQL Server using a Data Adapter.

 A database trigger is special stored procedure that is run when specific actions occur within a

database. Most triggers are defined to run when changes are made to a table’s data. Triggers

can be defined to run instead of or after DML (Data Manipulation Language) actions such as

INSERT, UPDATE, and DELETE.

 A stored procedure is a prepared SQL code that can save, so the code can be reused over and

over again.

5.1.2. IoT Backend Device Lifecycle Management
Planning the lifecycle of the backend layer ahead is crucial. If the services and solutions are not shut

down after the project, a proper lifecycle plan, which handles data lifecycle principles, should be

included in the project plan.

The lifecycle management of the backend layer is discussed in detail in section 4.5 of the deliverable

4.1 on the Data management platform architecture

5.1.3. IoT Backend Protocol Adapters
As I was saying earlier, MVC a software design pattern where all the codes of a project are ke pt in

Model, View and Controller while coding the project.

ESTABLISH

D3.1 High level system architecture 53

When sending information from the application to the solution backend a way of communication has to

be established. There are three main ways for device-to-cloud communication arrangement from IoT

Hub:

 Device-to-cloud messages for time series telemetry and alerts.

 Device twin's reported properties for reporting device state information such as available

capabilities, conditions, or the state of long-running workflows. For example, configuration and

software updates.

 File uploads for media files and large telemetry batches uploaded by intermittently connected

devices or compressed to save bandwidth.

Each option has its unique elements of storage retrieval, maximum size capacity, communication

frequency and compatible protocols. Below you can see a detailed comparison of each.

Table: Comparison of device-to-cloud communication options

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-d2c-guidance

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-d2c-guidance

ESTABLISH

D3.1 High level system architecture 54

5.2 IoT Gateway Layer
An Internet of Things (IoT) gateway

23
 is a physical device or software program that serves as the

connection point between the cloud and controllers, sensors and intelligent devices. All data moving to

the cloud, or vice versa, goes through the gateway, which can be either a dedicated hardware appliance

or software program. An IoT gateway may also be referred to as an intelligent gateway or a control tier.

Some sensors generate tens of thousands of data points per second. A gateway provides a place to

preprocess that data locally at the edge before sending it on to the cloud. When data is aggregated,

summarized and tactically analyzed at the edge, it minimizes the volume of data that needs to be

forwarded on to the cloud, which can have a big impact on response times and network transmission

costs. Another benefit of an IoT gateway is that it can provide additional security for the IoT network and

the data it transports. Because the gateway manages information moving in both directions, it can

protect data moving to the cloud from leaks and IoT devices from being compromised by malicious

outside attacks with features such as tamper detection, encryption, hardware random number

generators and crypto engines.

Figure 28. IoT Gateway Architecture

For the Romanian use case we refer to a physical device named Meshlium . One of the main

applications of Meshlium
24

 is being a gateway for Wireless Sensor Networks based on Waspmote

(Waspmote Gas Board) and Plug & Sense devices (Smart Cities Pro). These are sensor nodes that can

work with different communication technologies like WiFi, 4G or XBee among others.

Meshlium accepts POST and GET requests in any of its interfaces so Waspmotes are capable of

sending frames, through GPRS, 3G, 4G or WiFi modules, via HTTPS requests. Meshlium, through

HTTPS requests is capable of:

https://internetofthingsagenda.techtarget.com/definition/IoT-device
https://searchnetworking.techtarget.com/definition/cloud
https://whatis.techtarget.com/definition/controller
https://whatis.techtarget.com/definition/sensor
https://searchdatacenter.techtarget.com/definition/edge-computing
https://searchbusinessanalytics.techtarget.com/definition/edge-analytics
https://searchsecurity.techtarget.com/definition/encryption

ESTABLISH

D3.1 High level system architecture 55

 Receive frames from 4G/3G/GPRS/GSM, WiFi or Ethernet via HTTPS.

 Parse these frames.

 Store the data in local Database.

 Synchronize the local Database with an external database.

5.2.1. IoT Gateway Data Management
Data Management includes data streaming, data filtering and data storing (in case of loss of connectivity

with the cloud). IoT Gateway manages the data from sensor nodes to gateway and also the data from

gateway to cloud. The challenge here is to minimize the delay to ensure data fidelity.

The gateway layer connects the edge layer (sensors and actuators) to the country pilot’s own data

platform. Together with the edge layer, it forms the physical part of the IoT framework. The gateway

layer is a gateway device of some sort, for example a Wi-Fi/TCP device like in the Intelligent Air Quality

Management System pilot or a processing unit like in the Finnish Indoor Air Quality Improvement at

Schools-pilot.

The edge layer’s sensors measure different environmental metrics, e.g. air humidity or physical activity

of the subject, and creates data of these metrics. It then sends this data to the gateway device via

some sort of protocol, most probably Wi-Fi or Bluetooth. The protocol used for the sensor to gateway

traffic will be defined on a per-pilot-basis.

The sensors can also be arranged to communicate with each other like in the Intelligent Air Quality

Management System pilot, in which the indoor air quality sensors communicate with the outdoor air

quality sensors via radio frequencies. This way the data, which the outdoor sensors collect, can be

merged with the data, which the indoor sensors collect, and thus a correlat ion between the two can be

determined.

After the data has been transferred from the sensors to the gateway device via one the aforementioned

protocols, the gateway device has to connect to the pilot’s data platform via some sort of gateway

service, this too is pilot specific. In the Finnish Indoor Air Quality Improvement at School pilot there are

two gateway services; one for sensor data and one for physiological data.

For data gathered by sensors tracking the air quality metrics, this gateway service wi ll most likely be

Azure’s IoT Hub in conjunction with Azure Stream Analytics. Azure IoT Hub is a managed service that

acts as a message hub between the gateway device and the pilot’s database while Azure Stream

Analytics is a processing engine that enables the examination of high volumes of real-time data. Using

these services, constant real-time data can be gathered, analyzed and stored onto the database.

For data gathered by wearable and mobile devices, such as physiological data and user feedback, the

gateway will most likely be an Android device, which connects to the database via Google’s gRPC over

the HTTP/2 protocol. The database itself will be hosted on a server based on Docker services, running

on a virtual machine. Alternatively the data gathered by the wearable devices can be transferred to the

server via an Android Wear application to gain access to raw measurement data.

The exact operations and processes of the gateway data management have not been consolidated yet

and will be pilot specific. The responsibilities are communicated in the pilot by writing Data Management

principles for parties involved in the project before starting the configuration phase. The principles are

then discussed with all Pilot parties to ensure common understanding of the procedures.

ESTABLISH

D3.1 High level system architecture 56

The Data Management process specific to the Romanian use case consists in:

 The sensors nodes transmit the sensors measurements through 4G or WiFi connectivity to

the Meshlium Gateway. Once in Meshlium, data is stored in a MySQL or Postgresql

database that ensures local persistence of the sensors data. Regarding the Romanian

platform, data forwarding to Cloud is done through a software component that serializes

data to an MQTT broker. Similarly, uRADMonitor connects (via Wi-Fi) to a Cloud platform

that allows data to be accessed via a REST interface.

 The integration with the common data platform can be achieved with the Azure Iot Hub

service. This process can be performed by following the next steps:

o Registering the Meshlium in Azure Portal, by annotating the connection string

generated in Azure Iot Hub in the Meshlium configuration; basically, the obtained

“connection string” from the Azure portal will certificate the Meshlium device as a

valid sender of messages.

o After validating the Meshlium Gateway, there are required a few configurat ions in the

Configuration panel:

 Number Requests: Number of requests to send per iteration.

 Sync Interval: Time duration in seconds between synchronizing data

batches.

 Protocol: Choose the protocol to communicate with Azure IoT Hub. Valid

protocols are MQTT (by default), AMQPS and HTTPS.

 Log Level: Generate log messages. From fewer to more details, the levels

are OFF, ERROR, INFO, DEBUG, REPORT. The default is OFF.

5.2.2. IoT Gateway Logic
Part of the analytics and logic can be shifted from the knowledge layer onto the gateway layer. In this

type of computing, there’s a processing unit that the data passes through on the way from the sensors

to the database. The processing unit can then for example filter useless or noisy information out from

the data using various algorithms. This processing can reduce the size of transfers that are made

between the sensors and the gateway.

In the Finnish Indoor Air Quality Improvement at School pilot, Azure Stream Analytics is a part of the

gateway logic as the data is pre-processed before it is stored for the first time in the database. This way

of handling data management is becoming more and more popular due to advancements in hardware

technologies.

As for the Romanian Use Case, a Java bases developed module will handle the Gateway Logic tasks;

namely preprocess the sets of data in order to advance to the next phase - data visualization.

Data preprocessing is performed by using appropriate query functions, we presented below an example

representing a simple data parsing task with storage capabilities.

SELECT
 *
INTO
 output
FROM
 input

ESTABLISH

D3.1 High level system architecture 57

cu

SELECT
 id,
 id_wasp,
 sensor,
 value,
 datetime
INTO
 output
FROM
 input

The following phases of data pre-processing are planned to be performed with the Java developed

module from the backend, in order to achieve proper data to present further as an AQI (Air Quality

Index) visual instrument. Thus, in order to adequately display the air quality measurements there are

required to be performed the following data processing steps:

 data quality assurance management

Consists of the validation conditions for data correction by comparison with specific

intervals/criteria.

 data pre-processing

Consists in the conversion of the measurements from the gas sensors.

 comparison with the standard value

For a comparison with the standard value the hourly average value needs to be

estimated.

 use of AQI and value triggers will be based on the latest report of UK COMEAP
25

 .

5.2.3. IoT Gateway Protocol Adapters
Azure IoT protocol gateway adapters is a framework for protocol adaptation for high -scale two

directional communications with the IoT Hub.

Azure IoT Hub natively supports communication over the MQTT, AMQP, and HTTPS protocols. In some

cases, devices or field gateways might not be able to use one of these standard protocols and require

protocol adaptation. In such cases, you can use a custom gateway. A custom gateway enables protocol

adaptation for IoT Hub endpoints by bridging the traffic to and from IoT Hub. You can use the Azure IoT

protocol gateway as a custom gateway to enable protocol adaptation for IoT Hub.

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-protocol-gateway

Azure IoT protocol gateway enables devices to communicate with Microsoft Azure IoT Hub over MQTT

and potentially other protocols. The protocol gateway provides a model for creating protocol adapters for

different protocols. These adapters can be plugged into the execution environment through a ‘pipeline’

concept. The execution pipeline can also contain components (i.e. handlers) performing specialized

processing of the data before it is passed to IoT Hub. The MQTT protocol adapter enables connectivity

with IoT devices (or other clients) over the MQTT v3.1.1 protocol. The gateway bridges the

communication to Azure IoT Hub using the standard IoT Hub client over the AMQP 1.0 protocol.

https://github.com/Azure/azure-iot-protocol-gateway/blob/master/docs/DeveloperGuide.md

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-protocol-gateway
https://github.com/Azure/azure-iot-protocol-gateway/blob/master/docs/DeveloperGuide.md

ESTABLISH

D3.1 High level system architecture 58

IoT Hub allows devices to use the following protocols for device-side communications:

 MQTT

 MQTT over WebSockets

 AMQP

 AMQP over WebSockets

 HTTPS

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-protocols

As mentioned, the Romanian use case WSN is based on Waspmote (Waspmote Gas Board) and Plug &

Sense devices (Smart Cities Pro). There are 16 different wireless interfaces available (in the

manufacturer portfolio) for Waspmote including long range (4G / 3G / GPRS / GPRS+GPS / LoRaWAN /

LoRa / Sigfox / 868 MHz / 900 MHz), medium range (ZigBee / 802.15.4 / DigiMesh / WiFi) and short

range (RFID/NFC / Bluetooth 2.1 / Bluetooth Low Energy). The IoT devices deployed in the

Rehabilitation decision support pilot are capable of sending frames, through 4G or WiFi modules via

HTTPS requests.

5.3 Web Services
A web service is a technology that uses a set of protocols and standards that are used to exchange data

between applications. Different software applications developed in different programming languages,

and executed on any platform, can use web services to exchange data. Interoperability is achieved

through the adoption of open standards. The OASIS and W3C organizations are the commi ttees

responsible for the architecture and regulation of Web services.

In the architecture of web services there are three parts: web service provider, the one that requests the

web service and the publisher. The service provider sends a WSDL file with the definition of the web

service to the service publisher. The one who asks for the service contacts the publisher and discovers

who the provider is (WSDL protocol) and contacts the provider (SOAP protocol). The provider validates

the service request and sends the structured data in XML format using the SOAP protocol. The XML file

is validated again by the one requesting the service using an XSD file.

Most commonly standards: SOAP (Simple Object Access Protocol), WSDL (Web Services Description

Language), REST (Representational State Transfer), XML (Extensible Markup Language), UDDI

(Universal Description, Discovery and Integration),Hypertext Transfer Protocol (HTTP), File Transfer

Protocol (FTP), or Simple Mail Transfer Protocol (SMTP).

A weather forecast web service from Open weather map have been used for the Optimized City and

Mobility Planning Use case.

OpenWeatherMap
26

 is an online service that provides weather data, including current weather data,

forecasts, and historical data to the developers of web services and mobile applications. For data

sources, it utilizes meteorological broadcast services, raw data from airport weather stations, raw data

from radar stations, and raw data from other official weather stations. All data is processed by

OpenWeatherMap in a way that it attempts to provide accurate online weather forecast data and

weather maps, such as those for clouds or precipitation. Beyond that, the service is focused on the

social aspect by involving weather station owners in connecting to the service and thereby increasing

weather data accuracy.

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-protocols

ESTABLISH

D3.1 High level system architecture 59

The information retrieved form the web service is being stored in ElasticSearch in order to be used by

other services as pollution prediction, CEP and Dashboards

5.4 OpenData
A huge amount of data is being generated by both public and private organizations. This data is stored

beyond the reach of most people, secured in government or proprietary. The types and the depth of this

data are growing as new and increasingly technological solutions and are implemented to solve the

problems of the governments, businesses, and private citizens of smart cities. The majority of this data

is going largely unseen and unused by limiting the number of people who can access to it. The solution

to this is to make the data publicly available via an open government approach: An open data

technology helps organizations manage and publish collections of data. It is used by national and local

governments, research institutions, and other organizations that collect a lot of data.

The Optimized City and Mobility Planning Use case will mainly use data obtained from the open data of

the VLCi Platform. It is based on Fiware, which is an open standard recommended by the European

Commission for Smart Cities to ensure adaptation to the Internet of Things. The Main formats used by

VLCi to expose the data are SHP, GML, WFS, WMS, KML, KMZ, CSV, JSON, JSON-LD, RDF

XML/TURTLE /N3.

The open data is based on CKAN27. CKAN is a tool for making open data websites. CKAN is built with

Python on the backend and Javascript on the frontend and uses The Pylons web framework and

SQLAlchemy as its ORM. Its database engine is PostgreSQL and its search is powered by SOLR. It has

a modular architecture that allows extensions to be developed to provide additional features such as

harvesting or data upload.

Data sources selected are:

 Air pollution stations distributed throughout the city, to be able to know the pollution in the

districts of the city

 Measuring Stations for Pollen

 Bike line

 Traffic cams

 Google Transit for public transport

 Parking

 Real-time traffic status

 Sense of circulation

 Intensity of bicycle

 Intensity of traffic

 Status of the Valenbici stations “public bike transportation”.

ESTABLISH

D3.1 High level system architecture 60

5.5 SOA Architecture

“Decision support tools for behavioural choices and treatment options”
The whole system developed for the use case developed in Romania is based on the SOA architecture.

A service-oriented architecture (SOA) is a style of software design where services are provided to the

other components by application components, through a communication protocol over a network. The

basic principles of service-oriented architecture are independent of vendors, products and

technologies. A service is a discrete unit of functionality that can be accessed remotely and acted upon

and updated independently, such as retrieving a credit card statement online.

A service has four properties according to one of many definitions of SOA:

1. It logically represents a business activity with a specified outcome.

2. It is self-contained.

3. It is a black box for its consumers.

4. It may consist of other underlying services.

Different services can be used in conjunction to provide the functionality of a large software

application, a principle it shares with modular programming. Service-oriented architecture integrates

distributed, separately-maintained and deployed software components. It is enabled by technologies

and standards that make it easier for components to communicate and cooperate over a network,

especially an IP network.

5.6 SOA Architecture layers
The following main layers are considered in the SOA layered architecture

 Solution Security Layer

 Software infrastructure, IT Management, Monitor, Audit Layer

 Access Management and Load Balancing Layer

 Kernel Layer

https://en.wikipedia.org/wiki/Application_components
https://en.wikipedia.org/wiki/Communications_protocol
https://en.wikipedia.org/wiki/Service-oriented_architecture#cite_note-2
https://en.wikipedia.org/wiki/Black_box
https://en.wikipedia.org/wiki/Software_applications
https://en.wikipedia.org/wiki/Software_applications
https://en.wikipedia.org/wiki/Modular_programming

ESTABLISH

D3.1 High level system architecture 61

Figure 29. Soa based architecture

ESTABLISH

D3.1 High level system architecture 62

6 Constraints

Optimized City and Mobility Planning
Operational constrains consist of the following areas:

Open data Limitation
Most of the information handled by this pilot is based on the data obtained from the open data of the city

of Valencia. The quality of the results of the use case depends very much on the accuracy of the data

obtained and the frequency of updating them.

After a first review of the data, we realized that they are not as accurate as we expected in addition to

having a higher frequency of the desired update. For example, the information of the air pollution

stations is updated daily, with such a low refresh rate, the usefulness of this information is

compromised. There are other sets of data that are updated in real time, providing accurate information

to obtain satisfactory results.

Valencia Open Data Platform is in continuous evolution and plans to incorporate new data sets that a

priori seem very interesting for the Spanish pilot. From the Spanish consortium we are in continuous

contact with the technicians of the municipality to keep track of the new data sets that will be

incorporated in the short term to evaluate a future incorporation to the Spanish pilot

Technical limitations
As a result of the Spanish use case, two software components will be developed: a web site and an

Android application.

Web site limitations
The website site will provide the following functionalities: dashboards, rou ting and traffic simulation

planning. The website will have two perspectives, one for the citizens and other for the city authorities.

Most of the functionalities will be responsive and available thought different devices (PCs, Tablets and

mobile phone). The dashboard won’t be responsive because it is based on Kibana open source and in

the current version, it does not provide this feature.

The web site will be optimized for the following resolutions:

 Smart Mobile Phone – designated mobile applications will be built

 Small devices (Tablets): resolution constraint is considered a minimum width of 768 px.

 Medium devices (Desktops): resolution constraint is considered a width equal or larger than

992 px.

The web site will be optimized to work under the following operating systems and clients (browsers):

 Windows 7 (and higher):

o Internet Explorer 11 and Internet Explorer Edge and higher

o Google Chrome 54 and higher

o Mozilla Firefox 49 and higher

ESTABLISH

D3.1 High level system architecture 63

 MAC OS X 10.11 "El Capitan" (and higher):

o Safari 8.0 and higher

 iOS 9 (and higher): default Safari installation

 Android Lollipop v 5.0 (and higher): default Google Chrome installation

Mobile application limitations
The mobile application to be developed will display the route planner and the notifications of the

pollution and traffic alerts. The application will be available only for the android devices. The application

will be available thought the “google play” app market store. To run the application, you will need an

android version> 5.0 (Lollipop version) and connection to Internet.

Developing smart HVAC systems that ensure a healthy indoor environment

Smart HVAC systems that ensure a healthy indoor environment
All constrains in following text are considered at medium level usage.

Browser limitations
 Operating system: Windows 7 and higher

 Internet Explorer 11 (Version: 11.726.15063.0)

 Google Chrome (Version: 54.0.2840)

 Mozilla Firefox (Version: 50.0.2)

Hosting environment limitations
 Web Server

o Processor: 2 CORE, 2.2 GHz per core

o RAM: 4 GB

o Hard disk capacity: 500 GB (not including backup)

o Bandwidth: at least 10 MBps

o Operating system: Windows 2012 Server

 Database Server

o Processor: 2 CORE, 2.2 GHz per core

o RAM: 4 GB

o Hard disk capacity: 100 GB (not including backup)

o Bandwidth: at least 10 MBps

o Operating system: Windows

ESTABLISH

D3.1 High level system architecture 64

Figure 30. Azure App Service: Basic Service Plan

Figure 31. Azure SQL Database: Single database model

 Mobile application operating systems

o iOS 9 and higher (Safari browser)

o Android 6.0 and higher (Google Chrome browser)

Users and sensors limitations
Not identified yet.

Intelligent air quality management system
Operational constraints were defined for two areas:

Browser limitations
The Establish Korean Pilot platform is based on Apache Tomcat framework designed to work on three

levels: the database level, the application level, and the interface level. Any web browser that supports

HTML5 and Javascript can be used as a client in the Establish Korean Pilot Platform.

The Establish Korean Pilot Platform will be optimized for the following resolutions:

 Smart Mobile Phone: resolution constraint is considered a minimum width of 1024 px.

 Small devices (Tablets): resolution constraint is considered a minimum width of 1024 px.

 Medium devices (Desktops): resolution constraint is considered a width equal or larger

than 1024 px.

The Establish Korean Pilot Platform will run on any clients (browsers) supporting HTML5 and Javascript

under the following operating systems:

ESTABLISH

D3.1 High level system architecture 65

 Windows 7 (and higher):

o Internet Explorer Edge and higher

o Google Chrome 54 and higher

o Mozilla Firefox 49 and higher

 MAC OS X 10.11 "El Capitan" (and higher):

o Safari 8.0 and higher

 iOS 9 (and higher)

o Safari installation enabling HTML5 and Javascript

 Android Jelly Bean v 5.0 (and higher):

o Google Chrome installation enabling HTML5 and Javascript

For each operating system and browser version, the resolution constraints presented above are valid.

Hosting environment limitations
The components of the Establish Korean Pilot Platform can ensure full functionality and performance

that is defined as having a maximum of 100 concurrent users on the platform. The concurrent users are

defined as the number of users that can use a certain section of the platform at the same time. For this

level of usage the following hosting cluster will be required:

 Web Server

Processor: 14 CORE, 2.3 GHz per core

Memory: 128 GB

Hard disk capacity: 512 GB

BANDWIDTH: at least 100 MBps

Operating system: Windows 10

 Database server

Processor: 12 CORE, 2.6 GHz per core

Memory: 64 GB

Hard disk capacity: 1TB

BANDWIDTH: at least 100 MBps

Operating system: Windows 10

Promoting independence of specific vulnerable groups

Rehabilitation decision support

Operational constrains of the platform consist of four areas:

 Security constraints

 Browser limitations

 Hosting environment limitations

 Sensors limitations

ESTABLISH

D3.1 High level system architecture 66

Security constraints
Access to environmental data is permitted only using secured connections between sensors, MQTT

broker, ESTABLISH backend, and ESTABLISH frontend

Access to data from wearable is permitted only using OAuth 2.0 protocol, and authentication in the

owner account.

The results of applying Ai algorithms will not be used in automatic decisions. There will be notifications

and advises, and a human operator is responsible for a decision.

Browser limitations
This pilot resulted platform is based on JEE MVC (Model View Controller) pattern, designed to work on

three levels: the database level, the application level, and the interface level, available as an

Intranet/Internet solution on different devices (e.g., PC and tablets).

The rehabilitation decision support solution will be optimized for the following resolutions:

 Smart Mobile Phone. The application is accessed via a web browser

 Small devices (Tablets): resolution constraint is considered a minimum width of 768 px.

 Medium devices (Desktops): resolution constraint is considered a width equal or larger than

992 px.

The rehabilitation decision support solution will be optimized to work under the following operating

systems and clients (browsers):

 Linux Ubuntu 18 (and higher)

o Google Chrome 54 and higher

o Mozilla Firefox 49 and higher

 Windows 8 (and higher):

o Internet Explorer Edge and higher

o Google Chrome 54 and higher

o Mozilla Firefox 49 and higher

 MAC OS X 10.11 "El Capitan" (and higher):

o Safari 8.0 and higher

 iOS 9 (and higher): default Safari installation

 Android Lollipop v 5.0 (and higher): default Google Chrome installation

For each operating system and browser version, the resolution constrains presented above are valid.

Hosting environment limitations
The components of the rehabilitation decision support solution can ensure full functionality and

performance on the following SLA (service-level agreement) commitments:

Response time for initial dashboard loading <3 seconds

Response time for page change, without loading data from server < 2 seconds

Response time for massive report loading (less than 10 000 records) < 30 seconds

Response time for Chart display < 5 seconds for each chart in a page.

ESTABLISH

D3.1 High level system architecture 67

 Low Level Usage:

Low level usage is defined as having a maximum of 40 concurrent users on the platform. The

concurrent users are defined as the number of users that can use a certain section of the platform at the

same time. For this level of usage the following hosting capabilities are required:

Processor: 6 CORE, 2.4 GHz per core

Memory: 8 GB

Hard disk capacity: 100 GB (not including backup)

BANDWIDTH: at least 10 MBps

Operating system: UNIX based (CentOS or Ubuntu) are recommended, Windows systems can also be

used.

 Medium Level Usage:

Medium level usage is defined as having a maximum of 100 concurrent users on the platform. The

concurrent users are defined as the number of users that can use a certain section of the platform at the

same time. For this level of usage the following hosting cluster will be required:

a. Web Server

Processor: 12 CORE, 2.4 GHz per core

Memory: 32 GB

Hard disk capacity: 500 GB (not including backup)

BANDWIDTH: at least 10 MBps

Operating system: Unix based (CentOS or Ubuntu) are recommended, Windows systems can also be

used.

b. Database server

Processor: 6 CORE, 2.4 GHz per core

Memory: 8 GB

Hard disk capacity: 100 GB (not including backup)

BANDWIDTH: at least 10 MBps

Operating system: Unix based (CentOS or Ubuntu) are recommended, Windows systems can also be

used.

 High Level Usage:

High level usage is defined as having a maximum of 300 concurrent users on the platform. For this level

of usage the following hosting capabilities must be scaled to a server cluster that will include:

a. Load balancer:

Processor: 6 CORE, 2.4 GHz per core

Memory: 8 GB

Hard disk capacity: 100 GB (not including backup)

BANDWIDTH: at least 10 MBps

Operating system: UNIX based (CentOS or Ubuntu) are recommended, Windows systems can also be

used.

b. Three Web servers:

Processor: 8 CORE, 2.4 GHz per core

Memory: 16 GB

ESTABLISH

D3.1 High level system architecture 68

Hard disk capacity: 200 GB (not including backup)

BANDWIDTH: at least 10 MBps

Operating system: UNIX based (CentOS or Ubuntu) are recommended, Windows systems can also be

used.

c. Two database servers:

Processor: 6 CORE, 2.4 GHz per core

Memory: 8 GB

Hard disk capacity: 100 GB (not including backup)

BANDWIDTH: at least 10 MBps

Operating system: UNIX based (CentOS or Ubuntu) are recommended, Windows systems can also be

used.

Sensors limitations
For environmental data, the following parameters will be measured, indoor and/or outdoor

 Temperature

 Humidity

 Pressure

 CO2

 CO

 NO2

 O3

 O2

 Particles 1, 2.5, 10

The accuracy is mentioned in the description of components.

From wearable, the following parameters will be measured

 Battery level

 Heart rate

 Steps

 Sleep

The accuracy is mentioned in the description of components.

Indoor air quality improvement at school
Operational constrains of the Finnish Pilot:

 Sensors and data collection: Microsoft Azure IoT Hub is capable of handling 400 000

messages/day. It can handle more than 500 000 devices, so there are practically no

constraints in the context of planned pilot (See Iot Hub documentation).

 Physiological data collection: 10 concurrently active users per one instance of data

collection virtual machine. Elastic scaling over multiple VMs via Kubernetes. No limit on the

total number of users.

There are two separate mobile applications in the Finnish pilot, one for self -reporting air quality issues

(e.g. symptoms, stress, etc.), and another for collecting physiological data (heart rate, etc.). Both mobile

apps require Android. Minimum Android version for self-reporting app is 5.0 (API level 21), while for the

physiological data collector it is 6.0.

ESTABLISH

D3.1 High level system architecture 69

7 Conclusions
This deliverable specifies the high level building blocks for the technical solutions that will be developed

in the ESTABLISH project. The detailed design of each component will be performed in the

corresponding tasks in subsequent work packages.

High level building blocks are situated in 4 layers: presentation layer, data acquisition layer, business

logic layer and persistence layer. Various types of data are collected: physiological data including health

and activity data, indoor and outdoor air quality data and data related to transportation. Microsoft Azure

will be used for data storage and processing and for integrating data from multiple sources such as

sensor networks and wearable devices and other systems. In addition to the services provided by

Microsoft Azure for data analytics, Web applications and mobile applications will be developed for end

users.

The deliverable gives an overview of the architectures used for environmental monitoring e.g. in

healthcare domain. Furthermore, frameworks for developing specific parts of the architecture are

analysed.

Development aspects are presented in addition to the logical components, including development level,

staging level and production level, and the chosen approaches for frontend and backend development

are discussed.

After describing the common non-functional requirements and pilot-specific constrains, are also

presented the individual pilot-specific architectures, the components of the logical system architecture

and also the collected sensor data are specified. As the pilots are st ill under specification, the final

versions of the architectures will be presented in the second release of this deliverable.

ESTABLISH

D3.1 High level system architecture 70

8 References

1 http://www.tutorialsteacher.com/mvc/mvc-architecture

2 https://db-engines.com/en/ranking
3 http://www.tutorialsteacher.com/mvc/mvc-architecture
4 D3 visualization library : https://d3js.org/
5 React : https://reactjs.org/
6 https://vuejs.org/ and https://en.wikipedia.org/wiki/Vue.js
7 JSX : https://jsx.github.io/
8 OAuth: https://en.wikipedia.org/wiki/OAuth
9 http://docs.grafana.org/
10 https://www.upwork.com
11 https://www.apple.com/swift/
12 https://developer.android.com/studio/index.html
13 https://msdn.microsoft.com/en-us/library/windows/apps/ff402526(v=vs.105).aspx
14 https://en.wikipedia.org/wiki/React_(JavaScript_library)
15 http://www.reactnative.com/
16 https://www.nativescript.org/
17 https://www.typescriptlang.org/
18 https://www.xamarin.com/
19 https://cordova.apache.org/
20 https://phonegap.com/
21 https://ionicframework.com/
22 http://www.mysql.com/
23 https://whatis.techtarget.com/
24 http://www.libelium.com/downloads/documentation/meshlium_technical_guide.pdf
25 https://www.gov.uk/government/groups/committee-on-the-medical-effects-of-air-pollutants-
comeap
26 https://openweathermap.org/
27 https://ckan.org
29

 Grafana. (2018). Retrieved from https://grafana.com/grafana
30

MQTT main page. (2018). Retrieved from http://mqtt.org/
31

 OAuth 2.0 official site. (2018). Retrieved from https://oauth.net/2/
32

Pattanayak, S. (2017). Pro Deep Learning with TensorFlow-A Mathematical Approach to Advanced

Artificial Intelligence in Python. Apress.
33

 Prime Faces. (2018). Retrieved from https://www.primefaces.org

https://vuejs.org/
https://en.wikipedia.org/wiki/OAuth
http://docs.grafana.org/
https://whatis.techtarget.com/
http://www.libelium.com/downloads/documentation/meshlium_technical_guide.pdf
https://ckan.org/

