
PROPRIETARY RIGHTS STATEMENT
THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE ASSUME CONSORTIUM.
NEITHER THIS DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED OR
COMMUNICATED BY ANY MEANS TO ANY THIRD PARTY, IN WHOLE OR IN PARTS, EXCEPT WITH THE PRIOR
WRITTEN CONSENT OF THE ASSUME CONSORTIUM THIS RESTRICTION LEGEND SHALL NOT BE ALTERED
OR OBLITERATED ON OR FROM THIS DOCUMENT. THE RESEARCH LEADING TO THESE RESULTS HAS
RECEIVED FUNDING FROM VARIOUS NATIONAL AUTHORITIES IN THE FRAMEWORK OF THE ITEA 3
PROGRAMME (PROJECT NUMBER 14014).

Affordable Safe & Secure Mobility Evolution

Advanced Sequential Static Analysis
Methodology
Deliverable D 2.3

Deliverable Information

Nature Dissemination Level public

Project ASSUME Project Number 14014

Deliverable ID 2.3 Date 01.08.18

Status draft Version V1.0

Contact Person Gideon Neumann Organisation Assystem

Phone +4922183099-0 E-Mail gneumann@assystem.com

 D 2.3 – Advanced Sequential Static Analysis
Methodology

Author Table

Name Company Email

Reinhold Heckmann AbsInt heckmann@absint.com

Anton Paule FZI paule@fzi.de

Björn Lisper MDH bjorn.lisper@mdh.se

Gideon Neumann Assystem gneumann@assystemtechnologies.com

Bernard Schmidt Bosch bernard.schmidt@de.bosch.com

Carsten Sinz KIT carsten.sinz@kit.edu

Change and Revision History

Version Date Reason for Change Affected pages

V0.1 01.08.2018 Set up initial Version all

V0.1 09.08.2018 Added subsection about SWEET Section 3.4

V0.1 22.08.2018 Added subsections on aiT and Astrée Sections 3.1 and 3.2

V0.1 23.08.2018 Added FZI subsections Section 3.3

V0.2 18.12.2018 Added subsection: MQAnalyzer Section 3.5 (3.6)

V0.2 21.12.2018 Added subsection: KIT Section 3.5

V0.2 21.12.2018 Added introduction and Chapter 2 Section 2

V1.0

D2.3 – Advanced Sequential Static Analysis Methodology

Page 3 of 35 <Dissemination Level> <Status – Version>

Table of Contents

AUTHOR TABLE ... 2

CHANGE AND REVISION HISTORY .. 2

TABLE OF CONTENTS ... 3

LIST OF FIGURES ... 4

1. EXECUTIVE SUMMARY.. 5

2. METHODOLOGY, FLOW AND HANDLING .. 6

2.1. ENVIRONMENT MODEL .. 6

2.2. SOURCE CODE VERIFICATION .. 8

2.3. AUTOMATIC MODULARIZATION .. 9

2.4. TIMING ANALYSIS .. 9

2.5. SOFTWARE/MODEL QUALITY ANALYSIS ... 11

2.6. ANALYSIS RESULT INTEGRATION .. 11

3. OVERVIEW OF THE INDIVIDUAL TOOLS .. 14

3.1. ABSINT: AIT ... 14

3.1.1. Tool Features and Benefit .. 14
3.1.2. Input and Output Formats .. 14
3.1.3. Tool Constraints ... 17

3.2. ABSINT: ASTRÉE ... 18

3.2.1. Tool Features and Benefit .. 18
3.2.2. Input and Output Formats .. 19
3.2.3. Tool Constraints ... 22

3.3. FZI: C-SAPP ... 24

3.3.1. Tool features and benefit ... 24
3.3.2. Input and Output formats ... 25
3.3.3. Tool constraints ... 26

3.4. MÄLARDALEN UNIVERSITY/SWEET .. 26

3.4.1. Tool features and benefit ... 26
3.4.2. Input and Output formats ... 27
3.4.3. Tool constraints ... 27

3.5. KIT – LLBMC / QPR-VERIFY... 29

3.5.1. Tool features and benefit ... 29
3.5.2. Input and Output formats ... 30
3.5.3. Tool constraints ... 31

3.6. ASSYSTEM: MQANALYZER ... 32

3.6.1. Tool features and benefit ... 32
3.6.2. Input and Output formats ... 33
3.6.3. Tool constraints ... 33

REFERENCES... 34

D2.3 – Advanced Sequential Static Analysis Methodology

Page 4 of 35 <Dissemination Level> <Status – Version>

List of Figures

FIGURE 1 SSAT STRUCTURE .. 6

FIGURE 2: MEASURED AND PREDICTED EXECUTION TIMES OF TASKS (FROM [5]) 10

FIGURE 3: MODULE STRUCTURE OF THE ASC3F FORMAT .. 13

FIGURE 4: INPUT AND OUTPUT OF AIT .. 14

FIGURE 5: GUI AFTER RUNNING AN AIT ANALYSIS ... 15

FIGURE 6: FRAGMENT OF CONTROL-FLOW GRAPH WITH OVERALL WCET AND ROUTINE WCETS.......... 16

FIGURE 7: STATISTICS VIEW SHOWING DIRECT AND CUMULATIVE WCETS OF ROUTINES 17

FIGURE 8: OVERVIEW ON ASTRÉE ANALYSIS RESULTS ... 18

FIGURE 9: RULECHECKER CONFIGURATION VIEW .. 19

FIGURE 11: PREPROCESSOR CONFIGURATION VIEW... 20

FIGURE 11: OVERVIEW ON REPORTED CODE DEFECTS ... 21

FIGURE 12: ALARM INVESTIGATION USING EDITOR VIEWS ... 22

FIGURE 13: C STATIC ANALYSIS PREPROCESSOR (C-SAPP) ... 25

FIGURE 14: HW/SW INTERACTION .. 26

FIGURE 15: MM2S VDMA CONTROL REGISTER SPECIFICATION [3] .. 26

FIGURE 16: ASSISTED REVIEW OF ANALYSIS RESULTS IN THE MQANALYZER (EXAMPLE: GUIDELINES) . 32

FIGURE 17: IMPORTING THE RESULTS OF A GUIDELINE ANALYSIS BY MXAM 33

D2.3 – Advanced Sequential Static Analysis Methodology

Page 5 of 35 <Dissemination Level> <Status – Version>

1. Executive Summary

In ASSUME the methods and tools for Single Core Application were developed and finally result in
the Serial Static Analysis Toolkit (SSAT)
This deliverable give an impression how the SSAT works and should correspond to the character
of a manual for the individual tools.

D2.3 – Advanced Sequential Static Analysis Methodology

Page 6 of 35 <Dissemination Level> <Status – Version>

2. Methodology, Flow and Handling

In work package “Scalable Zero Defect Analysis for Single Core” a tool chain was developed for
solving the challenges of sequential static analysis for real industrial software applications. The
following pages give a current overview of the developed toolkit.

The advanced Sequential Static Analysis Toolkit (SSAT) is a flexible solution that addresses all
sequential use cases. To get the best results we propose to use the full SSAT flow. To keep the
flexibility it is also possible to use only parts of the overall tooling. For example if a user is first
interested to do a Timing Analysis he/she should not be forced to spend the effort and computational
time on the Source Code Verification as well and it is possible to do the source code verification at
a later step in the development process.
In this chapter a brief overview of the methodology for the general SSAT is given together with an
explanation of its work flow and tool handling. More details about each individual module and its
main functionality can be found in Chapter 3.

The overall structure of the SSAT is shown in Figure 1. The graphical representation of the SSAT
show how each module will interact with the other modules and how the overall flow could look like.

Figure 1 SSAT Structure

2.1. Environment Model

Static analysis tools struggle with checking embedded systems software for defects and runtime
errors, because the analyzed source code, often written in C, is heavily tailored to a specific

D2.3 – Advanced Sequential Static Analysis Methodology

Page 7 of 35 <Dissemination Level> <Status – Version>

hardware platform and execution environment. Correct functionality of the embedded system design
requires co-verification techniques that are able to address not only the individual hardware (HW)
and software (SW) components but also their complex interactions. Generic analysis tools check
source code that can be run on a multitude of existing hardware platforms and configurations.
Detailed information about the system environment is abstracted and discarded, resulting in an over
approximation of analysis results and thus an increase in false warnings (false positives).
Any formal analysis requires a formal model of the design under verification. In case of software,
this model often comprises a nontrivial environment that the code runs in (libraries, other programs,
and hardware components). As programs often interact with the environment and rely on platform
specific properties, substantial manual effort is required to model these parts of the environment.
Neglected consideration of hardware properties causes ignorance of interrupts, timers, and I/O-
registers. In critical embedded systems, interfaces are often modelled as "volatile" variables and
the interface specification typically as constraints on these variables. Modern "intelligent" HW
components go beyond simple Port I/O and thus work directly on shared-memory, perform direct
memory access (DMA), all asynchronously from the main processor. System side effects, caused
by embedded assembly instructions, direct access to system memory and specific I/O-registers via
Memory Mapped I/O (MMIO), make it impossible to truly verify the SW component without taking
the HW component into account, because incorrect programming of the HW component can have
severe consequences, such as memory zones being erased. Abstraction of the HW behavior and
the interaction with the SW component often results in an overwhelming amount of false alarms,
weakening the overall acceptance of static analysis tools during software development.
The specification of system invariants, hardware constraints and behavior is therefore a necessary
but daunting task that has to be performed manually, using configuration files and annotations in
the source code. A deep understanding of the underlying hardware architecture and system
constraints is required to write invariants for embedded systems software but this specific domain
knowledge is often hidden in numerous hardware abstraction layers. One cannot assume that a
developer writing the application code neither has a detailed understanding of the whole system
architecture, nor is able to write invariants as code annotations using an annotation/assertion
language that is specific to an analysis tool. Environment models, which capture hardware
properties and constraints, can alleviate the tedious task of analysis setup and invariant
specification by utilizing domain knowledge about the system architecture to automatically generate
annotations that can be used by different analysis tools.
A key to building an effective co-verification toolchain is to translate the HW and SW models to a
common representation with common semantics (co-verification model), enabling specification of
system-level-properties across HW/SW boundaries. One approach to achieve co-verification is to
model HW properties within the SW domain and capture temporal correlations between SW and
HW events using special-purpose primitives to model HW/SW interactions.

Even though building an environment model, which represents the whole hardware platform and all
its components, can be a challenging task, which has to be performed by domain experts, the
benefits of automatically generating co-verification models for checking run-time errors of hardware-
dependent software outweigh the initial modelling effort. The environment model is an abstract
representation of domain knowledge about the hardware architecture and serves as the primary
source for generating tool specific source code annotations that can be used by static analysis back
ends.

D2.3 – Advanced Sequential Static Analysis Methodology

Page 8 of 35 <Dissemination Level> <Status – Version>

2.2. Source Code Verification

Examples of runtime errors in C-Programs include Buffer-Overflows (i.e. data is written beyond the
boundary of legal memory which causes different parts of the memory to be filled with wrong data)
or Division-By-Zero (depending on the hardware the result may get saturated or an interrupt could
be triggered). Such runtime errors are troublesome since they may lead to very costly program
failures (e.g. the explosion of the Ariane-5 rocket). The main focus of source code verification is to
statically (i.e. without execution) prove the absence of runtime errors in code. For the embedded
systems studied in ASSUME the language of choice usually is C.
Sound tools based on techniques such as Abstract Interpretation (Astrée) or (Bounded) Model
Checking (LLBMC/QPR) will discover such issues. Hence, being sound guarantees (with respect to
the assumptions used, e.g. on hardware-behavior) that no errors are missed by an analysis. The
drawback is that since the analysis must be computable, some over-approximations are needed to
make the process terminate. These over-approximations lead to false alarms being reported which
must eventually be dismissed by a trained human.

The benefit of Abstract Interpretation is that it scales to very large programs (hundreds of thousands
or even million lines of code) but due to over-approximations (e.g. widenings) the results are
dominated by false alarms. As a remedy, tools like Astrée allow the user to selectively increase the
precision of the analysis in order to get rid of false alarms (in subsequent analyses). More (older
and more recent) references on Astrée can be found in [1,2].

Bounded Model Checking (BMC) on the contrary, is based on the idea to exhaustively explore all
states of a program up to a certain bound k – if no error is found then the program is safe up to this
bound. Hence, the technique is under-approximating the system behavior – however, if the bound
k is sufficient to guarantee the whole state-space is explored then the system can also be proven
safe. Since, embedded programs are inherently bounded (e.g. due to timing requirements), the
technique is very effective in verifying these systems. The most successful technique for BMC is to
efficiently encode the system behavior up to depth k as a formula (either in propositional calculus
or more generally as an SMT-formula). In addition, the error-locations are encoded as a second
formula and if the conjunction of the two is satisfiable, then the error-location is reachable and an
erroneous program path (counterexample) can be reconstructed from the satisfying assignment.
The low-level bounded model checker LLBMC [3] uses the LLVM intermediate representation as a
frontend to be able to parse and verify C/C++ programs. The benefit of BMC is its precision – bit-
manipulating and floating-point operations can be analyzed in a bit-precise manner. The drawback
of this precision is that the technique is less likely to scale to very large programs than Abstract
Interpretation.

[1] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David
Monniaux, and Xavier Rival. Varieties of Static Analyzers: A Comparison with Astrée, invited paper.
First IEEE & IFIP International Symposium on ``Theoretical Aspects of Software Engineering'',
TASE'07, Shanghai, China, 6—8 June 2007, pp. 3—17.

[2] A. Miné, L. Mauborgne, X. Rival, J. Feret, P. Cousot, D. Kästner, S. Wilhelm, C. Ferdinand.
Taking Static Analysis to the Next Level: Proving the Absence of Run-Time Errors and Data Races
with Astrée. In ERTS 2016: Embedded Real Time Software and Systems, 8th European Congress,
Jan 2016, Toulouse, France.

D2.3 – Advanced Sequential Static Analysis Methodology

Page 9 of 35 <Dissemination Level> <Status – Version>

[3] Florian Merz, Stephan Falke, and Carsten Sinz: LLBMC: Bounded Model Checking of C and
C++ Programs Using a Compiler IR. In Proceedings of the 4th International Conference on Verified
Software: Theories, Tools, and Experiments (VSTTE '12), Philadelphia, USA. ©Springer-Verlag

2.3. Automatic Modularization

Automatic modularization is necessary for the integration verification of very large software
applications written in C. The goal of the automatic modularization is to provide software modules
that the verification tool can handle. Each module should be in such a form, that the verification tool
can use its strengths and be able to deliver high precision results. Every cut in the software and
missing function or variable content introduces new spurious warnings so that the quality of the
results is decreasing.

To prevent or reduce these sources of imprecision, an intelligent modularization is needed. To keep
individual modules from getting too large or even ending up containing the full software careful
optimizations are needed to limit the modules’ complexity.
This includes features like recognizing the full original scheduling of the complete software and to
construct a new module specific scheduling based on this original scheduling and to remove
unneeded functions.
In addition to minimizing modules’ complexity the automatic modularization should still allow sound
verification. Hence, missing information resulting from any “cutting” needs to be handled in a
conservative way by the verification tools.

2.4. Timing Analysis

Hard real-time systems need to satisfy stringent timing constraints, which are derived from the
systems they control. In general, upper bounds on the execution times are needed to show the
satisfaction of these constraints. To obtain such upper bounds in an automatic way, a timing
analysis has to be performed. The two main criteria for evaluating a method or tool for timing
analysis are safety – does it produce upper bounds or merely estimates? – and precision – are the
bounds or estimates close to the exact values?

Usually, a real-time system consists of a number of tasks or processes that realize the required
functionality. For the temporal verification of such systems, it is necessary to obtain worst-case
execution time information for the individual, sequential tasks (so-called code-level timing analysis)
and to integrate them in a temporal analysis of the entire system taking communication,
interference, pre-emption and scheduling overheads into account (system-level timing analysis) [4].

Code-level timing analysis refers to the analysis of “un-preempted” execution times of individual
sequential tasks. A task may be a unit of scheduling by an operating system, a subroutine, or some
other software unit, which is usually available as a fully-linked executable.

A task typically shows a certain variation of execution times depending on the input data or different
behavior of the environment. The longest possible execution time is called the worst-case execution
time (WCET). However, in most cases the state space is too large to exhaustively explore all
possible executions and thereby determine the exact WCET. Dynamic timing analysis is a method
to estimate the WCET of a task by measuring its end-to-end execution time for a subset of the

D2.3 – Advanced Sequential Static Analysis Methodology

Page 10 of 35 <Dissemination Level> <Status – Version>

possible executions (the test cases). This determines the maximal observed execution time, which
will, in general, underestimate the WCET and so is not safe for hard real-time systems (see Figure
2).

Figure 2: Measured and predicted execution times of tasks (from [5])

Newer measurement-based approaches make more detailed measurements of the execution time
of different parts of the task and combine them to give better estimates of the WCET for the whole
task. Still, these methods are rarely guaranteed to give safe upper bounds on the execution time.
Such bounds can be computed only by methods that consider all possible execution times, that is,
all possible executions of the task. These methods use static program analysis together with
abstraction of code properties to make timing analysis of the task feasible. Abstraction loses
information, so the computed WCET bound usually overestimates the exact WCET. The WCET
bound represents the worst-case guarantee the method or tool can give. How much is lost depends
both on the methods used for timing analysis and on overall system properties, such as the
hardware architecture and characteristics of the software. These system properties can be
subsumed under the notion of timing predictability.

Traditionally, static worst-case execution-time estimation can be divided into two related sub-
problems. The first problem relates to the program control-flow, determining which parts of the
program are executed in which order and which parts are mutually exclusive. This can require
extensive value tracking to help determine loop bounds and find points where the program execution
depends on input data of the code. Using this information, the worst-case execution-time estimation
tool can then reason about the code structure within the application which is commonly performed
either on the structure itself, or through implicit-path enumeration [5].

The second problem is finding proper execution-time bounds for each of the basic blocks of the
program flow (i.e. groups of operations that form a single node in the control-flow graph of the
application). Here the execution time depends mostly on architectural features of both the processor
that executes the program as well as the underlying memory hierarchy. For simple architectures, it
might be possible to just count the number of operations within the block, but doing so will result in
inaccuracies for more complex architectures. For example, processor features such as out-of-order
instruction execution and cached memory accesses can insert uncertainty in the execution time. In
some cases, the program will execute quickly while in others it will be delayed significantly,
depending on the context of the block within the program (or the program within its environment).

D2.3 – Advanced Sequential Static Analysis Methodology

Page 11 of 35 <Dissemination Level> <Status – Version>

Combining the execution-time information for each program part with that of the application
structure provides the critical path of the overall application, which in turn results in the worst-case
execution-time of the entire task. A possible way to this is by integer linear programming. The
analyzer sets up a linear program with integer variables corresponding to the execution counts of
the basic blocks. The target function multiplies these variables with the corresponding basic-block
execution times. The constraints of the linear program are derived from the control structure, the
loop bounds, and other flow properties. Constraints derived from the control structure are for
instance those that assert that the sum of the execution counts of the incoming edges of a block
equals the sum of the execution counts of the outgoing edges.

[4] D. Kästner, C. Ferdinand, R. Heckmann, M. Jersak, P. Gliwa. An Integrated Timing Analysis
Methodology for Real-Time Systems. Embedded World Congress 2011, Nürnberg, 2011.

[5] Wilhelm, Reinhard, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David
Whalley, Guillem Bernat, et al. 2008. The worst-case execution-time problem – Overview of
methods and survey of tools. ACM Transactions on Embedded Computing Systems (TECS) 36:7.3.

2.5. Software/Model Quality Analysis

The integration of this analysis takes place in the higher-level of the ASSAT tool design rather than
on functional source code. Analyzing the quality of the software model is a continuous quality-
increasing process to accompany the software developer by improving software quality and detect
errors as early as possible in the software development lifecycle.

Overview of the continuous application of the quality analysis process on software model level:

2.6. Analysis Result Integration

The SSAT contains a number of different tools that produce different outputs. Depending on the
used flow it is helpful to get only one overall result report instead of checking several analysis from
the same tool or from different tools. Different phase of integration are introduced:

- Loose Coupling of Components
- Tight Coupling of Components and Complex Interactions

D2.3 – Advanced Sequential Static Analysis Methodology

Page 12 of 35 <Dissemination Level> <Status – Version>

- Arbitrary Combinations of Components
The loose coupling of components is realized by using the results from one tool as input for the next
tool. It happened by original code modification (e.g. portioning of large SW), providing additional
information for a correct configuration of the next tool or by providing additional information that can
be used as inputs (e.g. Data Ranges). In this case no results need to be integrated.
The tight coupling allow an intensive exchange of information between similar tools or the same
tool. This can be used to transfer helpful extracted information from one analysis to the next. This
information help to reduce the computational effort and increase the precision of the analysis.
Intermediate results from the same tool from different verification runs can be reviewed. An overall
analysis result integration is helpful.
The last phase allows to combine tools and results on meaningful paths based on provided use
cases and is a combination of the first two phases.
To be able to use the results from different tools and to be able to combine them into an integrated
result some additional points need to be fulfilled:

- The results based on the same sources.
- The source code specific tool configurations needs to be comparable (e.g. assumed HW

environment, compiler behavior)
The ASSUME Static Code analysis tool Common Configuration Format” (ASC3F) - developed in WP2
– allows to provide a universal configuration and report format for different static analysis tools. The
configuration format facilitates the specification of analysis tasks without introducing tool specific
configuration files and setup methodologies. The ASC3F also enables the specification of machine-
independent configurations, e.g. hiding differences in the concrete paths of source code files. Utilizing
a modular configuration approach, reuse of existing analysis configurations is supported as well.
Besides the common configuration of static analysis tools, the integration of analysis reports, generated
by the analysis tools, is a significant aspect that needs to be considered in the integration of analysis
results. The ASC3F format addresses this aspect by establishing a common hierarchy of check
categories with accompanying check semantics, making results, obtainable from different tools, directly
comparable. The format is designed to be extensible, allowing the addition of new language features
and configuration options in the future. Fehler! Verweisquelle konnte nicht gefunden werden. shows
an overview of the ASC3F components and their dependencies.

D2.3 – Advanced Sequential Static Analysis Methodology

Page 13 of 35 <Dissemination Level> <Status – Version>

Figure 3: Module structure of the ASC3F format

In WP3, FZI, KIT, and MDH demonstrate the coupling of different tools using the ASC3F format,
OSLC and the Linked Data approach. Every tool that allows the setup of analysis project using a
configuration file can easily adapt this method. Only an adapter that translates the ASC3F format to
the tool specific configuration file needs to be added once. In addition, generated reports are
consumed by the adapter and transformed into a common representation using the ASC3F format.

D2.3 – Advanced Sequential Static Analysis Methodology

Page 14 of 35 <Dissemination Level> <Status – Version>

3. Overview of the individual tools

3.1. AbsInt: aiT

3.1.1. Tool Features and Benefit

The aiT tool (https://www.absint.com/ait/) determines safe and precise upper bounds for the worst-
case execution times (WCETs) of tasks in real-time systems. Here, a task means a sequentially
executed piece of code (no threads, no parallelism, no waiting for external events, and assuming
no interference from the outside). aiT operates on binary executables for selected target
architectures. In the ASSUME project, support for the MPPA2 architecture of Kalray was added so
that aiT can be used in the avionics use cases.

aiT employs static program analysis by means of abstract interpretation. The analysis covers all
possible program runs with all possible inputs without actually executing the program. Therefore, it
does not require access to physical hardware, nor any code instrumentation or complex test setup.
aiT can be seamlessly integrated into the development process and continuous verification
frameworks.

AbsInt already offers a plugin for automatic integration of aiT in Jenkins, an open-source automation
server for continuous integration and continuous delivery. Using this plugin, developers can
automatically analyze the worst-case execution times of their Jenkins builds, automatically mark a
build as failed depending on the analysis results according to self-defined criteria such as violated
expectations or specific errors, view a compact summary of the analysis results and failed items in
the Jenkins build output, access detailed analysis results via the Jenkins web interface, and archive
report files directly to the Jenkins workspace.

3.1.2. Input and Output Formats

Figure 4: Input and output of aiT

https://www.absint.com/ait/

D2.3 – Advanced Sequential Static Analysis Methodology

Page 15 of 35 <Dissemination Level> <Status – Version>

The main input of aiT is a statically linked binary executable containing the task(s) to be analyzed.
Secondary input is given by annotations that provide additional information about the analyzed
program, e.g. targets of computed calls, loop bounds, and restrictions on the range of variables. aiT
tries to compute such information by itself, but sometimes is not able to obtain sufficiently precise
useful results.

Annotations may be given in separate annotation files or as specific comments in the C source
code. As aiT analyzes binary executables, the presence of C source code is not required, but if it is
available, it is read by aiT to watch out for embedded annotations and to be able to refer to C source
code in its output.

aiT also requires information about the hardware configuration. Such information can be specified
by options in the graphical user interface (GUI), textual descriptions in an annotation file, or
specification of the contents of configuration registers (details depend on the target architecture).
Names of executable and annotation files are entered in the GUI. From this information, a project
file can be formed.

Figure 5: GUI after running an aiT analysis

D2.3 – Advanced Sequential Static Analysis Methodology

Page 16 of 35 <Dissemination Level> <Status – Version>

aiT is part of the AbsInt analyzer framework a3, which comes with a graphical user interface (GUI)
– see Figure 5. Thus, aiT can be started for interactive work by starting the GUI, loading a project
file, and starting a WCET analysis. aiT can also be started in batch mode without user interaction.

Figure 6: Fragment of control-flow graph with overall WCET and routine WCETs

aiT produces safe over-approximations of the overall worst-case execution time (WCET), the
WCETs for routines and basic blocks, worst-case execution numbers for routines and basic blocks,
and the worst-case path. This information is given in a textual report file for human inspection and
an XML report file that may be read by other applications. aiT produces also combined call graphs
and control-flow graphs showing the structure of the analyzed program with analysis results
attached to the structure elements (see Figure 6). A comprehensive statistics view gives an
overview of the direct vs. cumulative execution times, i.e., the time consumed by each function itself
vs. the time consumed by itself and all its callees (see Figure 7). The statistics view also gives
detailed information about the variable usage at the binary level, e.g., how often a global variable
was accessed (categorized by read and write accesses) per function and in total.

D2.3 – Advanced Sequential Static Analysis Methodology

Page 17 of 35 <Dissemination Level> <Status – Version>

Figure 7: Statistics view showing direct and cumulative WCETs of routines

3.1.3. Tool Constraints

There are aiT WCET analyzers for various different target processors. In ASSUME, the aiT family
was extended by aiT for Kalray, which can only analyze fully linked binary executables for Kalray
MPPA2 (Bostan).

There are Windows and Linux versions of aiT. The Windows version requires 64-bit Windows 7 SP1
or newer, and the Linux version 64-bit CentOS/RHEL 6 or compatible. For proper functioning, there
should be at least 4 GB of RAM (16 GB is recommended) and 4 GB of disk space. The Linux version
requires the libxcb-* family of libraries to be installed.

aiT can be obtained from AbsInt Angewandte Informatik GmbH (support@absint.com). AbsInt offers
commercial licenses, including training, support, and maintenance.

mailto:support@absint.com

D2.3 – Advanced Sequential Static Analysis Methodology

Page 18 of 35 <Dissemination Level> <Status – Version>

3.2. AbsInt: Astrée

3.2.1. Tool Features and Benefit

Astrée (https://www.absint.com/astree/) is a sound static program analyser that has been developed
by ENS and is licensed by AbsInt for industrialization. Addition of new features is done in
cooperation with ENS and Sorbonne University (formerly known as UPMC). Astrée was designed
to prove the absence of runtime errors and further critical program defects, including array index
out of bounds, invalid pointer dereferences, int/float division by 0, arithmetic overflows and wrap-
arounds, floating point overflows and invalid operations (Inf and NaN), and uninitialized variables.
In floating-point computations, all possible rounding errors, and their cumulative effects, are taken
into account. The tool is based on abstract interpretation, a provably correct formal method, and
does not require the program under analysis to be instrumented, executed, or stimulated by test
cases. The tool can be used on handwritten code, automatically generated code, or any combination
thereof. It can be integrated into continuous verification frameworks such as Jenkins (a Jenkins
plugin exists).

Figure 8: Overview on Astrée analysis results

Astrée contains the seamlessly integrated RuleChecker that checks code for compliance with
MISRA, CWE, ISO/IEC, and SEI CERT C coding rules. The tool can also check for various code
metrics such as comment density or cyclomatic complexity. Custom extensions for user-defined
coding guidelines are available on request. Using RuleChecker in conjunction with the sound
semantic analyses offered by Astrée guarantees zero false negatives and minimizes false positives
on semantical rules. No standalone MISRA checker can offer this, and no testing environment can
match the full data and path coverage provided by the static analysis.

https://www.absint.com/astree/index.htm

D2.3 – Advanced Sequential Static Analysis Methodology

Page 19 of 35 <Dissemination Level> <Status – Version>

Figure 9: RuleChecker configuration view

In the ASSUME project, the Astrée tool has been evaluated by the project partners, in particular
Bosch and Daimler. The evaluation showed the need for various extensions of the tool. First, Astrée
had to be extended to support some C extensions occurring in the partners' code. Then the main
goal was to improve the user interface, to increase the precision of the analysis, and to reduce the
effort to examine (possibly false) alarms. To this end, the repeated reporting of errors with the same
cause has been avoided, e.g. only the first access is reported now in case of repeated accesses to
a non-initialized variable. Another goal was to reduce the analysis time and the memory
consumption of the analyzer, in particular when analyzing very large code bases. The results are
impressive, e.g. for some example, the analysis time dropped from 10 days to 3 days, for another
example from 26 hours to 2.5 hours, and for a third from 2 hours to 38 minutes.

3.2.2. Input and Output Formats

Input

1. Astrée works on preprocessed C code. If desired, a built-in preprocessor can be used to
obtain preprocessed code. The code is then parsed and translated into an intermediate
representation on which the runtime error analysis is performed.

D2.3 – Advanced Sequential Static Analysis Methodology

Page 20 of 35 <Dissemination Level> <Status – Version>

2. For each analysis, Astrée needs an entry point – typically a function of particular interest,

or simply main. Astrée will then analyze all portions of the code that can be reached by non-
interrupted sequential program execution from that entry point.

3. It is possible to provide an analysis wrapper – e.g. to model reactive system behavior – in

a dedicated C file associated with the analysis.

4. Astrée can also be configured with different ABI (application binary interface) settings.

5. Lastly, Astrée accepts formal analysis directives that provide external information to the
analyzer, e.g., about the environment, or to steer the analysis precision. The directives are
specified in the dedicated, human-readable Astrée Annotation Language (AAL) so that the
source code does not have to be modified. The locations to which the directives refer are
specified over the program structure and are robust with respect to line numbers.

Output

The most important result of the analysis is a list of alarms, i.e. of potential runtime errors. Each
error is reported together with its type and the source code location where it occurs. If Astrée can
prove that an alarm will always occur in a specific context, it is classified as a definite runtime error.
In addition, various kinds of statistics are compiled. Interactive tables, graphs and charts let you
quickly see which code areas are most prone to which kinds of errors.

Report files can be generated for documentation and certification purposes. The entire analysis
project can be saved as well, including all files, settings, annotations and comments. The analyzer

Figure 10: Preprocessor configuration view

D2.3 – Advanced Sequential Static Analysis Methodology

Page 21 of 35 <Dissemination Level> <Status – Version>

also provides coverage information showing unanalyzed code statements. In absence of definite
runtime errors, code reported as unanalyzed is definitely unreachable.

Figure 11: Overview on reported code defects

Lastly, Astrée can be used to check for functional program properties by a static assertion
mechanism. If Astrée does not report the assertion to be violated, the asserted C expression has
been proven correct.

Astrée will always stop with an error if indispensable data is missing or if source files cannot be
correctly parsed and translated.

Handling the alarms

Each reported alarm indicates a potential runtime error, which can be interactively explored,
commented on, or fixed right away in the built-in C source code editor. Possible false alarms can
be marked as such using AAL annotations so that they no longer occur on subsequent analysis
runs. Alternatively, you can tweak the analysis settings or increase the analysis precision for
selected code parts. After that, you can run the analysis once again and examine the improved
results.

D2.3 – Advanced Sequential Static Analysis Methodology

Page 22 of 35 <Dissemination Level> <Status – Version>

These steps are repeated as needed until all alarms have been dealt with and no errors are reported
anymore. At that point, the absence of errors in the code has been formally proven.

Figure 12: Alarm investigation using editor views

3.2.3. Tool Constraints

There are Windows and Linux versions of Astrée. The Windows version requires 64-bit Windows 7
SP1 or newer, and the Linux version 64-bit CentOS/RHEL 6 or compatible. There should be at least
4 GB of RAM (16 GB is recommended) and 4 GB of disk space.

Astrée actually consists of two parts:

1. The Astrée client, for setting up an analysis and viewing the results. The client offers both
a GUI and a batch mode for easy automation and integration.

2. The analysis server, which carries out the actual analysis (or several analyses as separate
processes).

Both parts may run together on the same machine. In production, however, the server typically runs
on a powerful remote host, while clients are run by the individual developers and managers on their
PCs or other devices.

D2.3 – Advanced Sequential Static Analysis Methodology

Page 23 of 35 <Dissemination Level> <Status – Version>

Astrée can be obtained from AbsInt Angewandte Informatik GmbH (support@absint.com). AbsInt
offers commercial licenses, including training, support, and maintenance. The licensing models are
very flexible, ranging from single analysis servers with limited client connections to department or
company licenses. The license file determines how many clients may connect to the server at the
same time, and how many analysis processes can run there in parallel.

mailto:support@absint.com

D2.3 – Advanced Sequential Static Analysis Methodology

Page 24 of 35 <Dissemination Level> <Status – Version>

3.3. FZI: C-SAPP

3.3.1. Tool features and benefit

C-SAPP (C Static Analysis Preprocessor) is a research prototype, developed at FZI, to support
analyses of Hardware-dependent Software (HdS) [1]. The central idea is to augment the input to
static program analysis tools (e.g., Astrée) by auxiliary information in a way that specific properties
of the underlying hardware (HW) platform are considered during runtime-defect analysis of the
software (SW). The C-SAPP tool can be thought of as a sophisticated preprocessor for the
hardware-dependent software code under analysis. Its main tasks include the identification of
hardware specific code sections (e.g., inline assembler, MMIO, interrupts) and various
transformation steps, augmenting those sections with in-source directives (assertions,
assumptions) that can be processed by static analysis tools such as Astrée.
In cross-boundary HW/SW defect analysis a formal model of the design under verification – a
common representation of HW and SW with formal semantics – is of paramount importance for co-
verification across HW/SW boundaries where the intricate nature of HW/SW interaction constitutes
an acute challenge. In critical embedded systems, HW/SW interfaces are often modelled as
"volatile" variables and constraints on these variables. Modern "intelligent" HW components go
beyond simple Port I/O and thus work directly on shared-memory, perform direct memory access
(DMA), all asynchronously from the main processor. System side effects, caused by embedded
assembly instructions, direct access to system memory and specific I/O-registers via Memory
Mapped I/O (MMIO), make it impossible to truly verify the SW component without considering HW
properties.
The C-SAPP tool addresses the co-verification challenge by a model-driven approach where HW
properties and their interface are specified using a SW/HW Interface Model (SHIM) followed by a
generation and annotation step that augments the source code under analysis and makes HW side-
effects explicit during program analysis. The overall tool flow is shown in Figure 13. The main benefit
of the tool lies in the support for design automation of safety critical, embedded systems in the
context of program analysis. Specifications of hardware components (e.g., timers, DMA controllers,
I2C controllers, etc.) and whole platforms can be reused when developing new SW applications. A
concise model of the HW/SW interface and hardware properties (SHIM model) facilitates the static
analysis of embedded software across multiple projects because the co-verification model can be
generated using the C-SAPP tool. A SHIM model of a HW component has to be created once and
can be reused in multiple scenarios to generate source code and annotations for various static
analysis back ends (e.g., Astrée, QPR, Goblint, etc.).

D2.3 – Advanced Sequential Static Analysis Methodology

Page 25 of 35 <Dissemination Level> <Status – Version>

Figure 13: C Static Analysis Preprocessor (C-SAPP)

3.3.2. Input and Output formats

The C-SAPP tool is based on the LLVM/Clang LibTooling framework and is run from the command
line with a small set of command-line flags.
The primary input of the tool is C code. A prerequisite for running the C-SAPP tool is the existence
of a “Clang Compilation Database” [2]. The C-SAPP tool parses the source code and thus needs
full information on how to parse a translation unit (C file) with all compiler flags, include paths and
other options. The “Clang Compilation Database” stores this additional information in a JSON file
that can be generated using build systems such as CMake.
The secondary input is the SHIM model that describes the hardware platform, the software is
executed on. The SHIM model can be very detailed but also very abstract, modelling only specific
properties of HW/SW interaction that are of interest during program analysis. All HW/SW
interactions are specified in two steps (Figure 14).
The SW model is a list that contains all routines to access a specific HW component (SW-HW
transaction) and is only mandatory if the source code for the device drivers is not included in the
source code under analysis. Direct writes to HW registers using MMIO are SW-HW transactions
and C-SAPP will identify all potential interactions via shared registers.
The HW model specifies the HW structure with all its registers and memories using IP-XACT or
SystemRDL. The HW model can be created manually from specifications where all registers are
described in detail (e.g., Xilinx VDMA Figure 15) or generated by design automation tools that
generate IP-XACT files for the Intellectual Property (IP) components. Interrupt signals in the HW
model are considered as HW-SW transactions and the corresponding Interrupt Service Routine
(ISR) is part of the SW model.
From the SHIM model, a skeleton implementation of the hardware component is generated as C
code, modelling the interaction of SW and HW via their shared register interface. The SHIM model
is an Ecore model and can be created in a separate modelling environment based on Eclipse.

D2.3 – Advanced Sequential Static Analysis Methodology

Page 26 of 35 <Dissemination Level> <Status – Version>

Figure 14: HW/SW interaction

Figure 15: MM2S VDMA Control Register specification [3]

3.3.3. Tool constraints

The C-SAPP tool is an early research prototype that is far away from an “All-in-One Application” for
HW/SW cross-boundary program analysis. Currently, the tool can only generate the structure for
the HW/SW interface and a skeleton implementation of hardware interaction with software. Behavior
models for the SW-HW transactions need to be added manually as a set of transformation rules (C
code templates) during the code generation steps.
The overall tool flow is still immature and fragmented because of the missing integration of all steps
into a common environment and thus ongoing work focuses on the integration of all modelling and
code generation task into an Eclipse toolchain.
Even though the C-SAPP tool is a standalone tool, only the generation of Astrée specific code
annotations has been tested so far. Other back ends such as QPR or Goblint can be easily
supported in the future by adjusting the transformation rules in the C-SAPP “Transformation
Backend”.

3.4. Mälardalen University/SWEET

3.4.1. Tool features and benefit

SWEET (SWEdish Execution Time tool) is a static WCET analysis research prototype tool. Its main use
is to calculate program flow constraints ("flow facts"), like loop iteration bounds and infeasible path
constraints, The main use of SWEET is to calculate flow facts automatically, and export these to some
tool that can use this information to perform a safe and precise WCET estimation. SWEET can also

D2.3 – Advanced Sequential Static Analysis Methodology

Page 27 of 35 <Dissemination Level> <Status – Version>

calculate coarse BCET/WCET estimates by itself using simple timing models. The estimates are not
safe in general, but can be used to give the developer early feedback about expected timing bounds by
a source code-level analysis. In addition SWEET can perform a number of other analyses, such as a
conventional value analysis using abstract interpretation, data flow analysis (reaching definitions), and
static backwards program slicing.

3.4.2. Input and Output formats

SWEET analyses an intermediate format called ALF [1,2]. This format is native to SWEET, and is
designed to represent primarily code on fairly low level (like C, or binaries). Analysis of other formats
than ALF is done through a translation to ALF. Analysis results are presented on ALF level, but can be
mapped back to the original code provided that the translator provides the necessary information about
the mapping from original code to ALF. Several translators to ALF exist: the most prominent,
"AlfBackend", translates C to ALF using the clang/LLVM compiler framework. AlfBackend also computes
the information necessary to map analysis results back to the original C code. Besides AlfBackend,
experimental translators from PowerPC and NEC V850 binaries to ALF exist. The structure of ALF is
shown in the figure below.

SWEET is run from the command line. There is a rich set of options to direct the analysis: these are set
through command-line flags, or through provided files. Analysis results are also communicated via
written files.

SWEET has a simple native format to specify intervals constraining the values of program variables in
different program points. This information can be used by SWEET to calculate tighter flow facts.
Variables can also be marked as volatile.

SWEET has an expressive native format for the generated flow facts. This includes context information
in the form of call strings, as the calculated flow facts can be context-sensitive. SWEET can also export
flow facts for C code to the AIS format for flow facts that is used by aiT from AbsInt. In addition, SWEET
has simple formats to export the results of its value analysis, and program slices.

Further information about the various formats of SWEET can be found at
http://www.mrtc.mdh.se/projects/wcet/sweet/manual/html/.

3.4.3. Tool constraints

There are some limitations on which codes SWEET can handle. Recursion, and dynamic memory
handling, is not supported. The AlfBackend C to ALF translator also has some limitations – for
instance, it does not handle polyadic functions (like printf). As AlfBackend is build within the LLVM
framework it uses the clang C parser, and is thus also subject to any limitations in clang.
More information about SWEET, including an extensive user manual, can be found at
http://www.mrtc.mdh.se/projects/wcet/sweet/. The tool is open source under an allowing BSD style
license. Access to SWEET and AlfBackend can be requested by sending a mail to the mailing list
wcet@list.mdh.se: you will then get read access to the svn repository where the tools live. Instructions
for how to build the tools on various platforms can be found in the user manual.

http://www.mrtc.mdh.se/projects/wcet/sweet/manual/html/
http://www.mrtc.mdh.se/projects/wcet/sweet/
mailto:wcet@list.mdh.se

D2.3 – Advanced Sequential Static Analysis Methodology

Page 28 of 35 <Dissemination Level> <Status – Version>

D2.3 – Advanced Sequential Static Analysis Methodology

Page 29 of 35 <Dissemination Level> <Status – Version>

3.5. KIT – LLBMC / QPR-Verify

3.5.1. Tool features and benefit

QPR-Verify is a tool for analyzing software written in the programming language C for runtime errors
such as integer overflows, division by zero, or other kind of undefined behavior. It employs a
technique called bounded model checking, which is realized in QPR-Verify’s core solver LLBMC.
Bounded model checking, by encoding program properties on the bit-level, achieves extremely high
precision. Moreover, it is able to produce detailed traces for program errors. On the other hand, its
scalability to large programs is limited.

The kind of errors that QPR-Verify can detect encompass:

- Arithmetic overflows (for both signed and unsigned integer variables)
- Integer division by zero
- Overflows in type casts
- Undefined shift operations (negative arguments, too large arguments, overflows)
- Array index out of bounds
- Uninitialized local variables
- Contract violations (with respect to a user-provided data range specification)
- Failed user-provided assertions

QPR-Verify can provide

- a summary of an analysis run, indicating program locations that are safe or unsafe
- a list of compiler warnings for the analyzed program
- a list of checks, which QPR-Verify performed, each with details about the kind of check, the

result, and possibly further annotations about assumptions that the tool made
- a trace view for each detected error

The trace view shows a step-by-step execution of the program together with variable value changes
up to the error location.

D2.3 – Advanced Sequential Static Analysis Methodology

Page 30 of 35 <Dissemination Level> <Status – Version>

Due to the employed technology of bounded model checking, QPR-Verify can proof correctness of
program constructs. However, the analysis is only up to a maximal user-provided loop bound. Errors
that occur only, if more iterations are needed, will not be reported (the tool notifies the user,
however, if this case occurs).

To increase scalability of the model checking approach, QPR-Verify has two operation modes: a
global analysis (which is less scalable) and a local analysis mode, where only a fraction of the
program is analyzed. These fragments consist of a sub-graph of the call-graph, i.e., they cover more
than a purely intraprocedural analysis.

3.5.2. Input and Output formats

The tool is operated from the command line, and possesses an additional graphical viewer for
analysis results. The command line interface gives access to the following commands:

Usage:
 qpr <command> <command-specific-options>

Commands:
 add-checks Add checks to a job
 add-compiler-option Add compiler options to compile units
 add-source-files Add source files to the project
 analyze-check-in-context Analyze a check in a specific context
 analyze-globally Analyze all unproven checks globally
 build-compile-commands Quickly assemble a set of compile command
 check-all-functions-locally Check all functions locally
 check-function-locally Check a function locally
 check-function-locally-to-fixpoint Check a function locally (to fixpoint)
 clean-project Clean files from the project directory
 clear-collections Clear resource collections (e.g. checks, locations, ...)
 clone-job Clone a job for further analysis refinement and set all checks to status 'todo'
 compile Compile and link together all files in the compilation DB

D2.3 – Advanced Sequential Static Analysis Methodology

Page 31 of 35 <Dissemination Level> <Status – Version>

 configure-all-jobs Set an option for all jobs that were not yet executed
 configure-job Set an option in a job specific configuration
 configure-project Configure analysis and project.
 copy-source-files Copy source and header file contents
 copy-static-files Copy static files into the project directory
 create-job Create a new job
 find-source-files Find all source files in a given directory
 help Print a help text about available commands
 import-drs Import a DRS file and assert the DRS assumptions.
 import-kw-inject Import a kwinject.out file
 import-polyspace-project Import a polyspace project
 integrate-jobs Integrate results from multiple jobs into one
 list-callers List all callers of a given function
 list-functions List all functions containing checks
 merge-job Merge a job's result back into the main list of checks
 murphy Analyse code for properties to be checked
 optimize-bitcode Runs a set of optimization passes on the bitcode.
 print Print a resource as xml
 print-ast Print the abstract syntax tree
 print-bitcode-info Print info about bitcode relevant for analysis
 print-call-graph Print the call graph
 print-slice Print the slice of the bitcode relevant for a given check
 process Run a command in a child process
 remap-compile-commands Remap paths in compile commands
 run Run a local analysis on all functions
 run-job Run a model checker job
 run-script Run a qpr script file
 version Print out the version information

Input to the qpr command is a set of C source code and header files, specified in a compilation
database together with compiler definitions and possibly macros. Additionally, different aspects of
an analysis run can be configured using the command configure-project.

The output of the tool consists of a set of XML files, which contain the analysis result. These file
can be viewed with the QPR-Report GUI tool.

Experimental support for the ASSUME Static Analysis Exchange Format is also integrated.

3.5.3. Tool constraints

• Scalability, although considerably improved during the run of the ASSUME project, is still
limited to programs with a size in the order of 100.000 lines of source code.

• Seldom occurring program constructs might not be supported.
• The source code to be analyzed must be compilable with the clang compiler.

D2.3 – Advanced Sequential Static Analysis Methodology

Page 32 of 35 <Dissemination Level> <Status – Version>

3.6. Assystem: MQAnalyzer

3.6.1. Tool features and benefit

The MQAnalyzer is a prototypic implementation of the methodology developed by Assystem. It
serves as a comprehensive aggregating component with smart mapping functionality for other
software quality analysis tools and also supports certain analyses by itself. Aggregating, merging
and mapping of various analysis results, as well as assisted reviewing and automated exporting of
merged and revised analysis data is seen as its core functionality. The implementation is designed
to assist software developers during the whole software development life cycle where model-based
development is in use.

Purpose of this aspect of the methodology is to gather all relevant information from different sources
and propagate them through the aggregation and review process of issue assessment and
classification. Therefore, the tool's aggregation interfaces are designed to be extendable for all
relevant Model Quality Analysis tools on the market. The exported results are standardized and
comparable and allow a flexible integration into quality assurance processes.

Figure 16: Assisted review of analysis results in the MQAnalyzer (Example: Guidelines)

The prototype was designed and developed in the context of ASSUME. So far, interfaces to the
MES tools MXAM and MXRAY as well as several tools by MathWorks have been integrated. The
process of data aggregation, comprehensive review and classification and automated export can
already be conducted.

D2.3 – Advanced Sequential Static Analysis Methodology

Page 33 of 35 <Dissemination Level> <Status – Version>

3.6.2. Input and Output formats

Figure 17: Importing the results of a guideline analysis by MXAM

As mentioned above, the interfaces for the output of the MES tools, as well as a direct interface to
Matlab/Simulink, have been implemented. The interface to Matlab not only provides a way to import
the results of the MathWorks analysis tools, it can also be used to integrate custom checks and
scripts implemented in Matlab to be used in the model analysis process.

After concluding the assisted review process, the MQAnalyzer will provide an automatically
generated report containing all found flaws and defects. The report serves two purposes at the
same time. On one side, it provides an overview about the found results supported by graphics and
charts. On the other side, it gives a list of all discovered issues and flaws to assist the developer
when addressing the issues. The report also contains mechanisms to assist the tracking of the
contained issues.

3.6.3. Tool constraints

ASSUME partners are free to receive the prototype in binary form. It cannot be downloaded, as it
is currently not commercially available.

Some of the functionality, especially concerning the extension with respect to other tools and special
analysis methods are still under development and only available in a preliminary form.
For more information about the prototypic implementation and the available services provided,
please contact softwarequality@assystemtechnologies.com.

mailto:softwarequality@assystemtechnologies.com

D2.3 – Advanced Sequential Static Analysis Methodology

Page 34 of 35 <Dissemination Level> <Status – Version>

References

[1] Wolfgang Ecker, Wolfang Müller, Rainer Dörmer. “Hardware-dependent Software.” Springer
Netherlands, 2009

[2] https://clang.llvm.org/docs/JSONCompilationDatabase.html

[3] https://www.xilinx.com/support/documentation/ip_documentation/axi_vdma/v6_3/pg020_axi
_vdma.pdf

[4] Jan Gustafsson, Andreas Ermedahl, Björn Lisper, Christer Sandberg, and Linus
Källberg. ALF - A Language for WCET Flow Analysis. In Proc. 9th International
Workshop on Worst-Case Execution Time Analysis (WCET09), July 2009.
http://www.es.mdh.se/publications/1420-

[5] Jan Gustafsson, Andreas Ermedahl, and Björn Lisper. ALF (ARTIST2 Language for
Flow Analysis) Specification. Technical report, MDH, Oct. 2011.
http://www.es.mdh.se/publications/1138-

[6] Florian Merz, Stephan Falke, Carsten Sinz. LLBMC: Bounded Model Checking of C and
C++ Programs Using a Compiler IR. Proc. of the Intl. Conf. on Verified Software: Tools,
Theories, Experiments (VSTTE), Springer, 2012.

https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://www.xilinx.com/support/documentation/ip_documentation/axi_vdma/v6_3/pg020_axi_vdma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_vdma/v6_3/pg020_axi_vdma.pdf

D2.3 – Advanced Sequential Static Analysis Methodology

Page 35 of 35 <Dissemination Level> <Status – Version>

	Author Table
	Change and Revision History
	Table of Contents
	List of Figures
	1. Executive Summary
	2. Methodology, Flow and Handling
	2.1. Environment Model
	2.2. Source Code Verification
	2.3. Automatic Modularization
	2.4. Timing Analysis
	2.5. Software/Model Quality Analysis
	2.6. Analysis Result Integration

	3. Overview of the individual tools
	3.1. AbsInt: aiT
	3.1.1. Tool Features and Benefit
	3.1.2. Input and Output Formats
	3.1.3. Tool Constraints

	3.2. AbsInt: Astrée
	3.2.1. Tool Features and Benefit
	3.2.2. Input and Output Formats
	3.2.3. Tool Constraints

	3.3. FZI: C-SAPP
	3.3.1. Tool features and benefit
	3.3.2. Input and Output formats
	3.3.3. Tool constraints

	3.4. Mälardalen University/SWEET
	3.4.1. Tool features and benefit
	3.4.2. Input and Output formats
	3.4.3. Tool constraints

	3.5. KIT – LLBMC / QPR-Verify
	3.5.1. Tool features and benefit
	3.5.2. Input and Output formats
	3.5.3. Tool constraints

	3.6. Assystem: MQAnalyzer
	3.6.1. Tool features and benefit
	3.6.2. Input and Output formats
	3.6.3. Tool constraints

	References
	[4] Jan Gustafsson, Andreas Ermedahl, Björn Lisper, Christer Sandberg, and Linus Källberg. ALF - A Language for WCET Flow Analysis. In Proc. 9th International Workshop on Worst-Case Execution Time Analysis (WCET09), July 2009. http://www.es.mdh.se/pub...
	[5] Jan Gustafsson, Andreas Ermedahl, and Björn Lisper. ALF (ARTIST2 Language for Flow Analysis) Specification. Technical report, MDH, Oct. 2011. http://www.es.mdh.se/publications/1138-
	[6] Florian Merz, Stephan Falke, Carsten Sinz. LLBMC: Bounded Model Checking of C and C++ Programs Using a Compiler IR. Proc. of the Intl. Conf. on Verified Software: Tools, Theories, Experiments (VSTTE), Springer, 2012.

