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1. Executive Summary 

In ASSUME the methods and tools for Single Core Application were developed and finally result in 
the Serial Static Analysis Toolkit (SSAT) 
This deliverable give an impression how the SSAT works and should correspond to the character 
of a manual for the individual tools.  
 
 
 



 

 
 

D2.3 – Advanced Sequential Static Analysis Methodology 

Page 6 of 35 <Dissemination Level> <Status – Version> 
 

 

2. Methodology, Flow and Handling 

In work package “Scalable Zero Defect Analysis for Single Core” a tool chain was developed for 
solving the challenges of sequential static analysis for real industrial software applications. The 
following pages give a current overview of the developed toolkit. 
 
The advanced Sequential Static Analysis Toolkit (SSAT) is a flexible solution that addresses all 
sequential use cases. To get the best results we propose to use the full SSAT flow. To keep the 
flexibility it is also possible to use only parts of the overall tooling. For example if a user is first 
interested to do a Timing Analysis he/she should not be forced to spend the effort and computational 
time on the Source Code Verification as well and it is possible to do the source code verification at 
a later step in the development process. 
In this chapter a brief overview of the methodology for the general SSAT is given together with an 
explanation of its work flow and tool handling. More details about each individual module and its 
main functionality can be found in Chapter 3.  
 
The overall structure of the SSAT is shown in Figure 1. The graphical representation of the SSAT 
show how each module will interact with the other modules and how the overall flow could look like. 
 
 

 

Figure 1 SSAT Structure 

 
 

2.1. Environment Model 

 
Static analysis tools struggle with checking embedded systems software for defects and runtime 
errors, because the analyzed source code, often written in C, is heavily tailored to a specific 
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hardware platform and execution environment. Correct functionality of the embedded system design 
requires co-verification techniques that are able to address not only the individual hardware (HW) 
and software (SW) components but also their complex interactions. Generic analysis tools check 
source code that can be run on a multitude of existing hardware platforms and configurations. 
Detailed information about the system environment is abstracted and discarded, resulting in an over 
approximation of analysis results and thus an increase in false warnings (false positives). 
Any formal analysis requires a formal model of the design under verification. In case of software, 
this model often comprises a nontrivial environment that the code runs in (libraries, other programs, 
and hardware components). As programs often interact with the environment and rely on platform 
specific properties, substantial manual effort is required to model these parts of the environment. 
Neglected consideration of hardware properties causes ignorance of interrupts, timers, and I/O-
registers. In critical embedded systems, interfaces are often modelled as "volatile" variables and 
the interface specification typically as constraints on these variables. Modern "intelligent" HW 
components go beyond simple Port I/O and thus work directly on shared-memory, perform direct 
memory access (DMA), all asynchronously from the main processor. System side effects, caused 
by embedded assembly instructions, direct access to system memory and specific I/O-registers via 
Memory Mapped I/O (MMIO), make it impossible to truly verify the SW component without taking 
the HW component into account, because incorrect programming of the HW component can have 
severe consequences, such as memory zones being erased. Abstraction of the HW behavior and 
the interaction with the SW component often results in an overwhelming amount of false alarms, 
weakening the overall acceptance of static analysis tools during software development. 
The specification of system invariants, hardware constraints and behavior is therefore a necessary 
but daunting task that has to be performed manually, using configuration files and annotations in 
the source code. A deep understanding of the underlying hardware architecture and system 
constraints is required to write invariants for embedded systems software but this specific domain 
knowledge is often hidden in numerous hardware abstraction layers. One cannot assume that a 
developer writing the application code neither has a detailed understanding of the whole system 
architecture, nor is able to write invariants as code annotations using an annotation/assertion 
language that is specific to an analysis tool. Environment models, which capture hardware 
properties and constraints, can alleviate the tedious task of analysis setup and invariant 
specification by utilizing domain knowledge about the system architecture to automatically generate 
annotations that can be used by different analysis tools. 
A key to building an effective co-verification toolchain is to translate the HW and SW models to a 
common representation with common semantics (co-verification model), enabling specification of 
system-level-properties across HW/SW boundaries. One approach to achieve co-verification is to 
model HW properties within the SW domain and capture temporal correlations between SW and 
HW events using special-purpose primitives to model HW/SW interactions. 
 
Even though building an environment model, which represents the whole hardware platform and all 
its components, can be a challenging task, which has to be performed by domain experts, the 
benefits of automatically generating co-verification models for checking run-time errors of hardware-
dependent software outweigh the initial modelling effort. The environment model is an abstract 
representation of domain knowledge about the hardware architecture and serves as the primary 
source for generating tool specific source code annotations that can be used by static analysis back 
ends.  
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2.2. Source Code Verification 

Examples of runtime errors in C-Programs include Buffer-Overflows (i.e. data is written beyond the 
boundary of legal memory which causes different parts of the memory to be filled with wrong data) 
or Division-By-Zero (depending on the hardware the result may get saturated or an interrupt could 
be triggered). Such runtime errors are troublesome since they may lead to very costly program 
failures (e.g. the explosion of the Ariane-5 rocket). The main focus of source code verification is to 
statically (i.e. without execution) prove the absence of runtime errors in code. For the embedded 
systems studied in ASSUME the language of choice usually is C. 
Sound tools based on techniques such as Abstract Interpretation (Astrée) or (Bounded) Model 
Checking (LLBMC/QPR) will discover such issues. Hence, being sound guarantees (with respect to 
the assumptions used, e.g. on hardware-behavior) that no errors are missed by an analysis. The 
drawback is that since the analysis must be computable, some over-approximations are needed to 
make the process terminate. These over-approximations lead to false alarms being reported which 
must eventually be dismissed by a trained human. 
 
The benefit of Abstract Interpretation is that it scales to very large programs (hundreds of thousands 
or even million lines of code) but due to over-approximations (e.g. widenings) the results are 
dominated by false alarms. As a remedy, tools like Astrée allow the user to selectively increase the 
precision of the analysis in order to get rid of false alarms (in subsequent analyses). More (older 
and more recent) references on Astrée can be found in [1,2]. 
 
Bounded Model Checking (BMC) on the contrary, is based on the idea to exhaustively explore all 
states of a program up to a certain bound k – if no error is found then the program is safe up to this 
bound. Hence, the technique is under-approximating the system behavior – however, if the bound 
k is sufficient to guarantee the whole state-space is explored then the system can also be proven 
safe. Since, embedded programs are inherently bounded (e.g. due to timing requirements), the 
technique is very effective in verifying these systems. The most successful technique for BMC is to 
efficiently encode the system behavior up to depth k as a formula (either in propositional calculus 
or more generally as an SMT-formula). In addition, the error-locations are encoded as a second 
formula and if the conjunction of the two is satisfiable, then the error-location is reachable and an 
erroneous program path (counterexample) can be reconstructed from the satisfying assignment. 
The low-level bounded model checker LLBMC [3] uses the LLVM intermediate representation as a 
frontend to be able to parse and verify C/C++ programs. The benefit of BMC is its precision – bit-
manipulating and floating-point operations can be analyzed in a bit-precise manner. The drawback 
of this precision is that the technique is less likely to scale to very large programs than Abstract 
Interpretation. 
 
 
[1] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David 
Monniaux, and Xavier Rival. Varieties of Static Analyzers: A Comparison with Astrée, invited paper. 
First IEEE & IFIP International Symposium on ``Theoretical Aspects of Software Engineering'', 
TASE'07, Shanghai, China, 6—8 June 2007, pp. 3—17. 
 
[2] A. Miné, L. Mauborgne, X. Rival, J. Feret, P. Cousot, D. Kästner, S. Wilhelm, C. Ferdinand. 
Taking Static Analysis to the Next Level: Proving the Absence of Run-Time Errors and Data Races 
with Astrée. In ERTS 2016: Embedded Real Time Software and Systems, 8th European Congress, 
Jan 2016, Toulouse, France. 
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[3] Florian Merz, Stephan Falke, and Carsten Sinz: LLBMC: Bounded Model Checking of C and 
C++ Programs Using a Compiler IR. In Proceedings of the 4th International Conference on Verified 
Software: Theories, Tools, and Experiments (VSTTE '12), Philadelphia, USA. ©Springer-Verlag 
 

2.3. Automatic Modularization 

Automatic modularization is necessary for the integration verification of very large software 
applications written in C. The goal of the automatic modularization is to provide software modules 
that the verification tool can handle. Each module should be in such a form, that the verification tool 
can use its strengths and be able to deliver high precision results. Every cut in the software and 
missing function or variable content introduces new spurious warnings so that the quality of the 
results is decreasing. 
 
To prevent or reduce these sources of imprecision, an intelligent modularization is needed. To keep 
individual modules from getting too large or even ending up containing the full software careful 
optimizations are needed to limit the modules’ complexity. 
This includes features like recognizing the full original scheduling of the complete software and to 
construct a new module specific scheduling based on this original scheduling and to remove 
unneeded functions. 
In addition to minimizing modules’ complexity the automatic modularization should still allow sound 
verification. Hence, missing information resulting from any “cutting” needs to be handled in a 
conservative way by the verification tools.  
 

2.4. Timing Analysis 

Hard real-time systems need to satisfy stringent timing constraints, which are derived from the 
systems they control. In general, upper bounds on the execution times are needed to show the 
satisfaction of these constraints. To obtain such upper bounds in an automatic way, a timing 
analysis has to be performed. The two main criteria for evaluating a method or tool for timing 
analysis are safety – does it produce upper bounds or merely estimates? – and precision – are the 
bounds or estimates close to the exact values? 
 
Usually, a real-time system consists of a number of tasks or processes that realize the required 
functionality. For the temporal verification of such systems, it is necessary to obtain worst-case 
execution time information for the individual, sequential tasks (so-called code-level timing analysis) 
and to integrate them in a temporal analysis of the entire system taking communication, 
interference, pre-emption and scheduling overheads into account (system-level timing analysis) [4]. 
 
Code-level timing analysis refers to the analysis of “un-preempted” execution times of individual 
sequential tasks. A task may be a unit of scheduling by an operating system, a subroutine, or some 
other software unit, which is usually available as a fully-linked executable. 
 
A task typically shows a certain variation of execution times depending on the input data or different 
behavior of the environment. The longest possible execution time is called the worst-case execution 
time (WCET). However, in most cases the state space is too large to exhaustively explore all 
possible executions and thereby determine the exact WCET. Dynamic timing analysis is a method 
to estimate the WCET of a task by measuring its end-to-end execution time for a subset of the 
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possible executions (the test cases). This determines the maximal observed execution time, which 
will, in general, underestimate the WCET and so is not safe for hard real-time systems (see Figure 
2). 
 

 

Figure 2: Measured and predicted execution times of tasks (from [5]) 

 
Newer measurement-based approaches make more detailed measurements of the execution time 
of different parts of the task and combine them to give better estimates of the WCET for the whole 
task. Still, these methods are rarely guaranteed to give safe upper bounds on the execution time. 
Such bounds can be computed only by methods that consider all possible execution times, that is, 
all possible executions of the task. These methods use static program analysis together with 
abstraction of code properties to make timing analysis of the task feasible. Abstraction loses 
information, so the computed WCET bound usually overestimates the exact WCET. The WCET 
bound represents the worst-case guarantee the method or tool can give. How much is lost depends 
both on the methods used for timing analysis and on overall system properties, such as the 
hardware architecture and characteristics of the software. These system properties can be 
subsumed under the notion of timing predictability. 
 
Traditionally, static worst-case execution-time estimation can be divided into two related sub-
problems. The first problem relates to the program control-flow, determining which parts of the 
program are executed in which order and which parts are mutually exclusive. This can require 
extensive value tracking to help determine loop bounds and find points where the program execution 
depends on input data of the code. Using this information, the worst-case execution-time estimation 
tool can then reason about the code structure within the application which is commonly performed 
either on the structure itself, or through implicit-path enumeration [5]. 
 
The second problem is finding proper execution-time bounds for each of the basic blocks of the 
program flow (i.e. groups of operations that form a single node in the control-flow graph of the 
application). Here the execution time depends mostly on architectural features of both the processor 
that executes the program as well as the underlying memory hierarchy. For simple architectures, it 
might be possible to just count the number of operations within the block, but doing so will result in 
inaccuracies for more complex architectures. For example, processor features such as out-of-order 
instruction execution and cached memory accesses can insert uncertainty in the execution time. In 
some cases, the program will execute quickly while in others it will be delayed significantly, 
depending on the context of the block within the program (or the program within its environment). 
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Combining the execution-time information for each program part with that of the application 
structure provides the critical path of the overall application, which in turn results in the worst-case 
execution-time of the entire task. A possible way to this is by integer linear programming. The 
analyzer sets up a linear program with integer variables corresponding to the execution counts of 
the basic blocks. The target function multiplies these variables with the corresponding basic-block 
execution times. The constraints of the linear program are derived from the control structure, the 
loop bounds, and other flow properties. Constraints derived from the control structure are for 
instance those that assert that the sum of the execution counts of the incoming edges of a block 
equals the sum of the execution counts of the outgoing edges. 
 
[4] D. Kästner, C. Ferdinand, R. Heckmann, M. Jersak, P. Gliwa. An Integrated Timing Analysis 
Methodology for Real-Time Systems. Embedded World Congress 2011, Nürnberg, 2011. 
 
[5] Wilhelm, Reinhard, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David 
Whalley, Guillem Bernat, et al. 2008. The worst-case execution-time problem – Overview of 
methods and survey of tools. ACM Transactions on Embedded Computing Systems (TECS) 36:7.3. 
 
 

2.5. Software/Model Quality Analysis 

 
The integration of this analysis takes place in the higher-level of the ASSAT tool design rather than 
on functional source code. Analyzing the quality of the software model is a continuous quality-
increasing process to accompany the software developer by improving software quality and detect 
errors as early as possible in the software development lifecycle.  
 
Overview of the continuous application of the quality analysis process on software model level: 

 

 

2.6. Analysis Result Integration 

The SSAT contains a number of different tools that produce different outputs. Depending on the 
used flow it is helpful to get only one overall result report instead of checking several analysis from 
the same tool or from different tools. Different phase of integration are introduced: 

- Loose Coupling of Components 
- Tight Coupling of Components and Complex Interactions 
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- Arbitrary Combinations of Components 
The loose coupling of components is realized by using the results from one tool as input for the next 
tool. It happened by original code modification (e.g. portioning of large SW), providing additional 
information for a correct configuration of the next tool or by providing additional information that can 
be used as inputs (e.g. Data Ranges). In this case no results need to be integrated. 
The tight coupling allow an intensive exchange of information between similar tools or the same 
tool. This can be used to transfer helpful extracted information from one analysis to the next. This 
information help to reduce the computational effort and increase the precision of the analysis. 
Intermediate results from the same tool from different verification runs can be reviewed. An overall 
analysis result integration is helpful. 
The last phase allows to combine tools and results on meaningful paths based on provided use 
cases and is a combination of the first two phases. 
To be able to use the results from different tools and to be able to combine them into an integrated 
result some additional points need to be fulfilled: 

- The results based on the same sources.  
- The source code specific tool configurations needs to be comparable (e.g. assumed HW 

environment, compiler behavior) 
The ASSUME Static Code analysis tool Common Configuration Format” (ASC3F) - developed in WP2 
– allows to provide a universal configuration and report format for different static analysis tools. The 
configuration format facilitates the specification of analysis tasks without introducing tool specific 
configuration files and setup methodologies. The ASC3F also enables the specification of machine-
independent configurations, e.g. hiding differences in the concrete paths of source code files. Utilizing 
a modular configuration approach, reuse of existing analysis configurations is supported as well. 
Besides the common configuration of static analysis tools, the integration of analysis reports, generated 
by the analysis tools, is a significant aspect that needs to be considered in the integration of analysis 
results. The ASC3F format addresses this aspect by establishing a common hierarchy of check 
categories with accompanying check semantics, making results, obtainable from different tools, directly 
comparable. The format is designed to be extensible, allowing the addition of new language features 
and configuration options in the future.  Fehler! Verweisquelle konnte nicht gefunden werden. shows 
an overview of the ASC3F components and their dependencies. 
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Figure 3: Module structure of the ASC3F format 

 
In WP3, FZI, KIT, and MDH demonstrate the coupling of different tools using the ASC3F format, 
OSLC and the Linked Data approach. Every tool that allows the setup of analysis project using a 
configuration file can easily adapt this method. Only an adapter that translates the ASC3F format to 
the tool specific configuration file needs to be added once. In addition, generated reports are 
consumed by the adapter and transformed into a common representation using the ASC3F format.  
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3. Overview of the individual tools 

 

3.1. AbsInt: aiT 

3.1.1. Tool Features and Benefit 

The aiT tool (https://www.absint.com/ait/) determines safe and precise upper bounds for the worst-
case execution times (WCETs) of tasks in real-time systems. Here, a task means a sequentially 
executed piece of code (no threads, no parallelism, no waiting for external events, and assuming 
no interference from the outside). aiT operates on binary executables for selected target 
architectures. In the ASSUME project, support for the MPPA2 architecture of Kalray was added so 
that aiT can be used in the avionics use cases. 
 
aiT employs static program analysis by means of abstract interpretation. The analysis covers all 
possible program runs with all possible inputs without actually executing the program. Therefore, it 
does not require access to physical hardware, nor any code instrumentation or complex test setup. 
aiT can be seamlessly integrated into the development process and continuous verification 
frameworks. 
 
AbsInt already offers a plugin for automatic integration of aiT in Jenkins, an open-source automation 
server for continuous integration and continuous delivery. Using this plugin, developers can 
automatically analyze the worst-case execution times of their Jenkins builds, automatically mark a 
build as failed depending on the analysis results according to self-defined criteria such as violated 
expectations or specific errors, view a compact summary of the analysis results and failed items in 
the Jenkins build output, access detailed analysis results via the Jenkins web interface, and archive 
report files directly to the Jenkins workspace. 
 

3.1.2. Input and Output Formats 

 

Figure 4: Input and output of aiT 

https://www.absint.com/ait/


 

 
 

D2.3 – Advanced Sequential Static Analysis Methodology 

Page 15 of 35 <Dissemination Level> <Status – Version> 
 

 

The main input of aiT is a statically linked binary executable containing the task(s) to be analyzed. 
Secondary input is given by annotations that provide additional information about the analyzed 
program, e.g. targets of computed calls, loop bounds, and restrictions on the range of variables. aiT 
tries to compute such information by itself, but sometimes is not able to obtain sufficiently precise 
useful results. 
 
Annotations may be given in separate annotation files or as specific comments in the C source 
code. As aiT analyzes binary executables, the presence of C source code is not required, but if it is 
available, it is read by aiT to watch out for embedded annotations and to be able to refer to C source 
code in its output. 
 
aiT also requires information about the hardware configuration. Such information can be specified 
by options in the graphical user interface (GUI), textual descriptions in an annotation file, or 
specification of the contents of configuration registers (details depend on the target architecture). 
Names of executable and annotation files are entered in the GUI. From this information, a project 
file can be formed. 
 

 

Figure 5: GUI after running an aiT analysis 
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aiT is part of the AbsInt analyzer framework a3, which comes with a graphical user interface (GUI) 
– see Figure 5. Thus, aiT can be started for interactive work by starting the GUI, loading a project 
file, and starting a WCET analysis. aiT can also be started in batch mode without user interaction. 
 

 

Figure 6: Fragment of control-flow graph with overall WCET and routine WCETs 

aiT produces safe over-approximations of the overall worst-case execution time (WCET), the 
WCETs for routines and basic blocks, worst-case execution numbers for routines and basic blocks, 
and the worst-case path. This information is given in a textual report file for human inspection and 
an XML report file that may be read by other applications. aiT produces also combined call graphs 
and control-flow graphs showing the structure of the analyzed program with analysis results 
attached to the structure elements (see Figure 6). A comprehensive statistics view gives an 
overview of the direct vs. cumulative execution times, i.e., the time consumed by each function itself 
vs. the time consumed by itself and all its callees (see Figure 7). The statistics view also gives 
detailed information about the variable usage at the binary level, e.g., how often a global variable 
was accessed (categorized by read and write accesses) per function and in total. 
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Figure 7: Statistics view showing direct and cumulative WCETs of routines 

 

3.1.3. Tool Constraints 

There are aiT WCET analyzers for various different target processors. In ASSUME, the aiT family 
was extended by aiT for Kalray, which can only analyze fully linked binary executables for Kalray 
MPPA2 (Bostan). 
 
There are Windows and Linux versions of aiT. The Windows version requires 64-bit Windows 7 SP1 
or newer, and the Linux version 64-bit CentOS/RHEL 6 or compatible. For proper functioning, there 
should be at least 4 GB of RAM (16 GB is recommended) and 4 GB of disk space. The Linux version 
requires the libxcb-* family of libraries to be installed. 
 
aiT can be obtained from AbsInt Angewandte Informatik GmbH (support@absint.com). AbsInt offers 
commercial licenses, including training, support, and maintenance. 
  

mailto:support@absint.com
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3.2. AbsInt: Astrée 

3.2.1. Tool Features and Benefit 

 
Astrée (https://www.absint.com/astree/) is a sound static program analyser that has been developed 
by ENS and is licensed by AbsInt for industrialization. Addition of new features is done in 
cooperation with ENS and Sorbonne University (formerly known as UPMC). Astrée was designed 
to prove the absence of runtime errors and further critical program defects, including array index 
out of bounds, invalid pointer dereferences, int/float division by 0, arithmetic overflows and wrap-
arounds, floating point overflows and invalid operations (Inf and NaN), and uninitialized variables. 
In floating-point computations, all possible rounding errors, and their cumulative effects, are taken 
into account. The tool is based on abstract interpretation, a provably correct formal method, and 
does not require the program under analysis to be instrumented, executed, or stimulated by test 
cases. The tool can be used on handwritten code, automatically generated code, or any combination 
thereof. It can be integrated into continuous verification frameworks such as Jenkins (a Jenkins 
plugin exists). 
 

 

Figure 8: Overview on Astrée analysis results 

Astrée contains the seamlessly integrated RuleChecker that checks code for compliance with 
MISRA, CWE, ISO/IEC, and SEI CERT C coding rules. The tool can also check for various code 
metrics such as comment density or cyclomatic complexity. Custom extensions for user-defined 
coding guidelines are available on request. Using RuleChecker in conjunction with the sound 
semantic analyses offered by Astrée guarantees zero false negatives and minimizes false positives 
on semantical rules. No standalone MISRA checker can offer this, and no testing environment can 
match the full data and path coverage provided by the static analysis. 

https://www.absint.com/astree/index.htm
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Figure 9: RuleChecker configuration view 

In the ASSUME project, the Astrée tool has been evaluated by the project partners, in particular 
Bosch and Daimler. The evaluation showed the need for various extensions of the tool. First, Astrée 
had to be extended to support some C extensions occurring in the partners' code. Then the main 
goal was to improve the user interface, to increase the precision of the analysis, and to reduce the 
effort to examine (possibly false) alarms. To this end, the repeated reporting of errors with the same 
cause has been avoided, e.g. only the first access is reported now in case of repeated accesses to 
a non-initialized variable. Another goal was to reduce the analysis time and the memory 
consumption of the analyzer, in particular when analyzing very large code bases. The results are 
impressive, e.g. for some example, the analysis time dropped from 10 days to 3 days, for another 
example from 26 hours to 2.5 hours, and for a third from 2 hours to 38 minutes. 

3.2.2. Input and Output Formats 

Input 
 

1. Astrée works on preprocessed C code. If desired, a built-in preprocessor can be used to 
obtain preprocessed code. The code is then parsed and translated into an intermediate 
representation on which the runtime error analysis is performed. 
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2. For each analysis, Astrée needs an entry point – typically a function of particular interest, 

or simply main. Astrée will then analyze all portions of the code that can be reached by non-
interrupted sequential program execution from that entry point. 

 
3. It is possible to provide an analysis wrapper – e.g. to model reactive system behavior – in 

a dedicated C file associated with the analysis. 
 

4. Astrée can also be configured with different ABI (application binary interface) settings. 
 

5. Lastly, Astrée accepts formal analysis directives that provide external information to the 
analyzer, e.g., about the environment, or to steer the analysis precision. The directives are 
specified in the dedicated, human-readable Astrée Annotation Language (AAL) so that the 
source code does not have to be modified. The locations to which the directives refer are 
specified over the program structure and are robust with respect to line numbers. 

 

Output 
 
The most important result of the analysis is a list of alarms, i.e. of potential runtime errors. Each 
error is reported together with its type and the source code location where it occurs. If Astrée can 
prove that an alarm will always occur in a specific context, it is classified as a definite runtime error. 
In addition, various kinds of statistics are compiled. Interactive tables, graphs and charts let you 
quickly see which code areas are most prone to which kinds of errors. 
 
Report files can be generated for documentation and certification purposes. The entire analysis 
project can be saved as well, including all files, settings, annotations and comments. The analyzer 

Figure 10: Preprocessor configuration view 
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also provides coverage information showing unanalyzed code statements. In absence of definite 
runtime errors, code reported as unanalyzed is definitely unreachable. 
 

 

Figure 11: Overview on reported code defects 

Lastly, Astrée can be used to check for functional program properties by a static assertion 
mechanism. If Astrée does not report the assertion to be violated, the asserted C expression has 
been proven correct. 
 
Astrée will always stop with an error if indispensable data is missing or if source files cannot be 
correctly parsed and translated. 
 

Handling the alarms 
 
Each reported alarm indicates a potential runtime error, which can be interactively explored, 
commented on, or fixed right away in the built-in C source code editor. Possible false alarms can 
be marked as such using AAL annotations so that they no longer occur on subsequent analysis 
runs. Alternatively, you can tweak the analysis settings or increase the analysis precision for 
selected code parts. After that, you can run the analysis once again and examine the improved 
results. 
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These steps are repeated as needed until all alarms have been dealt with and no errors are reported 
anymore. At that point, the absence of errors in the code has been formally proven. 
 

 

Figure 12: Alarm investigation using editor views 

 

3.2.3. Tool Constraints 

 
There are Windows and Linux versions of Astrée. The Windows version requires 64-bit Windows 7 
SP1 or newer, and the Linux version 64-bit CentOS/RHEL 6 or compatible. There should be at least 
4 GB of RAM (16 GB is recommended) and 4 GB of disk space. 
 
Astrée actually consists of two parts:  

1. The Astrée client, for setting up an analysis and viewing the results. The client offers both 
a GUI and a batch mode for easy automation and integration. 

2. The analysis server, which carries out the actual analysis (or several analyses as separate 
processes). 

 
Both parts may run together on the same machine. In production, however, the server typically runs 
on a powerful remote host, while clients are run by the individual developers and managers on their 
PCs or other devices. 
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Astrée can be obtained from AbsInt Angewandte Informatik GmbH (support@absint.com). AbsInt 
offers commercial licenses, including training, support, and maintenance. The licensing models are 
very flexible, ranging from single analysis servers with limited client connections to department or 
company licenses. The license file determines how many clients may connect to the server at the 
same time, and how many analysis processes can run there in parallel. 
  

mailto:support@absint.com
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3.3. FZI: C-SAPP 

3.3.1. Tool features and benefit 

C-SAPP (C Static Analysis Preprocessor) is a research prototype, developed at FZI, to support 
analyses of Hardware-dependent Software (HdS) [1]. The central idea is to augment the input to 
static program analysis tools (e.g., Astrée) by auxiliary information in a way that specific properties 
of the underlying hardware (HW) platform are considered during runtime-defect analysis of the 
software (SW). The C-SAPP tool can be thought of as a sophisticated preprocessor for the 
hardware-dependent software code under analysis. Its main tasks include the identification of 
hardware specific code sections (e.g., inline assembler, MMIO, interrupts) and various 
transformation steps, augmenting those sections with in-source directives (assertions, 
assumptions) that can be processed by static analysis tools such as Astrée.  
In cross-boundary HW/SW defect analysis a formal model of the design under verification – a 
common representation of HW and SW with formal semantics – is of paramount importance for co-
verification across HW/SW boundaries where the intricate nature of HW/SW interaction constitutes 
an acute challenge. In critical embedded systems, HW/SW interfaces are often modelled as 
"volatile" variables and constraints on these variables. Modern "intelligent" HW components go 
beyond simple Port I/O and thus work directly on shared-memory, perform direct memory access 
(DMA), all asynchronously from the main processor. System side effects, caused by embedded 
assembly instructions, direct access to system memory and specific I/O-registers via Memory 
Mapped I/O (MMIO), make it impossible to truly verify the SW component without considering HW 
properties.  
The C-SAPP tool addresses the co-verification challenge by a model-driven approach where HW 
properties and their interface are specified using a SW/HW Interface Model (SHIM) followed by a 
generation and annotation step that augments the source code under analysis and makes HW side-
effects explicit during program analysis. The overall tool flow is shown in Figure 13. The main benefit 
of the tool lies in the support for design automation of safety critical, embedded systems in the 
context of program analysis. Specifications of hardware components (e.g., timers, DMA controllers, 
I2C controllers, etc.) and whole platforms can be reused when developing new SW applications. A 
concise model of the HW/SW interface and hardware properties (SHIM model) facilitates the static 
analysis of embedded software across multiple projects because the co-verification model can be 
generated using the C-SAPP tool. A SHIM model of a HW component has to be created once and 
can be reused in multiple scenarios to generate source code and annotations for various static 
analysis back ends (e.g., Astrée, QPR, Goblint, etc.).  
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Figure 13: C Static Analysis Preprocessor (C-SAPP) 

 

3.3.2. Input and Output formats 

The C-SAPP tool is based on the LLVM/Clang LibTooling framework and is run from the command 
line with a small set of command-line flags. 
The primary input of the tool is C code. A prerequisite for running the C-SAPP tool is the existence 
of a “Clang Compilation Database” [2]. The C-SAPP tool parses the source code and thus needs 
full information on how to parse a translation unit (C file) with all compiler flags, include paths and 
other options. The “Clang Compilation Database” stores this additional information in a JSON file 
that can be generated using build systems such as CMake. 
The secondary input is the SHIM model that describes the hardware platform, the software is 
executed on. The SHIM model can be very detailed but also very abstract, modelling only specific 
properties of HW/SW interaction that are of interest during program analysis. All HW/SW 
interactions are specified in two steps (Figure 14).  
The SW model is a list that contains all routines to access a specific HW component (SW-HW 
transaction) and is only mandatory if the source code for the device drivers is not included in the 
source code under analysis. Direct writes to HW registers using MMIO are SW-HW transactions 
and C-SAPP will identify all potential interactions via shared registers. 
The HW model specifies the HW structure with all its registers and memories using IP-XACT or 
SystemRDL. The HW model can be created manually from specifications where all registers are 
described in detail (e.g., Xilinx VDMA Figure 15) or generated by design automation tools that 
generate IP-XACT files for the Intellectual Property (IP) components. Interrupt signals in the HW 
model are considered as HW-SW transactions and the corresponding Interrupt Service Routine 
(ISR) is part of the SW model.  
From the SHIM model, a skeleton implementation of the hardware component is generated as C 
code, modelling the interaction of SW and HW via their shared register interface. The SHIM model 
is an Ecore model and can be created in a separate modelling environment based on Eclipse. 
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Figure 14: HW/SW interaction 

 

 

Figure 15: MM2S VDMA Control Register specification [3] 

3.3.3. Tool constraints 

The C-SAPP tool is an early research prototype that is far away from an “All-in-One Application” for 
HW/SW cross-boundary program analysis. Currently, the tool can only generate the structure for 
the HW/SW interface and a skeleton implementation of hardware interaction with software. Behavior 
models for the SW-HW transactions need to be added manually as a set of transformation rules (C 
code templates) during the code generation steps. 
The overall tool flow is still immature and fragmented because of the missing integration of all steps 
into a common environment and thus ongoing work focuses on the integration of all modelling and 
code generation task into an Eclipse toolchain. 
Even though the C-SAPP tool is a standalone tool, only the generation of Astrée specific code 
annotations has been tested so far. Other back ends such as QPR or Goblint can be easily 
supported in the future by adjusting the transformation rules in the C-SAPP “Transformation 
Backend”. 

3.4. Mälardalen University/SWEET 

3.4.1. Tool features and benefit 

SWEET (SWEdish Execution Time tool) is a static WCET analysis research prototype tool. Its main use 
is to calculate program flow constraints ("flow facts"), like loop iteration bounds and infeasible path 
constraints, The main use of SWEET is to calculate flow facts automatically, and export these to some 
tool that can use this information to perform a safe and precise WCET estimation. SWEET can also 
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calculate coarse BCET/WCET estimates by itself using simple timing models. The estimates are not 
safe in general, but can be used to give the developer early feedback about expected timing bounds by 
a source code-level analysis. In addition SWEET can perform a number of other analyses, such as a 
conventional value analysis using abstract interpretation, data flow analysis (reaching definitions), and 
static backwards program slicing.  

3.4.2. Input and Output formats 

SWEET analyses an intermediate format called ALF [1,2]. This format is native to SWEET, and is 
designed to represent primarily code on fairly low level (like C, or binaries). Analysis of other formats 
than ALF is done through a translation to ALF. Analysis results are presented on ALF level, but can be 
mapped back to the original code provided that the translator provides the necessary information about 
the mapping from original code to ALF. Several translators to ALF exist: the most prominent, 
"AlfBackend", translates C to ALF using the clang/LLVM compiler framework. AlfBackend also computes 
the information necessary to map analysis results back to the original C code. Besides AlfBackend, 
experimental translators from PowerPC and NEC V850 binaries to ALF exist. The structure of ALF is 
shown in the figure below. 

SWEET is run from the command line. There is a rich set of options to direct the analysis: these are set 
through command-line flags, or through provided files. Analysis results are also communicated via 
written files. 

SWEET has a simple native format to specify intervals constraining the values of program variables in 
different program points. This information can be used by SWEET to calculate tighter flow facts. 
Variables can also be marked as volatile. 

SWEET has an expressive native format for the generated flow facts. This includes context information 
in the form of call strings, as the calculated flow facts can be context-sensitive. SWEET can also export 
flow facts for C code to the AIS format for flow facts that is used by aiT from AbsInt. In addition, SWEET 
has simple formats to export the results of its value analysis, and program slices. 

Further information about the various formats of SWEET can be found at 
http://www.mrtc.mdh.se/projects/wcet/sweet/manual/html/. 

3.4.3. Tool constraints 

There are some limitations on which codes SWEET can handle. Recursion, and dynamic memory 
handling, is not supported. The AlfBackend C to ALF translator also has some limitations – for 
instance, it does not handle polyadic functions (like printf). As AlfBackend is build within the LLVM 
framework it uses the clang C parser, and is thus also subject to any limitations in clang. 
More information about SWEET, including an extensive user manual, can be found at 
http://www.mrtc.mdh.se/projects/wcet/sweet/. The tool is open source under an allowing BSD style 
license. Access to SWEET and AlfBackend can be requested by sending a mail to the mailing list 
wcet@list.mdh.se: you will then get read access to the svn repository where the tools live. Instructions 
for how to build the tools on various platforms can be found in the user manual. 

 

http://www.mrtc.mdh.se/projects/wcet/sweet/manual/html/
http://www.mrtc.mdh.se/projects/wcet/sweet/
mailto:wcet@list.mdh.se
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3.5. KIT – LLBMC / QPR-Verify 

3.5.1. Tool features and benefit 

QPR-Verify is a tool for analyzing software written in the programming language C for runtime errors 
such as integer overflows, division by zero, or other kind of undefined behavior. It employs a 
technique called bounded model checking, which is realized in QPR-Verify’s core solver LLBMC. 
Bounded model checking, by encoding program properties on the bit-level, achieves extremely high 
precision. Moreover, it is able to produce detailed traces for program errors. On the other hand, its 
scalability to large programs is limited. 
 
The kind of errors that QPR-Verify can detect encompass: 

- Arithmetic overflows (for both signed and unsigned integer variables) 
- Integer division by zero 
- Overflows in type casts 
- Undefined shift operations (negative arguments, too large arguments, overflows) 
- Array index out of bounds 
- Uninitialized local variables 
- Contract violations (with respect to a user-provided data range specification) 
- Failed user-provided assertions 

 
QPR-Verify can provide 

- a summary of an analysis run, indicating program locations that are safe or unsafe 
- a list of compiler warnings for the analyzed program 
- a list of checks, which QPR-Verify performed, each with details about the kind of check, the 

result, and possibly further annotations about assumptions that the tool made 
- a trace view for each detected error 
 

 
The trace view shows a step-by-step execution of the program together with variable value changes 
up to the error location. 



 

 
 

D2.3 – Advanced Sequential Static Analysis Methodology 

Page 30 of 35 <Dissemination Level> <Status – Version> 
 

 

 
Due to the employed technology of bounded model checking, QPR-Verify can proof correctness of 
program constructs. However, the analysis is only up to a maximal user-provided loop bound. Errors 
that occur only, if more iterations are needed, will not be reported (the tool notifies the user, 
however, if this case occurs). 
 
To increase scalability of the model checking approach, QPR-Verify has two operation modes: a 
global analysis (which is less scalable) and a local analysis mode, where only a fraction of the 
program is analyzed. These fragments consist of a sub-graph of the call-graph, i.e., they cover more 
than a purely intraprocedural analysis. 

3.5.2. Input and Output formats 

The tool is operated from the command line, and possesses an additional graphical viewer for 
analysis results. The command line interface gives access to the following commands: 
 
Usage: 
  qpr <command> <command-specific-options> 
 
Commands: 
  add-checks                         Add checks to a job 
  add-compiler-option                Add compiler options to compile units 
  add-source-files                   Add source files to the project 
  analyze-check-in-context           Analyze a check in a specific context 
  analyze-globally                   Analyze all unproven checks globally 
  build-compile-commands             Quickly assemble a set of compile command 
  check-all-functions-locally        Check all functions locally 
  check-function-locally             Check a function locally 
  check-function-locally-to-fixpoint Check a function locally (to fixpoint) 
  clean-project                      Clean files from the project directory 
  clear-collections                  Clear resource collections (e.g. checks, locations, ...) 
  clone-job                          Clone a job for further analysis refinement and set all checks to status 'todo' 
  compile                            Compile and link together all files in the compilation DB 
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  configure-all-jobs                 Set an option for all jobs that were not yet executed 
  configure-job                      Set an option in a job specific configuration 
  configure-project                  Configure analysis and project. 
  copy-source-files                  Copy source and header file contents 
  copy-static-files                  Copy static files into the project directory 
  create-job                         Create a new job 
  find-source-files                  Find all source files in a given directory 
  help                               Print a help text about available commands 
  import-drs                         Import a DRS file and assert the DRS assumptions. 
  import-kw-inject                   Import a kwinject.out file 
  import-polyspace-project           Import a polyspace project 
  integrate-jobs                     Integrate results from multiple jobs into one 
  list-callers                       List all callers of a given function 
  list-functions                     List all functions containing checks 
  merge-job                          Merge a job's result back into the main list of checks 
  murphy                             Analyse code for properties to be checked 
  optimize-bitcode                   Runs a set of optimization passes on the bitcode. 
  print                              Print a resource as xml 
  print-ast                          Print the abstract syntax tree 
  print-bitcode-info                 Print info about bitcode relevant for analysis 
  print-call-graph                   Print the call graph  
  print-slice                        Print the slice of the bitcode relevant for a given check 
  process                            Run a command in a child process 
  remap-compile-commands             Remap paths in compile commands 
  run                                Run a local analysis on all functions 
  run-job                            Run a model checker job 
  run-script                         Run a qpr script file 
  version                            Print out the version information 
 
Input to the qpr command is a set of C source code and header files, specified in a compilation 
database together with compiler definitions and possibly macros. Additionally, different aspects of 
an analysis run can be configured using the command configure-project. 
 
The output of the tool consists of a set of XML files, which contain the analysis result. These file 
can be viewed with the QPR-Report GUI tool. 
 
Experimental support for the ASSUME Static Analysis Exchange Format is also integrated. 

3.5.3. Tool constraints 

• Scalability, although considerably improved during the run of the ASSUME project, is still 
limited to programs with a size in the order of 100.000 lines of source code. 

• Seldom occurring program constructs might not be supported. 
• The source code to be analyzed must be compilable with the clang compiler. 
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3.6. Assystem: MQAnalyzer 

3.6.1. Tool features and benefit 

The MQAnalyzer is a prototypic implementation of the methodology developed by Assystem. It 
serves as a comprehensive aggregating component with smart mapping functionality for other 
software quality analysis tools and also supports certain analyses by itself. Aggregating, merging 
and mapping of various analysis results, as well as assisted reviewing and automated exporting of 
merged and revised analysis data is seen as its core functionality. The implementation is designed 
to assist software developers during the whole software development life cycle where model-based 
development is in use. 
 
Purpose of this aspect of the methodology is to gather all relevant information from different sources 
and propagate them through the aggregation and review process of issue assessment and 
classification. Therefore, the tool's aggregation interfaces are designed to be extendable for all 
relevant Model Quality Analysis tools on the market. The exported results are standardized and 
comparable and allow a flexible integration into quality assurance processes. 
 

 

Figure 16: Assisted review of analysis results in the MQAnalyzer (Example: Guidelines) 

 
The prototype was designed and developed in the context of ASSUME. So far, interfaces to the 
MES tools MXAM and MXRAY as well as several tools by MathWorks have been integrated. The 
process of data aggregation, comprehensive review and classification and automated export can 
already be conducted.  
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3.6.2. Input and Output formats 

 

 

Figure 17: Importing the results of a guideline analysis by MXAM 

 
As mentioned above, the interfaces for the output of the MES tools, as well as a direct interface to 
Matlab/Simulink, have been implemented. The interface to Matlab not only provides a way to import 
the results of the MathWorks analysis tools, it can also be used to integrate custom checks and 
scripts implemented in Matlab to be used in the model analysis process. 
 
After concluding the assisted review process, the MQAnalyzer will provide an automatically 
generated report containing all found flaws and defects. The report serves two purposes at the 
same time. On one side, it provides an overview about the found results supported by graphics and 
charts. On the other side, it gives a list of all discovered issues and flaws to assist the developer 
when addressing the issues. The report also contains mechanisms to assist the tracking of the 
contained issues. 

3.6.3. Tool constraints 

ASSUME partners are free to receive the prototype in binary form. It cannot be downloaded, as it 
is currently not commercially available. 
 
Some of the functionality, especially concerning the extension with respect to other tools and special 
analysis methods are still under development and only available in a preliminary form. 
For more information about the prototypic implementation and the available services provided, 
please contact softwarequality@assystemtechnologies.com. 
 

mailto:softwarequality@assystemtechnologies.com
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