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1 Introduction 
Recent advances in Wireless Sensor Network (WSN) technology and the use of the Internet Protocol (IP) 

in resource constrained devices has radically changed the Internet landscape. Trillions of smart objects 

will be connected to the Internet to form the so called Internet of Things (IoT). The IoT will connect 

physical environments to the Internet, unleashing exciting possibilities and challenges for a variety of 

application domains, such as smart metering, e-health, logistics, building and home automation [9].   

The use of IP technology on embedded devices has been recently promoted by the work of the IP for 

Smart Objects (IPSO) Alliance
1
, a cluster of major IT/telecom players and wireless silicon vendors. At the 

same time, the Internet Engineering Task Force (IETF) has done substantial standardization activity on 

IPv6 over Low power Wireless Personal Area Networks (6LoWPAN) [10]. This new standard enables the 

use of IPv6 in Low-power and Lossy Networks (LLNs), such as those based on the IEEE 802.15.4 standard 

[12]. In addition to 6LowPAN, IETF Routing over Low-power and Lossy networks (ROLL) Working Group 

has designed and specified a new IP routing protocol for smart object internetworking. The protocol is 

called IPv6 Routing Protocol for Low-power and Lossy networks (RPL) [11]. 

One of the major benefits of IP based networking in LLNs is to enable the use of standard web service 

architectures without using application gateways. As a consequence, smart objects will not only be 

integrated with the internet but also with the Web. This integration is defined as the Web of Things 

(WoT). The advantage of the WoT is that smart object applications can be built on top Representational 

State Transfer (REST) architectures. REST architectures allow applications to rely on loosely coupled 

services which can be shared and reused. In a REST architecture a resource is an abstraction controlled 

by the server and identified by a Universal Resource Identifier (URI). The resources are decoupled from 

the services and therefore resources can be arbitrarily represented by means of various formats, such as 

                                                           
1 http://ipso-alliance.org/ 
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Extensible Markup Language (XML) or Java Script Object Notation (JSON). The resources are accessed 

and manipulated by an application protocol based on client/server request/responses. REST is not tied 

to a particular application protocol. However, the vast majority of REST architectures nowadays use 

Hypertext Transfer Protocol (HTTP). HTTP manipulates resources by means of its methods GET, POST, 

PUT, etc [8]. 

REST architectures allow IoT and Machine-to-Machine (M2M) applications to be developed on top of 

shareable and reusable web services. The sensors become abstract resources identified by URIs, 

represented with arbitrary formats and manipulated with the same methods as HTTP. As a 

consequence, RESTful WSNs drastically reduce the application development complexity. 

The use of web services in LLNs is not straightforward as a consequence of the differences between 

Internet applications and IoT or M2M applications. IoT or M2M applications are short-lived and web 

services reside in battery operated devices which most of the time sleep and wake up only when there is 

data traffic to be exchanged. In addition, such applications require a multicast and asynchronous 

communication compared to the unicast and synchronous approach used in standard Web applications 

[13]. 

The Internet Engineering Task Force (IETF) Constrained RESTful environments (CoRE) Working Group has 

done major standardization work for introducing the web service paradigm into networks of smart 

objects. The CoRE group has defined a REST based web transfer protocol called Constrained Application 

Protocol (CoAP). CoAP includes several HTTP functionalities re-designed for small embedded devices 

such as sensor nodes. In order to make the protocol suitable to IoT and M2M applications, various new 

functionalities have been added [14]. 

With 6LoWPAN technology becoming mature, the WoT has started playing a major role in the research 

community. Various research papers proposing REST/HTTP architectures for WSNs have recently 

appeared. The work in [1] proposes a RESTful architecture which allows instruments and other 

producers of physical information to directly publish their data. In [2], the authors propose a REST/HTTP 

framework for Home Automation. The work in [3] proposes a toolkit which allows the user to create 

web services provided by a specific device and to automatically expose them via a REST API. The authors 

in [4] show how different applications can be built on top of RESTful WSNs. The work in [5] illustrates a 

real world implementation of a RESTful WSN. The network is deployed across various university 

buildings and it is designed for the development of applications and services for the university 

community. 

The aforementioned research work focuses on RESTful WSNs but does not use CoAP as application 

protocol. The activity of the CoRE group has only recently started and therefore CoAP has not yet been 

largely considered. To the best of our knowledge, only the work in [6] and [7] have already used CoAP as 

application protocol for WSNs. However, the protocol is not extensively evaluated and a clear 

comparison with HTTP is not provided.    

The aim of this work is to show that CoAP is more appropriate for WSNs compared to HTTP. It discusses 

the major differences between CoAP and HTTP and compares the two protocols. The comparison 
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considers the number of bytes transferred in a client-server transaction, the energy consumption of the 

server mote and the response time. 

2 Constrained Application Protocol 
In March 2010, the IETF CoRE Working Group has started the standardization activity on CoAP. CoAP is a 

web transfer protocol optimized for resource constrained networks typical of IoT and M2M applications. 

CoAP is based on a REST architecture in which resources are server-controlled abstractions made 

available by an application process and identified by Universal Resource Identifiers (URIs). The resources 

can be manipulated by means of the same methods as the ones used by HTTP being GET, PUT, POST and 

DELETE. 

CoAP is not a blind compression of HTTP. It consists of a subset of HTTP functionalities which have been 

re-designed taking into account the low processing power and energy consumption constraints of small 

embedded devices such as sensor motes. In addition, various mechanisms and have been modified and 

some new functionalities have been added in order to make the protocol suitable to IoT and M2M 

applications. The HTTP and CoAP protocol stacks are illustrated in Figure 1. 

 

 
Figure 1 HTTP and CoAP protocol stacks. 

 

The first significant difference between HTTP and CoAP is the transport layer. HTTP relies on the 

Transmission Control Protocol (TCP). TCP’s flow control mechanism is not appropriate for LLNs and its 

overhead is considered too high for short-lived transactions. In addition, TCP does not have multicast 

support. CoAP is built on top of the User Datagram Protocol (UDP) and therefore has significantly lower 

overhead and multicast support. 

CoAP is organized in two layers. The Transaction layer handles the single message exchange between 

end points. The messages exchanged on this layer can be of four types: Confirmable (it requires an 

acknowledgment), Non-confirmable (it does not need to be acknowledged), Acknowledgment (it 

acknowledges a Confirmable message) and Reset (it indicates that a Confirmable message has been 

receive but context is missing to be processed). The Request/Response layer is responsible for the 

transmission of requests and responses for the resource manipulation and transmission. This is the layer 

where the REST based communication occurs. A REST request is piggybacked on a Confirmable or Non-

confirmable message, while a REST response is piggybacked on the related Acknowledgment message. 
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The dual layer approach allows CoAP to provide reliability mechanisms even without the use of TCP as 

transport protocol. In fact, a Confirmable message is retransmitted using a default timeout and 

exponential back-off between retransmissions, until the recipient sends the Acknowledgement message. 

In addition, it enables asynchronous communication which is a key requirement for IoT and M2M 

applications. When a CoAP server receives a request which it is not able to handle immediately, it first 

acknowledges the reception of the message and sends back the response in an off-line fashion. Tokens 

are used for request/response matching in asynchronous communication. 

The transaction layer also provides support for multicast and congestion control [16].  

One of the major design goals of CoAP has been to keep the message overhead as small as possible and 

limit the use of fragmentation. HTTP has a significantly large message overhead. This implies packet 

fragmentation and an associated performance degradation in the context of LLNs. CoAP uses a short 

fixed-length compact binary header of 4 bytes followed by compact binary options. A typical request has 

a total header of about 10-20 bytes. The next section shows the significant advantage of the compact 

overhead of CoAP, in terms of energy consumption and response time, with respect to HTTP. The CoAP 

message format is illustrated in Figure 2. 

 
Figure 2 CoAP message format. 

 

Since a resource on a CoAP server likely changes over time, the protocol allows a client to constantly 

observe the resources. This is done by means of observations: the client (the observer) registers itself to 

the resource (the subject) by means of a modified GET request sent to the server. The server establishes 

an observation relationship between the client and the resource. Whenever the state of the resource 

changes, the server notifies each client having an observation relationship with the respective resource. 

The duration of the observation relationship is negotiated during the registration procedure [15]. 

Although CoAP is work in progress, various open source implementations are already available. The two 

most known operating systems for WSNs, Contiki and Tiny OS, have already released a CoAP 

implementation. In addition, there are three other open source implementations not specifically 

designed for WSNs: an implementation in C language called libcoap
2
, one in Python language called 

CoAPy3 and one in Java called jcoap4. 

                                                           
2 http://libcoap.sourceforge.net/ 
3 http://coapy.sourceforge.net/ 
4 http://code.google.com/p/jcoap/ 
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3 CoAP Evaluation 

This section reports on the performance evaluation of CoAP. In order to evaluate the benefits of CoAP 

for WSNs, we compare its performance to HTTP. The goal of the experiments is to show, via a 

quantitative analysis, how the lower number of bytes transferred in a CoAP client-server transaction 

reduce the energy consumption and the response time. 

In order to evaluate the performance of the two protocols, the same experiments have been executed 

on a CoAP client-server pair and on an HTTP client-server pair.  

The CoAP server is implemented by means of a sensor mote running Contiki with 6LoWPAN/RPL on the 

network layer and CoAP on the application layer. The CoAP implementation of Contiki already includes 

many features of the protocol, such as message syntax and semantics, methods, response codes, option 

fields, URIs and resource discovery. However, being work in progress there are still important 

functionalities missing such as asynchronous transactions, observations and congestion control. The 

CoAP client is implemented by running libcoap on a Linux Ubuntu machine with a USB Contiki-gateway 

which interfaces with the WSN.  

The HTTP server is obtained with the same Tmote Sky platform as in the CoAP server and Contiki loaded 

with the HTTP server instead of the CoAP server. The HTTP client is obtained by replacing libcoap with 

cURL
5
, a command line program including HTTP functionalities. 

In the CoAP and HTTP client-server scenarios, the client queries the server at regular intervals and 

requests temperature and humidity. When using CoAP the request has the following format: 

  

GET coap://[<mote_ip_address>]:<port_number>/ readings 

 

where mote_ip_address is the mote’s IPv6 address, port_number is the mote’s port number and 

readings is the resource the client is requesting (in this case temperature and humidity). When using 

HTTP the request has the following format:  

 

GET http://[<moteip_address>]:<port_number>/readings  

 

where the parameters have the same meaning as when using CoAP. 

                                                           
5 http://curl.haxx.se/ 
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In both CoAP and HTTP cases, the server responds by sending the sensor readings embedded into a 

JSON file. JSON is a lightweight text based open standard for data client/server data exchange. An 

example of the response’s payload is the following: 

 

{"sensor":" 0212:7400:0002:0202 ","readings":{"hum":31,"temp":23.1}}  

 

where the sensor is recognized by the last four groups of digits of its IPv6 address, hum is the humidity 

resource and temp is the temperature resource.   

CoAP also supports other payload encoding standards such as the widely used Extensible Markup 

Language (XML). However, the verbosity and parsing complexity of XML makes this language not 

appropriate for constrained devices. Although the compact data representation in JSON is more suitable 

for WSNs, JSON does not have the flexibility of XML. As a consequence, there has been significant effort 

to develop binary XML based representations such as the Extensible XML Interchange (EXI) [8]. 

The experiments have been executed on two different client-server scenarios. The evaluation of the 

bytes transferred and of the response time has been done on Zolertia Z1 motes with embedded 

temperature sensor. The evaluation of the energy consumption has been executed on Tmote Sky motes 

with embedded temperature and humidity sensors. The Tmote Sky motes have been simulated using 

Cooja, a simulator for Contiki based motes [18]. The motivation of using also a simulation scenario is 

that quantifying the energy consumption on a real mote is rather fastidious [18]. Instead, the Cooja 

simulator provides a module called Energest able to estimate the power consumption of Tmote Sky 

motes [17]. Energest provides information about the power consumption for transmission, reception, 

processor and idle state energy consumption. 

3.1 Bytes transferred per client-server transaction 

In order to quantify the amount of data transferred when using CoAP and HTTP, we analyzed a client-

server transaction and quantified the amount of byte transferred. The transaction starts when the client 

initiates the resource request and ends when the client gets the response with the resource. The 

transaction has been analyzed by means of Wireshark
6
, a network protocol analyzer able to capture and 

analyze the traffic running on a computer network. Table 1 reports the number of bytes and packets 

transferred per transaction for CoAP and HTTP.   

 
Table 1.  Bytes transferred per transaction in CoAP and HTTP 

Protocol CoAP HTTP 
Bytes per transaction 184 1288 
Packets per transaction 2 17 

 

                                                           
6 http://www.wireshark.org/ 
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As illustrated in Table 1, an HTTP transaction has a number of bytes and packets significantly larger than 

the CoAP transaction. This is a consequence of the header compression executed in CoAP. In fact, as 

discussed in Section II, CoAP uses a short fixed-length compact binary header of 4 bytes and a typical 

request has a total header of about 10-20 bytes. After being encapsulated in the UDP, 6LoWPAN and 

MAC layer headers, the CoAP packet can be transferred into a single MAC frame which has a size of 127 

bytes. 

3.2 Energy consumption 

The use of UDP as transport protocol and the reduction of the packet header size significantly improve 

the power consumption and battery lifetime in WSNs. In order to evaluate the performance 

improvement of CoAP compared to HTTP in terms of energy consumption, we simulated a series of web 

service requests; firstly between a CoAP client and server and secondly between an HTTP client and 

server. The two scenarios have been simulated in Cooja. In order to test CoAP and HTTP in terms of 

energy consumption, we generated a series of client requests with a certain interarrival time during 30 

minutes long experiments. In a first experiment we fixed the client request interarrival time to 10 

seconds and we calculated the energy consumption of the server motes in 4 different operation modes. 

The first mode is while the server mote receives packets, indicated as RX mode; the second mode is 

while the server mote transmits packets, indicated as TX mode; the third mode is while the server mote 

is in idle mode, indicated as Low Power Mode (LPM); the fourth mode is while the server mote’s Central 

Processing Unit (CPU) processes packets, indicated as CPU mode. The energy consumption of the CoAP 

and HTTP server mote in the different operation modes are shown in Figure 3. 

 

Figure 3 Energy consumption of the CoAP and HTTP server mote in each of the observed operation modes. 

 
As illustrated in Figure 3, the higher number of bytes transferred in an HTTP transaction (see Table 1) 

implies more time spent by the mote in receiving, transmitting and processing packets and consequently 

higher power consumption in RX, TX and CPU modes. While receiving packets (in RX mode), the energy 

consumed when using CoAP is approximately half compared to the one consumed when using HTTP 
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(0.43 mWs for CoAP and 0.85 mWs for HTTP). The same happens when processing packets (CPU mode): 

the energy needed for processing CoAP packets (0.14 mWs) is roughly half of the energy needed to 

process HTTP packets (0.26 mWs). While transmitting packets (TX mode), the energy required by CoAP is 

4 times lower than the energy required by HTTP (0.03 mWs for CoAP and 0.12 mWs for HTTP). While 

being in idle mode (LPM mode), CoAP and HTTP result in similar value of energy consumption (0.159 

mWs for CoAP and 0.155 mWs for HTTP). This is a consequence of the fact that in in both scenarios we 

use the same MAC protocol (ContikiMAC) and therefore the time spent in idle mode is approximately 

the same.  

In a second experiment, we executed 5 tests each one with a different value of the client request 

interarrival time (5, 10, 30, 60 and 120 seconds). Each experiment ran for 30 minutes. By choosing a 

fixed length of the simulation, each experiment has a different total number of generated client 

requests (360, 180, 60, 30 and 15, respectively). This is motivated by the fact that we wanted to analyse 

the impact of the number of requests on the energy consumption. In fact, the results demonstrate that 

the lower the client request interarrival time, the higher the difference of the energy consumption 

values. 

The results have been taken in steady state conditions. In fact, the first 5 minutes of simulation are not 

taken into consideration because the high quantity of control messages exchanged between client and 

server might alter the results. Figure 4 illustrates the outcome of this experiment.  

 

 

Figure 4 Energy consumption of the CoAP and HTTP server motes for different values of the client request interarrival time. 

 

 

0

0,5

1

1,5

2

5 sec 10 sec 30 sec 60 sec 120 sec

E
n

e
rg

y
 c

o
n

su
m

p
ti

o
n

 (
m

W
s)

Client request interarrival time

Server mote's energy consumption

CoAP

HTTP



ISN – Interoperable Sensor Networks – Deliverable   Page 11 of 14 

As illustrated in Figure 4, when the interarrival time of client requests is low (5 seconds) the average 

energy consumption of CoAP is drastically lower compared to HTTP (0.83 mW for CoAP and 1.9 mW for 

HTTP). This is a consequence of the high number of client requests initiated during the 30 minutes 

experiment (360 requests for a client request interarrival time of 5 seconds). The difference is still 

significant (0.76 mW for CoAP and 1.4 mW for HTTP) when the client request interarrival time is 10 

yielding 180 requests in total. With a client request interarrival time of 30 seconds the difference starts 

being less significant (0.71 mW for CoAP and 0.96 for HTTP) as a consequence of the lower number of 

client-server transactions (60). The fact that the lower number of client-server transactions entails a 

lower difference between CoAP and HTTP energy consumption is confirmed by the results related to a 

client request interarrival time of 60 seconds and 120 seconds. In case of 60 seconds, the number of 

client-server transaction is 30 and the resulting energy consumption is 0.72 mW for CoAP and 0.81 mW 

for HTTP. In case of a request interarrival time of 120 seconds the number of transactions is 15 and the 

resulting energy consumption is 0.72 mW for CoAP and 0.76 mW for HTTP. 

The results in Figure 4 demonstrate that the higher the number of client-server transactions, the higher 

the difference in average energy consumption. This is motivated by the fact that an HTTP transaction 

implies a more intensive activity of the mote’s transceiver and CPU and consequently higher energy 

consumption (as demonstrated in Figure 3). In addition, Figure 4 shows that the average energy 

consumption of CoAP remains approximately constant when varying the client request interarrival time. 

Even when the client request interarrival time is 5 seconds and number of client-server transactions is 

360, the average energy consumption of CoAP does not significantly increase as it happens for HTTP. 

This is a consequence of the fact that, as illustrated in Figure 3, the server mote spends more time in 

receiving packets and consequently the energy consumption in the RX mote is higher in CoAP than in 

HTTP. Therefore, from the analysis of the results in Figure 4, we can conclude that the energy 

consumption in CoAP is not significantly sensitive to the increase in the number of client-server 

transactions. This characteristic is particularly useful when considering that WSNs are used in various 

fields of applications with different requirements. There are applications requiring frequent access to 

the sensor data (for data consistency, integrity, security, etc.). If such applications transferred and 

manipulated data by means of HTTP the energy consumption would strongly impact the performance of 

the network. Instead, the use of CoAP guarantees that the energy consumption does not significantly 

increase when sensor data are accessed more frequently. 

3.3 Response time 

When accessing sensor resources via web services it is important to keep the response time at low 

values. A high response time might have an impact on the performance of certain applications which 

have strict requirements in terms of latency. In addition, the response time impacts the user experience 

(i.e. a user trying to access quasi real time sensor data from a web browser).    

The aim of the experiment presented in this paragraph is to compare the response time of two client-

server systems using CoAP and HTTP and show how the use of UDP as transport protocol and the 

reduction of the packet header size significantly reduce the response time.  



ISN – Interoperable Sensor Networks – Deliverable   Page 12 of 14 

The response time is defined as the time elapsing from the moment the client initiates the request till 

the moment the client receives the response with the payload. The experiment has been executed on a 

client-server pair consisting of Zolertia Z1 motes. In order to evaluate the impact of the number of hops 

on the response time, a 1-hop and 2-hop scenario have been set up. In the 1-hop scenario, there is a 

direct connection between client and server mote (similar to the test-bed used for the experiment 

described in paragraph 3.1). In the 2-hop scenario, the server mote is not in range of the client and the 

data has to be routed via an intermediate mote. Both scenarios have been tested with 55 CoAP and 

HTTP requests. The results are illustrated Figure 5. 

 

 

Figure 5 Response time of CoAP and HTTP in the 1-hop and 2-hop scenario. 

 

As illustrated in Figure 5, there is significant difference in the response time for CoAP compared to HTTP. 

With one hop, the average response time calculated for the 55 client requests is 184 milliseconds for 

CoAP and 1.8 seconds for HTTP. With two hops, CoAP experiences an average response time of 336 

milliseconds while HTTP 3.2 seconds. Likewise the energy consumption, the the drastic improvement in 

the response time experienced by CoAP is a consequence of the use of UDP as transport protocol and of 

the reduction of the packet header size. 

If we consider the ratio between the values of the response time experienced with two hops and one 

hop, HTTP does not undergo performance degradation. In fact, the value of the ratio is 1.8 for CoAP and 

1.7 for HTTP and therefore adding one hop in the path between client and server does not impact the 

response time. However, the values of the response time resulting when using HTTP in the 2-hop 

scenario are significantly high and unacceptable for many applications. 
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4 Conclusions 

This work discussed the integration of WSNs with the Web. This is being facilitated by the development 

of CoAP, an IETF protocol providing LLNs with a RESTful architecture. CoAP offers the same methods for 

the resource manipulation as HTTP. In addition, CoAP supports additional functionalities typical of IoT 

and M2M applications, such as multicast, asynchronous communication and subscriptions. Unlike HTTP, 

CoAP is built on top of UDP and has a compact packet overhead. This has a considerable impact on the 

mote’s energy consumption and response time. The paper quantified, by means of simulations as well 

as tests on real motes, the benefits of CoAP in terms of energy consumption and response time 

compared to HTTP. We showed how the compact header and small packet size allow a CoAP server to 

spend less time in receiving, transmitting and processing packets and therefore to consume a 

significantly lower amount of energy compared to HTTP. In addition, we demonstrated that CoAP is not 

particularly sensitive to the increase of client request intererrival time. This is an important advantage 

because there are certain applications which require frequent access to WSN data. We also showed that 

CoAP has a significantly lower response time compared to HTTP. We also evaluated the impact of adding 

one hop to the communication path and showed that the response time values are still low for CoAP 

while they become unacceptable for HTTP. 
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