

ESTABLISH

D4.1 Data Management Platform Architecture 1

D4.4 Implementation and Integration of Adapters

 Deliverable ID: D 4.4

Deliverable Title: Implementation and Integration of
Adapters

Revision #: 1.0
Dissemination Level: Public
Responsible beneficiary: CGI
Contributing beneficiaries: All
Contractual date of delivery: 31.5.2019
Actual submission date: 24.6.2019

ESTABLISH

D4.1 Data Management Platform Architecture 2

Table of Contents

Definitions & abbreviations ... 3

 Introduction.. 4

 Interoperability in ESTABLISH .. 4

 ESTABLISH GUI ... 4

 Sensor Data Validation .. 12

2.2.1 Scenario A - Different technology .. 13

2.2.2 Scenario B - Same technology, different equipment .. 14

2.2.3 Scenario C - Same technology and equipment .. 15

2.2.4 Conclusion ... 19

 Data Sharing ... 20

2.3.1 IoT Gateway Logic ... 24

2.3.2 Data Structure .. 26

2.3.3 IAQ Data Gateway for Sharing Indoor Air Quality Data ... 28

2.3.4 Access to Indoor Air Quality Data .. 31

2.3.5 Data exposed by Establish Coordinator .. 34

 EViF integrations .. 40

 Smart city platform .. 42

 Tracking of Athletes with Wearable Sensors ... 51

 Conclusion .. 52

ESTABLISH

D4.1 Data Management Platform Architecture 3

Definitions & abbreviations

AES (Advanced Encryption Standard) is a symmetric block cipher chosen by the U.S. government to protect

classified information and is implemented in software and hardware throughout the world to encrypt sensitive data.

Architecture - Is both the process and the product of planning, designing, and constructing data solutions. It

contains following elements: information technology specifications, models and guidelines, using a variety of

Information Technology notations. Architecture of DMP is covered further in this document by describing all

aspects of application Azure services and processes to fulfill project objectives.

ERD (Entity Relationship Diagram) An entity–relationship model describes interrelated things of interest in a

specific domain of knowledge. A basic ER model is composed of entity types and specifies relationships that can

exist between entities.

ETL (Extract, Transform, Load) - Refers to a process in database usage and especially in data warehousing.

Data extraction is where data is extracted from homogeneous or heterogeneous data sources; data transformation

where the data is transformed for storing in the proper format or structure for the purposes of querying and

analysis; data loading where the data is loaded into the final target database.

GPS (Global positioning System)

GUI (Graphical User Interface) is a form of user interface that allows users to interact with electronic devices

through graphical icons and visual indicators such as secondary notation, instead of text -based user interfaces,

typed command labels or text navigation.

IAQ (Indoor Air Quality)

IoT (Internet of Things) - Is the network of physical devices, vehicles, and other items embedded with

electronics, software, sensors, actuators, and network connectivity which enable these objects to collect and

exchange data.

OAQ (Outside Air Quality)

OPC (Optical Particle Counter) an instrument that detects and counts physical particles.

REST API (Representational State Transfer Application Protocol Interface) - Is a way of providing

interoperability between computer systems on the Internet. REST-compliant Web services allow requesting

systems to access and manipulate textual representations of Web resources using a uniform and predefined set

of stateless operations.

SQL (Structured Query Language) - Domain-specific language used in programming and designed for managing

data held in a relational database management system.

TCP (Transmission Control Protocol) – One of the protocols of the transport layer of the Internet protocol suite.

TCP provides the connection between two hosts using IP packets. Provides reliable, ordered and error-free

delivery of packets.

ESTABLISH

D4.1 Data Management Platform Architecture 4

 Introduction

The objective of this deliverable is to give an overview of how the adapters are implemented and

integrated in the different pilots and jointly in the ESTABLISH project. The report will focus on the

interoperability of the pilots and how the pilots have worked together with data, tools and platforms to

create synergies between the pilots.

Interoperability in Establish has been achieved via a GUI, Sensor data validation, data sharing and EviF

framework (visualization framework) between partners and pilots. Collaboration in the integration and

implementation of adapters have also been done outside of the ESTABLISH project with other projects.

This document references the deliverables in work package 3, which should be referred to for more

information.

 Interoperability in ESTABLISH

 ESTABLISH GUI

The present chapter refers to the part of ESTABLISH GUI related to data presentation for data rece ived

from sensors and wearable.

The whole GUI is more complex and is subject to the document D3. 2 ESTABLISH GUI.

The current presentation is strictly related to the interoperability between modules with sensors, modules

with wearable, and backend analysis and presentation system. The presentation part (GUI) is the common

place where all data is visible for the final user, while the interoperability procedures are collaborating to

get a consistent set of data.

There are two types of data presentations performed:

 Data presentation and analysis in real time. The received data is analysed, processed by the

rule engine or the automatic learning system. The results are immediately presented to the user.

 Long-term presentation and analysis. Historical data is analysed, processed by the rule engine

or automatic learning system. The results are presented to the user.

The presentation is in the form of diagrams and lists. For graphs, Grafana (Grafana, 2018) and Primefaces

(Primefaces, 2018)

Data presentation is different for different roles in the application.

We consider that the main roles are GUEST, PATIENT and KINETO

For all roles, the presentation is grouped in

 Main Dashboard

ESTABLISH

D4.1 Data Management Platform Architecture 5

 Real Time evolution of data from sensors (IoT) and wearable (FitBit)

Main Dashboard (figure 1)

The main dashboard is accessible to all roles.

The graphical components that represent averages of measurements of some sensors are displayed in

the reduced view (link View more is available to expand). By default, the tab Current Data is displayed.

This tab is supposed to display real-time measurements from up to 8 environmental sensors and weather

data. The displayed values are measured by sensors associated to the current location of the patient

(measured by GPS tracker of the smartphone).

Figure 1. Main dashboard

Weather conditions, exterior (figure 2)

This part is accessible to all roles.

The graphical components that represent averages of measurements of some sensors specific for weather

conditions, installed in the exterior of monitored building.

Temperature, Humidity and Pressure are registered using Libelium devices, then read from IoT MQTT

broker, and stored in the ESTABLISH database.

Based on the three values, a comfort index is computed.

ESTABLISH

D4.1 Data Management Platform Architecture 6

Figure 2. Weather conditions

Air quality, exterior (figure 3)

This data is accessible to PATIENT and KINETO roles

The graphical components that represent averages of measurements of some sensors specific for air

conditions, installed in the exterior of monitored building.

Nitrogen Dioxide. Carbon Dioxide and Carbon Monoxide are registered using Libelium devices, then read

from IoT MQTT broker, and stored in the ESTABLISH database.

Based on the three values, an Air Quality index is computed.

ESTABLISH

D4.1 Data Management Platform Architecture 7

Figure 3. Air Quality exterior

Comfort condition interior (figure 4)

This data is accessible to PATIENT and KINETO roles

The graphical components that represent averages of measurements of some sensors specific for weather

conditions, installed in the interior of monitored building.

Temperature, Humidity and Pressure are registered using Libelium devices, then read from IoT MQTT

broker, and stored in the ESTABLISH database.

Based on the three values, a comfort index is computed.

ESTABLISH

D4.1 Data Management Platform Architecture 8

Figure 4. Comfort condition interior

ESTABLISH

D4.1 Data Management Platform Architecture 9

Air quality, interior (figure 5)

This data is accessible to PATIENT and KINETO roles

The graphical components that represent averages of measurements of some sensors specific for air

conditions, installed in the interior of monitored building.

Nitrogen Dioxide. Oxygen and Carbon Monoxide are registered using Libelium devices, then read from

IoT MQTT broker, and stored in the ESTABLISH database.

Based on the three values, an Air Quality index is computed.

Figure 5. Air quality interior

ESTABLISH

D4.1 Data Management Platform Architecture 10

Particle, exterior (figure 6)

This data is accessible to PATIENT and KINETO roles

The graphical components that represent averages of measurements of some sensors specific for

particles measured in the exterior of the building.

Particle 1, 2.5 and 10 are registered using Libelium devices, then read from IoT MQTT broker, and stored

in the ESTABLISH database.

Based on the three values, an Air Quality index is computed.

Figure 6. Particles exterior

User Physiological data

This data is accessible to PATIENT and KINETO roles, with the following restrictions:

The PATIENT can access only data belonging to him

The KINETO can access only data belonging to patients assigned to him.

Physiological data is collected from the type of bracelet that the patient wears

These devices record the data according to the device type.

For ESTABLISH we are looking at devices that can record at least

 Cardiac rhythm

 Number of steps

 Sleep time

In the current implementation, we use FitBit Charge 2 devices.

Data is first recorded on the FitBit (cloud) site where it is then retrieved from the ESTABLISH kernel.

Once taken data is preprocessed, processed, stored and presented in system.

ESTABLISH

D4.1 Data Management Platform Architecture 11

The component is interfaced with the activity management component where it provides input values for

terms and conditions. It is also a data source for visualization, presentation, analysis.

Data viewing is displayed in graphs with time series or lists of values (reports)

Figure 7. User physiological data

ESTABLISH

D4.1 Data Management Platform Architecture 12

User, health data analyzed (fugure 8)

This data is accessible to PATIENT and KINETO roles, with the following restrictions:

The PATIENT can access only data belonging to him

The KINETO can access only data belonging to patients assigned to him.

Figure 8. User health

 Sensor Data Validation

The comparative analysis of measured pollutant concentrations with different sensors has been done to

identify the variability of measurements between same type of equipment and between different

equipment. The parameters tested are particulate matter (fractions PM10 and PM2.5), while the measuring

techniques are represented by gravimetric and Optical Particle Counter (OPC).

Regarding the technologies that focus on PMs concentration measurement the main characteristics and

recommendation are:

Gravimetric technology:

 Advantages: they offer very high precision; there are international standards for measurements

using this technology;

 Disadvantages: intensive process in terms of human capital, investments (dedicated laboratory)

and related costs (daily transport of the samples, materials); no real or near -real time

concentration values; restriction regarding the location where can be installed; low-frequency

values (24 h).

 Recommendation: for regulatory purposes (i.e. to demonstrate the compliance with Air Quality

Directives).

OPC (Optical Particle Counter) technology:

 Advantages: provide real time values with very high frequency; low cost of investments and

related costs; can be installed almost everywhere;

 Disadvantages: good or very good precision; no existing standard for measurements.

ESTABLISH

D4.1 Data Management Platform Architecture 13

 Recommendation: used for the management of air pollutants sources to reduce emissions; to

provide new insights relating the connection between exposure and effects of air pollutants; can

be used to complement the measurements made by gravimetric network and raise awareness.

For gravimetric measurement of particle, a Bravo M Plus air pump was used to measure the PM10 and

PM2.5 fraction of dust and atmospheric conditions (nebulosity, temperature, atmospheric pressure,

humidity, speed, and wind direction). This equipment allows measurements according to the requirements

of EN 12341 standard and represent the reference method for measurements used for regulatory

purposes (including environmental authorities).

The equipment using OPC technique for measuring the PM10 and PM2.5 concentrations are Libelium Plug

and Sense SCP1(SCP1, SCP2, SCP3) and uRADMonitor Industrial2. The technical specification of the

equipment used and the description of the scenarios are presented in Table 1 and Table 2.

Table 1. Equipment and measurement technology

Equipment Technology Frequency of
measurement

Sensor

Bravo M Plus Pump Gravimetric 24 hours N/A
Libelium Plug and Sense
SCP

OPC User selected / 15
minutes

OPC-N23

uRADMonitor Industrial OPC 1 minute Winsen ZH03A4

Table 2. Scenario and type of equipment

Scenario
Type of
environment

Time
period,
days

Type of equipment

Bravo
M Plus

uRADMonitor
Industrial

Libelium Plug
and Sense SCP

 A - different
technology

outdoor,
industrial

5 Yes Yes Yes

 B – same
technology, different
equipment

outdoor,
urban

10 No Yes Yes

 C - same
technology and
equipment

outdoor,
urban

10 No No Yes

2.2.1 Scenario A - Different technology

In order to compare the measured values with different technologies, it is necessary to consider the

averaging time period of which equipment. Since gravimetric technology provide only daily values, data

monitored with Libelium and uRAD were processed to obtain the same type of values (was calculated as

average values of hourly average values).

The results of the monitored data processing (Figure 9) indicate that OPC equipment underestimates the

values of concentrations between 18% (day 3, Libelium equipment) and 239% (day 5, uRAD equipment).

1 Libelium, Waspmote Plug&Sense, Technical Guide, http://www.libelium.com/products/plug-sense/
2 uRAD Monitor, Technical Documents https://www.uradmonitor.com/uradmonitor-industrial/
3 http://www.alphasense.com/index.php/products/optical-particle-counter/
4 https://www.winsensensor.com/d/files/PDF/Gas%20Sensor%20Module/PM2.5%20Detection%20Modul
e/ZH03A%20Laser%20Dust%20Module%20V1.8.pdf

http://www.libelium.com/products/plug-sense/
https://www.uradmonitor.com/uradmonitor-industrial/
http://www.alphasense.com/index.php/products/optical-particle-counter/
https://www.winsensensor.com/d/files/PDF/Gas%20Sensor%20Module/PM2.5%20Detection%20Module/ZH03A%20Laser%20Dust%20Module%20V1.8.pdf
https://www.winsensensor.com/d/files/PDF/Gas%20Sensor%20Module/PM2.5%20Detection%20Module/ZH03A%20Laser%20Dust%20Module%20V1.8.pdf

ESTABLISH

D4.1 Data Management Platform Architecture 14

It should be noted that on the 5th day the concentration values were very high and could be correlated

with special weather conditions (high speed wind).

Figure 9. Abatement percentage of OPC technology equipment compared with

gravimetric equipment

2.2.2 Scenario B - Same technology, different equipment

For the comparative analysis of PM concentrations, the data sets measured between 5 and 15 October

2018 were considered. From the measured data analysis of the concentrations PM2.5 (Figure 10) and

PM10 (Figure 11), it is observed that they follow almost the same variation curve, with the concentrations

measured by uRAD equipment being relatively lower than those measured by Libelium equipment (shown

as mean value).

Figure 10. PM2.5 concentrations values registered in the monitoring period

Figure 11. PM10 concentrations values registered in the monitoring period

ESTABLISH

D4.1 Data Management Platform Architecture 15

The values of the main statistical parameters (Table 3) for the uRAD data series and the mean value of

the Libelium equipment are quite homogeneous (with the lower mean value for uRAD). The values of

Pearson correlation coefficients are significant, with the smallest between Libelium and uRAD equipment

(Table 3).

Table 3. The values of the main statistical parameters for PM2.5 and PM10 measured concentrations

Statistical
parameter

PM2.5 PM10

uRADMonitor Libelium uRADMonitor Libelium

Mean value 12.43 15.28 17.68 21.93

Median value 9.91 13.18 14.33 20.99

Standard
deviation

6.24 9.35 8.29 10.89

Variation 38.93 87.49 68.86 118.79

Minimum value 6.20 3.43 9.39 4.95

Maximum value 53.36 49.30 72.11 74.23

2.2.3 Scenario C - Same technology and equipment

In this scenario beside PM2.5 and PM10 concentrations were compared the following parameters:

temperature, atmospheric pressure and relative humidity. The data obtained in the Scenario C show little

variation between PM2.5 and PM10 concentrations (Figure 12 and 13) measured with the same type of

sensors.

Figure 12. PM2.5 concentrations values registered in the monitoring period

Figure 13. PM10 concentrations values registered in the monitoring period

ESTABLISH

D4.1 Data Management Platform Architecture 16

The values of Pearson correlation coefficients are significant, with the smallest between Libelium and
uRAD equipment (Table 4).

Table 4. Pearson’s correlation coefficient values for PM2.5, PM10

PM2.5 PM10

 SCP1 SCP2 SCP3 URAD SCP1 SCP2 SCP3 URAD

SCP1 1 SCP1 1

SCP2 0.989 1 SCP2 0.905 1

SCP3 0.985 0.984 1 SCP4 0.848 0.850 1

URAD 0.879 0.857 0.864 1 URAD 0.804 0.791 0.803 1

The ANOVA method was used to evaluate the differences between the four datasets. The value of the

statistical test F (FPM2.5 = 7.9396, FPM10 = 10.8123) for the series analysed is higher than the critical value

(Fcrt = 2.6136) which indicates that the differences between the four sets of data are statistically significant.

The result of the test indicates statistically significant differences between the measurements performed

with the uRAD and Libelium equipment.

From the analysis of the measured data (Figure 14), it is observed it follows the same variation curve,

indicating that the systems for measuring the temperature provide similar values.

Figure 14. The variation of temperature values during the monitoring period

The values of the main statistical parameters (Table 5) for the three data sets are quite homogeneous,

and the values of correlation coefficients are significant (Table 6).

Table 5. The values of the main statistical parameters for temperature

Statistical parameter Libelium equipment

SCP1 SCP2 SCP4

Mean value 17.16 17.10 17.35

Median value 14.57 14.40 14.73

Standard deviation 7.45 7.64 7.11

Variation 55.52 58.40 50.68

ESTABLISH

D4.1 Data Management Platform Architecture 17

Minimum value 8.06 7.83 8.53

Maximum value 34.94 35.93 33.96

Count 256 256 256

Confidence level (95%) ± 0.91 ± 0.94 ± 0.87

Table 6. The values of correlation coefficients for temperature

 SCP1 SCP2 SCP4

SCP1 1

SCP2 0.997 1

SCP4 0.994 0.994 1

The ANOVA method was used to assess the differences between the three sets of data . The value of the

statistical test F (F = 0.0783) for the series analysed is lower than the critical value (Fcrt = 3.0074),

indicating that the differences between the three data sets are not statistically significant and the variations

registered are explain by the influence of random factors.

From the analysis of the measured data (Figure 15), it is observed it follows the same variation curve,
indicating that the systems for measuring the atmospheric pressure provide similar values.

Figure 15. The variation of atmospheric pressure values during the

monitoring period

The values of the main statistical parameters (Table 7) for the three data sets are quite

homogeneous, and the values of correlation coefficients are significant (Table 8).

Table 7. The values of the main statistical parameters for atmospheric pressure

Statistical parameter Libelium equipment

SCP1 SCP2 SCP4

Mean value 101626.3 101567.5 101678.6

Median value 101712.4 101653.1 101775.5

Standard deviation 368.9 368.7 369.2

Variation 136100.7 135986.4 136350.2

Minimum value 100739.8 100683.2 100771.7

Maximum value 102321.8 102272.3 102361.5

Count 256 256 256

Confidence level (95%) ± 45.40 ± 45.38 ± 45.44

ESTABLISH

D4.1 Data Management Platform Architecture 18

Table 8. The values of correlation coefficients for atmospheric pressure

 SCP1 SCP2 SCP4

SCP1 1

SCP2 0.999 1

SCP4 0.999 0.998 1

The ANOVA method was used to assess the differences between the three sets of data.

The value of the statistical test F (F = 5.8143) for the series analysed is higher than the

critical value (Fcrt = 3.0074), indicating that the differences between the three data sets

are statistically significant.

In order to identify which of the three equipment that provide mean value which is

statistically significantly different from the other two, the Student test (test t) was applied.

The resulting values (table 9) indicate with high probability that the mean value for the

values measured by SCP1 is statistically different from those measured by the SCP2

stations, while between the values measured by the SCP1 and SCP4 stations, respectively

SCP2 and SCP4 are no statistically significant differences.

Table 9. Student test values for the data sets analysed

Statistical parameters SCP1vs. SCP4 SCP1vs. SCP2 SCP2 vs. SCP4

Test t value -57.0163 79.5280 -78.3969

P value 1.9 x 10-147 2.6 x 10-182 8.8 x 10-181

Critical value (Test t) 1.6508 1.6508 1.6508

From the analysis of the measured data (Figure 16), it is observed it follows the same

variation curve, indicating that the systems for measuring the relative humidity provide

similar values.

Figure 16. The variation of relative humidity values during the

monitoring period

The values of the main statistical parameters (Table 10) for the three data sets are quite

homogeneous, and the values of correlation coefficients are significant (Table 11).

ESTABLISH

D4.1 Data Management Platform Architecture 19

Table 10. The values of the main statistical parameters for relative humidity

Statistical parameter Libelium equipment

SCP1 SCP2 SCP4

Mean value 58.62 65.55 53.55

Median value 61.39 68.09 57.95

Standard deviation 27.21 25.88 25.66

Variation 740.85 669.96 658.54

Minimum value 6.81 8.50 2.02

Maximum value 100 100 97.65

Count 256 256 256

Confidence level (95%) ± 3.35 ± 3.18 ± 3.15

Table 11. The values of correlation coefficients for relative humidity

 SCP1 SCP2 SCP4

SCP1 1

SCP2 0.999 1

SCP4 0.992 0.987 1

The ANOVA method was used to assess the differences between the three sets of data.

The value of the statistical test F (F = 13.4485) for the series analysed is higher than the

critical value (Fcrt = 3.0074), indicating that the differences between the three data sets

are statistically significant. In order to identify which of the three equipment provide mean

value which is statistically significantly different from the other two, the Student test (test t)

was applied. The resulting values (table 12) indicate with high probability that all three

mean values are statistically different from each other.

Table 12. Student test values for the data sets analysed

Statistical parameters SCP1vs. SCP2 SCP1vs. SCP4 SCP2 vs. SCP4

Test t value 28.37 22.36 47.31

P value 3.6 x 10-81 2.3 x 10-62 1.4 x 10-128

Critical value (Test t) 1.6508 1.6508 1.6508

2.2.4 Conclusion

The comparison of the measured values of PM10 concentrations measured with equipment

with different technologies (gravimetric and laser equipment) indicated that both laser

equipment underestimated the concentration values. This is due to the lower reading

frequency (15 minutes) for Libelium and for the fact that laser technology does not allow

the elimination of the influence of humidity on the particle size measured.

Conversion factors between PM10 concentrations measured with gravimetric equipment

and those measured with laser technology are 1.64 for Libelium and 1.96 for uRAD. For

Libelium equipment it is possible to improve this factor by increasing the measurement

frequency.

ESTABLISH

D4.1 Data Management Platform Architecture 20

The results of the comparative analysis between the measured values of the same type of

equipment (Libelium) for PM10 and PM2.5 concentrations indicate a high degree of

homogeneity and reproducibility of the measurements made (differences between data

sets are not statistic significant). Concerning atmospheric pressure and relative humidity

parameters, the results of statistical tests (ANOVA analysis) show statistically significant

differences.

The results of the comparative analysis between PM10 and PM2.5 concentrations measured

with different types of equipment (Libelium and uRAD) with the same type of technology

(laser) indicate that there are statistic significant differences between them, although the

coefficients correlations are significant. For all parameters included in the analysis, the

values measured with uRAD are lower than those measured with Libelium.

 Data Sharing

The LoRaWAN networks laid out in a star-of-stars topology have base stations relaying the data between

the sensor nodes and the network server.

Communication between the sensor nodes and the base stations goes over the wireless channel utilizing

the LoRa physical layer, whilst the connection between the gateways and the central server are handled

over a backbone IP-based network.

End Nodes transmit directly to all gateways within range, using LoRa.

Gateways relay messages between end-devices and a central network server using IP.

Figure 17. Architecture for Data Sharing

ESTABLISH

D4.1 Data Management Platform Architecture 21

End-devices

The end devices are LoRa embedded sensors (used to detect the changing parameter eg. temperature,

humidity, accelerometer, gps).

The sensors may connect to the LoRa transponder chip, or the sensor may be an integrated unit with the

LoRa transponder chip embedded.

The LoRaWAN sensors typically use Low Power and are battery powered (Class A and Class B). LoRa

embedded sensors that run on batteries that can typically last from 2-5 years. The LoRa sensors can

transmit signals over distances from 1km - 10km.

Gateways

The LoRa sensors transmit data to the LoRa gateways. The LoRa gateways connect to the internet via

the standard IP protocol and transmit the data received from the LoRa embedded sensors to the Internet

i.e. a network, server or cloud.

The Gateways devices are always connected to a power source. The Gateways connect to the network

server via standard IP connections and act as a transparent bridge, simply converting RF packets to IP

packets and vice versa.

Network Servers

The Network servers can be cloud based platform solutions like Ceske Radiokomunikace company (CRA).

or LoRIOT. The network servers connect to the gateways and de-dup data packets, and then routes it to

the relevant application. The network servers can be used for both uplink (i.e. sensor to application) or

downlink (i.e. application to sensor) communication.

Application Server

IoT LoRaWAN web application server to monitor the state of the environment using a LoRa wireless

network.

Data sharing format

We use the JSON format for data sharing. JSON (JavaScript Object Notation) is a lightweight format for

sharing data. Although it’s derived from JavaScript — it may be used with many programming languages.

You don't need to invent your own file format. You can use standardized infrastructure (serializers,

libraries).

First of all, we need to login to get an authorization token.

POST https://iotlorawan.azurewebsites.net/api/accounts/login

Headers:

Email: john.doe@ima.cz

Password: johndoe1

Status: 200 OK

{

 "accessToken": "HFav1KKmrjoo3Pitii20tvqZMPErF8HNYrF2JJMvz0JKq5ioH8CZ9EM9faleuznx9sRw8a",

 "expires": "2020-05-30T23:59:59+00:00"

}

If the user does not exist, the wrong password or email, returns
Status: 401 Unauthorized
{

https://iotlorawan.azurewebsites.net/api/accounts/login
mailto:jan.fiedler@ima.cz
mailto:jan.fiedler@ima.cz
mailto:jan.fiedler@ima.cz
mailto:jan.fiedler@ima.cz
mailto:jan.fiedler@ima.cz

ESTABLISH

D4.1 Data Management Platform Architecture 22

 " Message ": "Login failed. Incorrect email address or password!"
}

Then we can get information about of established and active sensors

GET https://iotlorawan.azurewebsites.net/api/sensors

Headers:

Authorization: "HFav1KKmrjoo3Pitii20tvqZMPErF8HNYrF2JJMvz0JKq5ioH8CZ9EM9faleuznx9sRw8a"

Status: 200 OK

[

 {

 "eui": "0E7E3464333100B6",

 "acronym": "ASC-B6",

 "name": "Ascoel CO868LR",

 "description": "Ascoel CO2 for Establish",

 ...

 "status": 1

 },

 {

 "eui": "8CF9574000000231",

 "acronym": "RHF231",

 "name": " Rising RHF1S001",

 "description": " Rising TH for Establish",

 ...

 "status": 1

 }

]

- The authorization token is not valid at the current time, returns
Status: 401 Unauthorized

- No data found to display, returns
Status: 204 No Content

Then we can get the decoded data from the sensor without any aggregations.

GET https://iotlorawan.azurewebsites.net/api/sensordata/?eui=0E7E3464333100B6&from=2019-05-

30T00:00:00&limit=100

Parameters:

eui – The unique identifier for the device in this app.

from – Returns data, their date and time greater than “from”

limit - The number of measurements returned (for example, the limit = 100 returns only the last 100

measurements that are greater than “from”)

Headers:

Authorization: "HFav1KKmrjoo3Pitii20tvqZMPErF8HNYrF2JJMvz0JKq5ioH8CZ9EM9faleuznx9sRw8a"

Status: 200 OK

{

 "eui": "0E7E3464333100B6",

https://iotlorawan.azurewebsites.net/api/sensors
https://iotlorawan.azurewebsites.net/api/sensordata/?eui=0E7E3464333100B6&from=2018-04-09T00:00:00&to=2018-04-09T23:59:59
https://iotlorawan.azurewebsites.net/api/sensordata/?eui=0E7E3464333100B6&from=2018-04-09T00:00:00&to=2018-04-09T23:59:59
https://iotlorawan.azurewebsites.net/api/sensordata/?eui=0E7E3464333100B6&from=2018-04-09T00:00:00&to=2018-04-09T23:59:59
https://iotlorawan.azurewebsites.net/api/sensordata/?eui=0E7E3464333100B6&from=2018-04-09T00:00:00&to=2018-04-09T23:59:59
https://iotlorawan.azurewebsites.net/api/sensordata/?eui=0E7E3464333100B6&from=2018-04-09T00:00:00&to=2018-04-09T23:59:59
https://iotlorawan.azurewebsites.net/api/sensordata/?eui=0E7E3464333100B6&from=2018-04-09T00:00:00&to=2018-04-09T23:59:59

ESTABLISH

D4.1 Data Management Platform Architecture 23

 "name": "Ascoel CO868LR",

 "data": [

 {

 "time": "2019-05-30T13:39:15+02:00",

 "temperature": 23.4,

 "humidity": 44.06,

 "co2": 400,

 "rssi": -122,

 "snr": -17.5,

 "batteryLevel": 3.6

 },

 {

 "time": "2019-05-30T14:10:12+02:00",

 "temperature": 22.5,

 "humidity": 48.27,

 "co2": 402,

 "rssi": -120,

 "snr": -20.2,

 "batteryLevel": 3.6

 }

 ...

]

}

- The authorization token is not valid at the current time, returns
Status: 401 Unauthorized

- No data found to display, returns
Status: 204 No Content

The data sharing refers to:

 Data sharing between ESTABLISH modules. It considers data from IoT (sensors), wearable

(bracelets), input text data, analysis output

 Data presentation to external systems by the help of API

The Data Management process specific to the Romanian use case consists in:

 The sensors nodes transmit the sensors measurements through 4G or WiFi connectivity to the

Meshlium Gateway. Once in Meshlium, data is stored in a MySQL or Postgresql database that

ensures local persistence of the sensors data. Regarding the Romanian platform, data

forwarding to Cloud is done through a software component that serializes data to an MQTT

broker. Similarly, uRADMonitor connects (via Wi-Fi) to a Cloud platform that allows data to be

accessed via a REST interface.

- The integration with the common data platform can be achieved with the Azure Iot Hub

service. This process can be performed by following the next steps:

- Registering the Meshlium in Azure Portal, by annotating the connection string generated

in Azure Iot Hub in the Meshlium configuration; basically, the obtained “connection

string” from the Azure portal will certificate the Meshlium device as a valid sender of

messages.

ESTABLISH

D4.1 Data Management Platform Architecture 24

 After validating the Meshlium Gateway, there are required a few configurations

in the Configuration panel:

 Number Requests: Number of requests to send per iteration.

 Sync Interval: Time duration in seconds between synchronizing data batches.

 Protocol: Choose the protocol to communicate with Azure IoT Hub. Valid

protocols are MQTT (by default), AMQPS and HTTPS.

 Log Level: Generate log messages. From fewer to more details, the levels are

OFF, ERROR, INFO, DEBUG, REPORT. The default is OFF.

2.3.1 IoT Gateway Logic

Part of the analytics and logic can be shifted from the knowledge layer onto the gateway layer. In this type

of computing, there’s a processing unit that the data passes through on the way from the sensors to the

database. The processing unit can then for example filter useless or noisy information out from the data

using various algorithms. This processing can reduce the size of transfers that are made between the

sensors and the gateway.

In the Finnish Indoor Air Quality Improvement at School pilot, Azure Stream Analytics is a part of the

gateway logic as the data is pre-processed before it is stored for the first time in the database. This way

of handling data management is becoming more and more popular due to advancements in hardware

technologies.

As for the Romanian Use Case, a Java bases developed module will handle the Gateway Logic tasks;

namely pre-process the sets of data in order to advance to the next phase - data visualization API

APIs are exposed to allow external users to connect to the system and obtain important information about

decision support. APIs are RESTFUL services. Below is the presentation of the main API classes exposed.

The whole description and documentation of APIs is part of deliverable: D3.1 Architectural and design

specification

ESTABLISH

D4.1 Data Management Platform Architecture 25

Figure 18. API-Service RS

ESTABLISH

D4.1 Data Management Platform Architecture 26

2.3.2 Data Structure

In the figures bellow we are presented only the structures specific to data captured from sensors or

wearable.

In the first structure is a detailed view of these structures.

The next figure (19) emphasizes (in red) the place of this data in the whole ERD of the application.

Figure 19. Detailed data structures

ESTABLISH

D4.1 Data Management Platform Architecture 27

Figure 20. Main ERD

ESTABLISH

D4.1 Data Management Platform Architecture 28

2.3.3 IAQ Data Gateway for Sharing Indoor Air Quality Data

The IAQ devices include WiFi communication to transmit their measured sensor data to the data

gateway. The data gateway collects data from the IAQ devices installed in an indoor place via

Transmission Control Protocol (TCP). It also sends the collected data to other target servers via TCP

with Json text format or writes the data into the local files. The following figure shows the overall system

architecture of the data gateway.

Figure 21. Data Gateway Architecture

1) System configuration

The system configuration file contains all the system configuration information of the data gateway. Some

portion of the configuration should be changed for the execution of the data gateway. The followings

describe the configuration parts that should be changed. You don’t have to change the other parts of the

configuration.

- TCP server setting

 The IAQ devices send sensor data to the data gateway via TCP. The date gateway should prepare

TCP server to receive sensor data from several IAQ devices. The following shows an example of the ip

and port setting of the TCP server.

<networks>

 <network>

<id>CowayServer</id>

<io>tcp.server</io>

<ip>192.268.1.10</ip> <!-- ip address of the TCP server -->

<port>port</port> <!-- port number of the TCP server -->

<protocol>CowayProtocol</protocol>

</network>

</networks>

ESTABLISH

D4.1 Data Management Platform Architecture 29

- Sender setting

The dispatcher sends sensor data via TCP to other target servers or saves to local files.

The setting about a target server for sending data via TCP is as follows.

<sender>

 <type>tcp</type> <!-- type of sender should be “tcp” -->

 <ip>192.168.1.100</ip> <!-- ip address of the target server -->

 <port>8140</port> <!-- port number -->

 <format>json</format> <!-- data format : “json” -->

</sender>

The setting for saving data to local files is as follows.

<sender>

 <type>file</type> <!-- type of sender should be “file” -->

 <unit>day</unit> <!-- new file creation period: day or hour -->

 <path>../data</path> <!-- directory in which files are created -->

 <format>csv</format> <!-- data format : “csv” -->

</sender>

In case of saving sensor data to local files, a new file is created by daily or hourly depending on the

value of “unit” tag. Therefore, a new file is created per each day or each hour when the value of the unit

tag is “day” or “hour”, repectively.

2) Data format

Each IAQ sensor device for indoor air quality measurements includes temperature, humidity, CO2,

illuminance, noise, VOC (volatile organic compounds), Formaldehyde and PM10, PM2.5 sensors. The

following figure shows indoor the specification of the air quality sensors:

Figure 22. IAQ Sensors

The dispatcher sends sensor data via TCP with Json format to other target servers or saves to local

files with CSV format. The following shows an example of the Json transferred via TCP.

{

"id":"EUREKA_IAQ_0000003",

ESTABLISH

D4.1 Data Management Platform Architecture 30

 "time":"2019-04-02 15:47:14",

 "sensors":[

 {

 "name":"PM25",

 "unit":"ug/m3",

 "value":"7",

 "id":1

 },

 {

 "name":"PM10",

 "unit":"ug/m3",

 "value":"8",

 "id":2

 },

{

 "name":"VOC",

 "unit":"V",

 "value":"0.19",

 "id":4

 },

 {

 "name":"Humidity",

 "unit":"RH",

 "value":"22",

 "id":5

 },

 {

 "name":"Temperature",

 "unit":"C",

 "value":"27.0",

 "id":6

 },

 {

 "name":"Light",

 "unit":"lux",

 "value":"500",

 "id":7

 },

 {

 "name":"CO2",

 "unit":"ppm",

 "value":"747",

 "id":9

 },

 {

 "name":"Formaldehyde",

 "unit":"ppb",

 "value":"0",

 "id":11

ESTABLISH

D4.1 Data Management Platform Architecture 31

 },

 {

 "name":"Noise",

 "unit":"dB",

 "value":"50",

 "id":25

 },

 {

 "name":"BloothSpeaker",

 "unit":"V",

 "value":"0",

 "id":39

 }

]

}

When a json text is sent, it is contained in one line, that is, there is no new line in it except the end of it.

Therefore, the target servers should read line by line from TCP connection in which one line contains one

json text. The above json example is reformatted for making it more readable.

The meanings of tags in the json are as follows

- id: the unique device identifier of the corresponding installed IAQ device

- time: the sensor data creation time

- sensors: list of the sensor data in the IAQ device

 . name: the name of the sensor

 . unit: the unit of the sensor data unit

 . value: the value of the sensor data

 . id: the identifier of the sensor

The following shows a csv example stored to local files.

time,PM25,PM10,VOC,Humidity,Temperature,Light,CO2,Formaldehyde,Noise,BloothSpeaker

2019-04-02 15:52:14,7,7,0.19,22,27.0,500,839,0,50,0

2019-04-02 15:53:15,8,8,0.25,22,27.0,500,829,0,50,0

The first line of the csv file is the header of the csv that includes the name of each sensor. Each line

except the first line includes the value of each sensor data separated by comma with the sensor data

creation time in the first column.

2.3.4 Access to Indoor Air Quality Data

Indoor air quality data from VTT offices consists of temperature, humidity, air pressure, CO 2,presence

(PIR) information and door open/closed latch information. The data is reported every 15 minutes per

sensor node. Each node contains several sensors, and each office room has several sensors. Access to

data from each room is via a room-specific URL. Data is by default available as XML. JSON is available

by adding an ‘accept:application/json’ header to the request.

The base URL for room 1 is as follows:

ESTABLISH

D4.1 Data Management Platform Architecture 32

https://vtttepipilot.table.core.windows.net/VttNodeIAQData101?st=2018-12-

31T22:01:00Z&se=2019-12-31T20:55:00Z&sp=r&sv=2018-03-

28&tn=vttnodeiaqdata101&sig=YteQb2zcnGeZNu8KBlvKoL9ujnW5kUMyn6vfzDjtP7c=

This URL will return all data for the room. All above query parameters are mandatory. To limit the data,

filters can be applied with a $filter parameter. The parameter can contain several limitations, e.g.,

$filter=PartitionKey eq '20190114' and nodeId eq 597 and co2 ge 530

will return data from the specified day and sensor (node) where CO2 levels are above 530ppm.

Specifying a partition key or partition key range is recommended to reduce the query result s et.

Additionally, a $select parameter can be added to limit the returned fields, e.g.

$select=co2,humidity.

Data for another room is available via the base url

https://vtttepipilot.table.core.windows.net/VttNodeIAQData104?st=2018-12-

31T22:01:00Z&se=2019-12-31T20:59:00Z&sp=r&sv=2018-03-

28&tn=vttnodeiaqdata104&sig=ugP3+oS4ITJxzR/5KQdgUDbAABpQ+8bOcy6UpOejzoM=

The resulting data format is as follows (JSON). Note that not all sensors will return all fields.

{

 "odata.metadata": "https://vtttepipilot.table.core.windows.net/$metadata#VttNodeIAQData101",

 "value": [

 {

 "odata.etag": "W/\"datetime'2019-01-04T12%3A16%3A27.4264943Z'\"",

 "PartitionKey": "20190104",

 "RowKey": "1546604174",

 "Timestamp": "2019-01-04T12:16:27.4264943Z",

 "batteryVoltage": 3.25,

 "deviceid": "tepi_vtt_gw_101",

 "devicetimestamp": 1546604174,

 "humidity": 14.86,

 "nodeId": 610,

 "pir_cnt": 0,

 "pressure": 1007.8,

 "rssi": 76.9,

 "temperature": 21.43,

 "state": 0,

 "state_cnt": 881,

 "co2": 567

 {

 …

 },

]

}

https://vtttepipilot.table.core.windows.net/VttNodeIAQData101?st=2018-12-31T22:01:00Z&se=2019-12-31T20:55:00Z&sp=r&sv=2018-03-28&tn=vttnodeiaqdata101&sig=YteQb2zcnGeZNu8KBlvKoL9ujnW5kUMyn6vfzDjtP7c
https://vtttepipilot.table.core.windows.net/VttNodeIAQData101?st=2018-12-31T22:01:00Z&se=2019-12-31T20:55:00Z&sp=r&sv=2018-03-28&tn=vttnodeiaqdata101&sig=YteQb2zcnGeZNu8KBlvKoL9ujnW5kUMyn6vfzDjtP7c
https://vtttepipilot.table.core.windows.net/VttNodeIAQData101?st=2018-12-31T22:01:00Z&se=2019-12-31T20:55:00Z&sp=r&sv=2018-03-28&tn=vttnodeiaqdata101&sig=YteQb2zcnGeZNu8KBlvKoL9ujnW5kUMyn6vfzDjtP7c

ESTABLISH

D4.1 Data Management Platform Architecture 33

The same result in XML:

<?xml version="1.0" encoding="utf-8"?>

<feed xml:base="https://vtttepipilot.table.core.windows.net/" xmlns="http://www.w3.org/2005/Atom"

xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices"

xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"

xmlns:georss="http://www.georss.org/georss" xmlns:gml="http://www.opengis.net/gml">

 <id>https://vtttepipilot.table.core.windows.net/VttNodeIAQData101</id>

 <title type="text">VttNodeIAQData101</title>

 <updated>2019-06-06T11:47:23Z</updated>

 <link rel="self" title="VttNodeIAQData101" href="VttNodeIAQData101" />

 <entry m:etag="W/"datetime'2019-01-04T12%3A16%3A27.4264943Z'"">

<id>https://vtttepipilot.table.core.windows.net/VttNodeIAQData101(PartitionKey='20190104',RowKey='1

546604174')</id>

 <category term="vtttepipilot.VttNodeIAQData101"

scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />

 <link rel="edit" title="VttNodeIAQData101"

href="VttNodeIAQData101(PartitionKey='20190104',RowKey='1546604174')" />

 <title />

 <updated>2019-06-06T11:47:23Z</updated>

 <author>

 <name />

 </author>

 <content type="application/xml">

 <m:properties>

 <d:PartitionKey>20190104</d:PartitionKey>

 <d:RowKey>1546604174</d:RowKey>

 <d:Timestamp m:type="Edm.DateTime">2019-01-04T12:16:27.4264943Z</d:Timestamp>

 <d:batteryVoltage m:type="Edm.Double">3.25</d:batteryVoltage>

 <d:deviceid>tepi_vtt_gw_101</d:deviceid>

 <d:devicetimestamp m:type="Edm.Int32">1546604174</d:devicetimestamp>

 <d:humidity m:type="Edm.Double">14.86</d:humidity>

 <d:nodeId m:type="Edm.Int32">610</d:nodeId>

 <d:pir_cnt m:type="Edm.Int32">0</d:pir_cnt>

 <d:pressure m:type="Edm.Double">1007.8</d:pressure>

 <d:rssi m:type="Edm.Double">76.9</d:rssi>

 <d:temperature m:type="Edm.Double">21.43</d:temperature>

 <d:state m:type="Edm.Int32">0</d:state>

 <d:state_cnt m:type="Edm.Int32">881</d:state_cnt>

 <d:co2 m:type="Edm.Int32">567</d:co2>

 </m:properties>

 </content>

 </entry>

…

</feed>

ESTABLISH

D4.1 Data Management Platform Architecture 34

2.3.5 Data exposed by Establish Coordinator

The Establish coordinator is exposing data via API (REST Services)

Data is exposed in XML or JSON format (as the clients wants)

The data structures presented below are using XML format and XML schema for their description

Access to data is via rest services

The generic URL is:

Error! Hyperlink reference not valid.
where {dataRoot} depends on the type of data requested, and is fully documented in the description of

services.

For visualization purposes, the structures widely used are:

fitbitData (with reference to fitbitDevices) and URL

http://{{server}}:{{port}}/EstablishCoordinator/webresources/ro.establishrs.patientsdata/

environment (with reference to locations and environmentDevices) and URL:

http://{{server}}:{{port}}/EstablishCoordinator/webresources/ro.establishrs.envsensordat

a/

patientsDataHistory and URL:

http://{{server}}:{{port}}/EstablishCoordinator/webresources/ro.establishrs.patientsdatah

istory

The other structures give information about patients, caregivers, rules, etc.

Bellow is a description of all structures exposed.

fitbitData is a structure where data registered from a wearable is placed:

<xs:complexType name="fitbitData">

<xs:sequence>

<xs:element minOccurs="0" name="activActivityCalories" type="xs:int"/>

<xs:element minOccurs="0" name="activCalories" type="xs:int"/>

<xs:element minOccurs="0" name="activCaloriesBnr" type="xs:int"/>

<xs:element minOccurs="0" name="activDistance" type="xs:double"/>

<xs:element minOccurs="0" name="activElevation" type="xs:double"/>

<xs:element minOccurs="0" name="activFloors" type="xs:int"/>

<xs:element minOccurs="0" name="activMinFairlyActive" type="xs:int"/>

<xs:element minOccurs="0" name="activMinLightlyActive" type="xs:int"/>

<xs:element minOccurs="0" name="activMinSedentary" type="xs:int"/>

<xs:element minOccurs="0" name="activMinVeryActive" type="xs:int"/>

<xs:element minOccurs="0" name="activSteps" type="xs:int"/>

<xs:element minOccurs="0" name="alt" type="xs:double"/>

<xs:element minOccurs="0" name="bateryLevel" type="xs:int"/>

<xs:element minOccurs="0" name="createdOn" type="xs:dateTime"/>

<xs:element minOccurs="0" name="fitbitId" type="fitbitDevices"/>

<xs:element minOccurs="0" name="heartRate" type="xs:double"/>

<xs:element minOccurs="0" name="id" type="xs:int"/>

<xs:element minOccurs="0" name="lat" type="xs:double"/>

ESTABLISH

D4.1 Data Management Platform Architecture 35

<xs:element minOccurs="0" name="lng" type="xs:double"/>

<xs:element minOccurs="0" name="sleepAsleep" type="xs:int"/>

<xs:element minOccurs="0" name="sleepAwake" type="xs:int"/>

<xs:element minOccurs="0" name="sleepRestless" type="xs:int"/>

<xs:element minOccurs="0" name="steps" type="xs:double"/>

</xs:sequence>

</xs:complexType>

fitbitDevices is a structure used to describe the devices (wearable)

<xs:complexType name="fitbitDevices">

<xs:sequence>

<xs:element minOccurs="0" name="createdOn" type="xs:dateTime"/>

<xs:element minOccurs="0" name="fitbitAccount" type="xs:string"/>

<xs:element minOccurs="0" name="fitbitConnectionData" type="xs:string"/>

<xs:element minOccurs="0" name="fitbitIdentifier" type="xs:string"/>

<xs:element minOccurs="0" name="id" type="xs:int"/>

<xs:element minOccurs="0" name="patientId" type="patients"/>

<xs:element minOccurs="0" name="status" type="xs:string"/>

<xs:element minOccurs="0" name="validityFrom" type="xs:dateTime"/>

<xs:element minOccurs="0" name="validityTo" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

patients is a structure used to describe patients

<xs:complexType name="patients">

<xs:sequence>

<xs:element minOccurs="0" name="batery" type="xs:string"/>

<xs:element minOccurs="0" name="categoryId" type="nUserCategories"/>

<xs:element minOccurs="0" name="cel" type="xs:string"/>

<xs:element minOccurs="0" name="city" type="xs:string"/>

<xs:element minOccurs="0" name="dob" type="xs:dateTime"/>

<xs:element minOccurs="0" name="email" type="xs:string"/>

<xs:element minOccurs="0" name="emergencynr" type="xs:string"/>

<xs:element minOccurs="0" name="firstName" type="xs:string"/>

<xs:element minOccurs="0" name="fullAddress" type="xs:string"/>

<xs:element minOccurs="0" name="gender" type="xs:string"/>

<xs:element minOccurs="0" name="id" type="xs:long"/>

<xs:element minOccurs="0" name="idValue" type="xs:string"/>

<xs:element minOccurs="0" name="LPict" type="xs:string"/>

<xs:element minOccurs="0" name="lastName" type="xs:string"/>

<xs:element minOccurs="0" name="lastUpdatedOn" type="xs:dateTime"/>

<xs:element minOccurs="0" name="lotnr" type="xs:string"/>

<xs:element minOccurs="0" name="MPict" type="xs:string"/>

<xs:element minOccurs="0" name="macAddress" type="xs:string"/>

<xs:element minOccurs="0" name="mapLat" type="xs:decimal"/>

<xs:element minOccurs="0" name="mapLng" type="xs:decimal"/>

<xs:element minOccurs="0" name="nat" type="xs:string"/>

ESTABLISH

D4.1 Data Management Platform Architecture 36

<xs:element minOccurs="0" name="patientName" type="xs:string"/>

<xs:element minOccurs="0" name="patientType" type="xs:string"/>

<xs:element minOccurs="0" name="patientscol" type="xs:string"/>

<xs:element minOccurs="0" name="phone" type="xs:string"/>

<xs:element minOccurs="0" name="registrationDate" type="xs:dateTime"/>

<xs:element minOccurs="0" name="removalDate" type="xs:dateTime"/>

<xs:element minOccurs="0" name="SPict" type="xs:string"/>

<xs:element minOccurs="0" name="state" type="xs:string"/>

<xs:element minOccurs="0" name="status" type="xs:string"/>

<xs:element minOccurs="0" name="title" type="xs:string"/>

<xs:element minOccurs="0" name="unit" type="xs:string"/>

<xs:element minOccurs="0" name="userId" type="registeredUsers"/>

</xs:sequence>

</xs:complexType>

registeredUser structure represents data from the profiles of the users

<xs:complexType name="registeredUsers">

<xs:sequence>

<xs:element minOccurs="0" name="accessArea" type="xs:string"/>

<xs:element minOccurs="0" name="active" type="xs:boolean"/>

<xs:element minOccurs="0" name="email" type="xs:string"/>

<xs:element minOccurs="0" name="enabled" type="xs:boolean"/>

<xs:element minOccurs="0" name="id" type="xs:long"/>

<xs:element minOccurs="0" name="lastLogin" type="xs:dateTime"/>

<xs:element minOccurs="0" name="lastUpdatedOn" type="xs:dateTime"/>

<xs:element minOccurs="0" name="pwd" type="xs:string"/>

<xs:element minOccurs="0" name="userFullName" type="xs:string"/>

<xs:element minOccurs="0" name="userName" type="xs:string"/>

<xs:element minOccurs="0" name="userPin" type="xs:string"/>

<xs:element minOccurs="0" name="validityEnd" type="xs:dateTime"/>

<xs:element minOccurs="0" name="validityStart" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

patientActivities contains the full description of activities associated to patients

<xs:complexType name="patientActivities">

<xs:sequence>

<xs:element minOccurs="0" name="activityId" type="activities"/>

<xs:element minOccurs="0" name="activityStatus" type="xs:string"/>

<xs:element minOccurs="0" name="cancelationDate" type="xs:dateTime"/>

<xs:element minOccurs="0" name="caregiverId" type="caregivers"/>

<xs:element minOccurs="0" name="completionMark" type="xs:int"/>

<xs:element minOccurs="0" name="createdBy" type="xs:string"/>

<xs:element minOccurs="0" name="createdDate" type="xs:dateTime"/>

<xs:element minOccurs="0" name="finishedDate" type="xs:dateTime"/>

<xs:element minOccurs="0" name="id" type="xs:long"/>

<xs:element minOccurs="0" name="locationId" type="locations"/>

ESTABLISH

D4.1 Data Management Platform Architecture 37

<xs:element minOccurs="0" name="patientId" type="patients"/>

<xs:element minOccurs="0" name="scheduledOn" type="xs:dateTime"/>

<xs:element minOccurs="0" name="startedDate" type="xs:dateTime"/>

<xs:element minOccurs="0" name="validationDate" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

activities contains the generic activities, which eventually are linked to patiens

<xs:complexType name="activities">

<xs:sequence>

<xs:element minOccurs="0" name="activityDescription" type="xs:string"/>

<xs:element minOccurs="0" name="activityDificulty" type="xs:string"/>

<xs:element minOccurs="0" name="activityLenght" type="xs:integer"/>

<xs:element minOccurs="0" name="activityName" type="xs:string"/>

<xs:element minOccurs="0" name="contraindications" type="xs:string"/>

<xs:element minOccurs="0" name="createdBy" type="xs:string"/>

<xs:element minOccurs="0" name="createdDate" type="xs:dateTime"/>

<xs:element minOccurs="0" name="every" type="xs:int"/>

<xs:element minOccurs="0" name="id" type="xs:long"/>

<xs:element minOccurs="0" name="recommendations" type="xs:string"/>

<xs:element minOccurs="0" name="recoveryProgram" type="xs:string"/>

<xs:element minOccurs="0" name="recurenceType" type="xs:string"/>

<xs:element minOccurs="0" name="validityEnd" type="xs:dateTime"/>

<xs:element minOccurs="0" name="validityStart" type="xs:dateTime"/>

<xs:element minOccurs="0" name="weekDays" type="xs:string"/>

</xs:sequence>

</xs:complexType>

caregivers is a structure where data about the caregives is stored

<xs:complexType name="caregivers">

<xs:sequence>

<xs:element minOccurs="0" name="caregiverLanguage" type="xs:string"/>

<xs:element minOccurs="0" name="caregiverName" type="xs:string"/>

<xs:element minOccurs="0" name="caregiverType" type="xs:string"/>

<xs:element minOccurs="0" name="categoryId" type="nUserCategories"/>

<xs:element minOccurs="0" name="cell" type="xs:string"/>

<xs:element minOccurs="0" name="city" type="xs:string"/>

<xs:element minOccurs="0" name="email" type="xs:string"/>

<xs:element minOccurs="0" name="firstName" type="xs:string"/>

<xs:element minOccurs="0" name="fullAddress" type="xs:string"/>

<xs:element minOccurs="0" name="id" type="xs:long"/>

<xs:element minOccurs="0" name="idValue" type="xs:string"/>

<xs:element minOccurs="0" name="LPict" type="xs:string"/>

<xs:element minOccurs="0" name="lastName" type="xs:string"/>

<xs:element minOccurs="0" name="lastUpdatedOn" type="xs:dateTime"/>

<xs:element minOccurs="0" name="MPict" type="xs:string"/>

<xs:element minOccurs="0" name="macAddress" type="xs:string"/>

ESTABLISH

D4.1 Data Management Platform Architecture 38

<xs:element minOccurs="0" name="nat" type="xs:string"/>

<xs:element minOccurs="0" name="phone" type="xs:string"/>

<xs:element minOccurs="0" name="registrationDate" type="xs:dateTime"/>

<xs:element minOccurs="0" name="removalDate" type="xs:dateTime"/>

<xs:element minOccurs="0" name="SPict" type="xs:string"/>

<xs:element minOccurs="0" name="state" type="xs:string"/>

<xs:element minOccurs="0" name="title" type="xs:string"/>

<xs:element minOccurs="0" name="userId" type="registeredUsers"/>

</xs:sequence>

</xs:complexType>

locations is a structure which indicat6es the locations where sensors are placed

<xs:complexType name="locations">

<xs:sequence>

<xs:element minOccurs="0" name="createdBy" type="xs:string"/>

<xs:element minOccurs="0" name="createdDate" type="xs:dateTime"/>

<xs:element minOccurs="0" name="id" type="xs:long"/>

<xs:element minOccurs="0" name="locationCoordinates" type="xs:anyType"/>

<xs:element minOccurs="0" name="locationDescription" type="xs:string"/>

<xs:element minOccurs="0" name="locationName" type="xs:string"/>

<xs:element minOccurs="0" name="locationType" type="xs:string"/>

</xs:sequence>

</xs:complexType>

environment data is a structure where data about environment (temperature, pressure, etc) is stored.

<xs:complexType name="environmentData">

<xs:sequence>

<xs:element minOccurs="0" name="airQualityIndex" type="xs:double"/>

<xs:element minOccurs="0" name="alt" type="xs:double"/>

<xs:element minOccurs="0" name="atmPressure" type="xs:double"/>

<xs:element minOccurs="0" name="batery" type="xs:double"/>

<xs:element minOccurs="0" name="carbonDioxide" type="xs:double"/>

<xs:element minOccurs="0" name="carbonMonoxide" type="xs:double"/>

<xs:element minOccurs="0" name="createdOn" type="xs:dateTime"/>

<xs:element minOccurs="0" name="deviceId" type="environmentDevices"/>

<xs:element minOccurs="0" name="humidity" type="xs:double"/>

<xs:element minOccurs="0" name="id" type="xs:int"/>

<xs:element minOccurs="0" name="lat" type="xs:double"/>

<xs:element minOccurs="0" name="lng" type="xs:double"/>

<xs:element minOccurs="0" name="nitrogenDioxide" type="xs:double"/>

<xs:element minOccurs="0" name="oxigenLevel" type="xs:double"/>

<xs:element minOccurs="0" name="ozone" type="xs:double"/>

<xs:element minOccurs="0" name="particles1" type="xs:double"/>

<xs:element minOccurs="0" name="particles10" type="xs:double"/>

<xs:element minOccurs="0" name="particles25" type="xs:double"/>

<xs:element minOccurs="0" name="temperature" type="xs:double"/>

<xs:element minOccurs="0" name="value1" type="xs:double"/>

ESTABLISH

D4.1 Data Management Platform Architecture 39

<xs:element minOccurs="0" name="value2" type="xs:double"/>

<xs:element minOccurs="0" name="value3" type="xs:double"/>

<xs:element minOccurs="0" name="value4" type="xs:string"/>

<xs:element minOccurs="0" name="value5" type="xs:string"/>

<xs:element minOccurs="0" name="value6" type="xs:string"/>

<xs:element minOccurs="0" name="windDirection" type="xs:string"/>

<xs:element minOccurs="0" name="windSpeed" type="xs:double"/>

</xs:sequence>

</xs:complexType>

environmentDevices contains data describing the sensors used to registere data about environment

(temperature, pressure, etc)

<xs:complexType name="environmentDevices">

<xs:sequence>

<xs:element minOccurs="0" name="createdOn" type="xs:dateTime"/>

<xs:element minOccurs="0" name="deviceConnectionData" type="xs:string"/>

<xs:element minOccurs="0" name="deviceIdentifier" type="xs:string"/>

<xs:element minOccurs="0" name="deviceName" type="xs:string"/>

<xs:element minOccurs="0" name="id" type="xs:int"/>

<xs:element minOccurs="0" name="locationId" type="locations"/>

<xs:element minOccurs="0" name="status" type="xs:string"/>

<xs:element minOccurs="0" name="validityFrom" type="xs:dateTime"/>

<xs:element minOccurs="0" name="validityTo" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

ealthAlerts contains the data describing the alerts computed by the system when some conditions are

met

<xs:complexType name="healthAlerts">

<xs:sequence>

<xs:element minOccurs="0" name="alertMessage" type="xs:string"/>

<xs:element minOccurs="0" name="alertStatus" type="xs:string"/>

<xs:element minOccurs="0" name="createdBy" type="xs:string"/>

<xs:element minOccurs="0" name="createdOn" type="xs:dateTime"/>

<xs:element minOccurs="0" name="id" type="xs:int"/>

<xs:element minOccurs="0" name="readOn" type="xs:dateTime"/>

<xs:element minOccurs="0" name="severity" type="xs:int"/>

<xs:element minOccurs="0" name="sourceRuleId" type="rules"/>

</xs:sequence>

</xs:complexType>

messages structure contains data which was sent as messages to users.

<xs:complexType name="messages">

<xs:sequence>

<xs:element minOccurs="0" name="createdOn" type="xs:dateTime"/>

<xs:element minOccurs="0" name="id" type="xs:long"/>

ESTABLISH

D4.1 Data Management Platform Architecture 40

<xs:element minOccurs="0" name="messageContent" type="xs:string"/>

<xs:element minOccurs="0" name="receiverId" type="registeredUsers"/>

<xs:element minOccurs="0" name="senderId" type="registeredUsers"/>

<xs:element minOccurs="0" name="viewOn" type="xs:dateTime"/>

</xs:sequence>

</xs:complexType>

patientsDataHistory contains data describing the full history of data registered for a patient

<xs:complexType name="patientsDataHistory">

<xs:sequence>

<xs:element minOccurs="0" name="age" type="xs:integer"/>

<xs:element minOccurs="0" name="bloodPressure" type="xs:string"/>

<xs:element minOccurs="0" name="heartRate" type="xs:int"/>

<xs:element minOccurs="0" name="height" type="xs:double"/>

<xs:element minOccurs="0" name="id" type="xs:long"/>

<xs:element name="idPatientData" type="xs:long"/>

<xs:element minOccurs="0" name="operationTime" type="xs:dateTime"/>

<xs:element minOccurs="0" name="operationType" type="xs:string"/>

<xs:element minOccurs="0" name="otherInfo" type="xs:string"/>

<xs:element minOccurs="0" name="patientId" type="patients"/>

<xs:element minOccurs="0" name="registeredBy" type="caregivers"/>

<xs:element minOccurs="0" name="registrationDate" type="xs:dateTime"/>

<xs:element minOccurs="0" name="weight" type="xs:double"/>

</xs:sequence>

</xs:complexType>

 EViF integrations

ESTABLISH Visualization Framework (EVIF) represents one of the main general purpose components of

the ESTABLISH project. EVIF targets highly customizable visualizations and customized reports. EVIF

features visualization widgets (e.g., line chart, bar-chart, legend, 3D building browser), that can be

composed to create complex visualization. The creation of the visualization is performed via a web -based

administrative interface that EVIF provides.

Figure 23 shows the overall architecture of EVIF. In detail, the architecture and end-user perspective of

EFIV have been already described in the D3.1 High Level System Architecture deliverable. Here, we focus

only on the data sources integration.

ESTABLISH

D4.1 Data Management Platform Architecture 41

Figure 23. EVIF architecture

Data from sensors (or any other source) are in EVIF managed by its backend part (the server part in the

figure), namely the EVIF Data Server component. Data are permanently stored in a MySQL database

(and temporarily in Elastic search for fast indexing, searching, etc.) in an EVIF specific format. To the

database, the data are a stored via data intake connectors, which need to be specifically prepared for

each data source and/or data format, i.e., the perform transformations from a particular format to the

EVIF format.

Currently, there are a number of connectors being developed for data from the individual partners within

the project. Namely, these are:

 A connector for IMA and DEKPROJEKT demonstrator data (both of them share the same data

format)

 A connector to BEIA/SIVECO demonstrator data

 A connector to data from VTT

The connectors use the APIs of the respective partners as described in the sections above.

EVIF pulls the data periodically using these connectors and stores them for further visualization in its

database. This process typically takes two steps:

1) EVIF queries the list of available sensors and their allocation to end-users. It mirrors this

structure in its own database. In particular, a sensor (potentially containing multiple attributes) is

mapped to EVIF sensor. An end-user is mapped to EVIF user and associated namespace. The

namespace serves as a container for all the sensors owned by the end-user. EVIF automatically

creates corresponding sensors, users and namespaces. It configures these automatically

created users in such a way that they have only access to sensors in their corresponding

namespace.

ElasticSearch

End User
Views

visualizations

EV
IF

 D
at

a
se

rv
er

D3

High-level visualization
API client side

IoT Gateway
Se

cu
re

au
th

en
ti

ca
te

d
co

m
m

un
ic

at
io

n
(v

ia
 S

SL
 a

nd
 c

lie
n

t-
si

d
e

ce
rt

if
ic

at
es

)

EVIF Web portal

React

Administrator
Creates visualizations by
instantiating visualization

templates

ESTABLISH Technical
Contractor

Creates visualization
templates for the given

domain/use-case

MySQL

Analytics plugins

Analytics
settings

Spark

High-level vis API
server-side

Se
rv

er
C

lie
nt

 (i
n

w
eb

br
o

w
se

r)

Use-case specific UI

EVIF-based
visualisation
(in IFRAME)

ESTABLISH

D4.1 Data Management Platform Architecture 42

2) EVIF pulls data for the detected sensors. The request for pulling the data specifies the last

timestamp that EVIF registers for the particular sensor. Thus, only new data are pulled.

The data that are thus obtained can then be made available through various visualizations. A

visualization is setup using an administrative interface of EVIF and made available to end -user as an

EVIF panel. The panel is typically served as an IFRAME allowing thus seamless integration into existing

UIs.

 Smart city platform

In this pilot, all the data used comes from open data platforms or third-party web services. No sensors are

provided by Establish partners.

The pilot is being developed in Valencia (Spain) and the data comes from the Valencia smart City

Platform (VLCi) which is the name of its smart city platform.

In addition to the data obtained from the open data, the use case will make use of public weather forecast

systems; this information is relevant to make predictions of pollution levels.

The data sources used in the pilot are:

 Air pollution stations.

 Measuring Stations for Pollen

 Bike lines

 Google Transit for public transport

 Parkings

 Real-time traffic status

 Sense of circulation

 Intensity of bicycle

 Intensity of traffic

The VLCi platform is based on Fiware, which is an open standard recommended by the European

Commission for Smart Cities to ensure adaptation to the Internet of Things. The Main formats used by

VLCi Open Data to expose the data are SHP, GML, WFS, WMS, KML, KMZ, CSV, JSON, JSON-

LD, RDF XML/TURTLE /N3.

In addition to the data obtained from the open data, the use case will make use of weather forecast

systems; this information is relevant to make predictions of pollution levels.

To support the large amount of data required by the use case, the data will be stored in a non -SQL

scalable database. It will provide a Restful API to manage data

The selected data sets for the Spanish pilot are listed in the following table 13.

Table 13. Selected Data sets of the Spanish Pilot

Domain Type Data set Description Update
frequen

cy

Format

ESTABLISH

D4.1 Data Management Platform Architecture 43

Environme

nt

Air

pollutio

n

station

Air pollution station

of the Universidad

Politécnica (1A)

Daily data of the air pollution

(PM2.5, PM1, SO2, NO,

NO2, PM10, NOx, Ozone,)

Daily CSV

Environme

nt

Air

pollutio

n

station

Air pollution station

of the Molí del Sol

(3A)

Daily data of the air pollution

(PM2.5, PM1, SO2, NO,

NO2, PM10, NOx, Ozone,)

Daily CSV

Environme

nt

Air

pollutio

n

station

Air pollution station

of the Pista de Silla

(4A)

Daily data of the air pollution

(PM2,5, PM1, Xylene, SO2,

CO, NO, NO2, PM10, NOx,

Ozone, Toluene, Benzene,

Noise)

Daily CSV

Environme

nt

Air

pollutio

n

station

Air pollution station

of the Viveros (5A)

Daily data of the air pollution

(PM2.5, SO2, NO, NO2,

PM10, Ni, NOx, Ozone, As,

Pb, Cd)

Daily CSV

Environme

nt

Air

pollutio

n

station

Air pollution station

of the Avinguda

Francia (6A)

Daily data of the air pollution

(SO2, CO, NO, NO2, NOx,

Ozone, Speed)

Daily CSV

Environme

nt

Air

pollutio

n

station

Air pollution station

of the Boulevar Sur

(7A)

Daily data of the air pollution

(SO2, NO, NO2, PM10, Ni,

NOx, Ozone, As, Pb, BaP,

Cd)

Daily CSV

Environme

nt

Air

pollutio

n

station

Air pollution

monitoring network

Stations of automatic

measurement of

atmospheric pollution.

Daily WFS, CSV,

GEOJSON,

SHAPE, GML,

WMS, KML, KMZ

Environme

nt

Pollen Pollen Map

Casuarina

Pollen map grouped by

several tree species

(Casuarina). Density: pollen

density per zone.

2

months

WFS GEOJSON

SHAPE GML KML

KMZ

Environme

nt

Pollen Pollen Map Ulmus Pollen map grouped by

several tree species

(Ulmus). Density: pollen

density per zone.

2

months

WFS GEOJSON

SHAPE WMS

GML KML KMZ

ESTABLISH

D4.1 Data Management Platform Architecture 44

Environme

nt

Pollen Pollen Map

Ligustrum

Pollen map grouped by

several tree species

(Ligustrum). Density: pollen

density per zone.

2

months

WFS GEOJSON

SHAPE WMS

GML KML KMZ

Environme

nt

Pollen Pollen Map Fraxinus Pollen map grouped by

several tree species

(Fraxinus). Density: pollen

density per zone.

2

months

WFS GEOJSON

SHAPE GML KML

KMZ

Environme

nt

Pollen Pollen Map

Cupressus

Pollen map grouped by

several tree species

(Cupressus). Density: pollen

density per zone.

2

months

WFS GEOJSON

SHAPE GML KML

KMZ

Environme

nt

Pollen Pollen Map Quercus Pollen map grouped by

several tree species

(Quercus). Density: pollen

density per zone.

2

months

WFS GEOJSON

SHAPE GML KML

KMZ

Environme

nt

Pollen Pollen Map Morus Pollen map grouped by

several tree species

(Morus). Density: pollen

density per zone.

2

months

WFS GEOJSON

SHAPE GML KML

KMZ

Environme

nt

Pollen Pollen Map Olea Pollen map grouped by

several tree species (Olea).

Density: pollen density per

zone.

2

months

WFS GEOJSON

SHAPE GML KML

KMZ

Environme

nt

Pollen Pollen Map Populus Pollen map grouped by

several tree species

(Populus). Density: pollen

density per zone.

2

months

WFS GEOJSON

SHAPE GML KML

KMZ

Environme

nt

Pollen Pollen Map Pinus Pollen map grouped by

several tree species (Pinus).

Density: pollen density per

zone.

2

months

WFS GEOJSON

SHAPE GML KML

KMZ

Environme

nt

Pollen Pollen Map Platanus Pollen map grouped by

several tree species

(Platanus). Density: pollen

density per zone.

2

months

WFS GEOJSON

SHAPE GML KML

KMZ

Transport Bike Bike line Cycling routes of the city of

Valencia

Quarterl

y

WFS CSV

GEOJSON

SHAPE GML

WMS KML KMZ

ESTABLISH

D4.1 Data Management Platform Architecture 45

Transport Bus Google Transit,

Lines, stops bus

schedules

File Google Transit bus lines 2 meses ZIP

Transport Car Night parking in the

bus lane

Night parking in the bus lane annual WFS CSV JSON

SHAPE GML

WMS KML KMZ

Transport Car Real-time traffic

status

Traffic status data is

updated every 3 minutes

 3 min WFS, GEOJSON,

SHAPE, GML,

WMS, KML, KMZ,

RDF, HTML,

JSON-F, N3,

XML, TURTLE,

CSV, ATOM,

JSONLD-G

Transport Circulation

directions

Traffic circulation directions.

Point element.

Semi-

annual

WFS CSV

GEOJSON

SHAPE GML

WMS KML KMZ

Transport Car Reduced Mobility

Parking

Location of car parking for

people with reduced mobility

Semi-

annual

WFS, CSV,

GEOJSON,

SHAPE, GML,

WMS, KML, KMZ

Transport Bike Intensity measuring

point Bicycle

(electromagnetic

coils)

Geodata of measurement

points bikes (grouping of

electromagnetic coils) and

its time intensity

Real

time

GML, GEOJSON

KML KMZ SHAPE

WFS WMS RDF

HTML JSON-G

N3 XML TURTLE

CSV ATOM

JSONLD-G

Transport Car Intensity of traffic by

sections

The intensity data is updated

every 15 minutes, the unit of

measure is vehicles / hour.

The data shown are

collected by the

electromagnetic loops.

Real

time

WFS GEOJSON

SHAPE GML

WMS KML KMZ

RDF HTML

JSON-G N3 XML

TURTLE CSV

Transport Car

Permanent no

parking places

Geographical data on the

location of the permanent no

parking places

Annual CSV GML

GEOJSON KML

KMZ SHAPE

WFS WMS

Transport Car Unregulated parking Geographical data on the

location of unregulated

parking spaces

Quarterl

y

CSV GML JSON

KML KMZ SHAPE

WFS WMS

Transport Motorc

ycles

Parking for

motorcycles

Geographical information on

the location of motorcycle

parking

Quarterl

y

CSV GML

GEOJSON KML

ESTABLISH

D4.1 Data Management Platform Architecture 46

KMZ SHAPE

WFS WMS

Transport Car Intensity of Traffic

Measurement Points

Geographical data of traffic

measurement points

(grouping of electromagnetic

turns) and their hourly

intensity

Real

time

CSV WFS

GEOJSON

SHAPE GML

WMS KML KMZ

RDF HTML

JSON-G N3 XML

TURTLE ATOM

JSONLD-G

Transport Bicycle Bicycle parking Public bicycle parking: Semi-

annual

WFS CSV

GEOJSON

SHAPE GML

WMS KML KMZ

Transport Car Car parking Public and private parking of

the city

Quarterl

y

WFS CSV

GEOJSON

SHAPE GML

WMS KML KMZ

Transport Car ORA Expenders Location of the ORA

Expenders

Quarterl

y

WFS CSV

GEOJSON

SHAPE GML

WMS KML KMZ

Transport Car ORA parking Location of the ORA Parking Quarterl

y

WFS CSV

GEOJSON

SHAPE GML

WMS KML KMZ

Transport Taxi Taxi stops Location of taxi stops Semi-

annual

WFS GEOJSON

SHAPE GML KML

KMZ

Transport Bus EMT Stops Location of the bus stops Daily WFS CSV

GEOJSON

SHAPE GML

WMS KML KMZ

Transport Bicycle Valenbisi stations Information about the

Valenbici stations (location,

available bikes)

Real

time

WFS CSV

GEOJSON

SHAPE GML

WMS KML KMZ

Infrastruct

ure

Street Street works

executed

Data on urbanization works

carried out

Daily CSV GML JSON

KML KMZ SHAPE

WFS WMS

Infrastruct

ure

Street Axes of the Streets

works executed

Scope that covers the street

in question.

Daily WFS KLM KMZ

GML SHAPE CSV

GEOJSON WFS

Infrastruct

ure

Street Texts of street

portals

Identification of the numbers

of the portals

Daily WFS CSV

GEOJSON

ESTABLISH

D4.1 Data Management Platform Architecture 47

SHAPE GML

WMS KML KMZ

Infrastruct

ure

Street Street list List of the streets of the city Daily CSV

Infrastruct

ure

Street Municipal districts Territorial Division

integrated by Municipal

Districts according to the

amount of population.

Weekly WFS CSV

GEOJSON

SHAPE GML

WMS KML KMZ

Data Storage

ETL is a type of data integration that refers to the three steps (extract, transform, load) used to blend data

from multiple sources. Data extraction is where data is extracted from homogeneous or heterogeneous

data sources; data transformation is where the data is transformed for storing in the proper format or

structure for the purposes of querying and analysis; data loading where the data is loaded into the final

target database, more specifically, an operational data store, data mart, or data warehouse.

The ETL architecture of the Optimized city mobility planning is presented in the following figure 24.

Figure 24. Spanish pilot ETL

The data base used to store the information needed for the use case is ElasticSearch.

Elasticsearch is a search engine based on Lucene. It provides a distributed, multitenant -capable full-text

search engine with an HTTP web interface and schema-free JSON documents. Elasticsearch is developed

alongside a data-collection and log-parsing engine called Logstash, and an analytics and visualisation

https://en.wikipedia.org/wiki/Data_extraction
https://en.wikipedia.org/wiki/Data_transformation
https://en.wikipedia.org/wiki/Data_loading
https://en.wikipedia.org/wiki/Operational_data_store
https://en.wikipedia.org/wiki/Data_mart
https://en.wikipedia.org/wiki/Data_warehouse

ESTABLISH

D4.1 Data Management Platform Architecture 48

platform called Kibana. The three products are designed for use as an integrated solution, referred to as

the "Elastic Stack" (formerly the "ELK stack").

Elasticsearch can be used to search all kinds of documents. It provides scalable search, has near real -

time search, and supports multitenancy. Elasticsearch makes all its features available through the JSON

and Java API.

Data sources

In order to be able to perform data analysis, we first need to retrieve the data to be analyzed.

Currently, data has been recovered from the VLCi platform, its API information can be found at

the following URL http://gobiernoabierto.valencia.es/va/info-api/. The identifier of all available

datasets (data-st/package) can be obtained from

http://apigobiernoabiertocatalog.valencia.es/api/3/action/package_list.

As an example, if we wanted to recover the data from the Valenbisi stations, first we should

recover information about the Valenbisi data set, for this we would call the following URL,

http://apigobiernoabiertocatalog.valencia.es/api/3/action/package_show?id=estaciones-

valenbisi , this query returns the URLs of all the formats in which the data are avai lable, since

the VLCi platform uses an Open Data product, which provides the information in several formats.

{

,

success: true,

result:

{

relationships_as_object: [],

private: false,

maintainer_email: "",

num_tags: 1,

id: "ee57f2d7-e1a4-48f4-aa78-b1476e2412fc",

state: "active",

valid: "",

creator_user_id: "fb60b3c1-6708-4400- b8c9-5090d5bf4c93",

type: "dataset",

ESTABLISH

D4.1 Data Management Platform Architecture 49

resources:

[…

{

 cache_last_updated: null,

 package_id: "ee57f2d7-e1a4-48f4-aa78-b1476e2412fc",

 webstore_last_updated: null,

 id: "adadea80-37be-4f74-9392-0bdc95bd32a8",

 size: null,

 name_va: "Estacions de Valenbisi",

 state: "active",

 hash: "",

 description: "Localización de las estaciones de valenbisi." ,

 format: "GeoJSON",

 last_modified: null,

 description_va: "Localització de les estacions de valenbisi." ,

 url_type: null,

 mimetype: null,

 cache_url: null,

 name: "Estaciones de Valenbisi",

 created: "2014-10-28T12:13:33.581386",

 url: "http://mapas.valencia.es/ lanzadera/opendata/Valenbisi/JSON",

 webstore_url: null,

 mimetype_inner: null,

 position: 2,

 revision_id: "47cca846-c293-48c3-92f3-36b5148baaff",

 resource_type: null

},

...

This data set provides real-time data in several format, the data showed above is in GeoJSON

format, as it has the coordinates of the stations, although they have to be transformed later.

Finally, to recover the data in Geojson format, the following URL is used:

http://mapas.valencia.es/ lanzadera/opendata/Valenbisi/JSON", an extract of the data provided

can be seen in the following figure 25.

{

"type": "FeatureCollection",

"crs": { "type": "name", "properties": { "name": "urn:ogc:def:crs:EPSG::25830" } },

"features": [

{ "type": "Feature", "properties": { "name": "012_CALLE_MINYANA", "number": "12", "address": "Calle Salvá - Calle

Poeta Querol", "open": "T", "available": "6", "free": "14", "total": "20", "ticket": "T", "updated_at": "25 \/08\/2017 10:46:53" },

"geometry": { "type": "Point", "coordinates": [725886.009, 4372445.348] } },

{ "type": "Feature", "properties": { "name": "013_PZA. ALFONSO MAGNANIMO_CON_CALLE_LA_NAVE", "number":

"13", "address": "Alfonso el Magnánimo - Nave", "open": "T", "available": "24", "free": "0", "total": "24", "ticket": "T",

"updated_at": "25\/08\/2017 10:46:53" }, "geometry": { "type": "Point", "coordinates": [726155.487, 4372463.775] } },

Figure 25. Valenbisi Dataset in JSON format

http://mapas.valencia.es/%20lanzadera/opendata/Valenbisi/JSON

ESTABLISH

D4.1 Data Management Platform Architecture 50

The geographical coordinates that the dataset returns, are in the reference system
EPSG::25830, this data will be transformed to be able to be visualized in the map.

Data acquisition

A set of processes were programmed to make periodic calls to the different datasets, the periodicity of

each call depends on the frequency of refreshing them.

Logstash is used to program the processes. Logstash is a tool developed by Elastic that works under the

Java JVM. It allows us to manage the logs of our applications, so we can use it to collect, parse and save

the logs for later searches. This tool is based on the integration of inputs, codecs, filters and outputs.

Inputs are the data sources that will be used later; codecs convert one input format into another that

Logstash accepts, and the latter into an output format. Codecs are (usually) used when data is not plain

text.

Filters are actions used to process events by modifying or deleting them. Final ly, the outputs are the

destinations where the processed data will be sent.

An example of how data related to bus stops would be imported can be seen in the figure below. The

processes have three different parts:

 Inputs: defines the data source, format and refresh rate.

 Filter: defines the mapping between the data source and the destination, as well as the

corresponding transformations.

 Output: defines the output of the data, with the index used to store the information.

input {

 http_poller {

 urls => {

 test1 => " http://geoserver:8080/geoserver/Establish/wfs?

service=wfs&typename=Establish:vlci_Emt_paradas&VERSION=1.1.0

&REQUEST=GETFEATURE&srsName=EPSG:4326&outputFormat=json"

 }

 request_timeout => 60

 codec => "json"

 interval => 100000000000

 metadata_target => http_poller_metadata_paradas_emt

 }

}

Add your filters / logstash plugins configuration here

filter {

 if [http_poller_metadata_paradas_emt] {

 split { field => "[features]" }

 mutate {

 remove_field => ["http_poller_metadata_paradas_emt","[crs][properties][name]", "[features][type]",

"[crs][type]"]

 add_field => {

 "[@metadata][type]" => "emt_stops"

 }

 }

 }

}

output {

 if [@metadata][type] == "emt_stops"{

http://geoserver:8080/geoserver/Establish/wfs?%20service=wfs&typename=Establish:vlci_Emt_paradas&VERSION=1.1.0%20&REQUEST=GETFEATURE&srsName=EPSG:4326&outputFormat=json
http://geoserver:8080/geoserver/Establish/wfs?%20service=wfs&typename=Establish:vlci_Emt_paradas&VERSION=1.1.0%20&REQUEST=GETFEATURE&srsName=EPSG:4326&outputFormat=json
http://geoserver:8080/geoserver/Establish/wfs?%20service=wfs&typename=Establish:vlci_Emt_paradas&VERSION=1.1.0%20&REQUEST=GETFEATURE&srsName=EPSG:4326&outputFormat=json

ESTABLISH

D4.1 Data Management Platform Architecture 51

 elasticsearch {

 hosts => "elasticsearch:9200"

 index => "vlci_emt_stops"

 sniffing => false

 document_type => "measurement"

 document_id => "%{[features][properties][id_parada]}"

 }

 }

}

Figure 26. logstash file for bus stops

Some of these processes are very demanding, since hundreds of records are recovered for each call and

an indexation has to be done that is very costly because it uses geometries.

Due to the high computational cost of processing some data sets, such as the location of the parkings

and the intensity of the datasets, two processes have been carried out for each dataset. The first data

process performs the initial load (very costly) and the second process only stores information that has

been updated since the last time. In this way, the information load is lightened, as the costly process is

only carried out once. This strategy has been followed for the processing of car parks and the intensity of

traffic in the city.

 Tracking of Athletes with Wearable Sensors

ESTABLISH will be implemented as a PaaS (Platform as a Service). The platform will have the ability to

receive and store data from any device that has the capability of communicating and will have the ability

to make suggestions based on the prescription (Rule sets) that will be created by users based on their

profile. Platform will include content-based recommender system for recommendation. Thus, it will be a

platform that can be used by amateur or professional individual and team athletes who want to record,

report and manage their sports activities, as well as individuals who use lifestyle facilitating devices. The

goal of Turkish consortium will implement necessary functions and algorithms that include coaching f or

the amateur and professional athletes, training management, and recommendation system that works

with artificial intelligence.

The main components of the project are:

1. Extracting meaningful information by analyzing collected data from mobile applications and IOT
devices.

2. Integration of semantic data using Big Data platform,

3. Content-aware adaptation and automation of the IOT infrastructure,

4. Development of a suggestion system based on the results of data analysis.

5. Development of mobile and web applications software for tracking data, accessing analysis results

and tracking recommendations.

ESTABLISH

D4.1 Data Management Platform Architecture 52

Figure 27. Logical Layers of Establish Project from implementation point of view

The logical layers of the project shown above says that the green boxes are integration points to Establish

platform that is implemented to align all use cases. Turkgen and Semantik organizations are implementing

the Dashboard and APIs for communicating the global Establish platform. These components provide the

data transfer between global Establish platform and Establish platform for the Turkish use case.

 Conclusion

Implementation and integration of adapters has to do with the loading and integration of sensor

collected data. ESTABLISH partners have thrived to work together during this work package to enable

synergies, this is why a clear distinction of different pilots in not evident in this deliverable.

The integration and implementation of data acquisition adapters concludes work package 4 of the

ESTABLISH project. The work package 5 Data analytics and adaptive control will follow the work

package 4 with utilizing collected and integrated data by analyzing it and enabling adaptive control

systems to build systems to better the empowerment of end-users in affecting the quality of their living

environment and personal health.

