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1 Glossary 

 
 

ADC Apparent diffusion coefficient 

CNN Convolutional neural network 

DDE Double diffusion encoding 

DKI Diffusion kurtosis imaging 

DTI Diffusion tensor imaging 

ET Enhanced tumour 

GBM Glioblastoma multiforme 

MD Mean diffusivity 

MRI Magnetic resonance imaging 

QTI Q-space trajectory imaging 

SRS Stereotactic radiosurgery 

TC Tumour core 

WBRT Whole brain radiotherapy 

WT Whole tumour 
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2 Introduction 

Brain tumours affect the quality of life for a large number of persons, and it is 
therefore important that they can be detected in an early stage and treated. 
Brain tumours can become very large, and it is therefore beneficial to detect 
small tumours (e.g. metastases) before they grow into large tumours. Magnetic 
resonance imaging (MRI) enables non-invasive imaging without any ionizing 
radiation. Structural MRI (e.g. T1- (with and without gadolinium contrast) and 
T2-weighted anatomical images) is used for detecting and segmenting brain 
tumours, but other MRI sub-modalities, such as diffusion MRI and quantitative 
MRI, can add more information about the tumour type and where the border of 
the tumour is located. 
 
In this report we will discuss the state of the art for MR based approaches for 
detecting and segmenting brain tumours and metastases. We will start with an 
overview of how common different brain tumour types are and how they can be 
treated. We will then cover how deep learning is currently being used for 
automatic segmentation. We will end by discussing recent research in diffusion 
MRI and quantitative MRI. 
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3 Overview of brain tumour types, how common they 
are and how they can be treated 

 
A brain tumour is an abnormal growth of cells in the brain that is either benign 
or malignant (cancerous). Primary tumours grow from the brain tissue itself 
whereas secondary (metastatic) tumours have spread from cancer located in 
other parts of the body, sharing the cell type with the primary tumour. The 
cancer is classified either in different stages or in different grades. The stages 
are based on the spread in the body and differ depending on the body site of 
the cancer. The first stage corresponds to a small localized tumour and the 
fourth and last stage corresponds to a cancer that has metastasized to other 
sites in the body. Grading, on the other hand, depends on the microscopic 
properties of the cancerous cells and how much they differ from the healthy 
cells, where a low-graded tumour is clearly differentiated from healthy cells and 
a high-graded tumour is undifferentiated.  
 
Depending on diagnosis, size and location of the tumour both treatment 
options and aim of the treatment vary. If possible, the first treatment step for 
primary tumours is surgical resection of the entire or parts of the tumour. This 
is often followed by stereotactic radiosurgery (SRS), fractionated radiotherapy 
or particle therapy to treat the remainder of the tumour or suspected tumour 
infiltration into the surrounding healthy tissue. Radiotherapy can be delivered 
despite the blood-brain barrier, which poses a problem for systemic treatments, 
such as chemotherapy, of brain tumours (Di Lorenzo et al., 2017). 
 
The most common type of brain tumours are metastases, which occur in 20-
40% of all cancer patients and most commonly metastasize from primary 
malignant lung cancer, breast cancer or melanoma. The efficiency of surgical 
resection of more than a single metastasis is debatable and since more than 
one metastasis is common at the time of diagnosis, whole brain radiotherapy 
(WBRT) has historically often been the treatment of choice. However, the use 
of WBRT is connected to severe side effects, primarily cognitive and 
neurological deficits after treatment (Brown et al., 2017). At the same time, the 
metastases are typically well circumscribed compared to primary brain 
tumours, and therefore they should present a suitable target for stereotactic 
radiosurgery (SRS), either as the only treatment or with adjuvant WBRT 
(Brown et al., 2018). For patients with less than five brain metastases, using 
SRS as the only treatment has proven equally effective as combined with 
WBRT, with the benefit of less side effects. For patients with a larger number of 
metastases, the use of only SRS treatment remains a matter of study (Sahgal 
et al., 2017). The response to radiotherapy of the brain tumours depends on 
the primary tumour and in recent time, targeted therapies have become 
increasingly more effective and therapeutic agents that can cross the blood-
brain barrier have been identified. Therefore, treatment of brain metastases 
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has developed to include multimodal treatments and systemic therapies. 
Therefore, treatment can be combinations of surgery, radiotherapy, 
radiosurgery, chemotherapy, immunotherapy and targeted therapies. 
 
Gliomas are malignant tumours that constitute about 30% of all tumours in the 
brain and central nervous system (Ostrom et al., 2018) and they are therefore 
the most common type of malignant primary brain tumour (Goodenberger and 
Jenkins, 2012). The gliomas arise in the glial cells, i.e. non-neuronal cells, in 
the central nervous system and there are several types of gliomas, among 
them glioblastoma multiforme (GBM), which is both the most aggressive and 
common primary malignant brain tumour among adults. GBM is almost always 
recurrent and the prognosis is poor, with less than 5% surviving more than 5 
years (Davis, 2016). The treatment approach is aggressive, following the Stupp 
protocol, with maximally safe surgical resection of the tumour followed by the 
alkylating chemotherapy agent temozolomide (TMZ), normally complemented 
with radiotherapy. Given the size and invasive nature of the GBM, there are 
several limitations and risk factors including radiation necrosis and permanent 
neuronal damage induced by radiation (Curado et al., 2007; Iacob and Dinca, 

2009). Despite the aggressive treatment the median survival after treatment is 

15 months (Koshy et al., 2012). Therefore, large efforts are devoted to 
developing new treatments such as nanoparticles and refining targeted 
therapies, vaccines and immunotherapy strategies (Paolillo et al., 2018). The 
largest open dataset of brain tumours, i.e. the BraTS dataset (Menze et al., 
2015), Figure 1, consists of GBM and lower grade gliomas and therefore these 
brain tumour types are the most studied in the context of deep learning and 
especially in image segmentation. 
 

 
Figure 1. MR images of glioblastoma multiforme taken from the BraTS dataset 
(Menze et al., 2015). Images taken with (from left): T1, T1 after Gadolinium 
(Gd) contrast, T2 and T2 FLAIR. 
 
Meningiomas are benign dural-based tumours that arise in the meninges and 
they are the most common intracranial tumour, although strictly speaking not a 
brain tumour, accounting for 35% of the primary brain tumours (Ostrom et al., 
2018). They are typically grade I and slow growing with symptoms slowly 
increasing and can therefore become large before they are diagnosed.  In most 
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cases, surgical resection of the meningioma or SRS alone is sufficient but at 
times it is necessary to complement the treatment with fractionated 
radiotherapy (Apra et al., 2018). For the rarer, recurrent and more aggressive 
type of meningioma, systemic treatments might be necessary when further 
surgery or radiotherapy is not possible (Le Rhun et al., 2016). 
 
The second most common benign tumours are pituitary adenomas, accounting 
for approximately 15% of all brain primary tumours (Ostrom et al., 2018). They 
are slow-growing tumours arising from cells in pituitary gland. Functional 
pituitary adenomas produce an excess of hormones. The most common type is 
prolactinoma, i.e. tumours that cause increased prolactin levels causing e.g. 
amenorrhea in women and galactorrhea. More uncommon functional pituitary 
adenomas can be growth hormone secreting causing enlargement of e.g. lips, 
tongue and nose. Non-functioning adenomas present with symptoms caused 
by pressure of the tumour on nearby organs (Melmed 2011).  For functional 
adenomas, treatment with hormone suppressing medicine, such as 
bromocripitine or cabergoline, is sufficient. These medicines block the excess 
hormones and the tumour often shrinks, but are often necessary to continue 
taking for the rest of the patient’s life. If necessary, the treatment is 
supplemented with surgery and radiation. For non-functional adenomas, the 
treatment is similar to that of meningiomas. The first line of treatment is 
surgery, complemented with SRS and fractionated radiotherapy if necessary 
(Molitsch, 2016). 
 
Vestibular Schwannomas, also known as acoustic neurinomas, arise in the 
Schwann cells of the eight cranial nerve. They are slowly growing benign 
tumours in the internal auditory canal that causes displacement of other 
organs, which might cause symptoms. In principle, it is not necessary to 
actively treat an asymptomatic non-growing vestibular schwannoma. Treatment 
of a vestibular schwannoma always comes at the risk of loss of hearing and 
damage to the facial nerve. An asymptomatic patient could therefore be held 
under regular observations during months or years without any intervention. If 
active treatment is necessary and the tumour is small to medium sized, SRS is 
the best option with high progression-free survival rate and long-term local 
tumour control. If the tumour is too large for SRS or the tumour presses on the 
brain stem, surgery is the best option (Tsao et al., 2017). 
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4 Overview of deep learning methods for tumour 
segmentation 

 
Research about automatic segmentation of brain tumours is currently very 
focused on deep learning, where a convolutional neural network (CNN) is 
trained by showing MR images and corresponding ground truth (manual) 
tumour segmentations provided by an expert (e.g. a neuroradiologist). The 
segmentation can be performed using a single MR modality (e.g. a T1-
weighted image) or by simultaneously showing several types of MR images to 
a multi-channel CNN (e.g. T1W, T1W with contrast, T2W, FLAIR). The annual 
BraTS (brain tumour segmentation) challenge (Menze et al., 2015) provides 
MR data for training and testing, and is one reason why deep learning has 
become so popular for brain tumour segmentation. We will here review the 
most successful (deep learning) contributions to BraTS 2017 and 2018, see 
Table 1. The interested reader is referred to D2.3.1 “State of the art on 3D 
segmentation using deep learning” for further information on deep learning 
segmentation. 
 

Table 1. Overview of most successful segmentation approaches from BraTS 
2018 and BraTS 2017. The contributions were ranked using a combination of 
Dice score and Hausdorff distance. 
 

Publication Overview 

Myronenko 
(2018) 

1st place in BraTS 2018. 3D encoder-decoder with additional VAE 
branch for encoder regularization. 

Isensee et al. 
(2018) 

2nd place in BraTS 2018. 3D U-Net with minor modifications. 

McKinley et al. 
(2018) 

3rd place (shared) in BraTS 2018. DenseNet structure with dilated 
convolutions embedded in U-Net-like network. 

Zhou et al. 
(2018) 

3rd place (shared) in BraTS 2018. Ensemble of different networks, 
with multi-scale context, cascade segmentations with shared 
backbone weights, and attention block. 

Kamnitsas et 
al. (2017) 

1st place in BraTS 2017. Ensemble of DeepMedic, FCN and 3d U-
Net. 

Wang et al. 
(2017) 

2nd place in BraTS 2017.  

 



 

 

 
 

 

Anders Eklund Public 26/06/2019 

IMPACT 

ITEA 17021 

WP3  D3.1.1   

Page 10 of 39 

 

The best results on the BraTS 2018 challenge were achieved by Myronenko 
(2018), see Figures 2 and 3 and Table 2. This work employs a 3D encoder-
decoder architecture based on multiple ResNet-like blocks. As a novelty, the 
network is split into two decoding branches at the encoder endpoint output, 
where one of the branches is a regular decoder that produces the three tumour 
segmentation maps, and the other a variational decoder that reconstructs the 
input volume. This variational decoder branch serves as regularization for the 
shared encoder, and is only active during training. 
 
Their model was trained on an NVidia Tesla V100 GPU with 32 GB of RAM, 
with large input crops of size 160x192x128, and using a batch size of 1, 
concatenating all 4 MRI modalities as input, and producing 3 nested tumour 
segmentations as output. A variety of augmentation strategies were used, 
including averaging the output of multiple flipped input images and ensembling 
multiple models trained from scratch. 
 

 
 
Figure 2. The encoder-decoder architecture employed in Myronenko (2018). 
The top decoder branch produces the tumour segmentation maps, while the 
bottom one reconstructs the input volume. 
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Figure 3. The segmentation results achieved in Myronenko (2018) are highly 
consistent with the ground truth. The whole tumor class includes all visible 
labels (a union of green, yellow and red labels), the tumor core class is a union 
of red and yellow, and the enhancing tumor core class is shown in yellow (a 
hyperactive tumor part).  

 
 

 
 
Table 2. Testing results from Myronenko (2018), which achieved the 1st place 
in the BraTS 2018 challenge. ET stands for enhanced tumour, WT stands for 
whole tumour, and TC stands for tumour core.  
 
The second place in the challenge was taken by Isensee et al. (2018), who set 
out to and succeed in showing the potential of a well trained U-Net against the 
large number of modified encoder-decoder architectures used nowadays for 
segmentation. To that end they employed a 3D U-Net with only minor 
modifications, such as using Leaky ReLU activations and a multiclass Dice 
loss, see Figure 4. 
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Several measures were taken in order to counteract the limited graphics RAM 
provided by their 12 GB NVidia Titan X GPU, such as limiting the amount of 
filters before upsampling and using inplace operations whenever possible. 
These allowed a relatively large input patches of size 128x128x128 and four 
channels, while training with a batch size of 2. Additional performance was 
extracted from the incorporation of region based prediction (inspired by Wang 
et al. (2017)), co-training with additional datasets, postprocessing steps, and a 
joint Dice and cross-entropy loss function, see Figure 5 for some results. 

 
 

 
 
Figure 4. Straightforward 3D U-Net architecture employed in Isensee et al. 
(2018). 
 
 

 
 
Figure 5. From left to right: FLAIR, T1 contrast agent enhanced, and example 
segmentation results from Isensee et al. (2018). 
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Table 3. Comparison of winning BraTS 2018 entry (NVDLMED, Myronenko 
(2018)) and second place entry (MIC-DKFZ, Isensee et al. (2018)). Isensee et 
al. achieved better results for enhancing tumour, while Myronenko 
outperformed them in tumour core and whole tumour. 
 
The third place in the challenge was shared between McKinley et al. (2018) 
and Zhou et al. (2018). McKinley et al. (2018) used a U-Net-like architecture 
with a series of DenseNet blocks between the encoding and decoding stages, 
and using dilated convolutions in place of pooling layers to increase the 
receptive field, see Figure 6. They also account for prediction uncertainty by 
having their network output both label predictions and the probability of a 
wrong prediction for each voxel, and use both of these quantities in their loss 
function. 
 
Interestingly, the model employed takes as input 5 contiguous slices from each 
of the four available MRI modalities, and initial convolutions are performed in 
3D, but after two convolution stages the slice blocks become two-dimensional, 
and 2D operations are applied in the remainder of the network. Predictions are 
made on a slice-by slice basis, and the model is trained and applied on slices 
in all three directions simultaneously. The final predictions are obtained by 
combining the outputs produced by two slightly different network architectures 
and predictions made with slices oriented in all three possible directions. See 
Figure 7 and Table 4 for some results. 
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Figure 6. Two different network architectures employed in McKinley et al. 
(2018). The first two layers perform 3D convolutions, while the remainder of the 
networks works operates in 2D. 
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Figure 7. Example segmentation (top row) and prediction uncertainty maps 
(bottom row) for whole tumour class generated by McKinley et al (2018). From 
left to right: input provided in sagittal, coronal and axial orientations. The 
different colors in the top row represent the probability of the whole tumour 
class (yellow = high probability, red = low probability).  
 

 
 
Table 4. Test results achieved by McKinley et al. (2018), sharing 3rd place in 
the BraTS 2018 challenge. ET stands for enhanced tumour, WT stands for 
whole tumour and TC stands for tumour core. 
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On the other hand, Zhou et al. (2018) use an architecture based on FusionNet 
(Quan et al., 2016), with a U-Net-like structure incorporating residual blocks in 
both encoder and decoder stages, and utilizing addition skip connections in 
place of concatenations, see Figures 8 and 9. They further expand their 
original architecture with a number of modifications, including using a one-pass 
multi-task structure, a deeper network, dense connections, attention 
mechanisms, and multi-scale information. 
 
Their networks take as input blocks of size 32x32x16 including all four 
available MRI modalities and with a batch size of 2, and produce as output 
predictions for a reduced block of size 20x20x5. The final predictions are 
obtained by ensembling the predictions from seven different models and 
applying postprocessing on the result. See Table 5 for some results. 
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Figure 8. Initial 3D FusionNet architecture employed in Zhou et al. (2018). 
Three such networks are concatenated to progressively refine the 
segmentation results. The skip connections are additive instead of 
concatenations.  The region contained in the yellow rectangle constitutes the 
shared backbone of the one-pass multi-task network.  
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Figure 9. One-pass multi-task network used in Zhou et al. (2018). Only the last 
layers are particular to the individual classification task, reducing the total 
number of network weights that need to be learned to provide the final 
classification. 
 
 
 

 
 
Table 5. Test results achieved by Zhou et al. (2018), sharing 3rd place in the 
BraTS 2018 challenge. 
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5 Overview of papers focusing on metastases 

 
A large number of papers have used deep learning for detection and 
segmentation of brain tumours. To use deep learning to detect brain 
metastases, see Figure 10, is not as common. A possible reason is that there 
is no openly available MRI dataset specifically containing brain metastases 
(such as BraTS for brain tumours (Menze et al., 2015)). Collecting MRI brain 
volumes containing metastases is a more challenging task, since the primary 
cancer (e.g. lung, breast) needs to spread to the brain. According to a review 
by Perez et al. (2016), only 10 papers focused specifically on brain 
metastases, and deep learning was not used in any paper. Liu et al. (2017) 
trained a 3D CNN based on a modified DeepMedic architecture (Kamnitsas et 
al. 2017) using data from patients with brain tumours or brain metastases, but 
only used T1-weighted MR images with contrast and did not report the 
detection performance (which is crucial, since small metastases are rather 
easy to miss). Charron et al (2018) also used the DeepMedic architecture, but 
trained it on multi-modal MRI data, consisting of T1, T1 with contrast and T2 
FLAIR, from 182 patients. Manual segmentations were performed by 4 
radiology oncologists, which found a total of 412 metastases with a diameter 
ranging from 1.65 mm to 27 mm. The deep learning approach resulted in a 
sensitivity of 93% - 98%, with a false positive rate of 4.4 - 14.2 metastases per 
patient, when tested on 18 patients not used for training. The best single-
modality detection performance was obtained with the T1W contrast images, 
and the performance improved by using all 3 MR modalities. Similar results 
were obtained by (Grovik et al., 2019), who used a 2.5D, fully convolutional, 
adaptation of the GoogLeNet architecture to perform the detection using T1, T1 
with contrast and T2 FLAIR. It is difficult to compare performance between 
studies, since no openly available metastasis dataset is available, and a false 
positive rate of 3 - 5 metastases per patient may be too high for clinical use.  
 
 

 
Figure 10. Example of a metastasis shown with T1, T1 Gd contrast and T2 
FLAIR (the metastasis is not visible in the native T1 image). Image from 
(Charron et al., 2018). While metastases are harder to detect than brain 
tumours, they are easier to treat, for example using the Leksell GammaKnife. 
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Interestingly, despite acknowledging the lack of data as one of the main 
shortcomings, these three studies used very little data augmentation. Charron 
et al. (2018) applied small rotations (< 5 degrees) to generate data 
representing 62 virtual patients (in addition to the 182 real patients), while 
Grovik et al. (2019) only applied flips and rotations that are multiples of 90 
degrees and Liu et al. (2017) only used flips. A hypothesis is therefore that 
better performance can be achieved, by for example adding random scalings 
and elastic deformations. In the original U-Net paper (Ronneberger et al., 
2015), elastic deformations were listed as a key feature to train the network 
with few annotated examples, see Figure 11 for an example. 
 

   
Figure 11. Data augmentation by transforming a brain image with a random 
smooth displacement field, giving rather realistic augmented brains. 

 
Since there is no openly available dataset with brain metastases, a possible 
solution is to generate synthetic data, using generative adversarial networks 
(GANs) (Goodfellow et al., 2014), e.g. to insert brain tumours or brain 
metastases into MR images from healthy controls. Shin et al. (2018) used such 
an approach to generate new subjects with brain tumours, see Figure 12. The 
interesting part is that they took segmented brain tumours from the BraTS 
dataset (Menze et al., 2015), i.e. the binary masks, and could then change the 
location or size of the tumour to generate new realistic datasets. Synthetic 
datasets containing metastases can therefore, at least in theory, be generated 
by starting from a brain tumour dataset, and make the tumours much smaller. 
Such a (semi)synthetic dataset can facilitate research about brain metastases, 
if made openly available. An open research question is if such a dataset can be 
created from a dataset only containing brain tumours, or if the dataset also 
needs to contain real brain metastases. 
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Figure 12. Top row: Real images from BraTS dataset. Second row: the 
tumour has been mirrored to the other side of the brain. Third row: The tumour 
has been made 16% larger. Fourth row: The tumour has been made 16% 
smaller. Fifth row: A tumour has been added to a subject without tumours. 
Image from (Shin et al., 2018). Synthetic data with brain metastases can in 
theory be constructed from the BraTS dataset, by making the tumour labels 
much smaller. 
 
Krivov and Belyaev (2018) raised another valid question: if detection is such a 
crucial component of metastasis segmentation, wouldn’t it be more natural to 
split it into two separate steps? In other words, a detection step which 
proposes suspicious regions for the, possibly computationally expensive, 
segmentation algorithm to operate on. In computer vision, the task performed 
by the detection step is referred to as object detection, which has received 
tremendous attention in recent years (Zou et al., 2019). Another benefit of the 
two-step approach is that, unlike conventional segmentation, it naturally 
identifies different metastases as different instances (so called instance 
segmentation). Incidentally, the current state-of-the-art method for instance 
segmentation is Mask R-CNN (He et al., 2017). 
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6 Advanced MRI techniques for improved detection 
and differentiation of tumour types 

Quantitative MRI 

 
The main drawback of T1- and T2-weighted structural MR images is that the 
intensity values have no physical meaning. This is in contrast to CT (computed 
tomography), where the intensity values can be interpreted as Hounsfield units. 
A T1-weighted image collected using MR scanner A can therefore be very 
different to a T1-weighted image collected using MR scanner B, even if the 
same subject is scanned twice. A solution to this is to use quantitative MRI 
(relaxometry), where the actual T1 and T2 relaxation times, and also the proton 
density, are calculated in each voxel, see Figure 13 for an example. A 
quantitative MRI sequence for full brain coverage has a scan time of 6 - 7 
minutes (Warntjes et al., 2007, 2008). When T1, T2 and PD have been 
calculated in each voxel, synthetic MR images corresponding to the 
conventional images can be created for any weighting (e.g. T1- or T2-
weighted). In research it is common to work with the relaxation rates R1 and 
R2, which are defined as R1 = 1/T1 and R2 = 1/T2.  
 

 
Figure 13. Quantitative maps of the brain, representing R1 (1/T1), R2 (1/T2) 
and proton density, obtained through a quantitative MRI sequence. Image from 
(Blystad, 2017). 
 
A major advantage with quantitative values is that it becomes easier to detect 
and possibly classify abnormal tissue. Different tissue types have different 
relaxation rates, and normal values for white brain matter (WM), gray brain 
matter (GM) and cerebrospinal fluid (CSF) are available for comparison. If a 
voxel has a R1 and/or R2 relaxation rate that is different compared to normal 
values for WM, GM and CSF, it can be seen as abnormal tissue (e.g. a brain 
metastasis or a lesion from multiple sclerosis), see Figure 14. From a machine 
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learning perspective, quantitative values are also beneficial, since it is common 
that a machine learning algorithm trained on data from scanner A will not 
perform as well on data from scanner B. Using quantitative data, it is more 
likely that the algorithm will perform well for both scanners. However, R1, R2 
and PD values will differ depending on the field strength of the MR scanner 
(e.g. 1.5 T or 3 T) and still need to be compensated for (West et al., 2013). 
 

 
Figure 14. Plots of R1 vs R2 relaxation rates for a healthy control (left) and a 
patient with multiple sclerosis (MS, right). For the healthy control, the 
quantitative R1 and R2 values are within the normal range for GM, WM and 
CSF for all voxels. For the MS patient, some voxels have abnormal R1 and R2 
values, which indicate abnormal tissue. Images from (Warntjes et al., 2008).  
 
Gadolinium contrast is normally used when collecting MR images from brain 
tumour patients, since it will detect contrast agent leakage (damage on the 
blood-brain-barrier), which makes it easier for the neuroradiologist to detect 
and to classify the tumour. Leakage of contrast agent will increase R1 in 
tumour tissue, and a more quantitative definition of the tumour can therefore be 
obtained by calculating the difference in R1 after and before contrast injection 
(Blystad et al., 2017) (normally T1-weighted images are collected both before 
and after contrast injection). This quantitative approach can detect tissue 
changes in the peritumoral region that are not visible on conventional MR 
images, see Figure 15, and this information can be useful both for deep 
learning based segmentation and for planning of radiation therapy. 
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Figure 15. An example of the synthetic and quantitative images of a 76-year-
old man with glioblastoma. The top row shows the synthetic images: (A) T1-
weighted image without contrast, (B) T1-weighted image after contrast agent 
injection, (C) T2-weighted image after contrast agent injection. The second row 
shows the R1 maps: (D) R1 map without contrast agent, (E) R1 after contrast 
agent injection, (F) difference in R1 maps (small changes in R1 relaxation are 
due to an imperfect registration). Image from (Blystad et al., 2017). 
 
Hagiwara et al. (2016) applied quantitative MRI to 10 patients with a total of 
167 brain metastases, and then produced synthetic MR images with arbitrary 
weighting. Two radiologists then tried to detect metastases using conventional 
MR images as well as synthetic MR images. The lesion-to-white matter 
contrast and contrast-to-noise ratio of the contrast-enhanced synthetic T1 
inversion recovery (IR) images were significantly higher than those of the 
contrast-enhanced synthetic T1W and contrast-enhanced conventional T1IR 
images. The number of lesions detected by the two neuroradiologists in the 
synthetic T1IR images was higher than those in the synthetic T1W and 
conventional T1IR images, but the difference was not statistically significant 
(which may be explained by the rather low number of patients).  
 
To summarize, the full potential of quantitative MRI has not yet been utilized for 
detection and segmentation of brain tumours and brain metastases. It would for 
example be interesting to collect a brain tumour dataset similar to BraTS 
(Menze et al., 2015), but to add quantitative MRI, calculate R1, R2 and PD 
maps and compare deep learning performance with and without the 
quantitative maps. 
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Diffusion MRI, ADC, DT and other methods 

 
Diffusion MRI (dMRI) is an imaging technique which exploits the random 
diffusion of water molecules to indirectly probe the microstructure of, for 
example, biological tissue. One of the discoveries that made dMRI interesting 
and valuable as a clinical tool was presented by Moseley et al. (1990a).  It was 
shown that diffusion-weighted imaging (DWI) was sensitive tissue disruption in 
cerebral ischemia in an earlier phase than other imaging techniques (Moseley 
et al., 1990a, Moseley et al., 1990b). Since then, the field of dMRI has been 
developing and its clinical use has broadened. 

 
The use of diffusion MRI in the clinical practice is currently limited to the 
acquisition of diffusion weighted images and the estimation of the Apparent 
Diffusion Coefficient (ADC) and the Diffusion Tensor (DT) (Basser et al., 1994). 
Figure 16 shows an example of clinically used images of a brain tumour. The 
Diffusion Coefficient is the constant relating time and water molecules 
displacements that one would measure if water was diffusing freely in space. 
As most biological tissues present some sort of structure that hinders the 
diffusion process in certain directions, the measured value is generally lower 
than that for unhindered (free) diffusion, hence the name apparent diffusion 
coefficient, and it depends on the direction in which the measurement is taken. 
This method assumes that the diffusion-weighted signal follows a mono-
exponential decay given by the expression: 
 

 
 
where S is the diffusion-weighted signal, S0 the signal when no diffusion 
weighting is applied, and b is the b-value. 
 
The diffusion tensor model takes into consideration the fact that water 
molecules’ displacements are not equal in all directions. Diffusion is here 
represented by a 3x3 symmetric matrix. The diagonal elements of the matrix 
correspond to diffusivity along three orthogonal axes, while the off-diagonal 
terms correspond to the correlation along these three orthogonal axes. The 
signal representation is given by the equation: 
 

 
                      

where D is the diffusion tensor matrix, b is a 3x3 symmetric matrix containing 
the experimental parameters and “:” indicates the scalar product. The diffusion 
tensors are employed to compute several scalar-valued maps such as, 
Fractional Anisotropy FA and Mean Diffusivity MD, which are well-suited for 
group studies. 
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Many methods other than ADC and DTI have been developed to quantify dMRI 
data. Among these are: diffusional kurtosis imaging DKI (Jensen et al., 2005), 
composite hindered and restricted model of diffusion CHARMED (Assaf and 
Basser, 2005), neurite orientation and density imaging NODDI (Zhang et al., 
2012), and mean apparent propagator MRI (Özarslan et al., 2013) to name a 
few.  According to (Novikov et al., 2018), these methods are classified into two 
broad categories named “signal representations” and “biophysical models”. 
Methods belonging to the first category, such as e.g. DTI and DKI, provide 
descriptive statistics of the diffusion process, and make few assumptions about 
the tissue compositions. Even though these methods’ purpose is not to infer 
any particular aspect of the tissue microstructure, there exist many studies 
linking parameters derived from them to tumour tissue features and have a 
potential use as imaging biomarkers. Methods belonging to the second 
category are instead constructed with the aim of estimating explicit 
microstructures features and therefore offer a more direct instrument to probe 
the tumours’ microstructure. However, their use in brain tumours imaging is still 
limited (Nilsson et al., 2018). 
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Figure 16. Clinical MRI of a grade IV glioblastoma. (A) T2 Weighted image, (B) 
Gadolinium enhanced T1 Weighted image, (C) FLAIR image, (D) ADC map. 
Figure retrieved from (Nilsson et al., 2018). 
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Current clinical practice in brain tumour imaging and challenges 
 
ADC 
 
As previously mentioned, the use of dMRI in the clinics is currently limited to 
the acquisition of diffusion weighted images and the computation of the ADC, 
DT and DT derived parameters. Examples on how these information are 
employed in brain tumour treatment can be found in (Villanueva-Meyer et al., 
2017) and (Nilsson et al., 2018).  In these reviews it was reported that DWI is 
best used to characterize tumour cellularity. Several studies have confirmed 
that low ADC values are found to be related to highly cellular tumours such as 
lymphoma and medulloblastoma. However, contradictory findings were 
reported for example by Jenkinson et al., (2009) and Sadeghi et al., (2008). 
The reason behind these findings was that mechanisms other than cellularity 
are known to influence the ADC. Thus, more advanced methods are required 
to disentangle the different contributions. 
 
The ADC has also been used for monitoring treatment and tumour 
differentiation.  Treatment monitoring uses the fact that ADC values react to the 
lowering in tumour cellularity due to cell lysis within few days or weeks after the 
treatment has started. However, Morse et al., (2007) reported that the 
relationship between cell apoptosis and ADC response can be complex. This 
makes the conclusions based on ADC values unreliable. Moffat et al. (2005) 
and Galbán et al. (2009) proposed a solution to these problems using an 
approach referred to as functional diffusional map fDM or parametric response 
map PRM. Here post-treatment parameters are registered to pre-treatment 
parameters, and the fractional volume of positive and negative change in ADC 
is computed. Indications of successful treatment were found in cases where 
large volumes presented an increase in ADC. Figure 17 shows how the 
parametric map is created and what it displays. 
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Figure 17. Parametric Response Mapping. An MRI exam is performed before 
and after the treatment and the volumes are coregistered. The response map 
is computed on the ADC: the green colour represents areas where there was 
no substantial change in ADC value, blue represents a substantial decrease in 
ADC value and red an increase in ADC value. The fractional volume of ADC 
increase or decrease can be used to assess the response to the cure within 
weeks after treatment initiation (Moffat et al., 2005). Figure retrieved from 
(Nilsson et al., 2018). 
 
Tumour differentiation is often based on ADC values only as reported in 
Yamasaki et al., 2005. It can also be used to differentiate between different 
subgroups, although studies such as (Sanverdi et al., 2012) reported that ADC 
values were not useful in differentiating between different subtypes of 
Meningioma. 
 
The use of ADC values is also found in the assessment of tumour grade and in 
the localization of tumour infiltrated foci among regions of vasogenic oedema 
(Villanueva-Meyer et al., 2017). However, as the authors reported, the overlap 
in ADC values between tumour grades limits the role of quantitative ADC in 
clinical practice. 
 
DTI  
 
Villanueva-Meyer et al., (2017) and Nilsson et al. (2018) reviewed the use of 
DTI as a tool for presurgical planning. DTI-based tractography is reported to be 
used to assess the integrity of white matter fibers and to guide the surgical 
resection of the tumour, see Figure 18. However, DTI presents the severe 
limitation of being able to resolve a single fiber direction per voxel, becoming 
extremely inaccurate in case of multiple fiber directions. Methods using higher 
angular resolution data and multiple b-values, see (Tournier et el., 2011) for a 
complete overview, have been introduced with the purpose of overcoming this 
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limitation but have not yet been adopted in the clinical context due to the 
complex data acquisition scheme. 
 

 
 
Figure 18. Examples of pre-surgical tractography for thalamic or basal ganglia 
tumours. This kind of analysis shows how to locate fiber tracts (the pyramidal 
tract in these examples) before performing tumour resection.  The left column 
shows the tumour location types. The right column depicts the relative 
positions of the dislocated pyramidal tract. Green circles indicate tumours and 
purple circles indicate the pyramidal tract location. The middle three columns 
illustrate typical scenarios. Figure reproduced from (Hou et al., 2012). 
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DKI 
 
Diffusional Kurtosis Imaging (Jensen et al., 2005) is the extension of DTI to the 
analysis of data collected at both low and high b-values. The signal 
representation in one dimension is given by the following expression: 
 

 
 
where MK represents the mean kurtosis which is the amount by which the 
signal departs from the mono-exponential decay. DKI has been applied in 
tumour grading. A meta-analysis from Delgado et al., 2018 revealed that DKI 
has high diagnostic accuracy in differentiating between low- and high-grade 
Gliomas. Increasing values of MK have been reported to correlate with 
increasing tumour grade (Raja et al., 2016; Van Cauter et al., 2012) while 
others showed that this relation is not always useful in differentiating, for 
example, Gliomas of grade II and III (Delgado et al., 2017). 
 
Diffusion encoding with general gradient waveforms and its potential 
utility in examining brain tumours 
 
As summarised above, dMRI methods currently used in the clinical practice 
present significant limitations. As already mentioned, the ADC value depends 
on the direction along which the measurement is taken. Moreover, it only 
provides an average of all the ADCs across a voxel. For what concerns DTI, 
Jones et al., (2012) contains a comprehensive guide on its limitations and how 
the results should be interpreted in the light of those limitations. One limitation 
is of particular interest for this report, and is the fact that the diffusion tensor 
fails in capturing intravoxel diffusion heterogeneity, i.e., multiple diffusion rates 
within one voxel. The diffusion tensor only retains an average of the diffusivity 
across the whole voxel, and thus cannot provide an accurate description of the 
tissue heterogeneity. 
 
To overcome such limitations, techniques sensitive to the local (microscopic) 
anisotropy of the specimen could be employed. A natural extension of standard 
diffusion encoding, which employs one pair of diffusion gradients is double 
diffusion encoding (DDE or dPFG), which was shown to be sensitive to 
anisotropy at different length scales (Cheng and Cory, 1999; Özarslan and 
Basser, 2008; Özarslan, 2009). A further extension to completely general 
gradient waveforms has resulted in the development of q-space trajectory 
imaging (QTI) (Westin et al., 2016), which is potentially able to resolve multiple 
cell shape, size and orientation within one voxel. The QTI framework consists 
of two components, encoding and modelling. Encoding is performed by 
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employment of general gradient waveforms as opposed to the sequence 
designed by Stejskal and Tanner comprising a single pair of pulsed gradients. 
The b-value found in the previous equations is here extended to a tensor entity 
referred to as the b-tensor. Modelling is done by adopting the diffusion tensor 
distribution model introduced by Jian et al., (2007) in each voxel. Such 
framework provides a description of the tissue microstructure which is not 
achievable with conventional methods where information such as variance in 
microscopic anisotropy and isotropic diffusivity are entangled. 
 
Following the idea of encoding the signal using different b-tensor shapes, 
Szczepankiewicz et al., (2016) introduced a method called diffusional variance 
decomposition (DIVIDE) and used it to analyse the tissue microstructure of 
Gliomas and Meningiomas. The DIVIDE method uses two different shapes of 
the b-tensor, linear and spherical. With this approach it is possible to separate 
the total kurtosis MKT (which in this method is referred to as diffusional 
variance) into its anisotropic MKA and isotropic MKI components. The total 
kurtosis constitutes an indicator of tissue heterogeneity, i.e., the higher its 
value the higher the heterogeneity within the tissue. MKA and MKI can be used 
to determine the type of heterogeneity, whether it is due to anisotropic 
compartments with orientation dispersion (MKA) or intra-voxel variance in 
isotropic diffusivity (MKI).  The results of the paper highlighted how MKT was 
high in both types of tumour, indicating heterogeneity in the tissues, and how 
the source of this heterogeneity could be determined using the anisotropic and 
isotropic diffusional variance. The Meningioma was characterized by high MKA, 
indicating high variance in cell eccentricity, while the glioma was characterized 
by high MKI, indicating high variance in cell density, see Figure 19. The results 
were confirmed by quantitative microscopy on the resected tumours, Figure 20. 
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Figure 19. Examples of maps of DIVIDE parameters on brains with 
Meningioma and glioma. MKT is high in both tumour types while MKA and MKI 
exhibit different behaviour in the two cases. On the last column on the right, 
MKA,I were superimposed on a high resolution morphological fluid-attenuated 
inversion recovery (FLAIR) image. MKA was color-coded in blue and MKI was 
color-coded in red. The Meningioma presented high MKA and low MKI while the 
opposite was found in the Glioma. Figure retrieved from (Szczepankiewicz et 
al., 2016). 
 

 
Figure 20. Correlation between variance parameters derived from dMRI and 
microscopy in Meningiomas (triangles) and Gliomas (circles). The anisotropic 
and isotropic components MKA and MKI present strong positive correlations to 
structural anisotropy HA and cell density variance HI, respectively. HA was 
derived from a structure tensor analysis while HI was obtained from cell nuclei 
segmentation. Figure retrieved from (Szczepankiewicz et al., 2016).   
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7 Concluding remarks 

To conclude, a large body of research has used deep learning for detection 
and segmentation of brain tumours, but little work has focused on brain 
metastases. A possible reason for this is the lack of an open dataset 
specifically containing (small) brain metastases. Virtually all the deep learning 
based approaches have used structural MRI for the segmentation, and an 
hypothesis is that also including quantitative MRI and diffusion MRI can further 
improve the segmentation. For CNNs, this can be achieved rather easily, by for 
example increasing the number of channels from 4 (T1W, T1W after contrast, 
T2W, FLAIR) to 8 (adding channels for T1 relaxation rate, T2 relaxation rate, 
proton density, and fractional anisotropy from diffusion MR). One problem of 
combining different types of MRI data is that diffusion MRI data often have a 
lower spatial resolution (e.g. 2 x 2 x 2 mm) compared to structural MRI  
(e.g. 1 x 1 x 1 mm). This can be solved in different ways, such as upsampling 
the diffusion MRI data or having several paths in the CNN. Another problem 
with diffusion MRI is that the data have rather strong distortions which need to 
be corrected for. 
 
An MRI modality not covered in this state of the art report is MR elastography 
(MRE), which can measure tissue stiffness non-invasively (Di leva et al., 2010). 
Since tumour tissue often has a different stiffness compared to healthy tissue, 
MRE can be used for tumour detection. However, MRE requires additional 
hardware (a wave driver to generate mechanical excitation) and MRE is 
therefore not as common as structural MRI.  
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