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1 Glossary 

 
ANN Artificial neural network 
CNN Convolutional neural network 
CPU Central processing unit 
CT Computed tomography 
FCN Fully convolutional network 
GAN Generative adversarial network 
GPU Graphics processing unit 
MRI Magnetic resonance imaging 
OCT Optical coherence tomography 
PET Positron emission tomography 
SPECT Single-photon emission computed 

tomography 
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2 Introduction 

Medical image segmentation is the process of automatic or semi-automatic detection 
of boundaries within 2D or 3D data. A major difficulty of medical image segmentation 
is the high variability in medical images. First and foremost, the human anatomy itself 
shows major modes of variation. Furthermore many different acquisition modalities 
(X-ray, CT, MRI, microscopy, PET, SPECT, Endoscopy, OCT, and many more) are used to 
create medical images. The result of the segmentation can be used to obtain further 
diagnostic insights. Depending on the application, manual segmentation of a single 
dataset can take several hours. For example, Harari et al. (2010) state up to 4 h for 
manual segmentation of head & neck patients. Another problem is segmentation 
variability, e.g. that radiologists do nog agree what the manual segmentation should 
look like (Nelms et al., 2010, Sandström et al., 2016). For these reasons, fast and fully 
automatic segmentation is often desirable.  
 
Lately, the performance of traditional image segmentation methods (intensity or 
model based) has been surpassed by deep learning methods. This document surveys 
deep learning methods for medical image segmentation of 3D data. The survey 
contains an overview of 2D solutions, which process a volume slice by slice, 2.5D 
solutions, which use a limited amount of 3D information, as well as true 3D solutions. 
It is assumed that the reader has a basic understanding of machine learning, such as 
artificial neural networks. 
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3 Survey of 2D deep learning methods for segmentation 
 

Deep learning algorithms, in particular convolutional neural networks (CNN), have 
rapidly become a methodology of choice for analyzing medical images. One of the 
first CNNs triggering interest in medical image segmentation is LeNet (LeCun et al., 
1998). At that time, the method was restricted to small images as hardware was not 
available to accommodate larger models. In 2012, hardware advanced and AlexNet 
(Krizhevsky et al., 2012), a model very similar to LeNet, launched the current deep 
learning boom by winning the 2012 ILSVRC (ImageNet) competition by a huge margin. 
 
A CNN, like LeNet and AlexNet, is a particular kind of artificial neural network  (ANN) 
aimed at preserving spatial relationships in the data, with very few connections 
between the layers. The advantage of a CNN compared to an ANN is that it contains 
much fewer parameters; only the filter coefficients need to be learned. To learn 100 
filters of size 3 x 3 only requires learning 900 parameters, plus 100 bias terms. On the 
other hand, training an ANN would involve learning many weights for every pixel in an 
image (which can easily have 1 million pixels). The input to a CNN is arranged in a grid 
structure and then fed through layers that preserve these relationships, each layer 
operating on a small region of the previous layer. CNNs are able to form highly 
efficient representations of the input data, well-suited for image-oriented tasks. In 
addition, CNNs typically have fully connected layers at the end, which compute the 
final outputs. Other common elements in many modern CNNs include dropout 
regularization and batch normalization. 
 

Most CNNs were first designed to segment 2D images and later on extended to 3D 
images. 2D CNNs use 2D convolutional kernels (filters) to predict the segmentation 
map from a 2D image. Medical images are often 3D data consisting of multiple 2D 
slices. Segmentation maps are predicted for a full volume by taking predictions one 
2D slice at a time. The 2D convolutional kernels are able to leverage context across 
the height and width of the slice to make predictions. However, because 2D CNNs 
take a single slice as input, they inherently fail to leverage context from adjacent slices 
(Lundervold and Lundervold, 2018). Therefore, the major drawback of 2D CNNs 
compared to 3D CNNs is the segmentation performance. Advantages of 2D CNNs are 
that the networks are faster to train and they are less hardware demanding as they 
require less memory than 3D CNNs.  An overview of popular 2D CNNs is given in Table 
1. 
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Table 1, overview of popular 2D CNNs. which can be used for segmentation 
 

AlexNet 
(Krizhevsky et 
al., 2012) 

One of the first convolutional networks that outperformed all the 
prior competitors. Notable features include the use of RELUs, 
dropout regularization, splitting the computations on multiple 
GPUs, and using data augmentation during training. 

VGG 

(Simonyan and 
Zisserman, 
2014) 

Popularized the idea of using smaller filter kernels and therefore 
deeper networks (up to 19 layers for VGG19, compared to 7 for 
AlexNet), and training the deeper networks using pre-training on 
shallower versions. 

GoogLeNet 
(Szegedy et al., 
2015) 

Promoted the idea of stacking the layers in CNNs more creatively, 
as networks in networks. Inside a relatively standard architecture 
(called the stem), GoogLeNet contains multiple inception modules, 
in which multiple different filter sizes are applied to the input and 
their results concatenated. This multi-scale processing allows the 
module to extract features at different levels of detail 
simultaneously. GoogLeNet also popularized the idea of not using 
fully-connected layers at the end, but rather global average 
pooling, significantly reducing the number of model parameters. 

ResNet 
(He et al., 2016) 

Introduced skip connections, which makes it possible to train much 
deeper networks. Some features are best constructed in shallow 
networks, while others require more depth. The skip connections 
facilitate both at the same time, increasing the network's flexibility 
when fed input data. 

DenseNet 
(Huang et al., 
2016) 

Builds on the ideas of ResNet, but instead of adding the activations 
produced by one layer to later layers, they are simply 
concatenated together. The original inputs in addition to the 
activations from previous layers are therefore kept at each layer, 
preserving some kind of global state. This encourages feature 
reuse and lowers the number of parameters for a given depth. 
DenseNets are therefore particularly well-suited for smaller data 
sets. 

GANs 
(Goodfellow et 
al., 2014) 

A generative adversarial network (GAN) consists of two neural 
networks pitted against each other. The generative network G is 
tasked with creating samples that the discriminative network D is 
supposed to classify as coming from the generative network or the 
training data. The networks are trained simultaneously, where G 
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aims to maximize the probability that D makes a mistake while D 
aims for high classification accuracy. 

U-net  
(Ronneberger et 
al., 2015) 

A very popular and successful network for segmentation of images. 
When fed an input image, it is first downsampled through a 
“traditional” CNN, before being upsampled using transpose 
convolutions until it reaches its original size. In addition, based on 
the ideas of ResNet, there are skip connections that concatenates 
features from the downsampling to the upsampling paths, see 
Figure 1. 

 

 
Figure 1. The popular U-Net architecture for segmentation, which has been used in 2D 
as well as 3D. In every layer of the network convolutions are performed with a number 
of filters, which are learned through backpropagation. The left part of the network 
learns a compact representation, while the right part performs upsampling to 
reconstruct a segmented version of the image. Image from Ronneberger et al. (2015). 
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4 Survey of 2.5D deep learning methods for segmentation 

 

There have been many attempts at reaping the benefits of 3D segmentation while 
sidestepping its computational challenges. One class of such methods, referred to as 
2.5D methods, are those that modify 2D architectures to incorporate (partial) 3D 
information. 
 
The first 2.5D approaches used an ensemble of 2D CNNs applied to sagittal, coronal 
and axial views (Prasoon et al., 2013). Similarly, multiple 2D views may be fed to a 2D 
CNN as different channels of the input (Roth et al., 2014). Alternatively, the input 
channels could represent adjacent slices in the 3D data, so that the first layer 
effectively performs 3D processing of a fixed number of slices (potentially all) but 
subsequent layers act as a conventional 2D CNN (Mehta & Sivaswamy, 2017). 
 

Alternatively, if a 3D volume is considered as a stack of adjacent 2D slices, then there 
are two natural ways of ordering them, e.g. up and down if considering axial slices. 
This point of view has motivated 2.5D approaches based on recurrent neural 
networks (RNNs), where the 2D slices are processed as an ordered sequence, each of 
which is segmented using e.g. 2D U-net-like architectures (Chen et al., 2016; Poudel et 
al., 2016).  
 

A third type of 2.5D methods first use a 2D model to coarsely segment and propose a 
bounding box that is then segmented with all classes using a 3D method within the 
smaller ROI. This approach was used by the winning team of the AAPM 2017 
challenge on Auto-segmentation for thoracic radiation treatment planning (Yang et 
al., 2018). 
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5 Survey of (true) 3D deep learning methods 
 

Compared to 2D and 2.5D CNNs, 3D CNNs try to utilize the full 3D information to 
improve the segmentation accuracy, at the cost of a higher memory consumption and 
a longer training time. While 2D CNNs can utilize many layers and many filters in every 
convolutional layer (e.g. 64 – 256 filters), for 3D CNNs the number of layers and filters 
must be much smaller, due to the fact that a 256 x 256 x 256 volume requires 256 
times more memory compared to a 256 x 256 image. 
 
Dolz et al. (2018) employed a 3D FCNN with concatenation of features at multiple 
scales to segment subcortical structures form T1 images, and achieved state-of-the-
art results on IBSR data, see Figure 2. They also trained their model on 1,112 volumes 
segmented with FreeSurfer (Fischl, 2012) and showed that they can attain high 
segmentation performance in a fraction of the time required by atlas-based methods, 
see Figure 3. 
 

 
Figure 2. The network presented in Dolz et al. (2018) consists of 9 convolutional layers 
of size 3x3x3 followed by 3 convolutional layers of size 1x1x1. These latter layers 
perform similarly to fully connected layers in traditional CNNs, but have the 
advantage of classifying the whole input patch instead of just the central voxel. 
Activation maps from the third, sixth and ninth convolutional layers are concatenated 
to provide features at multiple scales for the final classification. 
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Figure 3. Example segmentations from Dolz et al. (2018). Their results compare 
favorably with FreeSurfer both when running on subjects from sites used in training or 
from new sites. 
 

Wachinger et al. (2018) developed DeepNAT, a 3D segmentation architecture based 
on two stacked sliding-window classifier networks, which they trained on the MICCAI 
Multi-Atlas Labeling challenge data in order to segment 25 different brain structures 
from T1 images, see Figures 4, 5 and 6. Notable in their implementation is the use of a 
first CNN to discriminate between foreground and background, and a second CNN 
which classifies the foreground voxels into the 25 categories. Other features of note 
are the incorporation of a novel set of spectral brain coordinates as additional 
information for the network, the use of multi-task training which provides labels for 
several voxels for every input patch, and the use of a fully-connected conditional 
random field to provide the final segmentation results. With such an architecture they 
managed to match the segmentation performance of PICSL, the winning algorithm in 
the MICCAI challenge, while shortening segmentation times by an order of 
magnitude. 
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Figure 4. Wachinger et al. (2018) use a first CNN to separate background from 
foreground, and a second one to segment the foreground voxels into 25 categories. 
 

 
Figure 5. The spectral brain coordinates used in Wachinger et al. (2018) are obtained 
from the first three eigenvectors of the graph Laplacian of the brain. These generate a 
mapping within the brain which roughly corresponds with up-down, left-right and 
front-back positions. 
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Figure 6. The segmentation results produced by Wachinger et al (2018) closely match 
the manual segmentation, with better performance than FreeSurfer and similar to 
PICSL (in a fraction of the time). 
 
Chen et al. (2018) implemented VoxResNet, a voxelwise residual network for 
segmenting white matter, gray matter and cerebrospinal fluid, see Figures 7 and 8. 
Their network takes multimodal input from T1, T1-IR and T2-FLAIR images 
simultaneously, which are shown to give better results than using any single one of 
those modalities. In addition, they employ auxiliary classifiers at various intermediate 
network stages and combine their predictions with a final classifier to obtain the 
segmentation. A further improvement was made in the form of an additional 
VoxResNet network that refines the predictions of the original one. Their approach 
was on the MICCAI MRBrainS segmentation challenge data, and achieved state-of-
the-art performance. 
 

 
Figure 7. The residual modules employed in the architecture proposed by Chen et al. 
(2018) make it possible to extend the depth of the network without negatively 
affecting the backpropagation of gradients. The auxiliary classifiers act on features of 
different scales, making each of them better suited for identifying specific brain 
structures. 
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Figure 8. Chen et al. (2018) employ an auto-context VoxResNet which takes the input 
and output of the original VoxResNet and outputs a refined segmentation.  
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6 Overview of evaluation metrics 
Deep-learning segmentation frameworks rely on the choice of both network 
architecture and loss function. An essential part of measuring progress in image 
segmentation is evaluating the quality of the segmentation compared to a gold 
standard. However, the choice of primary evaluation metric is not trivial and there are 
many metrics that are used in literature for segmentation to different extents (Taha & 
Hanbury, 2015). They can be grouped into six categories: spatial overlap based, 
volume based, pair counting based, information theoretic based, probabilistic based 
and spatial distance based (Taha & Hanbury, 2017). Depending on the purpose and 
applications, there might be preference for one category over another. It is not 
uncommon to have multiple metrics to evaluate the segmentation quality from 
different perspectives as in challenges (such as BratS and LiTS). It is also common to 
combine several measures (Udupa et al., 2006, Cárdenes et al., 2009). In addition, 
segmentation algorithms can be evaluated according to efficiency, i.e. practical use of 
the algorithm such as segmentation time (Fenster & Chiu 2005). However, here we 
focus on the performance evaluation. The most common classical metrics are Dice 
score, Jaccard index, Hausdorff distance, precision and recall.  
 
Dice score 
The most commonly used metric for image segmentation is the Dice score, which in 
different forms can be used both as an evaluation metric and as a loss function. It is a 
spatial overlap based metric. Given the segmented image, P, and the reference 
(golden standard) image, R, the Dice score, first defined in (Dice, 1945), can be written 
as 

 
where |P| and|R| are the cardinality of the sets. 
 

Jaccard index 
The Jaccard index, also known as Intersection over Union (IoU), is defined as the ratio 
of the intersection between two sets and the union of the two sets, i.e. 
 

 
The Dice score and the Jaccard score are similar, such that 
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Hausdorff distance 
Hausdorff distance is a surface-based metric. It is defined as 
 

 
 
where 

 
 
where ||a-b|| is some norm, e.g. Euclidean distance. 
 

However, the Hausdorff distance is sensitive to outliers. Average Hausdorff distance 
and quantile Hausdorff distance have therefore been proposed as alternatives (Taha 
et al., 2015). 
 
For segmentation in medical images, accuracy is not commonly used alone due to 
class-imbalance in the dataset and the fact that it does not reflect the number of false 
positives. Instead, precision and recall tell the proportion of correct positive 
predictions and actual positive identifications. 
 
Precision 
The precision, also known as positive predictive value, quantifies the ability to 
correctly identify a positive occurrence of a class. It is defined as  
 

 
 
where TP is the number of true positive examples, i.e. the voxels that are classified as 
positive examples when the ground truth label is positive, and FP is the number of 
false positive examples, i.e. the voxels classified as positive examples when the 
ground truth label is not. 
 

Recall 
The specificity, also known as recall or true positive rate, quantifies the accuracy in 
the classification of the background tissue, and it is defined as 

 

 
 
where FN are false negative, i.e. the voxels belong to a certain class in the ground 
truth but are not classified in the segmentation. 
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Evaluation of both precision and recall is useful to evaluate the effectiveness of the 
segmentation performance. However, improving precision typically reduces recall and 
vice versa. The combination of recall and precision is common to use, e.g. F1-measure 
and it is mathematically equivalent to the Dice score. 
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7 Overview of loss functions  
 

The loss function used for training of the (deep) network should be chosen both with 
respect to the task at hand and the evaluation metric. The most commonly used loss 
functions are cross-entropy and Dice loss. 
 
Cross-entropy 
In image segmentation, one of the most common loss functions is voxel-wise cross-
entropy, which arises when the likelihood is maximized or, equivalently, the negative 
log-likelihood is minimized. The voxels are assumed to be independent and the class 
predictions are compared to a one-hot encoded target vector. The loss function is 
defined as 
 

 
 

where we assume that the classification is done into M classes,  is the one-hot 
encoding of the ground truth and  is the class prediction for voxel n. Then an 
average over all voxels is computed, ensuring equal training to each voxel.  
 
Dice score 
The Dice score can be used directly as an evaluation metric but since it is not 
differentiable everywhere it cannot be directly used as a loss function for deep 
learning. However, continuous versions of the Dice score, which can be used as loss 
functions, have been suggested. For example, a 2-class variant of the Dice loss 
suggested in (Milletari et al. 2016) can be expressed as 
 

  
 

where pn are the image elements belonging to P and rn the image elements 
belonging to R. The epsilon term is used to ensure loss function stability. 
 

Cross-entropy is one of the most commonly used loss functions, especially in image 
segmentation. However, in medical images healthy tissue will generally dominate the 
unhealthy tissue creating an imbalance in data, which can be difficult for the cross-
entropy loss function. There are different ways to deal with it, such as adding 
weightings to different classes. (Han 2017, Christ et al., 2017, Grovik et al., 2019). 
Differentiable Dice loss was proposed to replace conventional cross-entropy for class 
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imbalance without assigning weightings to different classes and showed better results 
(Milletari et al., 2016, Sudre et al., 2017). It has since then been adopted by many 
(Zhou et al., 2016, Wang et al., 2017, Drozdzal et al., 2017, Chlebus et al., 2018, Roth 
et al., 2018). 
 
There are also other designed loss functions for medical image segmentation e.g. 
combination of sensitivity and specificity (Brosch et al., 2016), new Jaccard loss (Cai et 
al., 2017), and a modified Z-loss (Mortazi et al., 2017). Weight penalties, i.e. L1/L2 
regularization, are commonly included in the loss function to avoid over-fitting (Akkus 
et al., 2017, Gibson et al., 2018). Ensemble models use a combination of different loss 
functions, e.g. cross-entropy for DeepMedic, IoU loss and Dice for FCNs, cross-entropy 
for U-net (Kamnitsas et al., 2017). There are different network architectures that use 
auxiliary losses in addition to the voxel-wise cross-entropy (Dou et al., 2017, Grewal et 
al., 2018). 
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8 Overview of deep learning frameworks  
 

A deep learning framework is an interface, library or a tool which allows us to build 
deep learning models more easily and quickly, without getting into the details of 
underlying algorithms. They provide a clear and concise way for defining models using 
a collection of pre-built and optimized components. The five most popular deep 
learning frameworks in 2018 are Tensorflow, Keras, PyTorch, Caffe and Theano, with 
Tensorflow being by far the most popular1. All frameworks are open source, support 
Python and contain the most popular deep learning network types. Tensorflow, 
Pytorch and Caffe also support C++. Theano development has officially stopped in 
2017 and is therefore not further discussed. In 2019, Tensorflow is still the most in 
demand framework and fastest growing2. PyTorch is growing rapidly too. Finally, 
Keras and fastai, which are high level APIs for Tensorflow and PyTorch respectively, 
are also growing. Virtually all frameworks include support for doing the demanding 
calculations on one or several (Nvidia) graphics cards.  
 
As a small example, the following Keras code defines a single 2D convolutional layer 
for k filters of size 7 x 7, with a ReLU activation function, and it is very easy to 
concatenate many convolutional layers to obtain a deep network. Tensorflow 
automatically calculates the required derivatives used for updating the weights 
through back propagation. Functions for 3D convolution are also available. 
 
def ConvLayer(self, x, k): 

 
x = Conv2D(filters=k, kernel_size=7, strides=1, padding='valid')(x) 
x = Activation('relu')(x) 
return x 

 
 
                                                
1
 https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a 

2
 https://towardsdatascience.com/which-deep-learning-framework-is-growing-fastest-

3f77f14aa318 

https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
https://towardsdatascience.com/which-deep-learning-framework-is-growing-fastest-3f77f14aa318
https://towardsdatascience.com/which-deep-learning-framework-is-growing-fastest-3f77f14aa318
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9 Hardware differences between 2D, 2.5D & 3D  
 

Deep learning, and image processing in general, is a very computationally intensive 
task, which is not ideally suited to the general purpose computing architectures of 
CPUs. Instead, the massively parallel architectures of graphics cards (GPUs) prove to 
be much more adequate for performing the necessary simple, yet numerous 
calculations, since a single modern GPU can have several thousand processor cores. 
GPUs are also relatively cheap, thanks to the gaming industry. In medical imaging, 
GPUs have been used for a long time to speedup image reconstruction (of CT and MR 
images) as well as the most common algorithms (image denoising, image 
segmentation, image registration) (Eklund et al., 2013). GPUs are well suited for 
accelerating deep neural networks, including CNNs, where both the forward and the 
backward pass (backpropagation) involve many matrix operations (convolution can be 
written as a (sparse) matrix operation).  
 

One downside of GPUs, however, is the need to rely on their dedicated RAM in order 
to store both data and parameters of the trained model. Despite the fact that both 
processing and storage capacity of GPUs are steadily increasing, typical graphics cards 
provide between 3 and 10 times less RAM than can be made available to the CPU. The 
capacity to expand the GPU memory of a workstation is also much more limited, with 
multiple GPUs normally being unable to share resources without dedicated hardware 
for that purpose. Companies like Nvidia provide specialized hardware which can 
provide more GPU memory, by combining the memory of several graphics cards. For 
example, the Nvidia DGX station contains four Tesla V100 graphics cards with 32 GB of 
memory each, which can be used together to provide 128 GB of graphics memory 
(however, at a lower memory bandwidth compared to using a single graphics card). 
 

Two different aspects of a given deep learning application determine the amount of 
RAM necessary to train the model: 
 

 The number of model parameters, which affect the size or representational 
capacity of the model. CNNs provide significant advantages in this regard, 
since the number of model parameters depends not on the input images, but 
on the chosen size of the filters used. This allows for deeper networks with 
higher level features.  The convolutional layers require few parameters to 
store, e.g. 100 filters of size 3 x 3 only require storing 900 parameters. 
Nevertheless, it is not uncommon to combine convolutional and fully 
connected layers (especially at the final layer), which reestablishes the 
dependence on the size of the input images. Storing parameters for a fully 
connected layer can require substantial memory (e.g. a single fully connected 
layer with 10 000 input and output nodes requires about 380 MB of memory 
in 32 bit floats).  Model parameters are also increased by the use of advanced 
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methods such as early/late fusion, multiple pathways, and feature map 
concatenation. 

 
 The size of the input images, which in addition to affecting the model 

parameters has a direct impact of various intermediate results (e.g. feature 
maps, gradients) that have to be stored in the GPU during forward and 
backward passes in training/testing. This latter effect is not helped by the use 
of convolutional layers, which generate one full output image for every filter at 
every layer, and it is not uncommon to have 64 - 128 filters in a single 
convolutional layer (at least for 2D CNNs). Since all training data cannot be 
stored simultaneously in GPU memory, the user of deep learning frameworks 
has to define a batch size that defines how many images / volumes to analyze 
at a time. For 2D images the batch size can range from 4 - 128, while for 3D 
data it can be difficult to even store a single volume in memory (since also 
many filter responses need to be stored at the same time). For 3D it is 
therefore often necessary to first divide a volume into subvolumes that can fit 
in GPU memory, and here special hardware with large GPU memory (e.g. >= 32 
GB) can be very beneficial (for example, the winner of the 2018 BraTS 
challenge used a 32 GB graphics card). Another potential solution is to use 16 
bit floats, instead of 32 bit floats, to reduce the memory usage by a factor 2  
(at the cost of lower precision). 

 

Taking into account these considerations we are better equipped to appreciate the 
effect that the dimensionality of the input data has on the hardware requirements. 
While it is rather easy to train a 2D CNN for segmentation, training a 3D CNN results in 
3D convolutions instead of 2D convolutions, which require substantially more 
calculations, and 3D CNNs also require more memory. In general, 3D CNNs can 
therefore not be as deep as 2D CNNs, but Myronenko (2018) showed that the depth 
of a 3D network did not have a direct effect on the segmentation performance, while 
increasing the width of the network (i.e. the number of filters in each layer) improved 
performance. 
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10 Overview of open datasets available for pre-training  

 

Training CNNs for segmentation requires high quality data with (ground truth) 
annotations provided by an expert. Depending on the type and degree of data 
augmentation, see section 13 about data augmentation, the required number of 
annotated examples can vary substantially. Segmentation challenges are rather 
popular and connected to different medical imaging conferences. Each challenge 
normally provides training data with ground truth, and the test data are hidden from 
the researchers. An overview of current and previous challenges is available3, it covers 
spine segmentation, breast cancer metastases, kidney tumor segmentation, liver 
segmentation, retina vessel segmentation and many more. We will here discuss some 
of the open datasets in more detail. 
 
Brain tumors 
 

For brain tumor segmentation, the most important open dataset is BraTS, brain tumor 
segmentation, available through an annual challenge (Bakas et al 2019). The Brats 
2018 dataset4 contains 285 multimodal cases, 210 high-grade gliomas and 75 low-
grade gliomas, see Figure 9 for an example. Each case consists of four aligned MRI 
modality volumes: native (T1), post-contrast T1-weighted, T2-weighted and T2 Fluid 
Attenuated Inversion Recovery (FLAIR), acquired with different clinical protocols and 
various scanners from 19 institutions. All the imaging datasets have been segmented 
manually, by one to four raters, following the same annotation protocol, and their 
annotations were approved by experienced neuro-radiologists. Annotations comprise 
the GD-enhancing tumor (ET — label 4), the peritumoral edema (ED — label 2), and 
the necrotic and non-enhancing tumor core (NCR/NET — label 1), as described in 
(Menze et al. 2015). 
 
 
 
                                                
3
 https://grand-challenge.org/challenges/ 

4
 https://www.med.upenn.edu/sbia/brats2018/data.html 

https://grand-challenge.org/challenges/
https://www.med.upenn.edu/sbia/brats2018/data.html
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Figure 9. Manual segmentations provided for the BRaTS dataset. Image from (Menze 
et al., 2015). Shown are image patches with the tumor sub-regions that are annotated 
in the different modalities (top left) and the final labels for the whole dataset (right). 
The image patches show from left to right: the whole tumor (yellow) visible in T2-
FLAIR (Fig.A), the tumor core (red) visible in T2 (Fig.B), the enhancing tumor structures 
(light blue) visible in T1Gd, surrounding the cystic/necrotic components of the core 
(green) (Fig. C). The segmentations are combined to generate the final labels of the 
tumor sub-regions (Fig.D): edema (yellow), non-enhancing solid core (red), 
necrotic/cystic core (green), enhancing core (blue). 
 
 
 
Liver tumors 
 

The LiTS 2017 dataset5 contains 201 CT scans (131 for training, 70 for testing) from 7 
different hospitals and research institutions along with ground truth segmentations 
for liver tumors and liver (Bilic et al, 2019), see Figure 10. The training set contains a 
mean of 6.93 tumors per subject, while the test set contains a mean of 9.41 tumors 
per subject. The image resolution ranges from 0.56 mm to 1.0 mm in axial and 0.45 
mm to 6.0 mm in z direction. The number of slices in z ranges from 42 to 1026. Some 
images contain imaging artifacts (e.g. metal artefacts), which are present in real life 
clinical data. 
 
                                                
5
 https://lits-challenge.com 

https://lits-challenge.com/
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Figure 10. Example CT scans, and annotations of liver tumors, from the LiTS dataset. 
Image from (Bilic et al., 2019).  
 

Vertebrae 
 
Segmentation of the vertebrae in the spine is a common problem, and several open 
datasets are available through SpineWeb6. A total of 16 different datasets are 
available, covering X-Ray, CT as well as MRI, of both healthy controls and subjects 
with fractured vertebrae, see Table 2 for an overview. 
 
Table 2, overview of the 16 datasets available in SpineWeb. Most of the datasets 
contain manual segmentations that can be used for training. 
 

Dataset  Data 

1 30 pairs of spinal CT and MR from lumber 

2 Spine CT from 10 subjects 

3 Spine-focused CT scans of 125 patients 

4 Spine CT scans of 5 patients 

5 CT lumbar spine images of 10 controls 

6 Multi-modality MRI of 8 patients 

7 T2 MRI of 15 patients 

8 CT lumbar spine images of 4 patients 

9 Dual energy x-ray absorptimetry 

10 MR + CT from 20 subjects 

11 T1, T2 MRI from 17 patients 

12 Dual energy x-ray absorptimetry, 30 patients 

13 CT lumbar spine images of 25 patients 
                                                
6
 http://spineweb.digitalimaginggroup.ca 

http://spineweb.digitalimaginggroup.ca/
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14 Multi-modality MRI of 24 patients 

15 CT lumbar spine, 10 patients 

16 Spinal anterior-posterior x-ray, 609 patients 
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11 Overview of preprocessing steps  
 

11.1 MRI 

Preprocessing steps for MRI are generally performed to remove artefacts and 
standardize the images before further processing. Standardization can be done both 
with respect to image intensities and the geometric space (coordinate system). Some 
preprocessing steps are the same for different MR sequences while others are 
sequence specific.  
 

Preprocessing could be divided into four parts: noise reduction, inhomogeneity 
correction, registration and intensity normalization. Depending on the anatomical 
location, specific types of preprocessing may be applied, such as skull-stripping for 
brain images. Resampling may also be necessary when there are multiple images with 
different resolution (Akkus et al., 2017, Despotović et al., 2015, Lundervold et al., 
2018, Martí-Bonmatí and Alberich-Bayarri 2017). 
 

Noise reduction 
Recent denoising methods exploit the sparseness or self-similarity in medical images. 
Sparsity-based methods approximate the base of signals by making the assumption of 
the sparsity of noise and signal in low-dimensionality space (Aharon et al., 2006, Bao 
et al., 2008, Patel et al., 2011). Self-similarity methods use the natural pattern of the 
images for noise reduction. A popular example is nonlocal means, which uses the 
statistics of similar patches in the image for denoising (Buades et al., 2005,  an  n et 
al., 2012,  an  n et al., 2015 . 
 

Inhomogeneity correction 
Inhomogeneity in  R is caused by variations in the coils’ sensitivities and in the main 
magnetic field of the scanner. It causes objects with the same physical properties to 
have different signal intensities (Sled et al., 1998). Inhomogeneity correction mainly 
includes prospective and retrospective approaches. Prospective correction requires 
specific hardware or sequences, e.g. 3D magnetization-prepared rapid acquisition 
gradient echo (MP2RAGE) sequences (Marques et al., 2010). Retrospective 
inhomogeneity correction models the bias field with the image features. There are 
methods that estimate bias field with the use of a set of low-frequency basic functions 
(Vovk et al., 200 ,  an  n et al., 2007 .  n algorithm combines N  bias field 
correction (Sled et al., 1998) and fuzzy-C-means (Lin et al., 2011). However, N4 bias 
field correction, the successor of N3, is the most common bias field correction 
algorithm for deep learning based image segmentation (Akkus et al., 2017, Milletari 
2016, Menze 2015). N4 corrects inhomogeneity using B-spline fitting (Tustison et al., 
2010). 
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Intensity standardization 
Structural MR image intensity is dependent on the scanner and does not have a 
quantifiable interpretation. There are different histogram matching methods 
proposed to standardize the MR image intensities. (Nyul et al., 2000, Hellier, 2003) A 
popular algorithm proposed by Nyul et al. is to use piecewise linear mapping to 
normalize the histogram intensity of MR images. It matches the input image 
histogram onto a standard histogram landmarks. Z-score normalization is another 
popular intensity standardization for feature scaling. (Pereira et al., 2016, Kamnitsas 
et al., 2017, Akkus et al., 2017) showed that the intensity normalization proposed by 
Nyul et al. combined with z-score normalization has a positive impact on the 
segmentation results using CNN with multi-site and multi-scanner data.  
 
Skull-stripping 
For brain MR images, it is common to remove non-brain tissue, i.e. skull and 
background such that the preprocessing steps and deep learning models focus on 
intracranial tissues. Some common methods for skull-striping are BET (Smith, 2002) 
(or its modified version OptiBET (Lutkenhoff et al., 2014)) , BEaST (Eskildsen, 2012), 
Robex (Iglesias et al., 2011) and SPECTRE (Carass, 2011). One also proposed a skull 
stripping method that is pathology-insensitive (Roy, 2017). Latest research also 
include the use of deep learning for brain extraction. (Kleesiek, 2016) 
 

Given the complex modelling of deep learning, some of the preprocessing steps 
became less important for segmentation. Aligning volumes to a standard geometric 
space is computationally expensive and it reduces the generalization power of deep 
learning to unprocessed data, but it can potentially also make the learning easier. Dolz 
et al. (2018) suggested a preprocessing step with only volume-wise intensity 
normalization, bias field correction and skull-stripping. Kamnitsas et al. compared the 
preprocessing steps of having (1) only z-score normalization, (2) bias field correction 
followed by (1), and (3) bias field correction, followed by piece-wise linear 
normalization proposed by Nyul et al., and (1). The preprocessing steps were 
inconclusive but instead the ensembling of all three were used. It is noted that the 
data used by Kamnitsas et al. is from a co-registered and skull-stripped public dataset. 
Simply put, many deep learning based MRI segmentations perform basic 
preprocessing steps with image registration, inhomogeneity correction, skull-stripping 
(for brain images) and intensity standardization. Latest research also shows the use of 
deep learning for the above steps. 
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11.2 CT 

Unlike MRI, Hounsfield Unit (HU) is a standard unit for tissues radiosensitivity in CT. 
The intensity values of the CT images are represented by HU. The preprocessing of CT 
is similar to that of MR, yet in general there are less preprocessing steps in CT. 
Depending on the tissue type and region-of-interest (ROI), preprocessing in CT usually 
includes choosing the window of the HU number. For instance, HU of [-100, 400] was 
chosen for liver and lesion and to exclude irrelevant objects (Christ et al., 2016, Christ 
et al., 2017) or [-200,250] in (Li et al., 2016, Li et al., 2018) 
 
Z-score standardization (Li et al., 2015, Thong et al., 2018) and histogram equalization 
(Christ et al., 2016, Men 2017) are common for intensity standardization in 
preprocessing.  
Resampling may also be involved in some preprocessing pipelines too, e.g. for coarse 
resolution. (Li et al., 2016, Han et al., 2017, Li et al., 2018) 
 
Anisotropic smoothing filtering is used in (Mortazi et al. 2017). Gaussian smoothing is 
also used for de-nosing (Li et al., 2015, Cha et al., 2016). In Cha et al., 2016, 
anisotropic diffusion, gradient filters, and the rank transform of the gradient 
magnitude are applied in preprocessing steps as well. 
 

Cropping is another common technique in preprocessing steps in order to focus on 
ROI and increase the GPU memory efficiency. (Skourt et al., 2018) Apart from 
cropping, downsampling is also used to reduce the memory usage. (Li et al., 2015, 
Roth et al., 2018) 
 

11.3 Registration 

Registration is required to allow intra-subject multimodal image segmentation or 
motion correction for spatial alignment. As part of registration, images such as CT and 
MR are commonly resampled into isotropic resolution. Linear or spline-based 
interpolation have been popular to align the multi-modal resolutions (Thevenaz et al., 
2000). Super-resolution has also been proposed for this matter and showed promising 
results (Isaac  & Kulkarni, 2015). 
 

Rigid transformations are usually sufficient for non-deformable objects within the 
same subject, e.g. brain imaging, while affine or nonrigid transformations are  needed 
for objects that deform, such as lung and liver. Deformable transformation may also 
be required within the same non-deformable subject for example the brain 
development in children at different stages. It is also common to standardize the brain 
images into the Montreal Neurological Institute (MNI) space for healthy subjects. The 
geometric transformation is usually optimized with the use of a similarity measure 
such as mean-square difference, correlation coefficient and normalized mutual 
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information. Some typical nonrigid registration are elastic (Shen & Davatzikos, 2002), 
fluid deformable models (D’ gostino et al., 2002 , a linear combination of smooth 
basis functions (Ashburner and Friston, 1999), free-form deformation IRTK (Rueckert 
et al., 1999), FNIRT (Andersson et al. 2008), ART (Ardekani et al., 2009), JRD-fluid 
(Chiang et al., 2007), SyN (Avants et al., 2008) and DARTEL (Ashburner et al., 2007). 
Latest research also shows the increasing use of deep learning for image registration. 
(Simonovsky et al., 2016, Yang et al., 2017, Haskins 2019) For segmentation 
challenges, public datasets are usually registered for multi-modal images. There are 
thus less registration steps in pre-processing for deep learning based segmentation 
when challenge datasets are used. 
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12 Overview of postprocessing steps  
 
After inference of the deep learning network, the segmentation result has to be adapted to 
match the input image. As deep learning networks often require a specific format of the input 
image (such as a certain resolution), the results need to be resampled to match the input 
image. Resampling is done using nearest neighbor in case of a label image, or B-spline 
interpolation in case of a continuous image. If an ROI of the input image was used, the 
segmentation result needs to be padded such that it is the same size as the input image.  
 
In some cases to reduce the GPU memory usage the image is divided in sub-images which can 
be processed separately on the GPU. When this approach is used the sub-image results need 
to be re-combined together to re-ensemble the original image. 
 
Another post processing step is cleaning up the segmentation result. Noise can be removed 
using binary opening/closing operations or by applying smoothing. In some cases only the 
largest element is needed, then connected components analysis is used to find the largest 
component and the other components are then removed from the segmentation. 
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13 Overview of data augmentation techniques  
 

Deep learning requires large datasets for training the deep (convolutional) neural 
networks, but collecting and annotating high quality (medical) data is costly and time 
consuming. It is therefore common to apply different data augmentation techniques, 
to increase the amount of training data without collecting and annotating more data. 
In this section we will cover simple augmentation techniques (e.g. rotation and 
scaling), intermediate approaches (e.g. applying smooth elastic deformations) as well 
as advanced approaches (mainly generative adversarial networks, GANs).  
 

13.1 Simple data augmentation techniques 

 
If a CNN has been trained on images where the object of interest is always oriented at 
the same angle, the network cannot handle cases where the object has been rotated. 
Similarly, if a CNN has only been trained on images where the object has a certain 
size, or is located in a specific part of the image, it will not perform well for images 
where the object has another size or is located in another part of the image. 
Traditionally, this has been solved by first deriving features that are invariant to 
rotation and scaling, and then feed these features into a neural network. For example, 
the log-polar transform can be used to become invariant to scale and rotation (see 
e.g. Wolberg and Zokai (2000), Pun and Lee (2003)). In deep learning, the problem is 
instead solved through data augmentation, i.e. by applying random rotations, 
translations and scalings to the available training data, and using the transformed 
data as additional training data, see Figure 11. For segmentation problems, the same 
random transformation is then applied to the (binary) ground truth mask (normally 
obtained through manual segmentation).  
 

 

   
Figure 11. Data augmentation by transforming a brain image with a random rotation 
and scaling. 
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There is no limit on the number of augmented images that can be added for the 
training, but training the CNN will of course take more and more time when the 
number of training images increase. In the most extreme case, a single annotated 
image or volume can be used for training a CNN for segmentation (Gaonkar et al., 
2018), if the image is augmented in many different ways, see Figure 12. Other simple 
augmentation techniques include shearing, vertical flipping, horizontal flipping, 
random cropping and adding random noise to each image. 
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Figure 12. Segmentation performance (Dice score) as function of the degree of data 
augmentation (number of extra training images with a random rotation, scaling and 
translation). Plots from Gaonkar et al., 2018. Left: For a low degree of augmentation 
(5 times), there is a clear difference in the Dice score when using annotated training 
data from 1 or 9 subjects. Right: For a high degree of augmentation (50 times), the 
difference between using training data from 1 or 9 subjects is very small. 



 

 

 
 

 

Anders Eklund Public 26/06/2019 

IMPACT 

ITEA 17021 

WP2  D2.3.1  

Page 35 of 48 

 

 

Several deep learning frameworks provide real-time data augmentation, but the built 
in support is mainly for 2D and not for 3D. Hence, for 3D segmentation the user has to 
implement new functions for 3D augmentation.   

13.2 Intermediate data augmentation techniques 

 

For image segmentation, further augmentation can be achieved through intermediate 
techniques. One such technique is to apply (smooth) non-linear deformation fields, 
also called elastic deformations, as a simple way to simulate data from additional 
subjects. For the U-Net segmentation architecture (Ronneberger et al., 2015), elastic 
deformations were listed as a key feature to train the network with few annotated 
examples. It is important that the deformation fields are smooth, normally obtained 
by Gaussian smoothing of the x- and the y-displacement, since otherwise the resulting 
images will not be realistic, see Figures 13, 14, 15 and 16. 
 

   
Figure 13. Non-smooth deformation fields used to generate new training images. 
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Figure 14. Data augmentation by transforming a brain image with a random 
displacement field, giving unrealistic augmented brains, since the displacement field is 
not smooth. 
 

   
Figure 15. Smooth deformation fields used to generate new training images. 
 

   
Figure 16. Data augmentation by transforming a brain image with a random smooth 
displacement field, giving rather realistic augmented brains. 
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13.3 Advanced data augmentation techniques 

 

The so far mentioned data augmentation techniques do not create completely new 
images, but only modify existing images through different transformations. 
Generative adversarial networks (GANs) (Goodfellow et al., 2014) are a rather new 
innovation, which can learn the mapping between a noise vector and an image, or 
learn to transform one type of image (e.g. a T1 weighted MR image) to another type 
of image (e.g. a T2 weighted MR image). A GAN contains two CNNs; the generator is 
trained to convert a noise vector to an image, and the discriminator is trained to 
classify if an image is real or fake. The two CNNs are trained together, hence the term 
adversarial, and therefore become better and better at generating images and 
classifying images as real or fake. Once the training is finished, a noise vector is given 
to the generator to obtain a new image, and it will be similar to the distribution of the 
training images. GANs can be difficult to train, since the balance between the 
generator and the discriminator is very important. The mode collapse problem means 
that the generator generates images that are all very similar. To make the training 
more stable, and to enable higher resolution synthetic images, progressive growing 
GANs (Karras et al., 2017) were proposed. Instead of directly learning a mapping from 
a 512 x 1 noise vector to a 1024 x 1024 image, the training is progressive, such the 
network first learns to generate 8 x 8 images, then 16 x 16 images and so on. Figure 
17 shows some very realistic faces (1024 x 1024 pixels) generated by a progressive 
GAN.  
 

GANs have so far mainly been used to generate 2D images, see (Kazeminia et al., 
2018, Yi et al., 2018) for an overview of how GANs have been used in medical imaging. 
To use GANs to generate 3D volumes is in theory possible, but requires more 
calculations and much more memory.  Gao et al. (2019) used 3D GANs to generate 
realistic synthetic lung nodules, but the generated volumes are rather small (40 x 40 x 
18 voxels). Another drawback of GANs is that the training requires many real images, 
which results in a catch 22 situation where many real images are needed to generate 
new images, but only a small number of (annotated) images are normally available. A 
potential solution to this problem is to use large (open) datasets (e.g. containing T1-
weighted MR images from healthy controls) to first train the GAN to synthesize 
images that are similar to the images of interest, and then fine tune the GAN by 
providing a lower number of images from a specific cohort (e.g. T1 weighted MR 
images from brain tumor patients).  
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Figure 17. Realistic synthetic faces, 1024 x 1024 pixels, created by a generative 
adversarial network (GAN), i.e. these persons do not exist but have been created by a 
computer from a noise vector (image from Karras et al., 2018). In a similar manner, a 
GAN can be used to generate realistic medical images which can be used for training 
of a CNN which performs segmentation. 
 

Conditional GANs (Isola et al., 2015) can be used for another type of data 
augmentation, for example to generate T2-weighted MR images if only T1-weighted 
MR images are available (or generate CT from MR, or vice versa). Multi-channel CNNs 
can then be used for improved segmentation, compared to CNNs that use images 
from a single modality. Architectures such as CycleGAN (Zhu et al. , 2017), Figure 18, 
contain four CNNs; two CNNs are used for converting an image of type A to an image 
of type B, and two CNNs are used for converting from B to A. See Figures 19 and 20 
for examples of converting between T1 and T2 weighted images, and converting 
between a T1 weighted image and a map of fractional anisotropy (FA) (obtained 
through diffusion MRI). Compared to using CNNs for segmentation, conditional GANs 
require training of four CNNs (two generators and two discriminators) and are 
therefore even more memory demanding, and very little work has therefore been 
done on 3D conditional GANs. An exception is the work by Näppi et al. (2019), who 
worked on volumes of size 96 x 96 x 96 voxels using a 16 GB graphics card, while MR 
volumes are often of the size 256 x 256 x 200 voxels.  
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Figure 18. Conditional GANs, such as CycleGAN, can be trained to map an image from 
one domain to another domain, e.g. from winter to summer, which is a more 
advanced type of data augmentation compared to applying random rotations and 
scalings. Image from Zhu et al., 2017. 
 

 
Figure 19. Using CycleGAN and UNIT to generate a T2-weighted image from a  
T1-weighted image, and vice versa. Image from (Welander et al., 2018). 
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Figure 20. Using CycleGAN to generate an FA (fractional anisotropy) map from a T1-
weighted image. Image from (Gu et al., 2019). 
 

Rather than learning many one-to-one mappings (e.g. T1 to T2, T1 to FA etc), it is 
possible to use multi-conditional GANs to use all the available data to predict a 
missing modality. This can be very useful if a number of MR images are collected for 
every subject (e.g. T1, T1 contrast, T2, T2 FLAIR, like in the BraTS dataset) and one 
image is unusable due to head motion. The main idea of CollaGAN (Lee et al., 2019), 
Figure 21, is to combine all available data to improve the predictions of a missing 
image. According to the authors, this results in better predictions compared to 
CycleGAN. 
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Figure 21. Instead of learning many one-to-one mappings for image-to-image 
translation (e.g. T1 to T2), CollaGAN uses all the available data to make better 
predictions of a missing image. Image from (Lee et al., 2019). 
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14 Overview of segmentation for MRI and CT using Deep Learning 
 

This section contains an overview of the State of the Art Deep Learning segmentation 
methods for brain tumors, liver tumors and the lung. Where possible we report the 
results of deep learning segmentation applied to recent and publicly available (grand) 
challenge datasets as these allow for an objective evaluation and comparison. 
 
Brain Tumor Segmentation in MRI 
BraTS, the brain tumor segmentation challenge (Bakas et al 2019), has been held 
annually from 2012 to 2018 in conjunction with the MICCAI conference (International 
Conference on Medical Image Computing and Computer Assisted Intervention). The 
Brats 2018 dataset contains 285 multimodal cases, 210 high-grade gliomas and 75 
low-grade gliomas. Each case consists of four aligned MRI modality volumes: native 
(T1), post-contrast T1-weighted, T2-weighted and T2 Fluid Attenuated Inversion 
Recovery (FLAIR), acquired with different clinical protocols and various scanners from 
19 institutions. The submissions were ranked relative to their competitors for each of 
the testing subjects, evaluated regions and evaluations measures (e.g. dice and 
 Hausdorff (95%)). 
 

In 2018, all the best-ranked segmentation methods used Deep Learning methods 
although none outperformed the inter-rater agreement, across expert clinicians with 
years of training. The winning method used “an encoder-decoder based Convolutional 
Neural Network (CNN) architecture with an asymmetrically larger encoder to extract 
image features and a smaller decoder to reconstruct the segmentation mask” 
(Myronenko, 2018). Training the model for 300 iterations on all 285 cases took 2 days 
on a single professional-grade GPU (Nvidia Tesla V100 32GB) and 6 hours on an Nvidia 
DGX-1 server with 8 Tesla V100 GPUs [JD1]. Reported Dice values for enhancing 
tumor, whole tumor and tumor core on the test dataset were 0.77, 0.88 and 0.81 
respectively. 
 

The runner up approach, (Isensee et al., 2018), demonstrated that a well-trained U-
net with minor modifications (e.g., region based training and a combination of loss 
functions)  together with additional training data produces very competitive results 
indicating that a well-constructed and performed training process is at least as 
important as focusing on novel architectural modifications when it comes to 
segmentation. The shared third place went to (McKinley et al, 2018) who use a 
DenseNet, in which pooling layers are replaced by dilated convolutions embedded in a 
U-net style network and (Zhou et al, 2019) who use a 3D variant of FusionNet. 
 
Although accuracy of the individual automated segmentation methods appears to 
have improved in the latest 2018 challenge, compared to earlier editions of the 
challenge, the authors find that the level of robustness, i.e. inter-rater agreement, is 
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still inferior to expert-performance. This can potentially be solved in the future as the 
training set is extended with more diverse patient data, and through improvements in 
machine learning architectures and training schemes. 
 

Liver Tumor Segmentation in CT 
LiTS, the liver tumor segmentation challenge which was organized in conjunction with 
the IEEE International  Symposium on Biomedical Imaging 3 (ISBI) 2017 and MICCAI 
2017 conferences but is still running. The LiTS 2017 dataset contains 201 CT scans 
(131 for training, 70 for testing) from 7 different hospitals and research institutions 
(Bilic et al, 2019). Ultimately, not a single algorithm performed best for both liver and 
tumor segmentation. The best liver segmentation had a Dice score of 0.96 achieved at 
MICCA, while the best tumor segmentation Dice scores were 0.67 for ISBI and 0.70 for 
MICCAI. 
 

Most of the automatic segmentation methods submitted used U-net derived 
architectures with only 2 submissions using a modified VCG-net and k-CNN approach 
respectively. The majority of the U-net approaches used a cascade of U-nets with 
separate U-nets focusing on liver segmentation and tumor segmentation. The most 
common optimizers where ADAM (Kingma &Ba 2014) and Stochastic gradient descent 
with momentum. Most approaches also used data pre-processing with HU-value 
clipping, normalization and standardization. The winning ISBI 2017 method by X. Han 
from Elekta Inc (Dice score  0.67) as well as the second best ISBI 2017 method by 
Vorontsov (Dice score 0.65) both relied on integrated residual connections which 
allow information to flow through the deep learning network and give later layers 
access to feature maps of previous layers. 
 

For MICCAI the challenge was extended with liver segmentation and tumor burden 
estimation tasks. In general the winning submissions for the MICCAI 2017 challenge 
integrated and improved on the results from the ISBI 2017 challenge resulting in 
greatly improved Dice scores winner was Tian et al from Lenovo with a Dice score of 
0.70). As of this writing, the current runner-up method is the nnU-net (No-New U-net) 
approach by Isensee et al, 2019b , with a tumor dice score of 0.74 and a liver dice 
score of 0.96, which also scored second place in the BraTS 2018 brain tumor 
challenge. 
 
Lung Segmentation 
For the lungs there has not been a recent segmentation challenge so we will report 
some of the most interesting recent publications. 
 
In Ferreira et al. (2018), the authors present a lung lobe segmentation method using a 
3D Fully Convolutional Neural Network based on the V-Net architecture, which is a 3D 
extension to U-net, with specifically selected regularization techniques. These 
regularization techniques are used to prevent overfitting in small training sets 
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resulting in poor generalization. Since the number of training and validation datasets 
was quite small and the ground-truth data was generated by a single radiologist it is 
hard to compare the performance to other methods. 
 
In Yun et al. (2019), the authors present a novel airway segmentation method on CT 
using a 2.5 dimensional CNN trained in a supervised manner which uses three 
adjacent slices in each of the orthogonal directions (axial, sagittal and coronal) and 
fine-tuned the parameters. The method was trained on 69 selected multi-center CT 
scans from the Korean obstructive lung disease (KOLD) cohort. The method was 
validated on 8 separate test cases from the KOLD cohort as well as the 20 test cases 
from the EX CT’09 public dataset.  s the EX CT’09 challenge is no longer running, it is 
difficult to compare the results directly but the method of Yun et al 2019 seems very 
competitive both in accuracy and speed. 
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