

Title: State of the art on methodologies for risk- and
model-based security testing

Version: 1.0
Date : 12.12.2011
Pages : 34

Editor: Fredrik Seehusen (SINTEF)

Reviewers: Edguardo Montes de Oca, Stephan Schulz,
Ari Tarkanen

To: DIAMONDS Consortium

The DIAMONDS Consortium consists of:

Codenomicon, Conformiq, Dornier Consulting, Ericsson, Fraunhofer FOKUS, FSCOM, Gemalto, Get IT,
Giesecke & Devrient, Grenoble INP, itrust, Metso, Montimage, Norse Solutions, SINTEF, Smartesting,
Secure Business Applications, Testing Technologies, Thales, TU Graz, University Oulu, VTT

Status: Confidentiality:

[
[
[
[x

]
]
]
]

 Draft
 To be reviewed
 Proposal
 Final / Released

[
[
[

X

]
]
]

 Public
 Restricted
 Confidential

 Intended for public use
 Intended for DIAMONDS consortium only
 Intended for individual partner only

Deliverable ID: D1.WP4

Title:

State of the art on methodologies for risk- and model-based security test-
ing
Summary / Contents:

Contributors:

Menz, Rennoch, Großmann, Schieferdecker (Fraunhofer FOKUS)

Maag, Cavalli (Institut Telecom SudParis)

Erdogan, Li, Seehusen, Stølen (SINTEF)

Noponen (VTT)

Weiser (Oulu)

Review of security testing tools

Deliverable ID: D

Page : 2 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

 Copyright DIAMONDS Consortium

Review of security testing tools

Deliverable ID: D

Page : 3 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

TABLE OF CONTENTS

1. Introduction ... 7

2. State-of-the-art on methodology for model-based security testing 7
2.1 Model-driven security ... 7
2.2 Security testing methodologies based on formal languages .. 9

2.2.1 Security testing methodology with TEFSM and Nomad .. 9
2.2.2 Security testing methodology with ocl4st ... 11
2.2.3 From the Or-BAC security rules and the EFSM-based SUT 15

2.3 Network monitoring using machine learning techniques .. 16
2.3.1 Traffic analysis ... 17
2.3.2 The machine learning approach .. 17

2.4 Security testing with GCC exTensions ... 18
2.5 Model Interference Assisted Fuzzing ... 19

3. State-of-the-art on methodology for Risk-Based Security Testing 21
3.1 Standards supporting risk-based security analysis .. 21
3.2 A literature survey of risk-based testing ... 25

3.2.1 The Prisma method ... 26
3.2.2 Redmill’s appraoch .. 27
3.2.3 Amland – Risk-based testing ... 27
3.2.4 Back – Heuristic Risk-Based Testing ... 28
3.2.5 RiteDAP ... 28
3.2.6 Rosenberg et.al. Risk-based Object Oriented Testing .. 29
3.2.7 Murthy et al. – Leveraging Risk Based Testing in Enterprise Systems Security
Validation .. 29
3.2.8 Zech – Risk-Bases Security Testing in Cloud Computing Environments 29

4. Conclusions ... 30

5. References ... 30

 FIGURES

Figure 1 - Security Testing methodology overview .. 11
Figure 2 - UML meta-model of UML4ST .. 11
Figure 3 - Generation methodology from secure diagrams .. 14
Figure 4 - Attack Potential [11] ... 23
Figure 5 - Calculation of attack potential [11] .. 24

 TABLES

Review of security testing tools

Deliverable ID: D

Page : 4 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Table 1 Risk-based testing approaches ... 25

Review of security testing tools

Deliverable ID: D

Page : 5 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

HISTORY

Vers. Date Author Description
0.1 22/0811 Fredrik

Seehusen
Template created

0.1 26/10/11 Stephane Maag Section 5 added
0.2 11/11/11 Menz, Rennoch,

Großmann
New Secton 6

0-5 15/11/11 Fredrik
Seehusen

Integrated contributions and edited document

1 12/12/11 Fredrik
Seehusen

Feedback from reviewers implemented

APPLICABLE DOCUMENT LIST

Ref. Title, author, source, date, status DIAMONDS ID
1

Review of security testing tools

Deliverable ID: D

Page : 6 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

EXECUTIVE SUMMARY

This document constitutes the first deliverable of work package 4 on risk- and model-
based security testing methodologies. While the other work packages of the DIAMONDS
project describe techniques/methods and tools, work package 4 describes process-
es/guidelines for applying these tool and techniques in practice. Thus, the state-of-the-art
topics of this deliverable are related to techniques in WP2 that should be supported by
methodologies and whose state-of-the-art survey has not already been covered by deliv-
erable D1.WP2.

Review of security testing tools

Deliverable ID: D

Page : 7 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

1. INTRODUCTION

This document constitutes the first deliverable of work package 4 of the DIAMONDS pro-
ject. Whereas the other work packages focus on techniques (work package 2) and tools
(work package 3), work package 4 focuses on methodology, i.e. processes and guidelines
for how to apply the techniques and tools in practice.

The deliverable addresses two main research areas: model-based security testing and
risk-based security testing. The first topic is related to task 4.2 of work package 4, and is
documented in Section 2. The second topic is related to task 4.3 of work package 4 and
documented in Section 3.

2. STATE-OF-THE-ART ON METHODOLOGY FOR MODEL-BASED SE-
CURITY TESTING
This section gives a state-of-the-art on methodologies for model-based security testing.
The topics are related techniques developed in tasks 2.1 – 2.3 in work package 2 that
should be supported by methodologies and whose state-of-the-art has not been already
covered in deliverable D1.WP2. In particular, Section 2.1, model-driven security, is related
to task 2.2 and 2.3. Section 2.2, security testing methodologies based on formal lan-
guages, is related to task 2.1. Sections 2.3 and 2.4, network monitoring using machine
learning techniques and security testing with GCC extensions, are related to techniques
developed in task 2.2. Finally, Section 2.5, model inference assisted fuzzing is related to
task 2.1.

2.1 MODEL-DRIVEN SECURITY
Model-Driven Security (MDS) advocates a methodological approach in which (1) security
requirements to be formulated and tested at high-levels of abstraction in the early phases
of system development, and (2) security analysis results to be maintained by transfor-
mations to lower levels of abstraction. As far as we know, the term MDS was first coined in
[16]. Most of the papers addressing MDS consider the specification of access control re-
quirements [16][17][18][20][23][27][36][5]. Perhaps the most notable in this area is the
work related to SecureUML [5][16][17][18]. SecureUML is an extension of UML for model-
ing platform independent access control requirements. It is intended that SecureUML be
used together with a system design language (e.g., UML class diagrams or UML
statecharts). The SecureUML access control requirements can be transformed into plat-
form specific models. In [17], three platforms are considered: Enterprise JavaBeans (EJB),
Microsoft Enterprise Services for .NET, and Java Servlets. An advantage of this approach
is that these platforms already have access control enforcement mechanisms. However, it
is difficult to precisely characterize what it means that a system satisfies the enforcement
mechanisms. For instance, although [17] formalizes what it means that a system adheres
to an access control model on the platform independent level, they are unable to do so for
the platform specific level. No other approach to MDS, that we are aware of, gives a pre-
cise description of what it means that a specification is secure (even for the platform inde-
pendent models). Consequently, these approaches do not exploit the full potential of MDS.

Review of security testing tools

Deliverable ID: D

Page : 8 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Fernandez-Medina et. al. [23][24][25][26][35][36] show how platform independent access
control requirements for a conceptual data base model can be expressed in an extension
of UML and OCL. However, only an informal description of how to interpret the security
constructs of the extension is given. A transformation from the conceptual data base mod-
el and its associated access control requirements to an XML database schema is also dis-
cussed without being precisely defined in the papers. Similarly, [20] proposes a platform
independent model for access control and discuss issues that must be considered in order
to transform this into a platform specific model, but no precise characterization of trans-
formation or adherence is given. Other approaches to MDS that are not specifically related
to access-control requirements are presented in [19][29][30].

Heldal and Hultin [30] presents an approach in which UML diagrams can be annotated by
security (in the sense of confidentiality) requirements. The work also discusses the possi-
bility of transforming annotated UML diagrams into Java code that can be validated with
respect to confidentiality constraints by the language-based checker Jif (Java Information
Flow).

Nakamura et. al. [32] present a tool framework for web service security. Three levels of
abstraction are considered: the operation level, the execution level, and the deployment
level. At the operation level, UML models can be annotated with security primitives such
as “integrity” or “confidentiality”. Security requirements at the execution level are assumed
to be written in so-called deployment descriptors of J2EE. At the deployment level, security
requirements of the execution level are bound to specific security infrastructures. Trans-
formation rules between the abstraction levels are discussed, but no precise characteriza-
tion of adherence or transformations is given. Haftner et. al. [19][29] define the abstract
syntax of a domain specific language for the design of inter-organizational workflows. The
language supports various categories of security patterns. A distinction of platform-
independent and platform-specific models is made, and a transformation from the PIM to
PSM is discussed. The PSM considered is the abstract syntax of the eXtensible Access
Control Markup Language (XACML), a standard supporting the specification of authoriza-
tion policies to access Web services.

Other works that consider security in a model-driven setting (without addressing transfor-
mations) are the access-control related works [14][15][21][22][2][31] and the more general
high level security requirements works [13][28][37]. Of these, only [13][14][21][2][31] offer a
formal foundation which allows the full potential of MDA to be realized.

Abie et. al. [2] integrate a language for specifying high level security requirements – the
Security Requirement Language (SRL) – with UML sequence diagrams. SRL is based on
first-order logic extended with a small set of modal operators. Thus a formal foundation for
precise security analysis is offered. Integration of SRL and UML sequence diagrams is
achieved by annotating the sequence diagrams by so-called tagged values that contain
SRL macros defining security requirements.

Review of security testing tools

Deliverable ID: D

Page : 9 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Alghathbar et. al. [14] present authUML, a framework for analyzing access control re-
quirements of UML use cases. The formal foundation of authUML is based on Prolog logic
programming rules. AuthUML has three main phases. In the first phase, a set of access
control requirements is transformed into so-called access predicates. In the second phase,
all accesses predicates are ensured to be consistent, complete, and conflict-free without
considering the operations used to describe their functionality. Finally, in the third phase,
authUML analyzes the access control requirements in operations.

Doan et. al. [21] integrate access control requirements into UML use case, class, and se-
quence diagrams. They propose a number of security assurance rules (SAR’s), which can
be used to enforce access control requirements for UML. They also define an algorithm
with which to check that UML diagrams adhere to the SAR’s.

Koche et. al. [31] present an approach in which access-control requirements are integrated
into the software development process. In their approach, access control requirements are
specified in the so-called Abstract Security Model (ASM) which is a graph-based security
framework that provides a theoretical basis for verifying security constraints. The ASM
model may be integrated with UML use cases, class, and sequence diagrams to obtain a
so-called concrete security model that can be checked for consistency.

Jurjens [4][2] presents an approach in which UML diagrams can be labeled with confiden-
tiality, integrity, and secure information flow constraints. He also shows that these kinds of
requirements are preserved under refinement. The semantics is based on so-called UML
machines which are a kind of state machines.

2.2 SECURITY TESTING METHODOLOGIES BASED ON FORMAL LANGUAGES

As mentioned in the deliverable WP2.D1, several formal languages are provided in order
to express security models, properties and policies. Most of these languages are dedicat-
ed to formally define different kind of security aspects that can be applied through diverse
contextual security testing architectures. Based on these formalisms, some methodologies
have been defined, implemented and some of them are now tooled. We present in this
section the security testing methodologies that take as basis some of the languages de-
fined in the deliverable WP2.D1. We will mainly focus on the Timed Extended Finite State
Machine (TEFSM) [51], Nomad [54], Or-BAC (Organizational Based Access Control) [52],
OCL4ST (OCL for Smart Testing) [55] and SDL (Specification and Description Language)
[53].

2.2.1 Security testing methodology with TEFSM and Nomad

The integration of security rules into a TEFSM model describing the behavioral aspects of
a system leads to a TEFSM specification that takes the security policy into account: it is
called secure functional specification. The integration process is twofold. At first, the algo-
rithm searches for the rules to be applied on each transition of the TEFSM specification.

Review of security testing tools

Deliverable ID: D

Page : 10 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Then, it adds some states, transitions or updates the guard of the related transition. These
modifications depend on the nature of the rule (prohibition, permission or obligation) and
its syntax format. To integrate security rules into a TEFSM specification, the following as-
sumption has to be made: the security rules to be integrated are consistent. We assume
that the security rules do not contain any incoherent rules [6]. Besides, the TEFSM may be
non deterministic if for instance two outgoing transitions have their guard true at the same
time. In that case, one of them, chosen randomly, is fired.
According to the Nomad syntax, there are several possible forms for security rules. It
would obviously be tedious to deal separately with each of these forms. Consequently, we
classify the Nomad security rules in two main classes described as follows:

1. Basic security rules: in this class we consider security rules of the form
R(start(A)|O[<]-ddone(B)) where A and B are actions, R  {F;O;P} and (d > 0).

2. General security rules: a general security rule denotes any rule that does not fit into
the first class. This means that the rule may contain several contextual and/or timed
operators and/or logical connectors.

2.2.1.1 Formal testing of security rules

The methodology takes the following three elements as input:

 a TEFSM functional description of the system,
 a set of security rules described using Nomad language,
 the existing implementation of the system.

The objective is to check whether the existing implementation verifies the security rules. It
proceeds in four steps as shown in Figure 1.

1. The security rules are integrated into the TEFSM specification according to the dif-
ferent algorithms above mentioned.

2. Abstract test cases are automatically generated from the secured TEFSM specifica-
tion obtained in the first step. We use TestGenIF tool that implements a formal test
case generation approach based on the Hit-or-Jump algorithm [8]. This tool accepts
a TEFSM specification encoded in the IF textual formalism [9].

3. The abstract test cases are transformed into an executable script capable of com-
municating via http (or https) with the implementation under test.

4. The concrete test cases obtained from the instantiation are executed on the imple-
mentation under test to check whether it verifies the security rules.

Review of security testing tools

Deliverable ID: D

Page : 11 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 1 - Security Testing methodology overview

2.2.2 Security testing methodology with ocl4st

2.2.2.1 UML4ST

UML4ST (UML for Security Testing) is a subset of the UML notation as presented in [10].
UML offers a set of diagrams to represent the functional and security aspects of a system
under test from static and dynamic points of view. This subset UML4ST is composed of
three diagrams: class diagram, object diagram and state-transitions diagrams (Figure 2).

Figure 2 - UML meta-model of UML4ST

Review of security testing tools

Deliverable ID: D

Page : 12 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

The class diagrams are used to represent the data of the system, their types and links.
The state-transitions diagram (or state machine) contains on one hand the formal design
of the functional behaviors of the SUT and allows on the other hand to specify the dy-
namicity of the security properties to test. In UML4ST, the execution of a transition of a
state machine respects the semantic run-to-completion.

An event emitted on the state machine is selected among a pool of events recognized by
the entity carrying the state machine. For each execution step, an event is selected among
this pool and triggered. The behaviors depending of this trigger are executed. During the
execution of this step (eventually composed of ‘sub-steps’), no other pool event can be
triggered till its end (or completion). The execution starts with the event triggering in a sta-
ble configuration and also ends in a stable configuration. A stable configuration is charac-
terized by the impossibility to trigger a transition of completion with no events. A run-to-
completion step can be seen as a complex transition between two stable configurations of
the state machine.

The triggering of a transition t (evtt, grdt, efftt) between a state A and a state B depends on:
 The triggering of the event evtt
 The respect of the transition grdt

The execution order of the behaviors associated to the triggering of the transition t is given
by the sequence:

1. Execution of the output behaviors from state A
2. Execution of the behaviors of the effect efft
3. Execution of the input behaviors in state B.

Review of security testing tools

Deliverable ID: D

Page : 13 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

2.2.2.2 Methodology with OCL4ST

In order to precise the behaviors of the SUT, UML4ST is accompanied by a subset of the
OCL language (Object Constraint Language). OCL is a language of constraints expression
de facto dedicated to UML (and used by the OMG to define the meta-model UML). OCL
allows to formally express the constraints on the UML entities. It allows to specify con-
straints on the states of an object or a set of objects.

In UML4ST, OCL is used to formally design the behaviors of an SUT. Concretely, a be-
havior is an action on the system under test, that can be activated in a particular context
(i.e. the activation condition of the action). However, OCL is not an action language (or
procedural), but a declarative language. It only allows to describe constraints on events
composing a UML model. In order to overcome this concern, UML4ST disposes of its own
OCL interpretation. The subset OCL supported by UML4ST is called OCL4ST for OCL for
Security Testing.

All the object and class diagrams, completed by the state-transitions diagrams used to de-
sign the functional behavior of the system under test is called the test model: it represents
the SUT behaviors we want to validate. It has the particularity to be executable or inter-
pretable in order to produce executable test sequences (test cases obtained from the test
model). Moreover, it contains the test oracle allowing to establish the verdict of each test
when executed on the SUT.

Each of the other state-transitions diagrams used to design the security properties to be
tested is called secure diagram. A secure diagram contains the abstract execution traces
that are interpretable on the corresponding test model. This type of diagram is strongly
dependant of the test model. The security scenarios are thus defined allowing to express
the specific test objectives which complete the functional objectives automatically comput-
ed from the test model.

Figure 3 illustrates the entire generation approach from secure diagrams (red) and indi-
cates its complementarity with the common test sequences generation approach.

Review of security testing tools

Deliverable ID: D

Page : 14 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 3 - Generation methodology from secure diagrams

The security scenarios are written by the testing engineer expert from the testing require-
ments (test plan and/or functional and security requirements) and the operation/events of
the test model. The basis of the functional test cases generated from the test model is then
enriched by the security test cases concretizing the defined security scenarios. A specific
report may then be generated to deliver the testing coverage rate.
The security scenarios described by the dedicated state machines are some abstract trac-
es whose the concretization is executable on the system under test. In this methodology,
such a trace is composed of an operation sequence and/or events described in the test
model.
We may establish a hierarchy of the scenario expressiveness with regard to the abstrac-
tion level of the sequence defined by the testing expert. Four expressiveness levels of a
scenario are then proposed:

 Type 1: completely valuated trace: an operation sequence whose the input parame-
ters are all valuated.

 Type 2: trace on an operation sequence with free valuation: a type 1 trace in which
the operation parameters can also be free.

Review of security testing tools

Deliverable ID: D

Page : 15 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

 Type 3 : trace on partial operation sequence: a type 2 trace whose the operation
sequence can be parameterized (e.g. in specifying the optional presence of an op-
eration in the trace).

 Type 4 : trace constrained by regular expression: a type 3 trace augmented by con-
straints (guards) on states reached by the generated test(s). The constraints are
expressed in OCL and deal with the state variable of the system.

2.2.3 From the Or-BAC security rules and the EFSM-based SUT

To achieve its active testing methodology, security experts need to edit the set of security
rules that system under test (SUT) has to respect. These rules can be specified in Or-BAC
or Nomad models and the SUT is also specified from its functional point of view based on
the formal language SDL (or IF2.0).

2.2.3.1 From SDL representing the SUT
To describe a communicating system based on the SDL language, several tools are avail-
able. But, whatever the tool chosen by the testing expert in order to edit, verify and test
and SUT, the methodologies rather follow the same steps. The communicating system is
specified by means of states and transitions (based on the Extended Finite State Machine
formalism). One can also verify the specification syntactically and semantically. The syn-
tactic analysis ensures that the specification complies with the syntactic rules of SDL,
whereas the semantic verification ensures the consistency of the specification. This step is
carried out not only by static analysis but also by an automatic exhaustive exploration of
the specification. This is performed by testing all possible ways of system execution, with a
certain number of rules and the cases of violations such as deadlocks, loops etc. During
verification, the main properties analyzed are:

 Safety (absence of deadlock, unspecified reception, blocking cycles, etc). Deadlock
takes place when a state of the system, reachable from the initial state cannot trig-
ger a transition anymore.

 Promptness (livelock). A state is known as alive if it can be reached starting from all
the states of the global system.

2.2.3.2 From Or-BAC
The Or-BAC model introduced in the deliverable WP2.D1 has been integrated in a testing
security policies methodology. Besides, an associated tool called MotOrBAC [1] has been
developed to help designing and implementing security policies using the Or-BAC formal-
ism. First, the security policies are designed, uploaded and stored. They are later simulat-
ed to verify their consistencies. While the Nomad-based security rules are currently edited
textually (no specific tool exists to perform these tasks yet), the contexts evaluation
through the security policies are managed through APIs. The following steps are then fol-
lowed.

1 http://orbac.org/index.php?lang=en&page=motorbac

Review of security testing tools

Deliverable ID: D

Page : 16 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

 Create/edit the Or-BAC security policies (XML RDF files can be performed). The ed-
itorial operations must take into account the administration policy associated if this
latter is activated.

 Contexts evaluation. The contexts defined in the Or-BAC model are evaluated,
which are the temporal contexts declared by the user and the contexts expressing a
condition on the attributes of the concrete entities. The composition of the contexts
may also be processed if required.

 Checking of the concrete security policy and its administration policy.

2.3 NETWORK MONITORING USING MACHINE LEARNING TECHNIQUES
Detecting network anomalies and intrusions in a network environment is possible with the
help of machine learning techniques. However, the network environment should be stable
and somewhat isolated for the best efficiency. Networks in industrial control systems meet
these requirements. The main method of our study is to exploit the traffic captures from a
real network. The method we are using is machine learning combined with passive moni-
toring and a priori knowledge of protocols used. Passive monitoring is required due to the
nature of the environment. It is important that no measuring device or monitoring system
interferes with the ICS environment under scrutiny.

Figure ICS Environment

Review of security testing tools

Deliverable ID: D

Page : 17 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

2.3.1 Traffic analysis

The main method of the study is to exploit the traffic captures available to us. In the initial
testing and feasibility studies we have so far used tools such as NetAI, NetMate and WE-
KA 3. NetAI and NetMate are used as provided by the NetMate-flowcalc bundle [56], [57],
[58], [59].

2.3.2 The machine learning approach
We argue that the factory networks for ICS that are functioning properly and without seri-
ous design flaws can be defined as nearly closed environments. When the factory network
would be in a normal status without serious incidents there is typically very little noise.
Again, if the network architecture is well defined and implemented, most of the network
traffic on the ICS level of the network should be more deterministic than that of open net-
works such as the office networks.

The most challenging aspect in the initial phase of using machine learning is feature ex-
traction and selection. We have been identifying possibilities which include usual features
used by many IDS’s. Properly done feature extraction is one of the most important steps in
machine learning, producing a classifier with higher generalization capability by excluding
redundant or irrelevant attributes. The feature selection process benefits from extensive
testing of the recorded live data.

The usage of payload form and payload data has some significant challenges, subject to
future work. However, they could be used to very accurately monitor the sanity of the sys-
tem and conformance to security policies. Some features studied for possible use include:
throughput, IP address and port pairs in a flow, average size of the packets, timing, flow
direction, Average duration of flow between endpoints, Payload form, payload data, MAC
to IP mapping, networking protocol, protocol settings and connectivity number.

For the model of the ICS network environment all attributes would have to take into ac-
count the possible periodic nature of the traffic. Depending on the system being monitored,
there might be variations caused by maintenance, periodic processes or environmental
fluctuations.

The main argument for using machine learning approaches is the more closed nature of
ICS networks. Any benign changes in the traffic are likely caused by actions that can be
informed to the system a priori. Malign or anomalous activity, on the other hand, is any
new form of traffic that has not been taught or programmed to the monitoring system. We
are planning to develop a proof of concept of the traffic analysis and machine learning
functionality on top of our existing system. The system already implements support for a
vector machine and data pre-processing. We plan to implement new algorithms when
needed, or use open source implementations when possible. To be able to implement the
planned system, a number of steps must be taken before the implementation can be start-
ed. For the next few steps, a study will be completed regarding the specific algorithms
available and their strengths and weaknesses in ICS network environment. In addition to

Review of security testing tools

Deliverable ID: D

Page : 18 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

this, a deeper analysis of the different aspects of the network layers present in ICS envi-
ronments must be accomplished.

2.4 SECURITY TESTING WITH GCC EXTENSIONS
GNU Compiler Collection [60] is a very widely used compiler. GCC is open source and it
compiles C, C++, Java, Fortran, Ada and Objective-C. GCC versions 4.5 and later support
plug-in modules. Plug-ins have full control over the program’s presentation and utilize all
the information extracted and generated by the earlier compiler passes. Plug-ins make
possible that the program analysis and instrumentation can be added and removed rela-
tively easily. We use plugins to extract information about the program structure and execu-
tion. VTT has built a set of libraries that can be used to build external tools that utilize this
information

Figure CFG and Trace-plugins

CFG (Control Flow Graph) plugin is used to instrument the program to output representa-
tion of its global control flow graph and some additional link time information when it is ex-
ecuted. The GFC contains more information than what is generally available at compile
time. CFG plugin offers much lower level and easier to use representation than the original
source code.
Trace is a sequence of function calls, returns and visited basic blocks that describes the
program’s execution path. This information can be combined with the CFG to reconstruct a
specific instance of program’s execution.

The plugin-modules can be used in various ways:

Review of security testing tools

Deliverable ID: D

Page : 19 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

 Automatic test case generation - searching test case inputs based on execution
traces.

 Automatic test case selection – based on changes in the program structure and
test case’s execution trace.

 Model checking – e.g. correct use of API calls
 Fault detection – Static or dynamic checks to detect errors early
 Fault injection – for generating “hard to detect”-failures for testing purposes
 Program analysis – simplify debugging and gaining information about the pro-

gram structure.

2.5 MODEL INTERFERENCE ASSISTED FUZZING
One example of model based security testing is fuzzing (or fuzz testing), which exposes
tested software with malformed input. The aim is to evaluate if weaknesses in the software
can be found, for example denial-of-service conditions, which can be further exploited to a
full compromise of the software. Fuzz testing is negative testing – we do not aim to
demonstrate presence of functionality, but would like to see about the absence of specific
vulnerabilities.

Miller et al. have shown in their work that even very simplistically fuzzing models are able
to disclose a large amount of parsing errors [38][39]. To systematize work, the Oulu Uni-
versity Secure Programming group had started in 1999 the PROTOS project [40] and has
developed an approach to systematically test implementations of protocols in a black-box
fashion. Several successful test suites have been released and this research led to a spin-
off company: Codenomicon Ltd.

Our previous work in robustness testing of protocol implementations has shown that man-
ually designed structural mutations and exceptional element values are an efficient way to
expose errors in software. Unfortunately, while powerful, manual test design has some
bottlenecks: i) it requires some kind of format specification as a basis; and, ii) poorly doc-
umented formats must be reverse-engineered before test designers can write a model-
based test suite for the format. The human factor also brings in the danger of tunnel vision,
as the power of manually designed cases is largely dependent on the expertise and imagi-
nation of the designer. On the other hand, blind random fuzzing has a considerably lower
entry barrier, but is hindered by the impossibility of efficiently addressing a virtually infinite
input space in finite time.

In a subsequent direction, the aim was to automatize the test case generation. Radamsa
[41] is an example of this kind of black-box fuzzing tool. As an input it requires valid data
stream samples, either in file format or as network data. Radamsa inferes a model from
this data and then generates – based on predefined heuristics –test cases. As these test
cases are not required to trigger predefined situations, Radamsa has leeway in generating
such model inference.

Review of security testing tools

Deliverable ID: D

Page : 20 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

The results have been promising: more than 28 findings are reported in the Common Vul-
nerabilities and Exposures (CVE), a database of computer-security vulnerabilities. Open
and closed source software has been affected.

Review of security testing tools

Deliverable ID: D

Page : 21 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

3. STATE-OF-THE-ART ON METHODOLOGY FOR RISK-BASED SECURI-
TY TESTING

The second topic, risk-based security testing, is related to task 4.2 of work package 4, and
is in this document presented in Sections 3.1-3.2. These sections are related to task 2.4 of
work package 2. Section 3.1 presents standards supporting risk-based security analysis
while Section 3.2 presents a literature survey of risk-based testing.

3.1 STANDARDS SUPPORTING RISK-BASED SECURITY ANALYSIS
The evaluation and certification of a product is the advantageous method of attesting its
quality through a standardized process. Since the certification is generally carried out by
an independent certification body, the customer is now provided with a meaningful testa-
ment of the products quality. At the same time the developer benefits from the certification
process by increasing their market potential and gaining additional confidence in the prod-
uct due to the expertise from evaluation and certification labs.

The Common Criteria for Information Technology Security Evaluation is an international
standard (ISO/IEC 15408) for the certification of IT-security products. The process con-
ducted by the certification body is internationally agreed upon and the certificates interna-
tionally accepted. The evaluation process is highly driven by developer documentation and
focuses on product development, security testing and vulnerability assessment. Besides
creating trust in the product’s quality, the evaluation results also allow the customer to
compare the security functionality of similar products.

The ETSI TVRA method [12] developed by ETSI benefit from the CC work, e.g. by using a
generic catalogue of security functional requirements (SFRs). TVRA is characterized by
the following concepts and approaches:

 Threat types: Interception, manipulation, Denial of Service, repudiation of sending,
repudiation of receiving

 Security objective types: Confidentiality, integrity, availability, authenticity, account-
ability

 attack potential is defined by the openness of a system to attack, attackers exper-
tise and resources, systems availability.

 UML is used to model relationships within systems.
 Methods to analyze/evaluate system security including: threats, risks, vulnerabilities
 Step-wise approaches: TOE identification – objectives – functional security re-

quirements – assets - vulnerability
 Calculation of attack potential
 TVRA uses CC taxonomy (family – class – component): Security requirements tax-

onomy (SFR)

Review of security testing tools

Deliverable ID: D

Page : 22 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

 Lacks on details about generation of security tests.

The following table provides a comparison between CC and TVRA. The most important
items have been marked with yellow.

Table 1: Comparison between CC and TVRA.

 CC TVRA

Field of application IT-Security products Telecommunications system

Purpose ‐ To answer the question
if the TOE fulfills cer-
tain security needs.

‐ Making two TOEs com-
parable.

Determine how open to attack a
system is.

Focus Point Resistance to attack of the sys-
tem

Impact of an attack on the system

Target of Evaluation IT-Product System under Standardization

Output IT-Security certificate Quantified measure of the risks to
the assets and a set of detailed se-
curity requirements that will mini-
mize the risks

EAL Evaluation is based on a single
evaluation level

Evaluation level can be expressed
as a range: EAL3 – EAL5

Terminology
‐ Objectives

must or shall should

Countermeasures IT countermeasures (firewalls,
smart cards) and non-IT coun-
termeasures (guards and pro-
cedures)

only technical security counter-
measures are considered

CC and TVRA are both lacking on details on how to derive security tests from the TOE
description. The following illustration presents the relationship between the SUT/TOE, its
requirements, interfaces and security tests.

Review of security testing tools

Deliverable ID: D

Page : 23 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Figure 2: Diamonds contribution to standardization

The security analysis as part of the Common Criteria evaluation is performed during the
vulnerability assessment aspect AVA and is closely linked to the aspects development
(ADV) and guidance documents (AGD). The analysis is performed by the external evalua-
tion body and supported by testing. Its goal is to determine whether exploitable flaws and
weaknesses exist in the system, i.e. if the target of evaluation is resistant to penetration
attacks. Publicly available information about known weakness for the specific product and
product type serve as the basis for the analysis.

Following the principal of evaluation assurance levels (EAL) with an increasing evaluation
depth, the vulnerability analysis during a particular evaluation only considers flaws and
weaknesses that can be exploited with the attack potential relevant for the assurance level
chosen for this evaluation. These different levels are shown in

Figure 4 - Attack Potential [11]

The attack potential score is calculated based on

 the time it takes to identify and exploit a vulnerability,
 the required expertise of the attacker,

Review of security testing tools

Deliverable ID: D

Page : 24 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

 the needed knowledge of the systems design and operation,
 the needed window of opportunity as well as
 hard- and software required for the exploitation.

Figure 5Fehler! Verweisquelle konnte nicht gefunden werden. is taken from the Common Meth-
odology for Information Technology Security Evaluation and associates those five factors
with numeric values to allow for the calculation of a total score for the evaluation of the
products resistance to vulnerabilities.

Figure 5 - Calculation of attack potential [11]

Review of security testing tools

Deliverable ID: D

Page : 25 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

3.2 A LITERATURE SURVEY OF RISK-BASED TESTING

In this section, we review state-of-the-art approaches to risk-based testing. Each approach
is classified in Table 1. This table has the following categories:

 Security specific: Indicates whether or not the approach is specifically aimed at securi-
ty

 Black box/white box: Indicates whether the approach is based on black-box or white-
box testing (white-box testing is typically used under system development)

 Degree of structure: Indicates how structured the approach is. Three values are possi-
ble: low, medium, and high.

 System specification language: Indicates whether the approach is supported by any
particular system specification languages.

 Risk specification language: Indicates whether the approach is supported by any par-
ticular risk analysis languages.

 Test specification language: Indicates whether the approach is supported by any par-
ticular test specification languages.

 Tool support: Indicates whether the approach is supported by a tool.

 System to risk: Indicates whether the approach is based on starting with the risk and
identifying system parts that needs to be tested, or based on starting with the systems
parts and indentifying risks for those.

 Test case derivation: Indicates whether or not the approach describes how test cases
can be derived from a risk model.

Table 1 Risk-based testing approaches

Meth-
od/attri
butes

Secu-
rity
spe-
cific

Black-
box/white
box

Degree of
structure

System
spec.
lan-
guage

Risk
spec
language

Test
spec
lan-
guage

Tool
sup-
port

System
to risk

Test
case
deri-
vation

Prisma No Both Medium No Tables No Yes
(for
priori-
tizing)

Yes No

Redmill No White
box/under
develop-
ment

Low No No No No Yes No

Amland No White box
/under de-
velopment

Medium No Tables No No Yes No

Bach No Both Low No Tables No No Both No
RiteDAP No White box

/under de-
velopment

Low (for
risk analy-
sis part)

No Yes Yes No Yes Yes

Review of security testing tools

Deliverable ID: D

Page : 26 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Rosen-
berg et
al

No White box
/under de-
velopment

Low No No No No Yes No

Murthy
et al.

Yes White
box/under
dev

Medium No No No No No No

Zach Yes White box Low No No No No No No

Based on the state-of-the-art analysis, we conclude that risk-based testing is still an imma-
ture research area with a many opportunities for further development. In particular,

 Most approaches to risk-based testing target functional testing, only 2 out of 8 consider
security.

 Few approaches to risk-based to risk-based testing are sufficiently documented and
structured to serve as an easy to use industrial-setting process. For instance, many of
the approaches read more like a general discussion on the topic risk-based testing
than a detailed description of steps involved in carrying out the process/approach.

 Only 1 out of 8 approaches are supported by tools.

 Few of the approaches are supported by any particular languages for specifying sys-
tems, tests, or risk-analysis results.

In the following we give a summary of the approaches.

3.2.1 The Prisma method
The Prisma method is presented in a white paper [48]. The method suggests prioritizing
based on the most important areas of a product, and the part of the product which is likely
to have the most defects. Areas with most defects are likely to be: complex areas (>200
complexity measures exist), changed areas, areas with new technology or methods, areas
developed by inexperienced people involved, areas developed under time pressure and
high defect history.
The prisma method has 5 steps:

 Planning: Gather input documents, identify risk items (i.e. parts of the systems that
may impact risks) through interview and reading documents, determine impact and
likelihood factors, define a weight for each factor, select stakeholders.

 Individual preparation: Each participant assigns values to factors per risk item. The
participants score by selecting (the description of) the value that fits (supported by
Excel sheets)

 Gather individual scores: Do an initial check to see of the scores are OK, then pro-
cess individual scores

 Define a differentiated test approach: Prioritize risk items than need to be tested
based on location in risk matrix.

Review of security testing tools

Deliverable ID: D

Page : 27 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

3.2.2 Redmill’s appraoch
Redmill has written two papers on risk-based testing. In the first paper [43], Redmill argues
that risk-based testing is not consistently defined nor supported by literature on either the-
ory or practice, and proceeds with an informal discussion of risk-based testing. In his se-
cond paper [44], Redmill presents three approaches to risk-based testing

 Single-factor analysis: Consequence. This approach is based on estimating conse-
quence for risks values only (not likellihood). The steps of the approach are:

o Consequence identification: For each service and each stakeholder, deter-
mine consequence of failure.

o Consequence analysis 1: Use Hazop guidewords to distinguish between the
different ways a service may fail.

o Consequence analysis 2: Distinguish between services, the functions that
provide the services, and the software items of which the functions are com-
posed. Find the relationship between these types of entities to determine the
relationship between services and software items. Identify potential causal
links between software items and various types of service failure.

o Assessment on the basis of consequence: Determine how the consequence
value is translated into test plans for software items. Assign a category to
each software item and then use this category to define an appropriate test
programme.

 Single-factor analysis: Probability. This approach is based on estimating the likeli-
hood of risks. The steps of the approach are:

o Relevant factors and their attributes: For each software item and each rele-
vant quality attribute (such as complexity, structure, comments), assign a
quality level.

o Using the information: Each software item’s quality factor is used to inform
decisions on what risk-management action to take. One approach is for qual-
ity factors to be equated with test programmes.

 Two-factor analysis. This approach is based on based on the combination of the
previously mentioned approaches in which software items are placed in a matrix of
intergrity level and quality factors

o Combine the two previous mentioned approaches and place software items
in a matrix of integrity levels and quality factors.

3.2.3 Amland – Risk-based testing
Åmland describes a six step process which has been applied to a financial application
case study [50]. The steps of the method are the following:

Review of security testing tools

Deliverable ID: D

Page : 28 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

 Planning (risk identification/risk strategy): Define the test item tree, i.e. a hierarchical
breakdown of the functions and features in the system to be tested. Establish test
plan and overall risk strategy.

 Identify risk indicators (risk assessment): Define a set of indicators (e.g. size of
function, number of changes since previous release, complexity) that can be used
to assess the probability of failure of a function. Then for each function, and each
indicator, assign an indicator value. Then use this information to calculate the prob-
ability of failure for each function.

 Identify cost of fault (risk assessment): For each function, estimate the conse-
quence of failure.

 Identify risk elements (risk assessment): Calculate a risk expose for each function
based on estimated probability and consequence of failure. Use this to prioritize the
functions.

 Test execution (risk mitigation): Start testing based on the prioritized list of func-
tions.

3.2.4 Back – Heuristic Risk-Based Testing
Bach defines risk based testing as the following process [42]:

 Make a prioritized list of risks.
 Perform testing that explores each risk.
 As risks evaporate and new one emerge, adjust your test effort to stay focused on

the current crop.
Back then proceeds by presenting two different approaches to risk-based testing. One ap-
proach is based on starting with the system and then identifying the risks based on an
identification of find vulnerabilities, threats, and victims. The other approach is based on
starting with the risks to which parts of the system they apply to. Bach suggest that the
latter approach could be aided by three kinds of lists: A list of quality criteria categories, a
generic risk list, and a risk catalog (containing risks that belong to particular domains)

3.2.5 RiteDAP
RiteDAP [46] is an approach to risk-based testing that allows for the automatic derivation
of system test cases from activity diagrams as well as their prioritization based on risk. The
RiteDAP process has the following steps:

 Specify activity diagrams which can be used as test models.
 Annotate the activity diagrams with risks.
 Derive a set of unordered test case scenarios form the test model.
 Order the test scenarios based on the risk information in the test model.

The last two steps can be automated.

Review of security testing tools

Deliverable ID: D

Page : 29 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

3.2.6 Rosenberg et.al. Risk-based Object Oriented Testing
Rosenberg et. al. [45] proposes measurement criteria that can be used to estimate the
complexity of object-oriented code. It is suggested that a high-level of complexity could
imply a high likelihood of failure. Consequence analysis is not considered.

3.2.7 Murthy et al. – Leveraging Risk Based Testing in Enterprise Systems Security
Validation
Murphy et. al. [47] proposes an iterative process to risk based testing that consists of the
activities:

 Risk analysis: In this activity, risks are identified and evaluated according to the Risk
Analysis method proposed by NIST. The output of the activity is a documented list
of high level risks.

 Threat modeling: In this activity, risks are detailed by modeling threats to the system
under evaluation according to Microsoft’s Threat Modeling process. The system is
then decomposed into sub-systems to identify assets, entry points, and trust levels.
The output of the activity is a detailed list of categorized risks.

 Test design: In this activity, misuse cases are used to identify security test scenari-
os. Also, any Security Controls suggested as part of the application design will au-
tomatically translate into a test scenario.

 Test execution: In this activity, test scenarios are translated into more detailed test
cases which are categorized an prioritized according to the risk of categorized risks.

 Reporting: In this activity, the output of the test execution is captured that details the
vulnerabilities found along with their severity level.

3.2.8 Zech – Risk-Bases Security Testing in Cloud Computing Environments
Zach proposes a model-driven methodology for the security testing of cloud environments
[49]. The main steps of the method are:

 Step 1: Perform a risk analysis of the Cloud Under Test (CUT), possibly with the
help of a vulnerability repository.

 Step 2: Transform the risk model (generated in step I) into a set of negative re-
quirements (more or less textual descriptions) using a model to model (M2M) trans-
formation.

 Step 3: Transform the negative requirements into misuse cases using an M2M
transformation.

 Step 4: Automatically transform the misuse cases into test cases using an M2M
transformation

The transformations mentioned in the steps are not presented in detail; it merely suggests
that such transformations could be used.

Review of security testing tools

Deliverable ID: D

Page : 30 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

4. CONCLUSIONS

In this document, we have presented state-of-the-art related to methodologies for risk- and
model-based security testing. The state-of-the-art is related to techniques developed in
WP2 that should be supported by methodologies and whose state-of-the-art survey has
not already been covered by deliverable D1.WP2.

5. REFERENCES

[1] H. Götz, M. Nickolaus, T. Roßner, K. Salomon, “Model Based Testing - Modelling and gen-
eration of tests - basics, criteria for tool use, tools in the overview” (in German), iX Studie,
01/2009

[2] [67] Jürjens, J.: Secure Systems Development with UML, Springer, 2005

[3] Jürjens, J.; Schreck, J. & Yu, Y.: Automated Analysis of Permission-Based Security Using
UMLsec; Fundamental Approaches to Software Engineering, 11th International Conference
(FASE), Springer, 2008, 4961, 292-295

[4] [65]Jürjens, J. Jézéquel, J.-M.; Hussmann, H. & Cook, S. (Eds.) UMLsec: Extending UML
for Secure Systems Development; The Unified Modeling Language, Springer Berlin / Hei-
delberg, 2002, 2460, 1-9

[5] [77] Lodderstedt, T.; Basin, D. A. & Doser, J. Jézéquel, J.-M.; Hußmann, H. & Cook, S.
(Eds.) SecureUML: A UML-Based Modeling Language for Model-Driven Security; The Uni-
fied Modeling Language, 5th International Conference, Springer, 2002, 2460, 426-441

[6] L. Cholvy, F. Cuppens, Analyzing consistency of security policies, in: IEEE Symposium on
Security and Privacy, IEEE Computer Society, 1997, pp. 103-112.

[7] Amel Mammar, Wissam Mallouli, and Ana Cavalli. A systematic approach to integrate
common timed security rules within a TEFSM-based system specification. Publiched in In-
formation and Software Technology Journal. ISSN = 0950-5849, Elsevier Editor, August
2011

[8] A. Cavalli, D. Lee, C. Rinderknecht, F. Zaidi, Hit-or-jump: An algorithm for embedded test-
ing with applications to in services, in: J. Wu, S. Chanson, Q. Gao (Eds.), Formal Methods
for Protocol Engineering and Distributed Systems(FORTE), Vol. 156 of IFIP Conference
Proceedings, Kluwer, 1999, pp. 41-56.

[9] M. Bozga, J. Fernandez, L. Ghirvu, S. Graf, J. Krimm, L. Mounier, J. Sifakis, IF: An inter-
mediate representation for SDL and its applications, in: Proceedings of SDL Forum, Else-
vier, 1999.

[10] F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux, N. Vacelet, and M. Utting, “A subset of
precise UML for model-based testing,” in 3rd int. Workshop on Advances in Model Based
Testing, 2007, pp. 95–104.

[11] The Common Criteria Recognition Arrangement. Part 3: Common Criteria Evaluation Meth-
odology http://www.commoncriteriaportal.org/ccra/

[12] TVRA ETSI TS 102 165-1 v4.2.3 (2011-03) TISPAN Methods and Protocols; Part 1 Meth-

Review of security testing tools

Deliverable ID: D

Page : 31 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

od and Proforma for Threat, Vulnerability Analysis; eTVRA: http://portal.etsi.org/eTVRA/

[13] H. Abie, D. B. Aredo, T. Kristoffersen, S. Mazaher, and T. Raguin. Integrating a security re-
quirement language with UML. In Proc. of the 7th International Conference on The Unified
Modelling Language: Modelling Languages and Applications (UML’04), volume 3273 of
Lecture Notes in Computer Science, pages 350–364. Springer, 2004.

[14] K. Alghathbar and D. Wijesekera. authUML: a three-phased framework to analyze access
control specifications in use cases. In Proc. of the 2003 ACM workshop on Formal methods
in security engineering (FMSE’03), pages 77–86. ACM, 2003.

[15] K. Alghathbar and D.Wijesekera. Consistent and complete access control policies in use
cases. In Proc. of the 6th International Conference on The Unified Modeling Language,
Modeling Languages and Applications (UML’03), volume 2863 of Lecture Notes in Comput-
er Science, pages 373–387. Springer, 2003.

[16] D. Basin, J. Doser, and T. Lodderstedt. Model driven security for processoriented systems.
In Proc. of the 11th ACM Symposium on Access Control Models and Technologies (SAC-
MAT’03), pages 100–109. ACM, 2003.

[17] D. Basin, J. Doser, and T. Lodderstedt. Model driven security: From UML models to access
control infrastructures. ACM Transactions on Software Engineering Methodologies,
15(1):39–91, 2006.

[18] D. A. Basin, M. Clavel, J. Doser, and M. Egea. A metamodel-based approach for analyzing
security-design models. In Proc. of the 10th International Conference on Model Driven En-
gineering Languages and Systems (MoDELS’07), volume 4735 of Lecture Notes in Com-
puter Science, pages 420–435. Springer, 2007.

[19] R. Breu, M. Hafner, B. Weber, and A. Novak. Model driven security for interorganizational
workflows in e-government. In Proc. of the 2005 International Conference on E-
Government: Towards Electronic Democracy (TCGOV’05), volume 3416 of Lecture Notes
in Computer Science, pages 122–133. Springer, 2005.

[20] C. C. Burt, B. R. Bryant, R. R. Raje, A. M. Olson, and M. Auguston. Model driven security:
unification of authorization models for fine-grain access control. In Proc. of the 7th Interna-
tional Enterprise Distributed Object Computing Conference (EDOC’03), pages 159–173.
IEEE Computer Society, 2003.

[21] T. Doan, S. Demurjian, T. C. Ting, and A. Ketterl. MAC and UML for secure software de-
sign. In Proc. of the 2004 ACM workshop on Formal methods in security engineering
(FMSE’04), pages 75–85. ACM, 2004.

[22] P. Epstein and R. Sandhu. Towards a UML based approach to role engineering. In Proc. of
the 4th ACM workshop on Role-based access control (RBAC’99), pages 135–143. ACM,
1999.

[23] E. Fernandez-Medina and M. Piattini. Extending OCL for secure database development. In
Proc. of the 7th International Conference on The Unified Modelling Language: Modelling
Languages and Applications (UML’04), volume 3273 of Lecture Notes in Computer Sci-
ence, pages 380–394. Springer, 2004.

[24] E. Fern´andez-Medina and M. Piattini. Designing secure databases. Information & Software
Technology, 47(7):463–477, 2005.

[25] E. Fern´andez-Medina, J. Trujillo, R. Villarroel, and M. Piattini. Extending UML for designing
secure data warehouses. In Proc. of the 23rd International Conference on Conceptual

Review of security testing tools

Deliverable ID: D

Page : 32 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Modeling (ER’04), volume 3288 of Lecture Notes in Computer Science, pages 217–230.
Springer, 2004.

[26] E. Fern´andez-Medina, J. Trujillo, R. Villarroel, and M. Piattini. Developing secure data
warehouses with a UML extension. Information Systems, 32(6):826–856, 2007.

[27] T. Fink, M. Koch, and K. Pauls. An MDA approach to Access Control Specifications Using
MOF and UML Profiles. Electronic Notes in Theoretical Computer Science, 142:161–179,
2006.

[28] P. Giorgini, F. Massacci, and J. Mylopoulos. Requirement engineering meets security: a
case study on modelling secure electronic transactions by VISA and mastercard. In Proc. of
the 22nd International Conference on Conceptual Modeling (ER’03), volume 2813 of Lec-
ture Notes in Computer Science, pages 263–276. Springer, 2003.

[29] M. Hafner, M. Alam, and R. Breu. Towards a MOF/QVT-Based Domain Architecture for
Model Driven Security. In Proc. of the 9th International Conference on Model Driven Engi-
neering Languages and Systems (MoDELS’06), volume 4199 of Lecture Notes in Computer
Science, pages 275–290. Springer, 2006.

[30] R. Heldal and F. Hultin. Bridging Model-Based and Language-Based Security. In Proc. of
the 8th European Symposium (ESORICS’03), volume 2808 of Lecture Notes in Computer
Science, pages 235–252. Springer, 2003.

[31] M. Koch and F. Parisi-Presicce. Formal access control analysis in the software develop-
ment process. In Proc. of the 2003 ACM workshop on Formal methods in security engineer-
ing (FMSE’03), pages 67–76. ACM, 2003.

[32] Y. Nakamura, M. Tatsubori, T. Imamura, and K. Ono. Model-Driven Security Based on a
Web Services Security Architecture. In Proc. of the 2005 IEEE International Conference on
Services Computing (SCC’05), pages 7–15. IEEE Computer Society, 2005.

[33] A. Poniszewska-Maranda, G. Goncalves, and F. Hemery. Representation of extended
RBAC model using UML language. In Proc. of the 31st Conference on Current Trends in
Theory and Practice of Computer Science (SOFSEM’05), volume 3381 of Lecture Notes in
Computer Science, pages 413–417. Springer, 2005.

[34] I. Ray, N. Li, R. France, and D.-K. Kim. Using UML to visualize role-based access control
constraints. In Proc. of the 9th ACM symposium on Access control models and technolo-
gies (SACMAT’04), pages 115–124. ACM, 2004.

[35] E. Soler, J. Trujillo, E. Fern´andez-Medina, and M. Piattini. A Framework for the Develop-
ment of Secure Data Warehouses based on MDA and QVT. In Proc. of the International
Conference on Availability, Reliability and Security (ARES’07), pages 294–300. IEEE Com-
puter Society, 2007.

[36] B. Vela, E. Fern´andez-Medina, E. Marcos, and M. Piattini. Model driven development of
secure XML databases. SIGMOD Record, 35(3):22–27, 2006.

[37] J. L. Vivas, J. A. Montenegro, and J. Lopez. Towards a business process-driven framework
for security engineering with the UML. In Proc. of the 6th International Conference on In-
formation Security (ISC’03), volume 2851 of Lecture Notes in Computer Science, pages
381–395. Springer, 2003.

[38] MILLER, B., KOSKI, D., LEE, C. P., MAGANTY, V., MURTHY, R., NATARAJAN, A., AND
STEIDL, J. Fuzz revisited: A reexamination of the reliability of UNIX utilities and services.
Tech. rep., 1995.

Review of security testing tools

Deliverable ID: D

Page : 33 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

[39] MILLER, B. P., FREDRIKSEN, L., AND SO, B. An empirical study of the reliability of UNIX
utilities. Communications of the Association for Computing Machinery 33, 12 (1990), 32–44.

[40] OULU UNIVERSITY SECURE PROGRAMMING GROUP. PROTOS.
http://www.ee.oulu.fi/research/ouspg/protos/.

[41] [4] OULU UNIVERSITY SECURE PROGRAMMING GROUP. RADAMSA.
http://code.google.com/p/ouspg/wiki/Radamsa

[42] J. Bach, Heuristic Risk-Based Testing, Software Testing and Quality Engineering Maga-
zine, No-vember 1999, pp. 96-98.

[43] F. Redmill, Exploring Risk-based Testing and Its Implications 1. Software Testing,
Verification & Reliability, 14(1), 2004

[44] F. Redmill, Theory and practice of risk-based testing. Software Testing, Verification &
Reliability, 15(1), 2005

[45] L. H. Rosenberg, R. Stapko, and A. Gallo. Risk-based object oriented testing. In: Proceed-
ings of the 24th annual Software Engineering Workshop, NASA, Software Engineering La-
boratory, 1999.

[46] H. Stallbaum, A. Metzger, and K. Pohl. 2008. An automated technique for risk-based test
case generation and prioritization. In Proceedings of the 3rd international workshop on Au-
tomation of software test (AST '08). Pp. 67-70.

[47] K.K. Murthy, K.R. Thakkar, S. Laxminarayan. Leveraging Risk Based Testing in Enterprise
Sys-tems Security Validation, First International Conference on Emerging Network Intelli-
gence, pp.111-116, 11-16 Oct. 2009

[48] E. van Veendendaal, Practical Risk-Based Testing – Product RISk Management: the
PRISMA me-thod, 2009,
http://www.erikvanveenendaal.nl/NL/files/PRISMA%20white%20paper%201.4.pdf

[49] P. Zech, Risk-Based Security Testing in Cloud Computing Environments, 2011 IEEE Fourth
Inter-national Conference on Software Testing, Verification and Validation (ICST), pp.411-
414, 2011

[50] S. Åmland: Risk-based testing: Risk analysis fundamentals and metrics for software testing
includ-ing a financial application case study. Journal of Systems and Software 53(3): 287-
295 2000

[51] Wissam Mallouli, Bachar Wehbi, Ana Cavalli and Stéphane Maag, Formal Supervision of
Mobile Ad hoc Networks for Security Flaws Detection. Book chapter in "Security
Engineering Techniques and Solutions for Information Systems: Management and
Implementation", Editors Pr. Noureddine Boudriga and Pr. Mohamed Hamdi. Publisher:
Information Science Reference - IGI Global. ISBN: 9781615208036. May 2011.

[52] Anas Abou El Kalam, Salem Benferhat, Alexandre Miège, Rania El Baida, Frédéric
Cuppens, Claire Saurel, Philippe Balbiani, Yves Deswarte, Gilles Trouessin, Organization
based access control, Proceedings of the 4th IEEE International Workshop on Policies for
Distributed Systems and Networks, 2003

[53] International Society for Optical Engineering, Citeseer, 2006, 6242, 114-129,
Telecommunication Union. Recommendation Z.100 — Specification and description
language (SDL), 1999

[54] F.Cuppens, N.Cuppens, T.Sans, Nomad: A Security Model with Non Atomic Actions and

Review of security testing tools

Deliverable ID: D

Page : 34 of 34

Version: 1.09
Date : 12.12.2011

Status : Final
Confid : Public

 Copyright DIAMONDS Consortium

Deadlines, Proceedings of the 18th IEEE workshop on Computer Security Foundations,
2005

[55] F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux, N. Vacelet and M. Utting. A
subset of precise UML for model-based testing. In A-MOST'07: Proceedings of the
3rd international workshop on Advances in model-based testing, pages 95-104.
2007

[56] “Weka 3: Data mining software in java,” (accessed 9/29/2011). [Online]. Available:
http://www.cs.waikato.ac.nz/ml/weka/

[57] “Network measurement and accounting system,” (accessed 9/29/2011).[Online].
Available: http://www.ip-measurement.org/tools/netmate/

[58] “The network traffic based application identification,”(accessed 9/29/2011). [Online].
Available: http://caia.swin.edu.au/urp/dstc/netai/netai.html

[59] “Netmate-flowcalc,” (accessed 9/29/2011). [Online]. Available: http://web.cs.dal.ca/
darndt/projects/netmate-flowcalc/

[60] “GCC - the GNU Compiler Collection”, (accessed 9/29/2011) [Online].
http://gcc.gnu.org/

