
 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 1/98 
 

 

 

 
 End-to-end Digital Integration based on Modular Simulation of Natural Human Motions 

 
ITEA 3 – 17028 

 
Work package 2 

 Technical Requirements and Concept for Modular Simulation  

 
 

Deliverable 2.2  

MMU Concept and Interface Specification 

 

 
Document type  
Document version  
Document Preparation Date  
Classification  
Contract Start Date  
Contract End Date 
Author 

 

 
: Deliverable  
: 1 
: 2019-09-30 
: public  
: 2018-11-01 
: 2021-08-31 
: Felix Gaisbauer 
 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 2/98 
 

 

 

Final approval Name Partner 

Review Task Level Felix Gaisbauer Daimler AG 

Review WP Level Christian König TWT 

Review Board Level Klaus Fischer DFKI 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 3/98 
 

Executive Summary 

This public document is the initial version of deliverable 2.2 “MMU concept and interface specification” 
from work package 2. The aim of this public document is: 

 To introduce the overall concept of the MOSIM approach and its architecture. 

 To present a detailed overview of the proposed interfaces and formats. 

 To outline the workflow and utilization of the novel framework. 

 To present a first proposal for the planned standard, which serves as base for the future MOSIM 
activities and which can be used to implement the overall framework. 

Note that, the document is considered as a living and dynamic document which is updated throughout 
the progress of the MOSIM project. In particular, the interfaces, formats and workflows, as described 
within this document are a first draft and are utilized as a starting point for the implementation phase 
of the MOSIM project. However, feedback and gained knowledge during the implementation will be 
fed back to this document, whereas the proposed framework will be adjusted. Overall, a new version 
of the document will be provided at least once a year. 

The overall document is structured as follows: 

First in Section 1, an introduction regarding the motivation, basic concept and benefits of the MOSIM 
approach, as well as the Functional Mock-up Interface (FMI) standard is given. Followed in Section 2, 
a detailed overview of the overall MOSIM concept, subdivided into MMUs, co-simulation and behavior 
modeling is given. In Section 3, the technical architecture is revisited in detail. In this context, first the 
overall framework and the contained components are introduced. Next, a detailed overview of the 
formats and interfaces is given. Moreover, the workflow of the proposed components is presented in 
detail.  Section 4 furthermore gives a summary and conclusion of the overall document.  Additionally, 
in the Appendix example files, which help in understanding the overall framework, are provided. To be 
able to implement the proposed framework, the Apache Thrift interface definition files, as well as the 
launcher application is also provided in addition to the document. 

 

 

 

 

 

 

 

 

 

 

 

 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 4/98 
 

Contents 

Executive Summary ................................................................................................................................. 3 

Contents .................................................................................................................................................. 4 

1 Introduction ..................................................................................................................................... 6 

2 Overall concept ............................................................................................................................... 7 

2.1 Motion Model Units ................................................................................................................ 7 

2.2 Co-Simulation .......................................................................................................................... 8 

2.3 Behavior Modeling & Execution .............................................................................................. 9 

3 Technical Architecture ................................................................................................................... 12 

3.1 Overview ................................................................................................................................ 12 

3.1.1 Motion Model Unit ............................................................................................................ 12 

3.1.2 Adapter .............................................................................................................................. 13 

3.1.3 Target Engine ..................................................................................................................... 13 

3.1.4 Communication Layer ........................................................................................................ 13 

3.1.5 Middleware ....................................................................................................................... 13 

3.1.6 Services .............................................................................................................................. 14 

3.1.7 Launcher ............................................................................................................................ 14 

3.1.8 Intermediate Skeleton ....................................................................................................... 14 

3.2 Interfaces & Formats ............................................................................................................. 15 

3.2.1 Motion Model Unit ............................................................................................................ 15 

3.2.2 Co-Simulation .................................................................................................................... 19 

3.2.3 Behavior Modeling & Execution ........................................................................................ 21 

3.2.4 Core Formats ..................................................................................................................... 32 

3.2.4.1 Motion Instruction (MInstruction) .................................................................................... 32 

3.2.4.2 Motion Instruction Result (MInstructionResult) ............................................................... 34 

3.2.4.3 Constraints (MConstraint) ................................................................................................. 34 

3.2.4.4 Simulation State (MSimulationState) ................................................................................ 39 

3.2.4.5 Simulation Result (MSimulationResult) ............................................................................. 40 

3.2.4.6 Simulation Event (MSimulationEvent) .............................................................................. 41 

3.2.4.7 Scene Manipulations (MSceneManipulation) ................................................................... 42 

3.2.4.8 Further formats ................................................................................................................. 44 

3.2.5 Avatar Representation (MAvatarPosture, MAvatarPostureValues) ................................. 48 

3.2.6 Scene ................................................................................................................................. 54 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 5/98 
 

3.2.7 Adapter .............................................................................................................................. 67 

3.2.8 Services .............................................................................................................................. 69 

3.2.9 Launcher (MMIRegisterService) ........................................................................................ 74 

3.3 Workflow ............................................................................................................................... 77 

3.3.1 Launcher – The entry point for the overall MMI framework ............................................ 77 

3.3.2 MMU Execution ................................................................................................................. 78 

3.3.3 Adapters ............................................................................................................................ 80 

3.3.4 Co-Simulation .................................................................................................................... 83 

3.3.5 Behavior Execution ............................................................................................................ 84 

3.3.6 Target Engine ..................................................................................................................... 86 

3.3.7 Skeleton Utilization ........................................................................................................... 87 

4 Summary and conclusions ............................................................................................................. 89 

5 References ..................................................................................................................................... 90 

6 Appendix ........................................................................................................................................ 92 

6.1 Exemplary MMU Description File .......................................................................................... 92 

6.2 Exemplary file of the Skeleton............................................................................................... 93 

 

  



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 6/98 
 

1 Introduction 

The overall goal of the MOSIM project is to realistically simulate complex human motions in the context 
of different use-cases. In academia and on the market, up to now, only isolated digital human 
simulation approaches are available. For instance, individual tools can already address the simulation 
of setup paths or ergonomic validation. However a comprehensive simulation of manual assembly 
scenarios comprising heterogeneous activities is not possible yet.  Nonetheless, given the available 
tools and motion synthesis approaches, most of the requested simulation capabilities are already 
available. A major hurdle for combining the available technologies is the lacking availability of source 
code and expertise and uneconomically high porting effort. To allow the open and efficient utilization 
of these technologies and tools for a comprehensive simulation and benchmarking, the MOSIM 
projects targets to provide an open standard for connecting heterogeneous digital human simulation 
approaches in a common framework. In particular, the efforts for incorporation and implementation 
should be minimized, whereas the major programming languages and platforms shall be supported. 
Ultimately, the MOSIM framework enables the end-user to combine the best motion synthesis 
approaches available. Given the MOSIM framework, a new value chain comprising different roles is 
generated. In particular, vendors of simulation software can sell comprehensive simulation 
environments. Moreover, a new business for selling digital human simulation approaches in a modular 
way is created. 

For exchanging simulation functionality in a different domain than motions, a widely used solution 
named Functional Mock-up Interface (FMI) is already available. The proposed MOSIM framework is 
strongly inspired by the FMI approach.  The Functional Mock-up Interface is a standard that supports 
the exchange of dynamic simulation models as well as its co-simulation while being tool independent. 
This standard is based on a combination of xml-files and compiled C-code [1]. An instance of an FMI 
component is called a Functional Mock-up Unit (FMU). By using the FMI standard, it is possible to 
perform a simulation of different FMUs, containing appropriate solvers, whereas only the simulation 
results of the FMUs are exchanged after defined time steps. This approach is called FMI for co-
simulation [2]. The concept of modular motion units as derived in the MOSIM project, which is also 
referred as Motion Model Interface (MMI) approach, builds upon the idea of the FMI concept to 
further extend the standard to simulate human motion.  

Orchestrating various sub-simulations as intended by the FMI or MMI approach requires a superior 
instance managing the distributed sub-systems. In general, this orchestration process is named co-
simulation, whereas the co-simulator updates the components and incorporates the results. Recently, 
in literature various co-simulation approaches for the FMI standard have been proposed ([3] [4] [5]), 
however, these systems predominantly focus on signal flow modeling mainly in the mechatronic 
domain. Since the co-simulation of digital human simulation systems has entirely different 
requirements, these solutions cannot be directly used. 

To implement the aforementioned aspects, a standardized framework satisfying the heterogeneous 
requirements of the digital human simulation approaches, co-simulation, behavior modeling and use-
cases is required. The document is structured as follows: Section 2 proposes the overall concept of the 
MOSIM framework, depicting the main concepts and components. In section 3, the proposed technical 
architecture is presented in detail. In particular, in section 3.1 the main technical framework and the 
components are revisited.   Section 3.2 focuses and the description of the respective formats and data 
structures by means of class diagrams. Section 3.3 explains the overall process and workflow of the 
framework. Section 4 gives a conclusion and summary of the presented framework. Moreover, in the 
appendix additional example files are provided. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 7/98 
 

2 Overall concept 

Strongly inspired by the FMI approach, a new concept for combining heterogeneous digital human 
simulation approaches is developed in the MOSIM project.  Based on the FMI approach, a concept for 
exchanging character animation systems is introduced in [6], [7]. With FMI, complex systems like 
industrial machines can be simulated using specialized approaches such as solvers for pneumatic 
cylinders or kinematic models. The respective sub-simulations are embedded within standardized 
modules (FMUs) [2]. A co-simulator sequences several of these co-simulations.  This component 
communicates with the FMUs at discrete points in time and incorporates the computed results of all 
heterogeneous approaches in a common simulation. Transferring this concept to the domain of 
character animation, so called Motion Model Interfaces (MMIs) and their implementations called 
Motion Model Units (MMUs) are presented which allow incorporating diverse character animation 
approaches into a common framework.  Figure 1 shows the main idea of the novel MOSIM approach. 
In the following, the overall framework is also referred as MMI framework. 

 

 

Figure 1 Schematic illustration of the MMI Concept. By encapsulating different digital human simulation approaches in 
modular units, comprehensive simulations can be realized. 

2.1 Motion Model Units 

The proposed MMUs are an essential part of this modular concept and provide the basic interface for 
encapsulating different character animation systems and technologies (see Figure 1 top).  These units 
contain the actual animation approach, being implemented in the required platform and programming 
language.  For instance, an actual MMU can comprise a data-driven algorithm implemented in Python, 
as well as model-based approaches realized in C++. By utilizing a common interface, and inter-process 
communication, the MMUs can be accessed independent of the language of implementation. Thus, 
the communication and workflow are only driven by the functionality provided by the interface and 
not by specific environments. Figure 2 gives an overview of the provided key functionality of the 
interface. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 8/98 
 

Individual MMUs are responsible for generating specific kinds of motion (e.g. locomotion behavior or 
grasp modeling). Each MMU provides the functionality to set the intended motion instruction, as well 
as evaluating prerequisites and getting boundary constraints for executing the motion. Moreover, the 
MMUs comprise a DoStep routine that is executed for each frame to be simulated. In this context, the 
actual posture at the given frame is computed by the specific technology.  

For each frame, the MMU provides output parameters describing the generated posture, its 
constraints, as well as intended scene manipulations and events. Since most motion generation 
approaches strongly rely on spatial information of the environment and the digital human 
representation, the communication with the scene is an important aspect for realizing such an 
encapsulation. Thus, each MMU can access the information provided by the scene through a defined 
interface (see Figure 2 scene access). In this way, the actual scene representation can be embedded in 
diverse target environments.  Considering the concurrency between different MMUs, manipulations 
of the scene, which are intended by the MMUs, are not directly written back to the scene; instead, 
these are provided as an output of the simulation step and are furthermore processed by a superior 
instance. 

Even though the MMU implementations of different motion types such as grasping or walking might 
be different in terms of the underlying technique and algorithms, frequently, the MMUs utilize similar 
functionalities such as computing inverse kinematics or planning a path. For this reason, each MMU 
can additionally access a set of predefined services such as inverse kinematics, retargeting and path 
planning (see Figure 2 service access). 

 

 

Figure 2 Overview of the basic interface of a so-called Motion Model Unit. 

2.2 Co-Simulation 

Having distinct MMUs comprising specific simulation approaches, separately generated postures must 
be merged and further processed to obtain natural motions. Therefore, a co-simulator is required, 
which orchestrates the actual execution of the MMUs. In this context, the component merges and 
overlaps the motions, while considering the constraints of the postures. Figure 3 provides an overview 
of the general input and output of a co-simulation. Generally, the input of the co-simulation is a list of 
different tasks (e.g., walk to, grasp object) with temporal dependencies. The output of the co-
simulation is a feasible motion representing the specified tasks. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 9/98 
 

 

Figure 3 Schematic illustration of the input and output of a co-simulation as required for the MOSIM framework. 

 

Since the scope of the framework is to incorporate extensively heterogeneous character animation 
systems, the individual MMUs might comprise entirely different skeleton structures and 
anthropometries.  To utilize these heterogeneous results in a common platform, retargeting to a global 
reference skeleton is required for each MMU. Moreover, since two consecutive MMUs might start/end 
with a different posture (e.g., MMU1 ends with t-Pose, MMU2 starts with idle pose), the transition 
between the respective units must be explicitly modeled.  Another essential aspect of the co-
simulation is to preserve the constraints and characteristics of the original motions/ postures (e.g., 
Grasp MMU1 requires the hand to be at a specific location).  

One possibility to handle different MMUs is to sequentially execute them. However, when examining 
humanoid motion, it can be encountered that most of the performed motions are commonly executed 
in parallel. Therefore, an important task of the co-simulation is to overlap and merge different motions 
generated by the MMUs. 

In [8], a first concept of a co-simulation for digital human simulation was presented. Within the MOSIM 
project, different concepts and variations of possible co-simulation approaches will be investigated. 
The co-simulation interface proposed in this document forms the basis for the future implementations 
and investigations. 

 

2.3 Behavior Modeling & Execution 

In order for the co-simulator to be able to merge different motions, in the first place, it requires a 
sequence of instructions or MMUs to be executed as input. Which motions or granular tasks an avatar 
has to execute depends on two factors: on the one hand on the task definition to be simulated and on 
the other hand on the current state of the avatar and/or the simulated environment. Depending on 
these factors, there must be a mechanism that considers both together and then reasons which 
granular task to execute. In the MOSIM project, the Behavior Modeling & Execution unit is responsible 
for this reasoning task. It acts on a semantic level at which higher-level actions or behaviors are 
executed and thus serves as a mediator between the co-simulator and the holistic scenario to be 
simulated.  

Task descriptions defined purely as sequences have the restriction that alternative activities cannot be 
represented. In a dynamic environment in which more than one entity (e.g., avatar, user, etc.) interacts 
with the simulated environment, there are different options to perform higher-level actions, which 
requires an approach that allows mapping of alternative context-dependent activities.  



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 10/98 
 

In order for an entity to be able to make decisions independently and to be able to carry out context-
dependent actions, in addition to a behavior model knowledge representation is required to determine 
the current state  of the entity. Additionally, constraints for the selection or execution of given MMUs 
or actions can guide the reasoning in the Behavior Modeling & Execution unit. After a context-
dependent action has been executed, feedback on the result in the environment is needed. This 
feedback is received either via an update of the scene state or from the co-simulator in case errors 
(e.g., an MMU could not make an avatar reach the desired position) in MMU execution are reported.  

Furthermore, it must be easy for a developer to model a behavior or to adapt it to a considered task 
description to be able to run through different scenarios as quickly and intuitively as possible. 

A popular approach to achieve this flexibility is given by the Behavior Tree (BT) paradigm, which is a 
graphical programing language combining Decision Trees with Finite State Machines and has its roots 
in the gaming industry. BTs are also used extensively in robotics to realize autonomous and goal-driven 
entities that decide reactively which actions are to be performed depending on their current situation. 
Figure 4 shows for example a Reasoning Cycle for a simulated worker controlled by a BT. In the first 
step, the current situation of the worker is perceived and then evaluated with a BT. The next action is 
derived and executed, resulting in a new situation. 

 

Figure 4 Reasoning Cycle of the proposed Behavior Modeling & Execution. 

The BT paradigm is often used in combination with a blackboard that stores the current entity state. 
BTs can be event-based or executed with a game tick and are suitable for describing concurrent 
actions, fulfilling a primary criterion for selecting a behavioral model in MOSIM. However, they only 
carry out the actions that are ready for execution in the current situation. A generation of a list with 
possible future actions, as required by the co-simulator, is not yet possible with common 
implementations and will be thus investigated in the MOSIM project. 

In the MOSIM project BTs are supposed to be used as an executable behavior model. The agent system 
AJAN developed at DFKI, was suggested as a possible implementation of the Behavior Modeling & 
Execution unit. In [9] and [10], the AJAN was presented and used for the control of simulated workers 
in an assembly line production. AJAN is a multi-agent system that is implemented as a Web service and 
uses BTs extended with SPARQL queries and RDF-Triple Stores as knowledge base. Furthermore, it is 
equipped with a graphical editor (see Figure 5) to model and manage agents with such BTs. 

 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 11/98 
 

 

 
Figure 5 AJAN-Editor for agent and behavior modeling. 

 

 

 

 

 

 

 

 

 

 

 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 12/98 
 

3 Technical Architecture 

In order to combine several heterogeneous digital human simulation approaches in practice, a 
technical architecture fulfilling the requirements of the different use-cases and technology provider is 
necessary. In the following, a detailed presentation of the derived technical architecture for the MMI 
framework is provided. 

3.1 Overview  

The proposed framework comprises several components interconnected by a platform independent 
middleware. Figure 6 visualizes the overall framework and the involved components. In the following, 
the individual components are described in detail. 

 

 

Figure 6 Overview of the proposed technical MOSIM architecture. 

3.1.1 Motion Model Unit 

To incorporate heterogeneous motion synthesis approaches in a common framework, it is 
indispensable to provide compatibility for many platforms. Therefore, each MMU can be realized in 
the particular programming language that best supports its approach for synthesizing motions. Each 
MMU implements the platform-independent interface as illustrated in Figure 2. The suggested 
interface is limited in its functionality to ease the cross-platform implementation.  Additionally, each 
MMU provides a description file in which the motion type, specific parameters and the name of the 
unit are specified. To enlarge the possible portfolio of compatible algorithms, the MMUs can 
furthermore comprise a specific skeleton as required by the respective approach. The retargeting 
from/to the intermediate skeleton defined for the use in MOSIM (see Figure 6) can be performed by a 
dedicated retargeting service, which is available to the MMU.  The MMUs themselves have a 
programming language specific format: Utilizing languages such as C#, C++, or Java, the MMUs are 
represented as .dll- or .jar files and can be instantiated at runtime. It is important to note, that co-
simulation and MMU have an identical interface in order to allow nested MMUs. The MMU specific 
interface is described in Section 3.2. In general, independent of the programming language an MMU 
is represented as zip archive, which contains a description file and the programming language specific 
files/binaries. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 13/98 
 

3.1.2 Adapter 

If the MMUs are realized as separate standalone applications, each MMU must implement the 
communication by itself, which induces potential error sources and an implementation overhead. For 
instance, if the communication formats change over time (e.g., a new version of the standard is 
introduced), each MMU must be manually adjusted, which induces uneconomically high 
implementation efforts. Moreover, MMUs being realized as separately hosted applications might lead 
to performance bottlenecks, since the scene has to be synchronized multiple times for each MMU. To 
avoid this and counterbalance the drawbacks, the so-called adapters are proposed.  

Adapters implement the communication protocols and are responsible for managing the MMUs, i.e., 
adapters act as proxy for the communication. In particular, adapters are provided for each compatible 
programming language (e.g. C#, C++, Java, Python). The components contain a session handling to 
allow multiple avatars and consumers using the same adapter instance. Moreover, adapters buffer the 
scene, while only the deltas are transmitted.  Given the buffered scene, the MMUs contained in the 
adapter can access the scene with very low latency, since no further Web- or inter-process 
communications needs to be carried out. The adapter further provides access to the available services 
of the framework. A detailed overview of the specific interface of the adapter is available in Section 
3.2. 

3.1.3 Target Engine 

As central accessing point of the end-user and the different use-cases, the target engine is responsible 
for the visualization of the scene and the digital human model. The component provides the ground 
truth scene and is realized in a specific programming language. 

Additionally, an internal skeleton can be utilized within the target engine, whereas the retargeting 
from/to the reference skeleton can be semi-automatically performed by a retargeting service. The 
target engine needs to provide a standardized accessing functionality of the scene (e.g. get object with 
name "x", get transform of "y"). Furthermore, manipulations of the scene as intended by MMUs or the 
co-simulation must be applicable to the scene. 

3.1.4 Communication Layer 

Closely linked to the target engine, the so-called communication layer encapsulates the 
communication to the MMUs. The layer provides the accessing functionalities of the MMUs as they 
were on the local machine. The abstraction layer should be provided as implementation for each 
programming language, whereas the functionality might be adapted to specific applications. 

3.1.5 Middleware 

As an essential component for connecting the different components of the framework, the middleware 
is a crucial aspect.  In general, vast amounts of different middleware solutions are available. For the 
desired MOSIM framework, different state of the art solutions have been examined. To ease cross-
platform implementation, Apache Thrift [9] is utilized. Reasons for the selection of Apache Thrift for 
the planned standard are the availability as open source project, and the definition of the interfaces 
using a single source represented as Interface Definition Language (IDL) file.  Moreover, the 
compatibility to the major programming languages and the performance were further major aspects 
that led to the selection of Apache Thrift. 

The overall communication-formats and services of the framework are defined using the Thrift 
interface description language, whereas the source-code for the different platforms can be 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 14/98 
 

automatically generated.  In addition to the proposed document, the Thrift IDL files describing the 
MOSIM framework are provided as additional files online with the deliverable. 

3.1.6 Services 

To further increase the usability and shrink implementation efforts, functionality, which is oftentimes 
required by MMUs, is provided by so-called services. In particular, methods such as path planning, 
inverse kinematics, retargeting and collision-detection are offered as service. The services are realized 
using the common Apache Thrift middleware and implemented in a stateless manner, providing the 
capability to be used by multiple consumers. A detailed overview of the provided services in the 
MOSIM framework is given in Section 3.2. 

3.1.7 Launcher 

Despite the previously mentioned components, the novel framework additionally comprises a 
component that starts the adapters/services and provides a register for managing the respective 
component in the framework.  The so-called launcher hosts a service, which acts as an entry point for 
the different components in the framework. In particular, the available adapters, services, as well as 
the respective connection information are provided. Moreover, the adapters and services actively 
register at the registry service. In this way, the users of the MOSIM framework only need the address 
information of this centralized service in order to gather all required information being necessary for 
the utilization of the framework. A detailed overview of the Launcher interface and the workflow is 
given in Section 3.2 and 3.3. The launcher application is provided in addition to this document as part 
of the MOSIM deliverable. 

3.1.8 Intermediate Skeleton 

Event though not depicting a separate component, the so-called intermediate skeleton is an important 
concept of the proposed framework.  The intermediate skeleton is a standardized skeleton 
hierarchy/structure, which is utilized to transfer the posture data between the different components. 
Therefore, each avatar/skeleton must be mapped to the intermediate skeleton. A detailed overview 
of the specific format is given in Section 3.2.5. 

 

 

 

 

 

 

 

 

 

 

 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 15/98 
 

3.2 Interfaces & Formats 

After having introduced the overall architecture and the individual components, next, it is crucial to 
define the specific interfaces and formats used within the MMI framework. Thus, in the following the 
derived interfaces and the utilized formats of the MMI framework are revisited in detail (top-down 
approach). 

3.2.1 Motion Model Unit 

The Motion Model Units form the basic element in which the actual simulation approach is embedded.  
For usage across multiple programming languages and technologies, a unified interface, which fulfills 
the requirements of these heterogeneous approaches, is necessary. Figure 7 shows the basic interface 
as an UML class diagram. Furthermore, a detailed description of the available parameters and 
functions is given below. 

<<interface>> 

MotionModelUnit 

+ID: string 
+SceneAccess:  MSceneAccess 
+ServiceAccess: MServiceAccess 
+SkeletonAccess: MSkeletonAccess 

+Initialize(avatar: MAvatarDescription, properties: map<string,string>): MBoolResponse 
+AssignInstruction(instruction: MInstruction, state: MSimulationState): MBoolResponse 
+DoStep(time: double, state: MSimulationState): MSimulationResult 
+CheckPrerequisites(instruction: MInstruction): MBoolResponse 
+GetBoundaryConstraints(instruction: MInstruction): list<MConstraint> 
+Abort(instructionID: string): MBoolResponse 
+Dispose(properties: map<string,string>): MBoolResponse 
+ExecuteFunction(name: string, parameters: map<string,string>): map<string,string> 

Figure 7 UML class diagram of the proposed Motion Model Unit interface. 

Detailed description of available parameters/functions: 

Function/ Parameter Name Description 

ID Unique id of the MMU. The ID is defined by the MMU developer 
during the MMU development process. 

SceneAccess Instance provides access to the scene (automatically set by the 
adapter). 

ServiceAccess Instance provides access to the services (automatically set by the 
adapter). 

SkeletonAccess Instance provides access to the helper functions of the avatar 
(automatically set by the adapter). 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 16/98 
 

Initialize Method to initialize the MMU. The function provides the description 
of the utilized avatar and additional properties as input. Within the 
function, the internal model of the MMU can be setup. The MMU 
needs to return the information whether the initialization was 
successful. 

AssignInstruction The method is used to assign a specific MInstruction to the MMU. 
Within the function, the MMU can compute suitable motions or 
evaluate the internal model. 

DoStep The DoStep method is called once a frame in order to trigger the 
computation of a new posture. In particular, the simulation frame 
time, as well as the current simulation state (MSimulationState) are 
provided as input. The MMU returns the computed results 
(MSimulationResult). 

CheckPrerequisites Based on a given MInstruction and the present state the MMU 
internally checks whether the instruction can be executed. 

GetBoundaryConstraints The method returns the boundary constraints for executing the 
MMU. In particular, these constraints can contain a full body 
posture. For instance, a data-driven MMU might return the first 
posture as start-boundary condition. The previous MMU can adjust 
the internal model to achieve the desired starting posture. 

Abort The method aborts the specified instruction. 

Dispose The Method disposes the full MMU including all ongoing 
computations. 

ExecuteFunction Debug functionality to call additional functions. This method should 
be only used for debugging purposes. 

 

In particular, the Motion Model Unit comprises eight different functions, which must be provided by 
all implementations. Via the Initialize function, the unit is set up given the characteristics of the utilized 
avatar. These characteristics are provided within the MAvatarDescription class. Within the given class, 
the neutral posture of the utilized (intermediate) avatar is contained, as well as additional 
anthropometric values. This information can be utilized to adjust the internal model and skeleton to 
the used reference skeleton in the MMI framework. Furthermore, a map of additional properties can 
be specified for the initialization. These properties can be used for specification of additional 
initialization parameters. The MMU returns a Boolean flag (MBoolResponse) indicating whether the 
initialization was successful.   

To define the instruction/motions to be computed by the MMUs, the AssignInstruction method is 
used. Within this function, a MInstruction, which is strongly inspired by the BML language, is utilized 
(see 3.2.4). This class type allows to formulate specific instruction such as “pick up object 1”, being 
performed by the MMU. Additionally, the present state of the Avatar/simulation (MSimulationState) 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 17/98 
 

is used as input for the method. The method returns a Boolean status flag (MBoolResponse) that 
indicates whether the assignment was successful.  

The main function for providing and generating the actual motion is the DoStep method. This function 
takes as an input the relative time to be simulated (e.g. 30 ms), as well as the current state of the 
simulation (MSimulationState). The output is the actual computed posture, actions and notifications 
for the given frame. In particular, the output is represented as MSimulationResult and contains further 
information. Despite the computed posture, the class also offers to specify posture constraints such as 
“fix position of left hand at (1, 1, 1)”. A detailed overview of all available constraints is given in the 
MConstraint section 3.2.4.3. Moreover, each MMU can return events that are an essential aspect for 
the co-simulation and the further workflow. Each MMU must provide an event of type end, if the last 
frame of the motion has been reached, and the MMU is finished. The list of the available events as 
well as the utilized MSimulationEvent class are described in 3.2.4.6. Additionally, each MMU can return 
proposals for manipulating the scene by using the MSceneManipulation class. For further debugging, 
it is possible to use MDrawingCalls for visualization and LogData. 

For determining whether an instruction can be executed given the present state of the scene and the 
avatar the CheckPrerequisites method is provided. Each MMU can implement this method using 
internal starting criteria such as “left arm in range” for grasping. 

To allow a simplified transition modeling between consecutive MMUs, each MMU can specify 
additional boundary constraints via the GetBoundaryConstraints method. A boundary constraint 
could be for instance the start posture of the generated motion. Therewith, the previous MMU can 
adjust the generated motion with respect to the given transition constraint. 

To terminate a currently active instruction the Abort method is used. The method resets the MMU to 
the initial state before the assign instruction took place.  

To terminate a given MMU, the Dispose method is utilized. In particular, the allocated resources within 
the MMU are cleared.  

Finally, to increase the flexibility of the provided framework, a further method named ExecuteFunction 
is suggested. This function can be used for debugging or for future extensions of the framework. 

 

Description file for Motion Model Units 

To allow the utilization of the MMUs across multiple platforms, each MMU must provide a unique 
description file in analogy to the FMI standard. The description file contains relevant information such 
as the name of the MMU, information for the loading process as well as the motion type. Moreover, 
the parameters of the MMU as required for specifying a particular instruction are listed in the 
description file (e.g., one MMU might have a target parameter that is required, whereas another MMU 
has an optional velocity parameter). The UML class diagram of the MMU description file is visualized 
in Figure 8, whereas a detailed description of the parameters is listed below. Moreover, an exemplary 
description file for a MMU is provided in the Appendix. 

MMUDescription 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 18/98 
 

+Name: string 
+ID: string 
+AssemblyName: string 
+MotionType: string 
+Language: string 
+Author: string 
+Version: string 
+LongDescription: string 
+ShortDescription: string 
+SupportedProportions: map<string,double> 
+Properties: map<string,string> 
+Dependencies: list<string> 
+Events: list<string> 
+Parameters: list<MParameter> 

Figure 8 UML class diagram of the MMUDescription class, which is used for describing a specific MMU. 

Detailed description of available parameters: 

Parameter Name Required Description 

Name x Name of the MMU (e.g. “WalkMMU”). 

ID x Unique id of the MMU. 

AssemblyName x The name of the assembly to be loaded. This information is 
important for the adapters to load and instantiate the 
MMUs (e.g. walkMMU.dll). 

MotionType x The motion types are utilized to express the provided 
motion and important for accessing the MMUs (e.g. “walk”, 
“grasp”, “crouch”). The motion type must be specified by 
the MMU developer. 

Language x The programming language of the MMU (e.g. C#, C++). This 
information is important for the adapters. 

Author x The author of the deployed MMU. 

Version x The version of the deployed MMU. 

LongDescription x A longer description of the MMU. 

ShortDescription x The short description of the MMU. 

SupportedProportions  The supported proportions/anthropometry of the MMU. It 
might be the case that an MMU is only working in a 
particular range. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 19/98 
 

Properties  Additional properties that can be set. Depending on the 
future functionalities of the framework aspects such as the 
requirement of low-level scene access can be specified 
here. 

Dependencies  Dependencies, which need to be loaded by the adapter to 
instantiate the MMU. 

Events x A list of all event types which are provided by the MMU (e.g. 
“start”, “end”, “foot_contactLeft”, “foot_contactRight” . 

Parameters x All available parameters, which can be specified for the 
MMU. The parameters are specified using the MParameter 
struct. For instance a MMU could provide parameters such 
as: {Name =”Target”, Type=”string”, Required =true}, 
{Name =”Velocity”, Type=”double”, Required =false}. 

 

MMU File representation  

Similarly, to the FMI standard, each MMU is represented as a zip archive on the file system. The zip 
archive contains the programming language independent description file (MMUDescription), as well 
as the programming language specific files required to instantiate the MMU. Using languages such as 
C# or C++, these files are represented as .dll files, whereas for Java .jar and for Python .py files are 
used. 

 

3.2.2 Co-Simulation 

As outlined in the previous chapter, the main responsibility of the co-simulation is to orchestrate 
multiple MMUs based on a list of specified instructions (MInstruction). In particular, the co-simulation 
needs to schedule the MMUs and incorporate the provided results. Analogously to the MMUs, a 
common interface for the co-simulation is proposed in the following. Figure 9 gives an overview of the 
derived interface, whereas below a detailed description is provided.  

<<interface>> 

MCoSimulation 

+ID: string 
+SceneAccess:  MSceneAccess 
+ServiceAccess: MServiceAccess 
+SkeletonAccess: MSkeletonAccess 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 20/98 
 

+Initialize(avatar: MAvatarDescription, mmus: list<string>, priorities: map<string,double>): MBoolResponse 
+Initialize(avatar: MAvatarDescription, properties: map<string,string>): MBoolResponse 
+AssignInstruction(instruction: MInstruction, state: MSimulationState): MBoolResponse 
+DoStep(time: double, state: MSimulationState) 
+CheckPrerequisites(instruction: MInstruction) 
+GetBoundaryConstraints(instruction: MInstruction) 
+Abort(instructionID: string) 
+Dispose(properties: map<string,string>) 
+ExecuteFunction(name: string, parameters: map<string,string>): map<string,string> 

Figure 9 UML class diagram of the proposed co-simulation. 

Detailed description of available parameters/functions: 

Function/ Parameter Name Description 

ID Unique id of the Co-Simulation instance. 

SceneAccess Instance provides access to the scene (automatically set by the 
adapter). 

ServiceAccess Instance provides access to the services (automatically set by the 
adapter). 

SkeletonAccess Instance provides access to the helper functions of the avatar 
(automatically set by the adapter). 

Initialize Method is used to initialize the Co-Simulation. The function provides 
the description of the utilized avatar and additional properties as 
input. The co-simulation needs to return the information whether 
the initialization was successful. Specifically, for the co-simulation 
the utilized MMUs and the priorities needs to be provided. For 
compatibility with the MMU interface, the initialize function with 
the same signature as the MMU interface must be provided. 

AssignInstruction The method is used to assign a specific MInstruction to the co-
simulation. Note that, the MInstruction class can contain a list of 
multiple instructions. In this way, a set of different tasks can be 
assigned at once. 

DoStep The DoStep method is called once a frame in order to trigger the 
computation of a new posture. In particular, the simulation frame 
time, as well as the current simulation state (MSimulationState) are 
provided as input. The co-simulation returns the computed results 
(MSimulationResult). 

CheckPrerequisites Method is provided for compatibility with the MotionModelUnit 
interface. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 21/98 
 

GetBoundaryConstraints Method is provided for compatibility with the MotionModelUnit 
interface. 

Abort The method aborts a specified instruction. 

Dispose The method disposes the co-simulation including all ongoing 
computations. 

ExecuteFunction Debug functionality to call additional functions. This method should 
be only used for debugging purposes. 

 

The interface is strongly related to the interface of the Motion Model Unit. A reason for this is, that 
nested MMUs that co-simulate other MMUs must be allowed within the framework. Therefore, the 
co-simulation must be accessible in an identical way as the MMU. The main difference between the 
co-simulation and MMUs are with regard to the initialization. For the co-simulation the list of the 
utilized MMUs as well as the priorities, need to be additionally provided as input. The overall task of 
the co-simulation is to coordinate multiple MMUs and instructions. To allow the specification of 
multiple instructions, the MInstruction class can contain a list of further instructions.  Even though the 
interface is strongly similar to the interface of the MMU, depending on the utilized environment, the 
co-simulation can be extended with custom functionalities (e.g., w.r.t. behavior modeling) or directly 
embedded in the target engine using an entirely different interface. 

 

 

3.2.3 Behavior Modeling & Execution 

The Behavior Model and Execution unit (MBehaviorExecution) generates instructions (MInstruction) 
for the co-simulator based on the scene and a predefined behavior model. The entity that generates 
these instructions for an individual simulated character and manages its knowledge is called agent, 
which is represented with the MAgent class. MBehaviorExecution manages these agents. With the 
Behavior Modelling & Execution unit, so-called agent templates (MTemplate) can be created, which 
describe a certain type of agent. Such a template contains configuration information about an agent 
and its behavior models. It is a blueprint for an agent (MAgent), so to speak. To create an agent, the 
name of the agent and the template to be used as well as its initial knowledge (MInitialKnowledge) or 
the initial state of the scene to be viewed are transferred to the Behavior Model & Execution unit. 

 

MBehaviorExecution 

+Agents: list<MAgent> 
+Templates: list<MTemplate> 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 22/98 
 

+AddTemplate(MTemplate):bool 
+DeleteTemplate(MTemplate):bool 
+CreateAgent(template:ID, name, MInitialKnowledge):MAgentState 
+ListAgents():list<MAgentState> 
+DeleteAgent(agent:ID):list<MAgentState> 

Figure 10 UML class diagram of the MBehaviorExecution class. 

Detailed description of available parameters/functions: 

Function/ Parameter Name Description 

Agents List of all available agents 

Templates List of all available agent templates 

AddTemplate Add new agent template which describes an agent model 

DeleteTemplate Delete an agent template 

CreateAgent Create an agent with a defined name, linked agent template and 
initial agent knowledge 

ListAgents List all agents 

DeleteAgent Delete specified agent 

Agents List of all available agents 

Templates List of all available agent templates 

AddTemplate Add new agent template which describes an agent model 

 

In addition to its behavior, an agent has several storage units for storing RDF-based data, the so-called 
Triple Data Bases (MTripleDataBase). In these the scene updates (MSceneUpdate) are stored which 
are mapped to RDF in an intermediate step. These triple stores are accessed by the behaviors 
(MBehavior) during their execution in order to query states or to read data for the generation of 
instructions (MInstruction). Actions or MMUs and services that should be available for the behavior 
models will be referenced in the agent. 

 

MAgent 

+ID: string 
+Name: string 

+SceneAccess: MSceneAccess 
+ServiceAccess: MServiceAccess 

+AgentState: MAgentState 
+Beliefs: list<MTripleDataBase> 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 23/98 
 

+Behaviors: list<MBehavior> 
+Services: list<MService:ID> 
+Actions: list<MMU:ID> 

+Initialize(list<MSceneUpdate>):MAgentState 
+GetState():MAgentState 
+Perceive(list<MSceneUpdate>):bool 
+CompleteInstruction(MInstructionResult):bool 
+Run(list<MSceneUpdate>,<MBehavior>):MInstruction  
+Abort(<MBehavior>):bool 

Figure 11 Class diagram of the MAgent class. 

Detailed description of available parameters/functions: 

Function/ Parameter Name Description 

ID Agent ID. 

Name Name of the Agent. 

SceneAccess Access to the Scene for agent-scene interaction, like reading out the 
current state of the scene or to manipulate it. 

ServiceAccess Access to available services to make use of their provided methods 
while behavior execution. 

AgentState State of the agent. 

Beliefs All beliefs of an agent stored as RDF in multiple triple stores. 

Behaviors List of all SPARQL-BTs of the agent. 

Services List of used services. 

Actions List of used MMUs. 

Initialize Method to initialize the agent by executing a specific SPARQL-BT for 
configuration purposes, like setting variables. 

GetStatus Method for returning the agent status. 

Perceive Method which is used by the consumer to update the agent 
knowledge if a scene or simulation update comes up: 

CompleteInstruction Method to tell the agent that an action or motion instruction is 
finished successfully or faulty. 

Run Method to run the defined SPARQL-BT of the agent. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 24/98 
 

Abort Method to abort a running SPARQL-BT. 

 

 

In the tree-based Behavior Model (MBehavior), which is defined as a Behavior Tree, five important 
classes of leaf nodes (MBTLeafNode  MBTTreeNode) or executable primitives will be used: 
MBTCondition; MBTUpdate; MBTService; MBTAction; MBTScene. All these nodes are united by the 
fact that they access the knowledge base of the agent via SPARQL queries and process the resulting 
information or forward it to a service, for example. With so-called conditions (MBTCondition) the 
current state of the simulation or the character to be simulated is queried; with updates (MBTUpdate) 
the internal knowledge of the agent can be updated; services nodes (MBTService), with which external 
or internal services are called to receive external data or to process internal data; and action nodes 
(MBTAction), which represent the individual instruction steps or MMUs. In addition, further types of 
nodes (MBTBranchNode  MBTTreeNode) are used to define the internal operational logic of the BT. 
With such a node the functionality mentioned in the previous chapter to generate instructions 
(MInstruction) based on linked actions and tree nodes, will be implemented. At each execution cycle 
of the agent, such an instruction is generated and sent to the co-simulator for execution. Successful or 
failed instruction execution is reported (MInstructionResult) from the co-simulator to the agent. 

MBTLeafNode and MBTBranchNode are derived from MBTTreeNode. They are not considered in the 
following list of classes and interfaces, since they are represented by their relevant variants for the 
project. To summarize, a branch node has at least one child node and all leaf nodes have queries with 
which they access the knowledge base of the agent. 

 

MBehavior 

+ID: string 
+Name: string 
+Root: MTreeNode 
+Beliefs: list<MTripleDataBase>  
+State: MBTState 

+Run(list<MSceneUpdate>):MBTState  
+Abort():bool 

Figure 12 UML class diagram of the MBehavior class. 

Detailed description of available parameters/functions: 

Function/ Parameter Name Description 

ID ID of the behavior 

Name Name of the behavior 

Root Root node or starting point of the behavior 

Beliefs Link to the agent beliefs 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 25/98 
 

State State of the behavior:  

FRESH, RUNNING, SUCCESS, FAILURE, ABORTED 

Run Method to run the behavior 

Abort Method to abort the behavior 

 

MBTState (enum) 

FRESH 
RUNNING 
SUCCEEDED 
FAILED 
ABORTED  

Figure 13 UML class diagram of the MBTState enum. 

<<interface>> 

MBTComposite  MBTBranchNode 

+ID: string 
+Name: string 
+Beliefs:  behavior:Beliefs 
+Children: list<MTreeNode> 

+Run():MBTState  
+Abort():bool 

Figure 14 Overview of the MBTComposite interface. 

Detailed description of available parameters/functions: 

Function/ Parameter Name Description 

ID ID of the composite node. 

Name Name of the composite node. 

Beliefs Beliefs of the agent. 

Children Children of the composite node. 

Run Method to run the composite executed by its parent node, 
returning its status. 

Abort Method to abort composite node. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 26/98 
 

 

 

<<interface>> 

MBTDecorator  MBTBranchNode 

+ID: string 
+Name: string 
+Beliefs:  behavior:Beliefs 
+Child: <MTreeNode> 

+Run():MBTState 
+Run(list<MSceneUpdate>):MBTState 
+Abort():bool 

Figure 15 Overview of the MBTDecorator interface. 

Detailed description of available parameters/functions: 

Function/ Parameter Name Description 

ID ID of the decorator node. 

Name Name of the decorator node. 

Beliefs Beliefs of the agent. 

Child Child of the decorator node. 

Run Method to run the decorator node executed by its parent node, 
returning its status. 

Abort Method to abort the decorator node. 

 

With composite nodes (MBTComposite) that can have several child nodes, sequential or parallel 
processes are usually implemented, whereas decorators (MBTDecorator) possess only one child node. 
This type is mostly used for loops. In contrast to the tree nodes just mentioned, Leaf Nodes 
(MBTLeafNode) do not have child nodes. 

 

<<interface>> 

MBTCondition  MBTLeafNode 

+ID: string 
+Name: string 
+Beliefs:  behavior:Beliefs 
+Query: String (SPARQL) 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 27/98 
 

+Run():MBTState 

Figure 16 Overview of the MBTCondition interface. 

Detailed description of available parameters/functions: 

Function/ Parameter Name Description 

ID ID of the leaf node. 

Name Name of the leaf node. 

Beliefs Beliefs of the agent. 

Query ASK SPARQL query which defines an agent state. 

Run Method to execute this node, which performs the defined query on 
the agent beliefs, returning:  

SUCCEEDED or FAILED 

 

Example: 

 MBTCondition 

ID “:WalkToTarget1?” (RDF) 

Name “WalkToTarget1?” 

Beliefs “ajan:AgentKnowledge” 

Query “PREFIX mosim: <http://mosim/vocabulary> 

ASK 

WHERE { 

     ?avatar a mosim:Avatar . 

     ?avatar mosim:locatedNextTo ?location . 

     ?target a mosim:Target . 

     ?target mosim:name “Target1” . 

     FILTER (?location != ?target) 

}” 

 

 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 28/98 
 

<<interface>>   

MBTUpdate  MBTLeafNode 

+ID: string 
+Name: string 
+Beliefs:  behavior:Beliefs 
+Update: String (SPARQL-Update) 

+Run():MBTState 

Figure 17 Overview of the MBTUpdate interface. 

Detailed description of available parameters/functions: 

Function/ Parameter Name Description 

ID ID of the leaf node. 

Name Name of the leaf node. 

Beliefs Beliefs of the agent. 

Update UPDATE SPARQL query which defines a new agent state. 

Run Method to execute this node, which performs the defined query on 
the agent beliefs, returning:  

SUCCEEDED or FAILED 

 

Example: 

 MBTUpdate UpdateAvatarLocation 

ID “:UpdateAvatarLocation” (RDF) 

Name “UpdateAvatarLocation?!” 

Beliefs “ajan:AgentKnowledge” 

Update “PREFIX mosim: <http://mosim/vocabulary> 

DELETE {?avatar mosim:locatedNextTo ?location .} 

INSERT {?avatar mosim:locatedNextTo ?target .} 

WHERE {  

     ?avatar a mosim:Avatar . 

     ?avatar mosim:locatedNextTo ?location . 

     ?target a mosim:Target . 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 29/98 
 

     ?target mosim:name “Target1” . 

     FILTER (?location != ?target) 

}” 

 

 

<<interface>> 

MBTService  MBTLeafNode 

+ID: string 
+Name: string 
+Beliefs:  behavior:Beliefs 
+Query: String (SPARQL-Update) 
+Service: MService:ID 

+Run():MBTState 

Figure 18 Overview of the MBTService interface. 

Detailed description of available parameters/functions: 

Function/ Parameter Name Description 

ID ID of the leaf node. 

Name Name of the leaf node. 

Beliefs Beliefs of the agent. 

Query CONSTRUCT or SELECT SPARQL query, which defines an agent state. 

Service Link to the service, which has to be used. 

Run Method to execute this node, which performs the defined query to 
gather date from the agent beliefs which will be sent to the defined 
service, returning: SUCCEEDED or FAILED or RUNNING 

 

MBTScene  MBTLeafNode 

+ID: string 
+Name: string 
+Beliefs:  behavior:Beliefs 
+Query: String (SPARQL-Update) 
+Scene: MScene:ID 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 30/98 
 

+Run():MBTState 

Figure 19 Overview of the MBTScene interface 

Detailed description of available parameters/functions: 

Function/ Parameter Name Description 

ID ID of the leaf node. 

Name Name of the leaf node. 

Beliefs Beliefs of the agent. 

Query UPDATE SPARQL query which defines an agent state. 

Scene Link to the scene. 

Run Method to run this node, which executes the MScene:GetChanges() 
method and performs the defined query to update the agent beliefs 
with the received scene updates, returning:  

SUCCEEDED or FAILED 

 

<<interface>> 

MBTAction  MBTLeafNode 

+ID: string 
+Name: string 
+Beliefs:  behavior:Beliefs 
+Query: String (SPARQL-Update) 
+Action: MMUID 

+Run():MBTState 
+Validate(MInstructionResult):bool 

Figure 20 Overview of the MBTAction interface. 

Detailed description of available parameters/functions: 

Function/ Parameter Name Description 

ID ID of the leaf node. 

Name Name of the leaf node. 

Beliefs Beliefs of the agent. 

Query CONSTRUCT or SELECT SPARQL query which defines a agent state. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 31/98 
 

Action Link to the MMU which have to be used. 

Run Method to execute this node, which performs the defined query to 
gather date or MMU constraints from the agent beliefs which will 
be used by the co-simulator, returning:  

RUNNING 

Validate Method to validate the incoming MInstructionResult to decide if 
the action performed by the co-simulator was successful, returning: 

SUCCEEDED or FAILED 

 

Example: 

 MBTAction Walk 

ID “:WalkToTarget1” (RDF) 

Name “WalkToTarget1” 

Beliefs “ajan:AgentKnowledge” 

Action “walk” (MotionType) 

Query “PREFIX mosim: <http://mosim/vocabulary> 

SELECT ?target 

WHERE {  

     ?target a mosim:Target . 

     ?target mosim:name “Target1” . 

}” 

 

 

 

 

 

 

 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 32/98 
 

 

3.2.4 Core Formats 

The formats being described within this section build the core of the MMI framework and are relevant 
for the usage of the Motion Model Units, the Co-Simulation, as well as for the behavior modeling and 
the target engine. 

3.2.4.1 Motion Instruction (MInstruction) 

The so-called MInstruction class represents an important format in order to specify a desired motion. 
The format is strongly inspired by the behavior markup language (BML), see [10], [11]. Below, the class 
diagram as well as a detailed description of the parameters and practical examples are provided. 

MInstruction 

+ID: string 
+Name: string 
+MotionType: string 
+Properties: map<string,string> 
+Constraints: list<MConstraint> 
+StartCondition: string 
+EndCondition: string 
+Instructions: list<MInstruction> 

Figure 21 UML class diagram of the MInstruction class, which is utilized for specifying motion instructions for a given MMU. 

Detailed description of available parameters: 

Parameter Name Required Description 

ID: x Represents a unique id, which is utilized to reference the motion 
instructions.  The ID must be generated by the user/behavior, 
which create the instruction. 

Name: x A name, which can be specified for the given instruction. The 
name does not need to be unique (e.g. “WalkInstruction1”). 

MotionType x The type is used to access the desired motion (e.g. walk, grasp). 
Each MMU has in additional also a specified motion type. By 
matching the motion types, a suitable MMU can be identified and 
accessed. The motion type must be specified by the 
user/behavior creating the instruction. In particular, the available 
motion types (provided by the MMUs) must be known a priori. 

Properties  Optional dictionary which can contain properties for the MMUs 
(e.g. {“Velocity”,”1.0”}, {“TargetObject”, “Object1”} ,{”MMU_ID”, 
“xy”}). 

Constraints  Constraints can be optionally set for the instruction. For instance, 
a constraint describing the end posture (=start posture of 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 33/98 
 

subsequent MMU) can be inserted. The different types of 
constraints in the framework are described in 3.2.4.3. 

StartCondition  Relevant information for the timing of the motion within the co-
simulation. The conditions are strongly inspired by BML: 

Example:  id_task1:end  (<bml start="id_task1:End"/>) 

EndCondition  Relevant information for the timing of the motion. Given a end-
condition a motion can be terminated after a specific event 
occurred or a specified amount of time is elapsed.  
Example: id_task1:end (<bml end="id_task1:End"/>) 

Instructions  A MInstruction can contain additional MInstruction in order to 
represent tree structures utilized for hierarchical co-simulation 
or behavior modeling. Note for MMU utilization is it expected 
that only one instruction is utilized for each MMU. 

 

Examples: 

 MInstruction Walk 

ID “12345” 

Name “Walk Instruction 1” 

MotionType “walk” 

Properties {“Target”, “Walk Target 1”} 

 

 MInstruction Grasp Object 

ID “23456” 

Name “Grasp Instruction 1” 

MotionType “grasp” 

Properties {“Target”, “Object1”} 

{“Hand”, “Left”} 

{“Velocity”, “1.0m/s”} 

Start-condition 12345:End 

 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 34/98 
 

3.2.4.2 Motion Instruction Result (MInstructionResult) 

The so-called MInstructionResult represents the result or status of an executed MInstruction. The co-
simulator sends it to the Behavior Execution, which can generate new MInstructions based on it. The 
MInstructionResult is sent to the Behavior Execution each time an instruction is executed by the co-
simulator. In addition to the ID and the state of the executed MInstruction, this contains a list of further 
MInstructionResults as well as properties that contain possible reasons for a failure.  

 

MInstructionResult 

+MInstructionID: string 
+State: MInstructionState 
+Properties: map<string,string> 
+Instructions: list<MInstructionResult> 

Figure 22 UML class diagram of the MInstructionResult class. 

Detailed description of available parameters: 

Parameter Name Required Description 

MInstructionID x The ID of the corresponding instruction.  

State x State of the corresponding instruction 

Properties  Optional dictionary which can contain properties for the MMUs 

Instructions  Optional list of linked MInstructions 

 

MInstructionState (enum) 

FRESH 
SUCCEEDED 
FAILED 

Figure 23 UML class diagram of the MInstructionState enum. 

3.2.4.3 Constraints (MConstraint) 

Besides the MInstruction, constraints are also an important concept within the MMI framework. The 
framework provides a base class named MConstraint. Since Apache Thrift does not allow class 
inheritance, the MConstraint class contains all available Constraint Types explicitly modeled. 

MConstraint  



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 35/98 
 

+ID: string 
+EndeffectorConstraint: MEndeffectorConstraint 
+TrajectoryConstraint: MTrajectoryConstraint 
+ParentingConstraint: MParentingConstraint 
+PositionConstraint: MPositionConstraint 
+RotationConstraint: MRotationConstraint 
+JointAngleConstraint: MJointAngleConstraint 
+PostureConstraint: MPostureConstraint 
+Properties: map<string, string> 

Figure 24 UML class diagram of the MConstraint class that is used for specifying a specific constraint in the framework. 

Detailed description of available parameters: 

Parameter Name Required Description 

ID x Unique id of the constraint. 

EndeffectorConstraint  A constraint that can specify a desired endeffector 
position/rotation represented as MEndeffectorConstraint. 

TrajectoryConstraint  A constraint for specifying a trajectory using the 
MTrajectoryConstraint class. 

ParentingConstraint  A constraint describing the parenting to specific object. 

PositionConstraint  A constraint describing positional restrictions. 

RotationConstraint  A constraint describing rotational restrictions. 

PostureConstraint  An assigned posture constraint (if defined). 

Properties  Optional properties, which can be specified. 

 

An essential constraint type for the framework are the so-called MPostureConstraints. This constraint 
type can be utilized to describe a specific (sub) posture, which is required. Additionally, weights for the 
different bones, as well as velocity and acceleration information can be specified. 

MPostureConstraint 

+Posture: MAvatarPosture 
+Weight: map< MJointType, double> 
+Velocity: map<MJointType, list<double>> 
+Acceleration: map<MJointType, list<double>> 

Figure 25 UML class diagram of the MPostureConstraint. The constraint type allows to specify a full posture as constraint. 

Detailed description of available parameters: 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 36/98 
 

Parameter Name Required Description 

Posture x The MAvatarPosture, which describes the desired posture. 

Weight  An optional weight for each joint. 

Velocity  An optional velocity for each joint (might be necessary for posture 
blending). 

Acceleration  An optional acceleration for each joint (might be necessary for 
posture blending). 

 

For specifying the position and rotation of endeffectors (e.g. left hand, right foot), the 
MEndeffectorConstraint class can be utilized. The constraint describes the specific endeffector type 
(e.g. left hand, right foot) and can contain optional position and rotation constraints. These constraints 
can be defined either as global coordinates are relative to another transform. 

MEndeffectorConstraint  

+Type: MEndeffectorType 
+PositionConstraint: MPositionConstraint 
+RotationConstraint: MRotationConstraint 

Figure 26 Overview of the UML class diagram of the MEndeffectorConstraint. 

Detailed description of available parameters: 

Parameter Name Required Description 

Type x The specified endeffector type (e.g. left hand, right foot). The 
user/MMU intending to specify an endeffector constraint 
must be specify the respective endeffector type from the 
MEndeffectorType enum. 

PositionConstraint  The position constraint for the endeffector. 

RotationConstraint  The rotation constraint for the endeffector. 

 

To fix a position relative to a specific parent or globally the MPositionConstraint can be used. The 
position constraint can be set absolute (if no parent is defined) or relative to specific parent (if defined). 
Moreover, the respective values can constraint only a single axis or represent a full 3D position. The 
respective values can be interpreted by the MChannel values. 

MPositionConstraint  



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 37/98 
 

+Values: list<double> 
+Channels: list<MChannel> 
+Parent: string 

Figure 27 UML class diagram of the MPositionConstraint. 

Detailed description of available parameters: 

Parameter Name Required Description 

Values x The actual values of the constraint (e.g. list of positions in Cartesian 
coordinates). 

Channels x The channels for the specified position constraint. Analogously to 
the MAvatarPosture, the channels can contain an arbitrary number 
of components ([1; 3]) therefore expressing also constraints which 
are only addressing specific axes. 

Parent  An optional parent. The defined constraint is applied relative to the 
parent (if defined). 

 

Analogously to the MPositionConstraint, in the MOSIM framework a rotation constraint is provided. 
Here again the individual values can restrict only a single axis or a full 3D rotation. The MChannel class 
can be used to interpret the data. 

MRotationConstraint  

+Values: list<double> 
+Channels: list<MChannel> 
+Parent: string 

Figure 28 UML class diagram of the MRotationConstraint. 

Detailed description of available parameters: 

Parameter Name Required Description 

Values x The actual values of the constraint (e.g. list of rotations in euler 
angles). 

Channels x The channels for the specified rotation constraint. Analogously to 
the MAvatarPosture, the channels can contain an arbitrary number 
of components ([1;3]) therefore expressing also constraints which 
are only addressing specific axes. 

Parent  An optional parent. The defined constraint is applied relative to the 
parent (if defined). 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 38/98 
 

 

For describing a set multiple position and rotations constraints, the so-called MTrajectoryConstraint 
can be utilized. The trajectory constraints the object specified within the reference variable. 

MTrajectoryConstraint  

+Reference: string 
+Positions: list<MPositionConstraint> 
+Rotations: list<MRotationConstraint> 
+Times: list<double> 

Figure 29 UML class diagram of the MTrajectoryConstraint that is used to describe restricting along a trajectory. 

Detailed description of available parameters: 

Parameter Name Required Description 

Reference x The reference joint/avatar, which should be constrained using the 
given trajectory. The reference must be specified by the user (e.g., 
ID of an MSceneObject). 

Positions x The position constraints of the trajectory. 

Rotations x The rotation constraints of the trajectory. 

Times  Optional timing constraints for the trajectory. If no timing 
dependencies are required, the field can be left empty (temporal 
realization depends on the actual instance that realizes the 
constraints). 

 

To constraint an object relatively to a parent object, the MParentingConstraint can be utilized. In 
particular, the position and rotation offset to the parent can be specified.  

MParentingConstraint  

+Parent: string 
+Child: string 
+PositionOffset: MVector3 
+RotationOffset: MQuaternion 

Figure 30 UML class diagram of the MParentingConstraint. 

Detailed description of available parameters: 

Parameter Name Required Description 

Parent x The id of the parent object. 

Child x The id of the child object. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 39/98 
 

PositionOffset x The relative offset of the child. 

RotationOffset x The relative rotation offset of the child. 

 

3.2.4.4 Simulation State (MSimulationState) 

The so-called MSimulationState class is an important format for calling MMUs. The class contains the 
actual simulation state in terms of posture of the avatar, presently active constraints, desired scene 
manipulations and events created by the MMUs in the current frame.  

MSimulationState  

+InitialPosture: MAvatarPostureValues 
+CurrentPosture: MAvatarPostureValues 
+Constraints: list<MConstraint> 
+SceneManipulations: list<MSceneManipulation> 
+Events: list<MSimulationEvent> 

Figure 31 UML class diagram of the MSimulationState. The class is used as input for the MMUs, describing the current state 
of the Avatar, as well as current operations created by previous MMUs in hierarchy (e.g., constraints, events). 

Detailed description of available parameters: 

Parameter Name Required Description 

InitialPosture x Values, which represent the approved and merged posture of 
the last frame. The variable describes a single posture. 

CurrentPosture x Values, which represent the generated posture of the previously 
executed MMU in hierarchy in current frame. The variable 
describes a single posture. Depending on the co-simulation, this 
variable can contain either a merged posture or just the plain 
result of the previous MMU. 

Constraints  A list of currently active constraints (e.g. left foot should stay at 
ground).  

Scene 
Manipulations 

 A list of desired manipulations of the scene that can be 
optionally specified by the MMU. Using this approach 
contradicting scene manipulations can be avoided. 

Events  A list of all events raised within the current frame. This also 
includes the MMUs raised by previous MMUs in the present 
frame (e.g. MMU:end). A detailed overview of the available 
events is given in the MSimulationEvent section. 

 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 40/98 
 

3.2.4.5 Simulation Result (MSimulationResult) 

Another essential class for MMU handling is the so-called MSimulationResult. The class contains the 
computed information returned by an MMU. In particular, information about the posture, constraints, 
events and scene-manipulations are provided. Given the format, it is furthermore possible to specify 
intended drawing calls being visualized in the target engine, as well as providing debug information 
using the LogData. 

MSimulationResult  

+Posture: MAvatarPostureValues 
+Constraints: list<MConstraint> 
+Events: list<MSimulationEvent> 
+SceneManipulations: list<MSceneManipulation> 
+DrawingCalls: list<MDrawingCall> 
+LogData: list<string> 

Figure 32 UML class diagram of the MSimulationResult. The class is returned by the MMU executing the DoStep routine. 

Detailed description of available parameters: 

Parameter Name Required Description 

Posture x Values, which represent the computed posture of the MMU for 
the current frame. Instead of the full hierarchy, only the root 
transformation and the local joint rotations are transferred (see 
MAvatarPostureValues). 

Constraints  The list of constraints which should be handled by consecutive 
MMUs/co-simulation (e.g. left foot should stay at ground). 

Events  A list of status messages (called events) of the MMU. The 
framework comprises default events such as End, Start, and 
Abort similar to BML. The events are processed by the co-
simulation. 

Scene 
Manipulations 

 A list of desired manipulations of the scene that can be 
optionally specified by the MMU. Using this approach 
contradicting scene manipulations can be avoided. 

Drawing Calls  Optional parameter to send visualization instructions to the 
target engine (e.g. draw the path [{1,2},[1,3]]. 

Log Data  Optional list of strings for providing debugging information. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 41/98 
 

 

3.2.4.6 Simulation Event (MSimulationEvent) 

The so-called MSimulationEvent is an important class for the scheduling and orchestration of multiple 
MMUs. Similar to BML, an event is always referred to a MInstruction. This means, that each 
MSimulationEvent needs a corresponding MInstruction. Moreover, within the framework predefined 
MSimulationEvent Types are provided (again see bml). Each event can have an additional name, as 
well as further properties. 

MSimulationEvent  

+Name: string 
+Type: string 
+Reference: string 
+Properties: map<string,string> 

Figure 33 UML class diagram of the MSimulationEvent class. The class is utilized for representing an event, created by a 
MMU or co-simulation. 

Detailed description of available parameters: 

Parameter Name Required Description 

Name x A descriptive name of the Event. Can be specified by the MMU 
internally. 

Type x The type of the Event. The framework provides basic types such as 
End and Start. However, MMU developers can define their own 
events such as (Foot contact, Grasp contact) 

Reference x The unique ID of the corresponding MInstruction. 

Properties  Optional properties, which can be transmitted additionally. 

 

Within the framework a basic set of events, inspired by the bml approach is provided. However, each 
MMU developer can furthermore specify custom events. The default list of available simulation events 
is illustrated below. 

Default events provided in the framework: 

Name (case sensitive) Description 

start Event is automatically provided by the co-simulation if a MMU is 
started (see bml). 

ready Optional event (see bml). 

stroke_start Optional event (see bml). 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 42/98 
 

stroke_end Optional event (see bml). 

end Event must be provided by the MMU if the MMU is finished (see 
bml). 

abort Event if the present MMU is aborted. 

warning An optional warning event. 

exception Event should be raised if an exception occurred within the MMU. 

  

3.2.4.7 Scene Manipulations (MSceneManipulation) 

An important format for expressing manipulations of the scene is the MSceneManipulation class. The 
format is utilized by the MMUs to express intended scene manipulations (e.g. object is at position (x,y) 
and for the synchronization of the scene within the adapters. A detailed overview of the individual 
classes MTransform and MSceneObject is provided within the scene section. 

MSceneManipulation  

+Transforms: list<MTransformManipulation> 
+PhysicsInteractions: list<MPhysicsInteraction> 
+Properties: list<MPropertyManipulation> 

Figure 34 UML class diagram of the MSceneManipulation class. This class is used to express manipulation, which should be 
applied to the scene (e.g., positional change of scene object, physical interaction). 

Detailed description of available parameters: 

Parameter Name Required Description 

Transforms  List of intended manipulations of the transforms of specific object 
(e.g. change location of object 1). 

PhysicsInteractions  List of intended physics interactions of given objects. 

Properties  List of intended property changed (e.g. set flag of MSceneObject). 

 

The MTransformManipulation class allows specifying manipulations of the location/transformation a 
specific object in the scene. The target of the transform manipulation must be always set, whereas the 
position, rotation and parenting can be optionally set. 

MTransformManipulation   



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 43/98 
 

+Target: string 
+Position: MVector3 
+Rotation: MQuaternion 
+Parent: string 

Figure 35 UML class diagram of the MTransformManipulation. 

Detailed description of available parameters: 

Parameter Name Required Description 

Target x The id of the target object/Avatar, where the manipulation 
should be carried out. 

Position  The changed position. The values represent the new  absolute 
position. If undefined it will be ignored. 

Rotation  The changed rotation. The values represent the new absolute 
rotation. If undefined it will be ignored. 

Parent  The new parent value. If undefined it will be ignored. The present 
parent is removed if flag Remove:id is used. 

 

The MPhysicsInteraction class can be utilized to express intended physical interactions with the scene. 
In particular, a specific target (referenced by the ID) can be affected. The set of physical interaction 
types is specified by the MPhysicsInteractionType enum as shown below. 

MPhysicsInteraction  

+Target: string 
+Type: MPhysicsInteractionType 
+Values: list<double> 
+Properties: map<string,string> 

Figure 36 UML class diagram of the MPhysicsInteraction class, used to express physical interactions with the scene (e.g. , 
apply force). 

Detailed description of available parameters: 

Parameter Name Required Description 

Target x The target object at which the physics interaction should be 
applied (unique id). 

Type x The specified MPhysicsInteractionType enum. 

Values x The values which express the physics interaction (e.g. force, 
torque) 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 44/98 
 

Properties  Optional properties which can be specified. 

 

For describing the specific type of a physics interaction, the MPhysicsInteractionType enum is 
provided in the framework.  

MPhysicsInteractionType (enum)  

AddForce 
AddTorque 
ChangeVelocity 
ChangeAngularVelocity 
ChangeMass 
ChangeCenterOfMass 
ChangeInertia 

Figure 37 UML class diagram of the MPhysicsInteractionType enum. The enum describes all possible physical interactions in 
the framework. 

The MPropertyManipulation class can be utilized to adjust given properties of an MSceneObject or 
MAvatar. 

MPropertyManipulation  

+Target: string 
+Key: string 
+Value: string 

Figure 38 UML class diagram of the MPropertyManipulation class. 

Detailed description of available parameters: 

Parameter Name Required Description 

Target x The id of the target object/Avatar, where the manipulation should 
be carried out. 

Key x The key of the property. 

Value  The new value of the property. 

 

3.2.4.8 Further formats 

Despite the previously introduced formats, the framework also comprised additional basic formats 
being described within the following: 

On important format for calling functions with a Boolean response is the so-called MBoolResponse 
class. This class contains in addition to the Boolean value also a list of string in order to provide 
information in case of errors. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 45/98 
 

MBoolResponse  

+Value: bool 
+Log: list<string> 

Figure 39 UML class diagram of the MBoolResponse class. The format is used to provide further (debug) information in 
addition to a Boolean parameter. 

Detailed description of available parameters: 

Parameter Name Required Description 

Value x A Boolean value which indicates whether the operation was 
successful or not 

Log  An optional list of log strings. This should be used if errors 
occurred during the processing. This information is helpful for 
debugging and error handling.  

 

The MParameter is an important format for the MMUDescription. The class defines the properties of 
a specific parameter that can be used by the MMU consumer. 

MParameter  

+Name: string 
+Type: string 
+Required: bool 

Figure 40 Class diagram of the MParameter. 

Detailed description of available parameters: 

Parameter Name Required Description 

Name x Unique name of the parameter 

Type x The type of the parameter (e.g. bool, string, double or user 
specific type) 

Required x Specifies whether the parameter must be set to execute the 
MMU or the parameter is just optionally. 

 

To represent quaternion based rotations in the MMI framework the MQuaternion format is utilized. 

MQuaternion 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 46/98 
 

+X: double 
+Y: double 
+Z: double 
+W: double 

Figure 41 Class diagram of the MQuaternion. 

Detailed description of available parameters: 

Parameter Name Required Description 

X x The X component of the quaternion. 

Y x The Y component of the quaternion. 

Z x The Z component of the quaternion. 

W x The W component of the quaternion. 

 

For representing a three-dimensional vector with Cartesian coordinates, the MVector3 class is 
provided. 

MVector3 

+X: double 
+Y: double 
+Z: double 

Figure 42 Class diagram of the MVector3. 

Detailed description of available parameters: 

Parameter Name Required Description 

X x The Cartesian X coordinate. 

Y x The Cartesian Y coordinate. 

Z x The Cartesian Z coordinate. 

 

The MDrawingCall class is used to exchange information regarding the drawing of geometric elements 
such as lines. Mainly utilized for debugging. 

MDrawingCall 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 47/98 
 

Type: MDrawingCallType 
Data: list<double> 
Properties: map<string,string> 

Figure 43 UML class diagram of the MDrawingCall class. 

Detailed description of available parameters: 

Parameter Name Required Description 

Type x The specific type of the drawing (see MDrawingCallType enum). 

Data x The transmitted data (e.g. list of coordinates). The data 
representations depend on the used MDrawingCallType. 

Properties  Additional properties that can be specified. 

 

For the MMI framework, a base set of different drawing types (MDrawingCallType) is defined that are 
listed below. 

MDrawingCallType (enum) 

DrawLine2D 
DrawLine3D 
DrawPoint2D 
DrawPoint3D 

Figure 44Class diagram of the MDrawingCallType enum, which contains all possible drawing operations in the framework. 

Since the overall framework takes intense usage of web-based communication, IP addresses are 
frequently exchanged. To allow a platform-independent exchange of this information in a standardized 
way, the MIPAddress class is provided. 

MIPAddress 

+Address: string 
+Port: int 

Figure 45 UML class diagram of the MIPAddress class. The class is utilized to store a network address containing the ip and 
port. 

Detailed description of available parameters: 

Parameter Name Required Description 

Address x The address url. 

Port x The specified port. 

 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 48/98 
 

3.2.5 Avatar Representation (MAvatarPosture, MAvatarPostureValues) 

The focus of the MMI framework is the generation of motions and postures; therewith a format to 
exchange posture information is essential for the framework. We propose a novel format specifically 
addressing the requirements of the MMI framework. The bone hierarchy, joint placement and zero-
posture of the intermediate representation is pre-defined and constant. However, the dimensions and 
body parameters of the target avatar can change between different simulations. The definition of the 
intermediate hierarchy can be found below. The so-called MAvatarDescription struct contains this 
static information, which have to be exchanged during simulation initialization.  

MAvatarDescription 

+AvatarID: string 
+ZeroPosture: MAvatarPosture 
+Properties: map<string,string> 

Figure 46 UML class diagram of the MAvatarDescription. The format serves as reference for describing a specific Avatar. In 
particular, the hierarchy, the id and further properties are defined in here. 

Detailed description of available parameters: 

Parameter Name Required Description 

AvatarID x The unique id of the corresponding avatar. 

ZeroPosture x The zero posture describes the specific hierarchy of the target 
avatar. The list consists of multiple Joints (MJoint) which are 
described below. 

Properties  Additional semantic information which can be set (e.g. weight 
of body parts). 

 

To describe a full posture the so-called MAvatarPosture class can be utilized. The struct contains a 
unique id, the hierarchy, rotations and positions of all joints. The format can be used for transferring a 
full posture. Moreover, it is planned to provide several utilizations and helper functions for the 
MAvatarPosture class. For instance, the global positions and rotations can be easily determined based 
on the class. Moreover, coordinate system specific conversions. 

MAvatarPosture 

+AvatarID: string 
+Joints: list<MJoint> 

Figure 47 UML class diagram of the MAvatarPosture. The class describes a full posture of a human containing the hierarchy 
represented as list of MJoint. 

Detailed description of available parameters: 

Parameter Name Required Description 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 49/98 
 

AvatarID x The unique ID of the avatar. 

Joints x The joint hierarchy describing the posture. 

 

The MAvatarPosture describes the specific hierarchy of the target avatar. The list consists of multiple 
Joints (MJoint) which are described below. 

MJoint 

+ID: string 
+MJointType 
+Offset: MVector3 
+Rotation: MQuaternion 
+Parent: string 
+Channels: list<MChannel> 

Figure 48 UML class diagram of the MJoint class. 

Detailed description of available parameters: 

Parameter Name Required Description 

ID x Unique id for the joint. 

Offset x The position data represented in Cartesian coordinates 
(analogously to bvh offset). 

Rotation x The data for rotation represented as quaternion. 

Parent  The id of the parent (if available). 

Channels x Channel information about the representation of the 
position/rotation (similar to bvh) which is necessary to interpret 
the transmitted posture values for each frame. 

 

To represent the information of the transferred rotation/position data and its order, the so-called 
MChannel enum is utilized.  

MChannel (enum) 

Xoffset 
Yoffset 
Zoffset 
Xrotation 
Yrotation 
Zrotation 

Figure 49 UML class diagram of the MChannel enum. Analogously to the bvh format, the enum describes the specific 
translation/rotation channel used for transmitting the joint rotation values.  



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 50/98 
 

Detailed description of available parameters: 

Parameter Name Description 

Xoffset See bvh 

Yoffset See bvh 

Zoffset See bvh 

Xrotation See bvh 

Yrotation See bvh 

Zrotation See bvh 

 

We assume a right-handed coordinate system with +z as the global up axis and +x as the global forward 
axis. The joint location is defined in the parent joints coordinate system. The bone orientation is 
explicitly defined by the offset rotation of the joint. We assume the direction of the bone to be aligned 
with z-axis of the local coordinate system (see figure 49). Using the channels, rotations around these 
local axes can be unlocked. Hence, any arbitrary number of channels is valid. In case of the knee-joint, 
for example, the Channels would be set to [Xrotation, Zrotation], where Xrotation defines the rotation 
of the knee itself and Zrotation the twist of the calf bone.  

The global transform matrix Mjoint of a single joint can be computed with 

 

With Mparent being the parents global transform matrix, Ojoint the offset and ROjoint the rotational offset 
of the joint. MAjoint then describes the animation transform matrix built by subsequently applying the 
animation rotations and animation offsets in order of the defined channels.  

 

Figure 50 Overview of the coordinate system alignment of the joint chain, as used in the MOSIM project. 

x 

y 

z 

y (0,1,0) 

z (0,0,1) 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 51/98 
 

The information above is only exchanged during simulation initiation. During the simulation itself, 
MMUs, Co-Simulator and Target Engine can reduce the information flow to only exchange joint 
rotation information using MAvatarPostureValues. MMUs can further reduce the network traffic by 
announcing to only transfer a limited amount of data. A grasping MMU, for example, might only want 
to share rotation information regarding the hands, but not the rest of the body. The joint hierarchy 
and channel information define the semantics of PostureData. In the appendix (6.2), an example listing 
is available, which defines the full body hierarchy as well as the joint hierarchy inside the individual 
hands. They were separated for visual purposes in this document. As a zero posture, a T-posture with 
parallel legs and feet flat on the ground is expected. The specific joint offsets are depending on the 
proportions and size of the target avatar.  

 

The MAvatarPostureValues are a compact representation of a posture given the assumption that the 
hierarchy is already known. It is noteworthy that the MAvatarPostureValues class should be used as 
often as possible (and preferred over MAvatarPosture) in order to reduce traffic and latency during 
the communication. 

MAvatarPostureValues  

+AvatarID: string 
+PostureData: list<double> 

Figure 51 UML class diagram of the MAvatarPostureValues class. The class is used to store joint transformation data. 

Detailed description of available parameters: 

Parameter Name Required Description 

AvatarID x Unique ID that references the avatar. 

PostureData x A list representation of the transmitted posture data. The 
corresponding hierarchy is described as MAvatarPosture 
(MAvatarDescription) with the identical AvatarID. 

 

The intermediate skeleton as well as skeleton helper functions are managed by the intermediate 
skeleton service (MSkeletonAccess). 

<<interface>> 

MSkeletonAccess 

+InitializeAnthropometry(description: MAvatarDescription): MBoolResponse  
+GetAvatarDescription(): MAvatarDescription 
+SetAnimatedJoints(mmuID: string, joints: list<MJointType>) 
+SetChannelData(mmuID: string; values: MAvatarPostureValues) 
+GetCurrentPosture(): MAvatarPosture 
+GetCurrentPostureValues(): MAvatarPostureValues 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 52/98 
 

+GetCurrentJointPositions(): map<MJointType,MVector3> 
+GetAvatarRootPosition(): MVector3 
+GetAvatarRootRotation(): MQuaternion 
+GetGlobalJointPosition(jointType: MJointType): MVector3 
+GetGlobalJointRotation(jointType: MJointType): MQuaternion 

Figure 52 Class diagram of the MSkeletonAccess interface. The interface provides a default set of helper functions to 
simplify the utilization of the avatar. 

Detailed description of available parameters/functions: 

Function/ Parameter Name Description 

InitializeAnthropometry Initializes the internal representation based on the 
given MAvatarDescription. 

GetAvatarDescription Returns the avatar description (if available). 

SetAnimatedJoints Sets the animated joints. 

SetChannelData Sets the current posture (channel data) based on the 
given MAvatarPostureValues. 

GetCurrentPosture Returns a MAvatarPosture that describes the current 
posture (hierarchy + joint values) of the avatar. 

GetCurrentPostureValues Returns MAvatarPostureValues describing the current 
posture (values) of the avatar. 

GetCurrentJointPositions Returns the global positions of all joints. 

GetAvatarRootPosition Returns the root position of the avatar. 

GetAvatarRootRotation Returns the root rotation of the avatar as quaternion. 

GetGlobalJointPosition Returns the global joint position for the specific joint 
type. 

GetGlobalJointRotation Returns the global joint rotation for the specific joint 
type. 

 

To simplify utilization an enum for describing the available joint types (MJointType) is available. The 
enum comprises in total 61 different bone types. 

MJointType (enum) 

LeftBall 

LeftAnkle 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 53/98 
 

LeftKnee 

LeftHip 

RightBall 

RightAnkle 

RightKnee 

RightHip 

PelvisCentre 

S1L5Joint 

T12L12Joint 

T1T2Joint 

C4C5Joint 

HeadJoint 

MidEye 

LeftShoulder 

LeftElbow 

LeftWrist 

RightShoulder 

RightElbow 

RightWrist 

LeftThumbMidcarpalJoint 

LeftThumbMetacarpophalangealJoint 

LeftThumbCarpalInterphalangealJoint 

LeftIndexMidCarpalJoint 

LeftIndexMetacarpophalangealJoint 

LeftIndexCarpalProximalInterphalangealJoint 

LeftIndexCarpalDistalInterphalangealJoint 

LeftMiddleMidCarpalJoint 

LeftMiddleMetacarpophalangealJoint 

LeftMiddleCarpalProximalInterphalangealJoint 

LeftMiddleCarpalDistalInterphalangealJoint 

LeftRingMidCarpalJoint 

LeftRingMetacarpophalangealJoint 

LeftRingCarpalProximalInterphalangealJoint 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 54/98 
 

LeftRingCarpalDistalInterphalangealJoint 

LeftLittleMidCarpalJoint 

LeftLittleMetacarpophalangealJoint 

LeftLittleCarpalProximalInterphalangealJoint 

LeftLittleCarpalDistalInterphalangealJoint 

RightThumbMidcarpalJoint 

RightThumbMetacarpophalangealJoint 

RightThumbCarpalInterphalangealJoint 

RightIndexMidCarpalJoint 

RightIndexMetacarpophalangealJoint 

RightIndexCarpalProximalInterphalangealJoint 

RightIndexCarpalDistalInterphalangealJoint 

RightMiddleMidCarpalJoint 

RightMiddleMetacarpophalangealJoint 

RightMiddleCarpalProximalInterphalangealJoint 

RightMiddleCarpalDistalInterphalangealJoint 

RightRingMidCarpalJoint 

RightRingMetacarpophalangealJoint 

RightRingCarpalProximalInterphalangealJoint 

RightRingCarpalDistalInterphalangealJoint 

RightLittleMidCarpalJoint 

RightLittleMetacarpophalangealJoint 

RightLittleCarpalProximalInterphalangealJoint 

RightLittleCarpalDistalInterphalangealJoint 

Figure 53 Overview of the MJointType enum, which describes the standardized joint types of the intermediate skeleton. 

3.2.6 Scene 

The scene serves as central point for storing information related to the simulation environment. In 
particular, the scene provides access to individual scene objects and avatars. In the following an 
overview of the essential formats of the scene is given.  

The MSceneObject builds the basic block for representing a scene object within the MMI framework. 
Each MSceneObject has a unique ID, a required name and a necessary transform. Moreover, optionally 
a collider, mesh, physic properties and meta-information (properties) can be defined. 

MSceneObject 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 55/98 
 

+ID: string 
+Name: string 
+Transform: MTransform 
+Collider: MCollider 
+Mesh: MMesh 
+PhysicsProperties: MPhysicsProperties 
+Properties: map<string,string> 

Figure 54 UML class diagram of an MSceneObject.  

Detailed description of available parameters: 

Parameter Name Required Description 

ID x Unique id of the scene object. 

Name x Name for the scene object. 

Transform x The mandatory transform of the scene object. 

Collider  The collider of the scene object (optional). 

Mesh  The mesh of the scene object (optional). 

PhysicsProperties  The physical properties of the scene object. 

Properties  Optional properties/meta information of the scene object. 

 

The MTransform class is relevant for describing the absolute location and hierarchy of a specific object. 
The overall concept is strongly inspired by the Computer Graphics domain and is widely used in Gaming 
Engines such as Unity or Unreal. 

MTransform 

+ID: string 
+Position: MVector3 
+Rotation: MQuaternion 
+Parent: string 

Figure 55 UML class diagram of the MTransform class. 

Detailed description of available parameters: 

Parameter Name Required Description 

ID x The id of the transform (linked to the MSceneObject) 

Position x The specified position (Cartesian) represented as MVector3 to 
simplify the usage. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 56/98 
 

Rotation x The specified rotation (Quaternion), represented as MQuaternion 
to simplify the usage. 

Parent  The id of the parent transform/object. 

 

For representing colliders in the proposed framework, the so-called MCollider class is proposed. Since 
Apache Thrift does not provide class inheritance for structs, the different collider types are explicitly 
represented within the MCollider class. The type of the assigned collider can be directly evaluated 
based on the MColliderType enum.  

MCollider 

+ID: string 
+Type: MColliderType 
+BoxColliderProperties: MBoxColliderProperties 
+SphereColliderProperties: MSphereColliderProperties 
+ConeColliderProperties: MConeColliderProperties 
+CapsuleColliderProperties: MCapsuleColliderProperties 
+CylinderColliderProperties: MCylinderColliderProperties 
+MeshColliderProperties: MMeshColliderProperties 
+PositionOffset: MVector3 
+RotationOffset: MQuaternion 
+Properties: map<string,string> 
+Colliders: list<MCollider> 

Figure 56 UML class diagram of the MCollider class. 

Detailed description of available parameters: 

Parameter Name Required Description 

ID x The id of the collider (linked to the MSceneObject) 

Type x The type of the collider (defined through the 
MColliderType enum) 

BoxColliderProperties  Specific properties required for a box collider. 

SphereColliderProperties  Specific properties required for a sphere collider. 

ConeColliderProperties  Specific properties required for a cone collider. 

CapsuleColliderProperties  Specific properties required for a capsule collider. 

CylinderColliderProperties  Specific properties required for a cylinder collider. 

MeshColliderProperties  Specific properties required for a mesh collider. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 57/98 
 

PositionOffset  The translational offset of the collider to the reference 
MSceneObject/ MTransform. 

RotationOffset  The rotational offset of the collider to the reference 
MSceneObject/ MTransform. 

Properties  Optional properties, which can be set. 

Colliders  An optional list for representing a collider hierarchy. 

 

The MColliderType enum contains all possible collider types in the framework. 

MColliderType (enum) 

BoxCollider 
SphereCollider 
CapsuleCollider 
ConeCollider 
CylinderCollider 
MeshCollider 
Custom 

Figure 57 UML class diagram of the MColliderType enum. The enum contains all available collider types of the proposed 
framework. 

Each collider has different properties describing its characteristics. To represent these characteristics 
in the framework for each available MColliderType, a respective ColliderProperties class is provided. 
An overview of the available Collider classes is given below. 

 

MBoxColliderProperties 

+Size: MVector3 

Figure 58 UML class diagram of the MBoxColliderProperties used to describe the characteristics of a box collider. 

Detailed description of available parameters: 

Parameter Name Required Description 

Size x The dimensions of the box collider [m]. 

 

MSphereColliderProperties 

+Radius: double 

Figure 59 UML class diagram of the MSphereColliderProperties used to describe the characteristics of a sphere collider. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 58/98 
 

Detailed description of available parameters: 

Parameter Name Required Description 

Radius x The radius of the sphere collider [m]. 

 

MCapsuleColliderProperties 

+Radius: double 
+Height: double 
+MainAxis: MVector3 

Figure 60 Class diagram of the MCapsuleColliderProperties used to describe the characteristics of a capsule collider. 

Detailed description of available parameters: 

Parameter Name Required Description 

Radius x The radius of the capsule collider [m]. 

Height x The height of the capsule collider [m]. 

MainAxis  The main axis of the capsule collider. 

 

MConeColliderProperties 

+Radius: double 
+Height: double 

Figure 61 Class diagram of the MConeColliderProperties used to describe the characteristics of a cone collider. 

Detailed description of available parameters: 

Parameter Name Required Description 

Radius x The radius of the cone collider [m]. 

Height x The height of the cone collider [m]. 

 

MCylinderColliderProperties 

+Radius: double 
+Height: double 

Figure 62 Class diagram of the MCylinderCollider Properties used to describe the characteristics of a cylinder collider. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 59/98 
 

Detailed description of available parameters: 

Parameter Name Required Description 

Radius x The radius of the cylinder collider [m]. 

Height x The height of the cylinder collider [m]. 

 

MMeshColliderProperties 

+Vertices: list<MVector3> 
+Triangles: list<i32> 

Figure 63  Class diagram of the MMeshColliderProperties used to describe the characteristics of a mesh collider. 

Detailed description of available parameters: 

Parameter Name Required Description 

Vertices x A list of all vertices of the collider. 

Triangles x All triangle indices of the collider. 

 

 

In addition to describing a collider, it is oftentimes required to describe a mesh that is separated from 
the collider. To describe a mesh in the MMI framework the so-called MMesh class is proposed. Below 
the class diagram, as well as a detailed description of the available parameters is provided. 

MMesh 

+ID: string 
+Vertices: list<MVector3> 
+Triangles: list<int> 
+Properties: map<string,string> 

Figure 64 UML class diagram of the MMesh class. 

Detailed description of available parameters: 

Parameter Name Required Description 

ID x The unique ID of the object. 

Vertices x The vertices of the mesh relative to the MTransform. 

Triangles x A list of the available triangles of the mesh. Each entry In the list 
represents the corresponding vertex index. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 60/98 
 

Properties  Optional properties for the mesh. 

 

In addition to describing a mesh, it is sometimes required to describe a geometrical component that is 
separated from the mesh. To describe a geometrical component in the MMI framework the so-called 
MGeometry class is proposed. Below the class diagram, as well as a detailed description of the 
available parameters is provided. 

MGeometry 

+ID: string 
+GeometryType: MGeometryType  
+SupportPoints: list<list<MVector3>> 
+Nodes: list<list<double>> 
+Weights: list<list<double>> 
+Properties: map<string,string> 

Figure 65 UML class diagram of the MGeometry class. 

Detailed description of available parameters: 

Parameter Name Required Description 

ID x The unique ID of the object. 

GeometryType x The type of the geometry object. 

SupportPoints x The support points of the geometry. 1- dimensional array for 0- 
and 1-dimensional objects (point, polyline and curve) and 2-
dimensional array for 2-dimensional objects (plane and surface) . 

Nodes  Optional nodes in 1- dimensional array for curve and 2-
dimensional array for surface (B-Spline representation). 

Weights  Optional weights in 1- dimensional array for curve and 2-
dimensional array for surface (B-Spline representation). 

Properties  Optional properties for the geometry. 

 

For the MMI framework, a base set of different geometry types (MGeometryType) is defined that are 
listed below. 

MGeometryType (enum) 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 61/98 
 

Point 
Polyline 
Curve 
Plane 
Surface, curve  SupportPoints (3) (2xn), Weights (2xn), nodes (2xn 

Figure 66 Class diagram of the MGeometryType enum. 

 

Each MSceneObject contains additional physical properties, such as mass or velocity, which are 
represented using the MPhysicsProperties format outlined below. 

MPhysicsProperties 

+Mass: double 
+CenterOfMass: list<double> 
+Inertia: list<double> 
+Velocity: list<double> 
+AngularVelocity: list<double> 

Figure 67 UML class diagram of the MPhysicsProperties class. The format describes the physical properties of an object. 

Detailed description of available parameters: 

Parameter Name Required Description 

Mass x The mass of the object. 

CenterOfMass x The center of mass of the object. 

Inertia x The present inertia of the object. 

Velocity x The present velocity of the object. 

AngularVelocity x The present angular velocity of the object. 

 

In order to do a pathfinding in the scene, it is important to identify the walkable areas. To quantify the 
walkable area, the so-called MNavigationMesh class is provided. 

MNavigationMesh 

+Vertices: list<MVector3> 
+Triangles: list<int> 
+Properties: map<string,string> 

Figure 68 UML class diagram of the MNavigationMesh. 

Detailed description of available parameters: 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 62/98 
 

Parameter Name Required Description 

Vertices x All vertices of the navigation mesh 

Triangles x The triangle indices of the navigation mesh. 

Properties  Optional properties for the navigation mesh. 

 

In many cases, it might be of interest for the MMU or target-engine developers to identify all avatars 
in the scene (e.g. Collision avoidance, multi-avatar interaction). Therefore, a separate format 
describing a specific Avatar, its properties and location is required. For describing an avatar in the 
MOSIM framework, the MAvatar class is utilized. 

MAvatar 

+ID: string 
+Name: string 
+Description: MAvatarDescription 
+PostureValues: MAvatarPostureValues 
+SceneObjects: list<string> 
+Properties: map<string,string> 

Figure 69 UML class diagram of the MAvatar class, which represents an avatar in the framework. 

Detailed description of available parameters: 

Parameter Name Required Description 

ID x The unique ID of the avatar. 

Name x The specified name of the avatar. 

Description x The corresponding MAvatarDescription that defines the 
skeleton hierarchy. 

PostureValues x MAvatarPosture Values which describe the current posture of 
the avatar. 

SceneObjects   Optional: Scene objects linked to the MAvatar (e.g. Mesh, 
collider for the avatar). The scene objects are represented by the 
unique id. 

Properties  Additional properties for the MAvatar. 

 

The scene can be accessed in a uniform way using the MSceneAccess. The class and its provided 
functionality is described in the following: 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 63/98 
 

<<interface>> 

MSceneAccess 

+GetSceneObjects(): list<MSceneObject> 
+GetSceneObjectByID(ID: string): MSceneObject 
+GetSceneObjectByName(name: string): MSceneObject 
+GetSceneObjectsInRange(position: MVector3, distance: double): list<MSceneObject> 
+GetColliders(): list<MCollider> 
+GetColliderByID(ID: string): MCollider 
+GetCollidersInRange(position: MVector3, distance: double): list<MCollider> 
+GetMeshes(): list<MMesh> 
+GetMeshByID(ID: string): MMesh 
+GetTransforms(): list<MTransform> 
+GetTransformByID(ID: string): MTransform 
+GetAvatars(): list<MAvatar> 
+GetAvatarByID(ID: string): MAvatar 
+GetAvatarByName(name: string): MAvatar, 
+GetAvatarsInRange(position: MVector3, distance: double): list<MAvatar> 
+GetSimulationTime(): double 
+GetChanges(): list<MSceneUpdate> 
+GetFullScene(): list<MSceneObject> 
+GetNavigationMesh(): MNavigationMesh 

Figure 70 Overview of the MSceneAccess interface that is used to access the scene. 

Detailed description of available parameters/functions: 

Function Name Description 

GetSceneObjects Returns a list of all available scene objects. 

GetSceneObjectByID Returns a scene object based on the specified ID. 

GetSceneObjectByName Returns a scene object based on the given name (might be 
ambiguous -> First result is returned) 

GetSceneObjectsInRange Returns all scene objects within the specified range. 

GetColliders Returns all colliders within the scene. 

GetColliderByID Returns a collider based on the specified id. 

GetCollidersInRange Returns all MCollider within the specified range (intersecting with 
sphere as defined by the position and radius). 

GetMeshes Returns all meshes within the scene. 

GetMeshByID Returns a mesh based on the given id. 

GetTransforms Returns all transforms within the scene. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 64/98 
 

GetTransformByID Returns a transform based on a given id. 

GetAvatars Returns a list of all available MAvatars. 

GetAvatarByID Returns a MAvatar based on the given id. 

GetAvatarByName Returns a MAvatar based on the given name. 

GetAvatarsInRange Returns all MAvatars within the specified range. 

GetSimulationTime Returns the absolute time of the simulation. 

GetChanges Returns the changes since the last frame. 

GetFullScene Returns the MSceneManipulation to transfer the full scene. 

 

Despite the previously introduced interface, which is designed from a user perspective, the scene in 
the target engine, or nested co-simulation needs to provide further synchronization and updating 
functionalities. For this purpose, the MSynchronizableScene interface is provided. 

<<interface>> 

MSynchronizableScene 

+Apply(sceneUpdates: list<MSceneUpdate>): MBoolResponse 
+ApplyManipulations(sceneManipulations: list<MSceneManipulation>) :MBoolResponse 

Figure 71 Class diagram of the MSynchronizableScene interface. 

Detailed description of available parameters/functions: 

Function Name Description 

Apply Applies transmitted MSceneUpdates to the scene. For instance, this 
might be utilized for a scene contained in an adapter, which 
continuously buffers the scene (only deltas are transmitted).  

ApplyManipulations Function to apply manipulation as expressed using the 
MSceneManipulation class. The function is utilized in the target 
engine/ by the co-simulation to apply manipulations as intended by 
MMUs (e.g., move object). 

 

Formats for transferring scene information: 

In order to allow an efficient transfer of the overall scene data, further formats optimized with respect 
to the data sizes are used. Below a detailed overview of these classes is given. 

 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 65/98 
 

The MSceneObject class contains all changed elements within the scene. 

MSceneUpdate 

+AddedSceneObjects: list<MSceneObject> 
+ChangedSceneObjects: list<MSceneObjectUpdate> 
+RemovedSceneObjects: list<string> 
+AddedAvatars: list<MAvatar> 
+ChangedAvatars: list<MAvatarUpdate> 
+RemovedAvatars: list<string> 

Figure 72 UML class diagram of the MSceneUpdate class. The format is utilized to efficiently represent changes of the scene 
for transferring them over the network. 

Detailed description of available parameters: 

Parameter Name Required Description 

AddedSceneObjects  List of newly added MSceneObjects. 

ChangedSceneObjects  List of all scene object changes. 

RemovedSceneObjects  List of the ids of all removed scene objects. 

AddedAvatars  List of newly added MAvatars. 

ChangedAvatars  List of the MAvatarUpdates. 

RemovedAvatars  List of the ids of all removed avatars. 

 

For describing and transferring the changes of a specific MSceneObject, the MSceneObjectUpdate 
class is used. 

MSceneObjectUpdate 

+ID: string 
+Transform: MTransformUpdate 
+Collider: MCollider 
+Mesh: MMesh 
+PhysicsProperties: MPhysicsProperties 
+Properties: list<MPropertyUpdate> 

Figure 73 UML class diagram of the MSceneObjectUpdate. 

Detailed description of available parameters: 

Parameter Name Required Description 

ID x The id of the MSceneObject that should be updated. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 66/98 
 

Transform  The changed transforms (absolute). 

Collider  The collider (if changed). 

Mesh  The mesh (if changed). 

PhysicsProperties  The changed physics properties. 

Properties  A list of changed properties. 

 

To efficiently transfer changed transform values, as frequently required during the simulation, the 
MTransformUpdate class is used.  

MTransformUpdate 

+Position: list<double> 
+Rotation: list<double> 
+Parent: string 

Figure 74 UML class diagram of the MTransformUpdate class. 

Detailed description of available parameters: 

Parameter Name Required Description 

Position  The changed position. 

Rotation  The changed rotation. 

Parent  The changed parent. 

 

To describe changes with respect to properties. The MPropertyUpdate class is provided, which is 
outlined below. 

MPropertyUpdate 

+Key: string 
+Value:string 

Figure 75 UML class diagram of the MPropertyUpdate format. 

Parameter Name Required Description 

Key x The key of the property, which is adjusted/added. 

Value x The value of the property. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 67/98 
 

 

The MAvatarUpdate class is used to describe all occurred changes regarding a specific MAvatar. In 
particular, the changes can include changed posture values, properties, the description itself or the 
involved list of scene object IDs. 

MAvatarUpdate 

+ID: string 
+PostureValues: MAvatarPostureValues 
+SceneObjects: list<string> 
+Description: MAvatarDescription 
+Properties: list<MPropertyUpdate> 

Figure 76 UML class diagram of the MAvatarUpdate class. 

Detailed description of available parameters: 

Parameter Name Required Description 

ID x The unique ID of the avatar, which should be manipulated. 

PostureValues  The changed posture values of the avatar (if defined). 

SceneObjects  The changed assignment of scene objects (if defined). 

Description  The adjusted description of the avatar (if defined). 

Properties  A list of changed properties. 

 

3.2.7 Adapter 

Strongly related to the MMUs and the co-simulation, the adapters encapsulate the communication 
and instantiate the respective MMUs. Therefore, it is important to note, that the interface of the 
adapter is essential for the data transmission within the MMI framework. 

<<interface>> 

MMIAdapter 

+Language: string 
+Address: MIPAddress 

+CreateSession(sessionID: string, avatar: MAvatarDescription): MBoolResponse 
+CloseSession(sessionID: string): bool 
+PushScene(sessionID: string, sceneChanges: MSceneUpdate): MBoolResponse 
+GetLoadableMMUs(sessionID: string): list<MMUDescription> 
+GetStatus(): map<string,string> 
+LoadMMUs(sessionID: string, list<MMUDescription> mmus): MBoolResponse 

---------------------------------------------------MMU specific functions-------------------------------------------------------------- 
+Initialize(avatar: MAvatarDescription, properties: map<string,string>, mmuID: string, sessId: string):  



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 68/98 
 

MBoolResponse 
+AssignInstruction(instr: MInstruction, state: MAvatarState, mmuID: string, sessID: string): MBoolResponse 
+DoStep(time: double, state: MAvatarState, mmuID: string, sessId: string): MSimulationResult 
+CheckPrerequisites(instr: MInstruction, mmuID: string, sessId: string): MBoolResponse 
+GetCoundaryConstraints(instr: MInstruction, mmuID: string, sessID: string): list<MConstraint> 
+ExecuteFunction(name: string, parameters: map<string,string>, mmuID: string, sessID: string):  
map<string,string> 
+Abort(instructionID: string, mmuID: string, sessId: string):MBoolResponse 
+Dispose(properties: map<string,string>, mmuID: string, sessId: string):MBoolResponse 

Figure 77 Interface of the MMIAdapter. The MMIAdapter is an essential component, which encapsulate the respective 
MMUs. 

The adapter provides all functionalities, which a single MMU has according to the specified interface. 
In addition, the adapters also provide functions to manage multiple MMUs and synchronize the scene. 
In particular, the adapters provide an internal session handling for multiple clients. Moreover, the 
adapter need to load and instantiate the MMUS during runtime. 

 

Detailed description of available parameters/functions: 

Function Name Description 

CreateSession Method setups a new session. The adapter internally manages the 
session. The session id is used to access and identify the specific 
session. 

CloseSession Method closes the current session with the given session id. 

PushScene Method is used to push the deltas of a scene to the adapter. 

GetLoadableMMUs Returns all MMUs found by the adapter, which can be loaded. 

GetStatus Returns the status of the adapter- 

LoadMMUs Loads MMUs based on the specified descriptions. 

Initialize Calls the initialize function of the respective MMU. 

AssignInstruction Calls the AssignInstruction function of the respective MMU. 

DoStep Calls the DoStep function of the respective MMU. 

CheckPrerequisites Calls the CheckPrerequisites function of the respective MMU. 

GetBoundaryConstraints Calls the GetBoundaryConstraints function of the respective MMU. 

Abort Calls the Abort function of the respective MMU. 

Dispose Calls the Dispose function of the respective MMU. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 69/98 
 

ExecuteFunction Calls the ExecuteFunction method of the respective MMU. 

 

Similarly, to the MMUs, the Adapters contain also a description format (MAdapterDescription). The 
class contains useful information about the name and id of the adapter. Furthermore, the address 
information required for accessing the adapters is contained. 

MAdapterDescription 

+Name: string 
+ID: string 
+Language: string 
+Addresses: list<MIPAddress> 
+Properties: map<string,string> 
+Parameters: list<MParameter> 

Figure 78 UML class diagram of the MAdapterDescription. 

Detailed description of available parameters: 

Parameter Name Required Description 

Name x The name of the adapter. 

ID x A unique ID of the adapter. 

Language x The supported programming language of the adapter. 

Addresses x A list of address under which the adapter is available. 

Properties  Optional properties of the adapter. 

Parameters  A list of optional parameters of the adapter. 

 

3.2.8 Services 

Services are essential to ease the implementation for the MMU developers, co-simulation, behavior 
execution and target engine users. Within the MMI framework, a set of fundamental services is 
available. The interfaces of the specific services are listed below. 

 

In analogy to the Adapters, the services also offer a standardized description format. 

MServiceDescription 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 70/98 
 

+Name: string 
+ID: string 
+Language: string 
+Addresses: list<MIPAddress> 
+Properties: map<string,string> 
+Parameters: list<MParameter> 

Figure 79 Class diagram of the MServiceDescription format. 

Detailed description of available parameters: 

Parameter Name Required Description 

Name x The name of the service. 

ID x A unique ID of the service. 

Language x The supported programming language of the service. 

Addresses x A list of address under which the service is available. 

Properties  Optional properties of the service. 

Parameters  A list of optional parameters of the service. 

 

Each provided service must implement and extend the MMIServiceBase. In particular, the base service 
contains a setup and a generic consume method, as outlined below. 

<<interface>> 

MMIServiceBase 

+Setup(description: MAvatarDescription, properties: map<string,string>): MBoolResponse 
+Consume(properties: map<string,string>): map<string,string> 
+GetStatus(): map<string,string> 
+GetDescription(): MServiceDescription 

Figure 80 Class diagram of the MMIServiceBase interface. The interface must be implemented by all services in the MOSIM 
framework. 

Detailed description of available parameters/functions: 

Function Name Description 

Setup Basic method to setup the service. This function can be used to 
reduce the network traffic. For instance, instead of transferring the 
full hierarchy, only the posture values can be transmitted if being 
initialized in before. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 71/98 
 

Consume Function to consume a service without needing the explicit 
interface. This can be utilized if new services are added to the 
framework which signature is not known yet. 

GetStatus Returns the present status of the service. 

GetDescription Returns the specific MServiceDescription for the service. 

 

The MRetargetingService depicts a fundamental service within the proposed MMI framework. In 
particular, the MMU developers can utilize the service to map between the intermediate and the 
specific skeleton. Moreover, the target engine developers can further take usage of the proposed 
service. 

<<interface>> 

MRetargetingService 

+SetupRetargeting(interm: MAvatarDescription, specific: MAvatarDescription, id: string): MBoolResponse 
+RetargetToIntermediate(values: MAvatarPostureValues, id: string): MAvatarPostureValues 
+RetargetToSpecific(values: MAvatarPostureValues, id: string): MAvatarPostureValues 

Figure 81 Overview of the interface of the MRetargetingService. 

Detailed description of available parameters/functions: 

Function Name Description 

SetupRetargeting Sets up the retargeting given the different postures. 

RetargetToIntermediate Retargets the posture values to the intermediate skeleton. 

RetargetToSpecific Retargets the posture values from the intermediate skeleton to the 
specific skeleton. 

 

A further service, which is provided by the MMI framework, is the MPathPlanningService. The service 
allows computing a collision-free path given a start and end-configuration. In particular, the service 
provides multiple operations modes for computing paths with different dimensionalities and criteria. 

<<interface>> 

MPathPlanningService 

+ComputePath(start: list<double>, goal: list<double>, objects: list<MSceneObject>, properties: 
map<string,string>): list<double> 

Figure 82 Overview of the interface of the MPathPlanningService. 

Detailed description of available parameters/functions: 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 72/98 
 

Function Name Description 

ComputePath Computes a path using the specified parameters and scene objects. 

 

An essential service within the framework is the MCollisionDetectionService. The service allows 
detecting collisions between specified colliders, as frequently required for digital human simulations. 

MCollisionDetectionService 

+ComputePenetration(a: MCollider, b: MCollider,  aPos: MVector3, bPos: MVector3, aRot: MQuaternion, 
bRot: MQuaternion): MVector3 
 
+CausesCollision(a: MCollider, b: MCollider,  aPos: MVector3, bPos: MVector3, aRot: MQuaternion, bRot: 
MQuaternion): MBoolResponse 

Figure 83 Overview of the interface of the MCollisionDetectionService. 

Detailed description of available parameters/functions: 

Function Name Description 

ComputePenetration Computes the penetration between two colliders given their 
hypothetical position/rotation. 

CausesCollision Indicates whether the two specified colliders cause a collision given 
the position/rotation. 

 

Since inverse kinematics is a fundamental aspect of human motion synthesis and used throughout 
different technologies, the framework also provides a service for computation of inverse kinematics.  

MInverseKinematicsService 

+ComputeIK(posture: MAvatarPosture, properties: list<MIKProperty>):MAvatarPosture 
+ComputeIK(postureValues: MAvatarPostureValues, properties: list<MIKProperty>): MAvatarPostureValues 

Figure 84 Interface description of the MInverseKinematicsService. 

Detailed description of available parameters/functions: 

Function Name Description 

ComputeIK  The method computes a novel posture based on the given 
MIKProperties. In particular, the posture values of the resulting 
posture are returned. 

 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 73/98 
 

The IK service comes with a set of additional structures that simplify the utilization of the service. The 
provided formats are presented below: 

MIKProperty  

+Values: list<double> 
+Weight: double 
+Target: MEndeffectorType 
+OperationType: MIKOperationType 

Figure 85 UML class diagram of the MIKProperty class. 

Parameter Required Description 

Values  x The values for the specified MIKOperationType (e.g. positions, 
rotations). 

Weight x The weight of the property ([0; 1]). 

Target x The MEndeffectorType, which should be adjusted. 

OperationType x The specific operation that should be carried out using the IK. 

 

MIKOperationType (enum) 

SetPosition 
SetRotation 

Figure 86 Class diagram of the MIKOperationType enum. 

MEndeffectorType (enum) 

LeftHand 
LeftFoot 
RightHand 
RightFoot 
Root 

Figure 87 Class diagram of the MEndeffectorType enum. 

To blend between consecutive posture for motion synthesis or transition modeling, the so-called 
MBlendingService is provided in the framework. 

MBlendingService 

+SetBlendingMask(mask: map<MJointType, double>, avatarID: string) MBoolResponse 
+Blend(from: MAvatarPostureValues, to: MAvatarPostureValues, weight: double): MAvatarPostureValues 

Figure 88 Interface of the MBlendingService, which provides functionality for motion blending. 

Detailed description of available parameters/functions: 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 74/98 
 

Function Name Description 

SetBlendingMask Method sets the blending mask for the given avatar id. 

Blend Method performs a blend from the start to the target posture using 
the specified blend weight. 

 

To access all services, the MServiceAccess interface is provided. It is accessible from the MMUs and 
co-simulation. It contains all defined interfaces of the previously described services. Since Apache 
Thrift does not allow using services as class members, the specific MServiceAccess must be manually 
provided for each Adapter implementation. 

<<interface>> 

MServiceAccess 

+InverseKinematics: MInverseKinematicsService 
+Retargeting: MRetargetingService 
+PathPlanning: MPathPlanningService 
+CollisionDetection: MCollisionDetectionService 
+MotionBlending: MMotionBlendingService 

Figure 89 Overview of the interface of the MServiceAccess. The interface serves as a basic accessing functionality for all 
provided services in the framework. 

Detailed description of available parameters/functions: 

Function Name Description 

InverseKinematics Access to the InverseKinematics service 

Retargeting Access to the retargeting service 

PathPlanning Access to the path planning service 

CollisionDetection Access to the collision detection service 

MotionBlending Access to the motion blending service 

 

3.2.9 Launcher (MMIRegisterService) 

The launcher is the main component that starts the overall MMI environment. In particular, the 
component can optionally start all services and the available adapters using the 
MExecutableDescription file. Moreover, the component serves as central registry and provides 
information regarding the available adapters, services and MMUs. Especially, the target engine uses 
the Launcher to access the available Motion Model Units. It can be therefore considered as logical 
communication layer.  



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 75/98 
 

<<interface>> 
MMIRegisterService  

+GetRegisteredAdapters(): list<MAdapterDescription> 
+GetRegisteredServices(): list<MServiceDescription> 
+GetAvailableMMUs(): map<MMUDescription,list<MIPAddress>> 
+RegisterAdapter(description: MAdapterDescription) 
+UnregisterAdapter(description: MAdapterDescription) 
+RegisterService(description: MServiceDescription) 
+UnregisterService(description: MServiceDescription) 
+CreateSessionID(): string 

Figure 90 Interface of the MMIRegisterService. 

Detailed description of available parameters/functions: 

Function Name Description 

GetRegisteredAdapters Returns all registered Adapters in the current MMI environment. 

GetRegisteredServices Returns all registered Services in the current MMI environment. 

GetAvailableMMUs Returns all available MMus in the current MMI environment with 
the respective addresses at which the MMU is accessible. 

RegisterAdapter Allows registering an adapter in the current environment. 

UnregisterAdapter Allows unregistering an adapter in the current environment. 

RegisterService Allows registering a service in the current environment. 

UnregisterService Allows unregistering an adapter in the current environment. 

CreateSessionID Returns a unique session ID 

 

In general, the proposed launcher is provided with the released version of the framework. The launcher 
is able to start executables applications such as adapters or services. For this purpose a description file 
is required. 

MExecutableDescription 

+Name: string 
+ID: string 
+ExecutableName: string 
+Dependencies list<string> Dependencies 
+Properties: map<string,string> 

Figure 91 Overview of the MExecutableDescription class. 

Detailed description of available parameters/functions: 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 76/98 
 

Parameter Required Description 

Name  x The name of the application. 

ID x Unique id of the application. 

ExecutableName x The name of the executable file (e.g., adapter.exe or 
service.bat) 

Dependencies  Optional dependencies to start the application. 

Properties  Optional properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 77/98 
 

3.3 Workflow 

Building upon the described interfaces and formats, the specific workflows for the utilization of the 
MOSIM MMI framework are presented in the following. 

3.3.1 Launcher – The entry point for the overall MMI framework 

The launcher can be considered as the entry point of the overall MMI framework. The launcher 
provides a central service, named MMIRegisterService (see 3.2), which offers accessing functionalities 
of all registered adapters/services and available MMUs. Figure 92 gives an overview of the sequence-
diagram of the launcher. 

 

Figure 92 Sequence diagram of the launcher. 

The launcher initially starts hosting the MMIRegisterService (see 3.2.9) which serves as a central 
registry for the overall system. Next, the launcher optionally scans the file system for executable 
adapters and service applications (using the MExecutableDescription). If desired, the launcher 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 78/98 
 

automatically starts and manages the respective processes. Each adapter and service registers itself at 
the central register using the specific MAdapterDescription or MServiceDescription. Therefore, it is 
also possible to add external adapters or services, which were not explicitly started and are not 
managed by the launcher.  If an adapter or service is terminated, the unregister function of the 
MMIRegisterService is used together with the respective MAdapterDescription or 
MServiceDescription. From this point, the adapter and service are not further listed as available. 
Moreover, if the launcher internally started applications such as adapters or services, the applications 
are automatically closed once the launcher is shut down. The launcher component is provided in 
addition to this document as part of the MOSIM deliverable. 

 

3.3.2 MMU Execution 

Despite the description of the workflow of the launcher, which serves as the entry point, it is also 
crucial to define the workflow of the specific MMUs. In general, the MMU execution can be subdivided 
into different phases, namely Initialization, Computation and Termination. The sequence diagram 
below (see Figure 93) illustrates the overall workflow of executing an MMU from an MMU perspective.  

First, the MMU is initialized given the MAvatarDescription of the intermediate skeleton as well as 
additional properties. The MMU indicates whether the initialization was successful by returning a 
MBoolResponse. After initialization, the superior instance or consumer might call the 
GetBoundaryConstraints method of the MMU. Therewith, the MMU needs to return boundary 
constraints, which are relevant to start/end the motion. In particular, these constraints are important 
for the transition modeling (e.g., start posture). For a data-driven MMU that solely plays back a motion, 
the returned boundary constraint could be the first posture of the played back motion. 

Next, the CheckPrerequisites function is called by the consumer/co-simulator. The MMU is responsible 
for indicating whether the intended instruction can be executed given the present state of the scene.  

Within the computation phase, the AssignInstruction method depicts a major functionality. In order 
to compute and express the desired motion, the AssignInstruction method is executed given a 
specified MInstruction and the present MSimulationState. The method is only executed if the 
CheckPrerequisites function of the MMU returns true. This method might require more time than 
actually available for real-time computation. For instance, the internal model could be set up, paths or 
entire motions could be pre-computed. The MMU returns a status whether the assignment was 
successful (MBoolResponse). Being executed for every frame, the DoStep method is responsible for 
the actual computation/generation of the individual frames and postures. Therewith, the function gets 
the delta time (time to be simulated), as well as the present simulation state (MSimulationState) as 
input. The method returns the generated MSimulationResult. The DoStep method is executed until 
the MMU generates an End Event expressed using the MSimulationResult or the consumer aborts the 
instruction using the Abort method. Within the Abort method, the MMU is responsible to terminate 
the specified instruction and reset the internal state to the initial state. Furthermore, if the simulation 
environment/MMU is completely terminated, the Dispose method is used. 

 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 79/98 
 

 

Figure 93 Sequence diagram describing the workflow of the MMU utilization. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 80/98 
 

3.3.3 Adapters 

The adapter forms an essential aspect of the framework, encapsulating the MMUs in the respective 
programming language while buffering the scene. Similar to the MMUs, the adapter workflow is 
subdivided into different phases that are described in the following. 

Initialization phase: 

In general, the external consumer or launcher starts the adapter application at the beginning. In 
particular, during startup several arguments must be passed to the adapter. The address of the desired 
MMIAdapter server (-a), the address of the MMIRegisterService (-r) and the file path or url of the 
MMU directory (-m) must be provided as console arguments. An exemplary set of startup arguments 
is illustrated below: 

-a 127.0.01:8000 –r 127.0.0.1:9009 –m C:\MMUs\ 

After the adapter application has been started, the adapter hosts the respective MMIAdapter thrift 
server to be accessible from external consumers, whereas the specified address parameter (-a) is used 
as hosting address. Note that the implementation for the MMIAdapter must be specifically provided 
for each programming language. Furthermore, the adapter scans the file system or remote location, 
as specified using the –m parameter, for compatible MMUs. In particular, the MMUDescription files 
are utilized for analyzing the compatibility. If the MMUDescription contains the same programming 
language and supported dependencies as the adapter, the MMU is considered as compatible. The list 
of compatible MMUs and resources is internally stored within the adapter. In order to be visible within 
the MOSIM framework, next, the adapter registers itself at the MMIRegisterService using the register 
address provided as argument. 

After the adapter has been successfully registered at the launcher, the adapter is now visible for all 
clients. From here on the client can create a session at the adapter using a specified session ID. It is 
noteworthy, that the adapter manages an individual set of MMUs, avatars and scenes for each 
sessionID. Given the created session, the client can now request the loadable MMUs and select the 
desired MMUs to be loaded. The adapter internally instantiates the respective MMUs and returns a 
status flag indicating whether the operation was successful. The instantiating process strongly deviates 
between the heterogeneous programming languages. For a C# adapter, the instantiation is realized 
using the Reflection functionalities of the .Net framework and .dll files, whereas for Java .jar files are 
utilized. Therefore, the instantiation needs to be manually implemented for each programming 
language.  

After the MMUs have been instantiated, the client can initialize the given MMU with the respective 
mmuID and sessionID. The mmuID is provided within the MMUDescription file, read by the adapter. 
In before, the client pushes the full scene to the adapter using the PushScene method. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 81/98 
 

 

Figure 94 Illustration of the initialization phase of the adapter utilizing a sequence diagram. 

Computation phase: 

After the initialization of the adapter and the respective MMUs, next the actual motion can be 
computed within the computation phase. Figure 95 visualizes the corresponding sequence diagram. 
During the computation phase, the consumer pushes the scene changes to the adapter at the 
beginning of each frame, ultimately resulting in a synchronized scene on a per frame basis. For this 
purpose, the PushScene method of the adapter is utilized, transmitting the delta scene changes using 
the MSceneUpdate class.  Next, similar to the MMU workflow, the prerequisites of the instruction are 
checked. If the prerequisites are fulfilled the instruction is assigned. Different to the direct accessing 
of the MMUs, at each call, the sessionID and mmuID must be additionally specified to allow the adapter 
identifying the respective MMUs. For the actual frame wise computation of the motions, the DoStep 
method of the adapter with the specified mmuID and sessionID. Internally, again, the respective MMU 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 82/98 
 

is called and the result returned to the consumer. The adapter therefore acts as proxy between the 
consumer and MMU. 

 

Figure 95 Sequence diagram of the computation phase of the adapter. 

Termination phase: 

To terminate specific MMUs, the Dispose function specifying the mmuID and session ID is used. 
Moreover, after all MMUs have been disposed, the session can be closed using the CloseSession 
method. Internally, the adapter releases the allocated resources for the specified session. Finally, the 
consumer must terminate the adapter application (process). If the adapter process is closed, the 
adapter unregisters at the central Launcher using the Unregister method. In this way, the adapter is 
not any more visible to further consumers in the MOSIM framework environment. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 83/98 
 

 

Figure 96 Sequence diagram of the termination phase of the adapter. 

 

3.3.4 Co-Simulation 

The co-simulation is generally responsible for executing the MMUs and generating an approved 
motion based on the underlying simulation approaches. As input, a sequence of instructions, as 
generated by the behavior execution is provided. The output is a feasible human posture for each 
frame. In the following, the execution sequence for the co-simulation is illustrated. The network 
communication in between is not further considered. Figure 97 visualizes the sequence diagram of the 
proposed co-simulation. 

Initially, the consumer assigns instruction(s) to the co-simulation calling the AssignInstruction method. 
Since the MInstruction class can contain a further list of multiple instructions, it is also possible to 
provide several instructions as input. Internally, the co-simulation stores the instructions in a queue 
and returns a response whether the assignment was successful (MBoolResponse). Similar, to the 
MMUs, the co-simulation is also triggered by the DoStep function, which is cyclically called by the 
consumer. Within the DoStep routine, the co-simulation iterates over all MMUs according to its 
priorities and determines the next instruction to be executed. If the prerequisites of the instruction 
are fulfilled, the instruction is assigned to respective MMUs. Once the instruction is assigned, the MMU 
is called until it raises a finished event, or is externally aborted. The co-simulation furthermore, 
incorporates the results of the different MMUs. The result of the DoStep method is the incorporated 
result, represented as MSimulationResult. 

 

 

 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 84/98 
 

 

Figure 97 Sequence diagram for the co-simulation. 

3.3.5 Behavior Execution 

The Behavior Model & Execution Unit is an important mediator between the task description to be 
simulated and the final result, as it queries the state of the scene and decides based on this, which 
motions or MMUs are to be executed. Figure 98 visualizes the sequence diagram of the behavior 
execution workflow. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 85/98 
 

 

Figure 98 Sequence diagram of the behavior execution workflow. 

As described in the previous chapter, a simulated worker is represented in our approach by a software 
agent. For the administration of software agents, i.e. the creation, deletion or execution of such agents, 
four endpoints are offered:  

 MBehaviorExecution:CreateAgent(MTemplate:ID,name,MInitialKnowledge): In order to create 
an agent, a reference to a predefined agent template is required, which contains, among other 
things, behavior models that the agent should use; a name; and the initial agent knowledge. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 86/98 
 

This knowledge contains scene information and configuration data with which the agent can 
start with. 

 MBehaviorExecution:ListAgents(): This function lists all agents. 

 MBehaviorExecution:DeleteAgent(MAgent:ID): This function deletes the agent with the 
submitted ID. 

 MAgent:Percieve(list<MSceneUpdate>): by sending scene updates to a particular agent, its 
reasoning cycle is activated because something in the scene has changed, and the agent may 
need to react. Internal BTs process this incoming information and decide how to deal with the 
new situation. These updates can be sent either event or game-tick based.  

The reaction to new situations depends on the BT nodes used in a behavioral model. Either the updated 
agent knowledge is queried to check a particular situation and decide which behavior to execute later. 
Alternatively, new knowledge is generated based on the current situation or the current knowledge is 
updated. Besides these internal actions, the agent can also interact with other MOSIM components 
like the scene itself, the co-simulator or other services: 

 MBTScene:Run(): If the agent decides in a specific situation to read out certain information from 
the scene that was not previously transmitted via the MAgent:Perceive(list<MSceneUpdate>) 
method, it is queried via the MScene:GetChanges() function. 

 MBTService:Run(): Services should offer functions in MOSIM which can be used by different 
MMUs. They can also be used to support the decision-making process during Behavior 
Execution. For example, before generating instructions, the planned path planning service 
(ComputePath(start,goal,objects,properties)), could be used to determine whether a 
MoveTo-MMU can be executed with predefined parameters. 

 MBTAction:Run(): For the generation of instructions (MInstruction) a special branch node 
(MBTEvaluation) is executed to evaluate the underlying sub-behaviors and finds out which n-
actions are to be executed next. Action nodes (MBTAction) represent motions or MMUs with 
predefined constraints that are considered during the evaluation with a simulated future agent 
state. After submitting the instructions to the co-simulator by the executed MBTAction, the 
Behavior Execution waits for responses from the co-simulator in which the status 
(MInstructionResult) of the motion generation is notified. If a new situation arises that 
requires a different instruction or if a MMU in the previously determined instruction could not 
be executed, the Behavior Execution must re-plan a new MInstruction. 

 MBTAction:Validate(MInstructionResult): The first action in a generated MInstruction validates 
the incoming MInstructionResult to its state and then changes its own state so that a new 
MInstruction can be generated. 
 
 

3.3.6 Target Engine 

The target engine is an essential component of the proposed framework. In particular, the target 
engine contains the ground through scene and triggers the overall simulation. In the figure below a 
proposed workflow for the target engine is provided. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 87/98 
 

 

Figure 99 Sequence diagram illustration the workflow from a target engine perspective. 

Initially, the target engine requests a unique session ID at the launcher/MMIRegisterService. 
Afterwards, the target engine can request the available MMUs with the associated connection 
properties from the MMIRegisterService.  Next, the target engine internally selects the desired MMUs 
to be loaded. The target engine calls the LoadMMUs method of the respective adapter in order to load 
the desired MMUs. It is noteworthy, that a MMU might be available in multiple adapters. Therefore, 
it is up to the implementation of the target engine of which adapter to use.  

After the MMUs have been successfully loaded, the target engine needs to provide the selected MMUs 
to the co-simulation. If the co-simulation is accessed using the proposed interface, a list of the unique 
id of the MMUs as well as its priorities need to be provided to the co-simulation. After the initialization 
of the co-simulation, the target engine can access its functionality. In particular, for each frame, the 
scene is pushed to each utilized adapter. The results of the co-simulation are applied to the scene at 
the end of each frame. 

 

3.3.7 Skeleton Utilization 

Despite the previously illustrated workflows, the interaction with the MSkeletonAccess depicts also a 
major aspect of the overall framework. Therefore, in the following an overview of the workflow of the 
skeleton utilization is provided. 

  



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 88/98 
 

 

Figure 100 Sequence diagram illustration the workflow of the skeleton utilization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 89/98 
 

4 Summary and conclusions  

Within the document, a first draft of the planned standard is proposed. In particular, the overall 
concept of the MOSIM framework was introduced. A detailed overview of the components and its 
interfaces was given. Moreover, the workflows of the components were described in detail. The 
document should serve as a base for utilizing and implementing the MOSIM framework. 

Note that the document is considered as a living and dynamic document which is updated throughout 
the progress of the MOSIM project. In particular, the interfaces, formats and workflows, as described 
within this document are a first draft and are utilized at a starting point for the implementation phase 
of the project. However, feedback and gained knowledge during the implementation will be fed back 
to this document and the proposed framework will be adjusted. Especially with regard to the 
constraints, major adjustments are expected, since the corresponding task, which will focus on the 
design of constraints, has not started yet. 

With the provided thrift files and the presented class diagrams in addition to the document, a first 
version of the MMI framework can be implemented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 90/98 
 

5 References 

 

[1]  ITEA, "ITEA Project 07006 MODELISAR," [Online]. Available: 
https://itea3.org/project/modelisar.html. [Accessed 14 8 2019]. 

[2]  T. Blochwitz, T. Neidhold, M. Otter, M. Arnold, C. Bausch, M. Monteiro, C. Clauß, S. Wolf, H. 
Elmqvist, H. Olsson, A. Junghanns, J. Mauss, D. Neumerkel and J.-V. Peetz, "The functional 
mockup interface for tool independent exchange of simulation models," 8th International 
Modelica Conference 2011. Proceedings : March 20th-22nd, Technical Univeristy, Dresden, 
Germany, 2011.  

[3]  B. Wang and J. S. Baras, "Hybrid Sim: A modeling and co-simulation toolchain for cyber-physical 
systems," Proceedings of the 2013 IEEE/ACM 17th International Symposium on Distributed 
Simulation and Real Time Applications, pp. 33-40, 2013.  

[4]  B. Van Acker, J. Denil, H. Vangheluwe and P. De Meulenaere, "Generation of an optimised master 
algorithm for fmi co-simulation," In Proceedings of the Symposium on Theory of Modeling & 
Simulation: DEVS Integrative M&S Symposium, pp. 205-212, 2015.  

[5]  J. Bastian, C. Clauß, S. Wolf and P. Schneider, "Master for co-simulation using fmi," Proceedings 
of the 8th International Modelica Conference, pp. 115-120, 2011.  

[6]  F. Gaisbauer, P. Agethen, M. Otto, T. Bär, J. Sues and E. Rukzio, "Presenting a Modular Framework 
for a Holistic Simulation of Manual Assembly Tasks," Proc. of 51th CIRP Conference on 
Manufacturing Systems (CMS, 2018.  

[7]  F. Gaisbauer, P. Agethen, T. Bär and E. Rukzio, "Introducing a Modular Concept for Exchanging 
Character Animation Approaches," Proc. of Eurographics, 2018.  

[8]  F. Gaisbauer, J. Lehwald, P. Agethen, J. Sues and E. Rukzio, "Proposing a Co-simulation Model for 
Coupling Heterogeneous Character Animation Systems," 14th International Joint Conference on 
Computer Vision, Imaging and Computer Graphics Theory and Applications (GRAPP), 2019.  

[9]  I. Zinnikus, A. Antakli, P. Kapahnke, M. Klusch, C. Krauss, A. Nonnengart and P. Slusallek, 
"Integrated Semantic Fault Analysis and Worker Support for Cyber-Physical Production Systems," 
2017 IEEE 19th Conference on Business Informatics (CBI), vol. 01, pp. 207-216, 2017.  

[10]  A. Antakli, E. Z. I. H. D. Herrmann and K. Fischer, "Intelligent Distributed Human Motion 
Simulation in Human-Robot Collaboration Environments," IVA '18: International Conference on 
Intelligent Virtual Agents. International Conference on Intelligent Virtual Agents (IVA-2018), 
November 5-8, Sydney, New South Wales, Australia, 2018.  

[11]  Apache, "Apache Thrift," [Online]. Available: https://thrift.apache.org/. [Accessed 13 8 2019]. 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 91/98 
 

[12]  BML, "Behavior Markup Language Website," [Online]. Available: 
http://www.mindmakers.org/projects/bml-1-0/wiki. [Accessed 13 8 2019]. 

[13]  S. Kopp, K. B. S. Marsella, A. Marshall, C. Pelachaud, H. Pirker, K. Thorisson and H. Vilhjalmsson, 
"Towards a common framework for multimodal generation: The behavior markup language," 
Proc. of Intelligent Virtual Agents (IVA’06), 2006.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 92/98 
 

6 Appendix 

6.1 Exemplary MMU Description File 

{ 

  "Name": "UnityLocomotionMMU", 

  "ID": "4b8e33c0-2db1-424a-96a8-ca9fdcbcb56a", 

  "AssemblyName": "UnityLocomotionMMU.dll", 

  "MotionType": "walk", 

  "Language": "UnityC#", 

  "Author": "Felix Gaisbauer, Daimler AG", 

  "Version": "1.0", 

  "SupportedProportions": { }, 

  "Properties": { }, 

  "Dependencies": ["unitylocomotionmmu" ], 

  "Events": [ ], 

  "LongDescription": "Implementation of a locomotion MMU which actually models walking from point a to point b.  
    The MMU uses the path planning service.", 

  "ShortDescription": "Data driven locomotion MMU based on the Unity Engine.", 

  "Parameters": [ 

    { 

      "Name": "TargetID", 

      "Type": "string", 

      "Description": "The id of the target object/transform. Either Target ID or Target Name must be defined.", 

      "Required": true 

    }, 

    { 

      "Name": "TargetName", 

      "Type": "string", 

      "Description": "The name of the target object/transform. Either Target ID or Target Name must be defined.", 

      "Required": true 

    }, 

    { 

      "Name": "ReplanningTime", 

      "Type": "int", 

      "Description": "The timespan [ms]after which the replanning is performed.", 

      "Required": false 

    }, 

    { 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 93/98 
 

      "Name": "Velocity", 

      "Type": "float", 

      "Description": "The velocity of the avatar [m/s].", 

      "Required": false 

    }, 

    { 

      "Name": "TransitionModeling", 

      "Type": "bool", 

      "Description": "Specifies whether the transition modeling is enabled.", 

      "Required": false 

    }, 

    { 

      "Name": "Trajectory", 

      "Type": "list<MVector2>", 

      "Description": "An optional trajectory which can be defined.", 

      "Required": false 

    } 

  ], 

  "__isset": { 

    "SupportedProportions": true, 

    "Properties": true, 

    "Dependencies": true, 

    "Events": true, 

    "LongDescription": true, 

    "ShortDescription": true, 

    "Parameters": true 

  } 

} 

 

6.2 Exemplary file of the Skeleton 

 

HIERARCHY 
ROOT PelvisCentre 
{ 
   OFFSET X Y Z 
   ROTATION W X Y Z 
   CHANNELS Xoffset Yoffset Zoffset Xrotation Yrotation Zrotation 
    



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 94/98 
 

   JOINT S1L5joint 
   { 
      OFFSET X Y Z 
      ROTATION W X Y Z 
      CHANNELS Xrotation Yrotation Zrotation 
       
      JOINT T12L1joint 
      { 
         OFFSET X Y Z 
         ROTATION W X Y Z 
         CHANNELS Xrotation Yrotation Zrotation 
          
         JOINT T1T2joint 
         { 
            OFFSET X Y Z 
            ROTATION W X Y Z 
            CHANNELS Xrotation Yrotation Zrotation 
             
            JOINT C4C5joint 
            { 
               OFFSET X Y Z 
               ROTATION W X Y Z 
               CHANNELS Xrotation Yrotation Zrotation 
                
               JOINT Headjoint 
               { 
                  OFFSET X Y Z 
                  ROTATION W X Y Z 
                  CHANNELS Xrotation Yrotation Zrotation 
                   
                  JOINT MidEye 
                  { 
                     OFFSET X Y Z 
                     ROTATION W X Y Z 
                     CHANNELS Xrotation Yrotation 
                  } 
               } 
            } 
            JOINT LeftShoulder 
            { 
               OFFSET X Y Z 
               ROTATION W X Y Z 
               CHANNELS Xoffset Yoffset Zoffset Xrotation Yrotation Zrotation 
                
               JOINT LeftElbow 
               { 
                  OFFSET X Y Z 
                  ROTATION W X Y Z 
                  CHANNELS Yrotation Zrotation 
                   
                  JOINT LeftWrist 
                  { 
                     OFFSET X Y Z 
                     ROTATION W X Y Z 
                     CHANNELS Xrotation Yrotation Zrotation 
                      
                     # Finger Joints 
                  } 
               } 
            } 
            JOINT RightShoulder 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 95/98 
 

            { 
               OFFSET X Y Z 
               ROTATION W X Y Z 
               CHANNELS Xoffset Yoffset Zoffset Xrotation Yrotation Zrotation 
                
               JOINT RightElbow 
               { 
                  OFFSET X Y Z 
                  ROTATION W X Y Z 
                  CHANNELS Yrotation Zrotation 
                   
                  JOINT RightWrist 
                  { 
                     OFFSET X Y Z 
                     ROTATION W X Y Z 
                     CHANNELS Xrotation Yrotation Zrotation 
                      
                     # Finger Joints 
                  } 
               } 
            } 
         } 
      } 
   } 
   JOINT RightHip 
   { 
      OFFSET X Y Z 
      ROTATION W X Y Z  
      CHANNELS Xoffset Yoffset Zoffset Xrotation Yrotation Zrotation 
       
      JOINT RightKnee 
      { 
         OFFSET X Y Z 
         ROTATION W X Y Z  
         CHANNELS Yrotation Zrotation 
          
         JOINT RightAnkle 
         { 
            OFFSET X Y Z 
            ROTATION W X Y Z  
            CHANNELS Xrotation Yrotation Zrotation 
             
            JOINT RightBall  
            { 
               OFFSET X Y Z 
               ROTATION W X Y Z  
               CHANNELS Xrotation Yrotation Zrotation 
            } 
         } 
      } 
   } 

} 

... 
JOINT LeftWrist 
{ 
  OFFSET X Y Z 
  ROTATION W X Y Z 
  CHANNELS Xrotation Yrotation Zrotation 
   
  JOINT LeftThumbMidcarpalJoint 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 96/98 
 

  { 
    OFFSET X Y Z 
    ROTATION W X Y Z 
    CHANNELS Yrotation 
     
    JOINT LeftThumbMetacarpophalangealJoint 
    { 
      OFFSET X Y Z 
      ROTATION W X Y Z 
      CHANNELS Xrotation Yrotation 
       
      JOINT LeftThumbCarpalInterphalangealJoint 
      { 
        OFFSET X Y Z 
        ROTATION W X Y Z 
        CHANNELS Yrotation 
         
      } 
    } 
  } 
  JOINT LeftIndexMidcarpalJoint 
  { 
    OFFSET X Y Z 
    ROTATION W X Y Z 
    CHANNELS Yrotation 
     
    JOINT LeftIndexMetacarpophalangealJoint 
    { 
      OFFSET X Y Z 
      ROTATION W X Y Z 
      CHANNELS Xrotation Yrotation 
       
      JOINT LeftIndexCarpalProximalInterphalangealJoint 
      { 
        OFFSET X Y Z 
        ROTATION W X Y Z 
        CHANNELS Yrotation 
         
        JOINT LeftIndexCarpalDistalInterphalangealJoint 
        { 
          OFFSET X Y Z 
          ROTATION W X Y Z 
          CHANNELS Yrotation 
        } 
      } 
    } 
  } 
  JOINT LeftMiddleMidcarpalJoint 
  { 
    OFFSET X Y Z 
    ROTATION W X Y Z 
    CHANNELS Yrotation 
     
    JOINT LeftMiddleMetacarpophalangealJoint 
    { 
      OFFSET X Y Z 
      ROTATION W X Y Z 
      CHANNELS Xrotation Yrotation 
       
      JOINT LeftMiddleCarpalProximalInterphalangealJoint 
      { 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 97/98 
 

        OFFSET X Y Z 
        ROTATION W X Y Z 
        CHANNELS Yrotation 
         
        JOINT LeftMiddleCarpalDistalInterphalangealJoint 
        { 
          OFFSET X Y Z 
          ROTATION W X Y Z 
          CHANNELS Yrotation 
        } 
      } 
    } 
  } 
  JOINT LeftRingMidcarpalJoint 
  { 
    OFFSET X Y Z 
    ROTATION W X Y Z 
    CHANNELS Yrotation 
     
    JOINT LeftRingMetacarpophalangealJoint 
    { 
      OFFSET X Y Z 
      ROTATION W X Y Z 
      CHANNELS Xrotation Yrotation 
       
      JOINT LeftRingCarpalProximalInterphalangealJoint 
      { 
        OFFSET X Y Z 
        ROTATION W X Y Z 
        CHANNELS Yrotation 
         
        JOINT LeftRingCarpalDistalInterphalangealJoint 
        { 
          OFFSET X Y Z 
          ROTATION W X Y Z 
          CHANNELS Yrotation 
        } 
      } 
    } 
  } 
  JOINT LeftLittleMidcarpalJoint 
  { 
    OFFSET X Y Z 
    ROTATION W X Y Z 
    CHANNELS Yrotation 
     
    JOINT LeftLittleMetacarpophalangealJoint 
    { 
      OFFSET X Y Z 
      ROTATION W X Y Z 
      CHANNELS Xrotation Yrotation 
       
      JOINT LeftLittleCarpalProximalInterphalangealJoint 
      { 
        OFFSET X Y Z 
        ROTATION W X Y Z 
        CHANNELS Yrotation 
         
        JOINT LeftLittleCarpalDistalInterphalangealJoint 
        { 
          OFFSET X Y Z 



 

MOSIM 
End-to-end Digital Integration based on Modular 

Simulation of Natural Human Motions 
ITEA 3, 17028 

 
Project Coordinator: Thomas Bär, Daimler AG 

 

 

 98/98 
 

          ROTATION W X Y Z 
          CHANNELS Yrotation 
        } 
      } 
    } 
  } 
} 
... 

 

 

 


