

Standards in

Software
Test Automation

2

This is the fourth booklet in a series
from the

EUREKA ITEA 3
TESTOMAT Project

 The Next Level of Test Automation

Please follow us on:

Web:https://www.testomatproject.eu/
Twitter: @TestomatProject
YouTube:https://www.youtube.com/tes
tomatproject

https://www.testomatproject.eu/
https://www.youtube.com/testomatproject
https://www.youtube.com/testomatproject

3

Content
1. What is the purpose of standards?
2. Why is TESTOMAT Project

interested in these standards?
3. Standardization Bodies
4. General Testing Standards
5. Model Based Testing Standard-

UML
6. ETSI Testing and Test Control
7. Domain Specific Standards
8. Conclusion and Discussion on

Standards

4

1. What is the purpose of the
standards?
There are many types of organizations
producing software and development
methodologies e.g., information
technology (IT), personal computers
(PC), embedded, mobile, and scientific,
Agile, waterfall, large and small
production organizations. These
factors influence software testing as
well as if a standard should or would be
used [see ref 2].

A standard is an agreed way of doing
something, e.g. a product, managing a
process, delivering a service.
Standards can cover a vast range of
activities and specify the smallest
detail. The software industry, as one of
the fastest growing businesses over the

5

last two decades, is also facing the
problem of global competition.

The selection of standard is a crucial
decision affecting the future of the
organization in particular, and industry
in general. Many of them provide a
good learning of process and best
practice.

For example, Software Quality
Management (SQM) is to manage the
quality of software and its development
process. Then (QMS) can help in every
aspect, e.g. organizational structure,
procedures, processes and resources
needed to implement in order to
achieve quality management, [see ref.
12].
In automated testing for quality
standards, different standards are used

6

for different type of domains. E.g. the
manufacturing industry must meet strict
quality standards.

Often these mandatory standards boil
down to ensuring that a certain quality
property is present or absent,
regardless of the system run.

In general standards, the usage of
following a standard has become more
of a marketing advantage on a
volunteer basis, than a mandatory
fulfillment.

Following a standard means a
competitive advantage, and it is
common that companies follow the
main stream in their area of working. In
some domains, it is very restricted by
regulatory laws, e.g. to operate an

7

aircraft or drone and how their software
systems work and are verified. This
requires extensive testing.

For example governance systems often
fall under specific national laws of what
needs to be recorded from the system,
and lately the GDPR1 laws impact how
data of systems needs to be taken care
of, including access, and times of
saving it, and much more.

Standards describe a current ‘body of
knowledge’ that provides the basis for a
professional discipline:
● Communication
● Common terminology
● Professional qualifications
● Certification/compliance schemes

1 GDPR (The General Data Protection Regulation)

8

● Benchmark of ‘good industry
practice’

● Contracts
● Interoperability and consistency.

These guideline documentations reflect
agreements on products, practices, or
operations by: national or international
associations; recognized industrial,
professional and trade associations or
governmental bodies [see ref. 8]. As a
result, these bodies are rarely based on
solid scientific ground, and have
sometimes also commercial intentions.
The work in Hatcliff, [see ref. 3] remarks
that industry’s capability to verify and
validate critical systems has not kept up
with the ever-increasing complexity of
software- intensive systems.
Specifically, it is claimed that mere
compliance with existing standards,

9

techniques, and regulations cannot
guarantee the safety properties of
these systems.

2. Why is TESTOMAT Project
interested in these standards?
Several techniques are becoming more
automated in the last few years, such
as testing, monitoring or customer
feedback; however, the potential for
automating quality properties analysis
has not yet been sufficiently studied
[see ref. 4].

In general, the Technology Readiness
Levels (TRL) of the automated
solutions in testing for quality standards
vary depending on the domain,
applicable standards, and quality
attributes of interest. The goal for each
tool targeted in TESTOMAT Project will

10

be to raise its TRL by at least one level.
We estimate that current TRL levels for
the knowledge providers are 3-4, thus it
seems realistic that every tool could
reach at least TRL levels 4-5. As a part
of this project, we thought we would
share our insights working with
Standardizations.

3. Standardization Bodies
There are thousands of standards
organizations around the world, and
they can standardize pretty much
anything to make life easier, safer, and
more productive, or with the purpose of
commercial intention to close
alternatives out.

11

Figure 1. Standardization Bodies2
Often, these bodies have agreements
to cooperate with each other. They may
endorse each other’s standards, build
upon them, and/or purposely avoid
duplicating efforts [see ref. 1]. A small
selection of standardization bodies is
shown in the Figure 1.

2 Taken from https://www.bcs.org/upload/pdf/sreid-
120913.pdf

https://www.bcs.org/upload/pdf/sreid-120913.pdf
https://www.bcs.org/upload/pdf/sreid-120913.pdf

12

4. General Testing Standards
The development of software quality
and safety standards has given
momentum to recent developments in
software testing. The standard ISO
25010, derived from earlier standard
ISO/IEC 9126, contains the
characterizes quality hierarchically.

There are 8 major headings: functional
suitability, reliability, usability,
performance efficiency, maintainability,
and compatibility, with 26 sub-
headings.

Since ISO 25010 includes issues such
as security, environmental, and health
and safety risk, it partly overlaps
software safety certification standards.
See later about these. In fact, ISO
25010 merely defines quality attributes

13

and 25023 describes some simple one-
tier metrics.

While ISO 25020 does include a
measurement reference model, market
analysis has shown that less than 28%
of companies use the standard models
and 71% have developed their own
variant [see ref. 13]. Therefore, it is
generally considered necessary to
build experimental research tools to
integrate a quality model with a
practical assessment toolkit. Such
research has led to the quality
dashboard concept; presenting data
provided by quality measurement tools
(e.q. QALab, Sonar, XRadar) with the
goal of providing an overview of the
quality data of a software system.
Unfortunately, current dashboards
generally lack a connection between

14

metrics used and quality factors, thus
impacts and rationales for the metrics
are missing. On the other hand, a
couple of landmark models do integrate
measurements and quality factors, e.g.
COQUAMO [see ref. 14], COQUALMO

[see ref. 15] and the QUAMOCO
project which is the benchmark for
software quality Quamoco.
Unfortunately, these models would be
important but are not updated to
modern agile and DevOps software
development, and therefore partly
obsolete and in need of new
scientifically sound metrics.
Many organizations around the globe
develop and implement different
standards to improve the quality needs
of their software. This following chapter
briefly describes some of the widely

15

used standards related to Quality
Assurance and Testing.

Software Testing ISO Standards:
ISO/IEC 9126 (that is now obsolete and
replaced by the ISO/IEC 25000-series).
This standard deals with the following
aspects to determine the quality of a
software application: Quality model,
External metrics, Internal metrics and
Quality in use metrics.

This standard presents some set of
quality attributes for any software such
as: Functionality, Reliability, Usability,
Efficiency and Maintainability.

ISO/IEC 9241-11: This standard deals
with the extent to which a product can
be used by specified users to achieve
specific goals with Effectiveness,

16

Efficiency and Satisfaction in a
specified context of use. This standard
proposed a framework that describes
the usability components and the
relationship between them. In this
standard, the usability is considered in
terms of user performance and
satisfaction.

ISO/IEC 25000-series
ISO/IEC 25010 (2011) - Systems and
Quality Models is commonly known as
the standard providing guidelines for
Software Quality Requirements and
Evaluation, SQuaRE. It aimed to
replace ISO/IEC 9126. This standard
helps in organizing and enhancing the
process related to software quality
requirements and their evaluations.

17

SQuaRE is divided into sub-parts such
as:
• ISO 2500n - Quality Management

Division
• ISO 2501n - Quality Model Division
• ISO 2502n - Quality Measurement

Division
• ISO 2503n - Quality Requirements

Division
• ISO 2504n - Quality Evaluation Division

The main contents of SQuaRE are:
● Terms and definitions
● Reference Models
● General guide
● Individual division guide
● And the actual standard which is

related to Requirement
Engineering (i. e. specification,

18

planning, measurement and
evaluation process)3.

ISO/IEC 25020 - Measurement
reference model and guide: This
standard provides an explanation and a
reference model that is common to
quality measure elements. It provides
measures of software product quality
and quality in use and guidance to
users for selecting or developing and
applying measures.

ISO/IEC 25021 - Quality measure
elements: Defines a set of
recommended base and derived
measures, which are intended to be
used during the whole software
development life cycle. The document

3 Software Testing - ISO Standards

19

describes a set of measures that can be
used as an input for the software
product quality or software quality in
use measurement.

ISO/IEC 25022 - Measurement of
quality in use: Describes a set of
measures and provides guidance for
measuring quality in use through five
areas: Effectiveness, Efficiency,
Satisfaction, Freedom from Risk, and
Context Coverage, with its 11 sub-
characteristics.

ISO/IEC 25023 - Measurement of
system and software product
quality: Describes a set of measures
and provides guidance for measuring
system and software product quality. It
contains definitions and suggested
measurements of System/Software

20

Product Quality characteristics:
Functional suitability, Performance
Efficiency, Compatibility, Usability,
Reliability, Security, Maintainability,
and Portability. Each of these
characteristics is further divided into 31
sub- characteristics. See Figure 2.

Figure 2. System/Software Product Quality

ISO/IEC 25024 - Measurement of data
quality: Defines quality measures for
quantitatively measuring data quality in

21

terms of characteristics defined in
ISO/IEC 25012.

ISO/IEC 25030 - Quality Requirements:
Provides requirements and guidance
for the process used to develop quality
requirements, as well as requirements
and recommendations for quality
requirements.

ISO/IEC 25040 - Evaluation reference
model and guide: Contains general
requirements for specification and
evaluation of software quality. Provides
a framework for evaluating the quality
of software product and states the
requirements for methods of software
product measurement and evaluation.

22

ISO/IEC 25041 - Evaluation guide for
developers, acquirers and
independent evaluators: Provides
requirements, recommendations and
guidelines for developers, acquirers
and independent evaluators of the
system and software product.

ISO/IEC 25042 - Evaluation modules:
Defines the structure and content of the
documentation to be used to describe
an evaluation module. These
evaluation modules contain the
specification of the quality model, the
associated data and information about
its application.

ISO/IEC 25045 - Evaluation module
for recoverability: Provides the
specification to evaluate the sub
characteristic of recoverability defined

23

under the characteristic of reliability of
the quality model (ISO 25000).

ISO/IEC 12119: This standard deals
with software packages delivered to the
client. It does not focus or deal with the
clients’ production process. The main
contents are related to the following
items:
● Set of requirements for software

packages.
● Instructions for testing a delivered

software package against the
specified requirements (Software
Testing - ISO Standards).

ISO/IEC/IEEE 29119 Software and
Systems Engineering Software
Testing: Is an attempt to unify several
standards (the old IEEE Std 829, and
BS7925-1 and 2).
● Part 1: Concepts and definitions

24

● Part 2: Test processes
● Part 3: Test documentation
● Part 4: Test techniques
● Part 5: Keyword-driven testing

ISO/IEC/IEEE 29119-4:2015 [see
ref. 8]

Figure 3. ISO/IEC 29119 –Structure4
Even if this standard is recent, it misses
several scientific established and

4 Taken from https://www.bcs.org/upload/pdf/sreid-
120913.pdf

https://www.bcs.org/upload/pdf/sreid-120913.pdf
https://www.bcs.org/upload/pdf/sreid-120913.pdf
https://www.bcs.org/upload/pdf/sreid-120913.pdf

25

automatic approaches, like e.g. search-
based testing, constraint modelling etc.
It further lacks focus on e.g. test
automation, concurrency (hardware)
etc.

ISO/IEC/IEEE 29119-1 Concepts and
definitions: Facilitates the use of the
other parts of the standard by
introducing the vocabulary on which the
standard is built and provides examples
of its application in practice. Part 1
provides definitions, a description of the
concepts of software testing, and ways
to apply these definitions and concepts
to the other parts of the standard [see
ref. 8].See figure 4.

26

Figure 4. Concepts & Vocabulary5

ISO/IEC/IEEE 29119-2 Test
processes: Part 2 defines a generic
test process model for software testing
that is intended for use by organizations
when performing software testing. See
figure 5. It comprises test process
descriptions that define the software

5 Taken from https://www.bcs.org/upload/pdf/sreid-
120913.pdf

https://www.bcs.org/upload/pdf/sreid-120913.pdf
https://www.bcs.org/upload/pdf/sreid-120913.pdf

27

testing processes at the organizational
level, test management (project) level,
and dynamic test process levels. The
processes defined in this standard can
be used in conjunction with different
software development lifecycle models
[see ref. 8]

Figure 5. Testing Processes6

6 Taken from https://www.bcs.org/upload/pdf/sreid-
120913.pdf

https://www.bcs.org/upload/pdf/sreid-120913.pdf
https://www.bcs.org/upload/pdf/sreid-120913.pdf

28

ISO/IEC/IEEE 29119-3 Test
documentation: Part 3 deals with
software test documentation and
includes templates and test
documentation examples that are
produced during the test process
(based on IEEE Std 829).

The documents that are defined in
ISO/IEC/IEEE 29119-3 are as follows:
Organizational Test Process
Documentation:
● Test Policy
● Organizational Test Strategy
Test Management Process
Documentation:
● Test Plan (incl. a Test Strategy)
● Test Status
● Test Completion
Dynamic Test Process Documentation:
● Test Design Specification
● Test Case Specification

29

● Test Procedure Specification
● Test Data Requirements
● Test Data Readiness Report
● Test Environment Requirements
● Test Environment Readiness Report
● Actual Results
● Test Result
● Test Execution Log
● Test Incident Report [see ref. 8]

Figure 6. Test Documentation7

7 Taken from https://www.bcs.org/upload/pdf/sreid-
120913.pdf

https://www.bcs.org/upload/pdf/sreid-120913.pdf
https://www.bcs.org/upload/pdf/sreid-120913.pdf

30

ISO/IEC/IEEE 29119-4 Test
Techniques: Part 4 provides standard
definitions of software test design
techniques and corresponding
coverage measures that can be used
during the test design and
implementation processes.

The standard's test design techniques
are categorized into three main
categories: Specification, Structure and
Experience-Based Test Design
Techniques. Note that particularly this
standard is not up to date on automatic
and more recent test design techniques
like mutation testing, search-based
testing, property-based testing and
similar approaches.

31

Figure 7. Test Techniques8

ISO/IEC/IEEE 29119-5 Keyword-
driven testing: This standard covers
so called keyword-driven testing, which
is basically an acronym of using
macro’s, and as such simplifying a test
procedure. This standard is intended
for users "who want to create keyword-
driven test specifications, create

8 Taken from https://www.bcs.org/upload/pdf/sreid-
120913.pdf

https://www.bcs.org/upload/pdf/sreid-120913.pdf
https://www.bcs.org/upload/pdf/sreid-120913.pdf

32

corresponding frameworks, or build test
automation based on keywords [see
ref. 8].

IEEE 829 Test documentation: IEEE
829-2008, also known as the 829
Standard for Software and System Test
Documentation, was an IEEE standard
that specified the form of a set of
documents for use in eight defined
stages of software testing and system
testing, where each stage potentially
producing its own separate type of
document. This standard is included in
ISO/IEC/IEEE 29119.

The main change is it encompasses
details of what should be contained in a
test plan, and that the master test plan
guiding sub-test plans, to create a
planning hierarchy. Of course, this is

33

obsolete as planning, but important, as
it defines all stages (to be documented)
for traceability in the test process.

IEEE 610 - Standard glossary of
software engineering terminology:
IEEE Std 610.12 is a revision and re-
designation of IEEE Std 729. This
standard contains definitions for more
than 1000 terms, establishing the basic
vocabulary of software engineering.
Building on a foundation of American
National Standards Institute (ANSI) and
the International Organization for
Standardization (ISO) terms.

Unfortunately, very few of the IEEE
standard vocabularies are aligned, and
these vocabularies have not kept up
with the area of software testing, or
automation. Instead IEEE launched
SWEBOOK to resolve the diversity.

34

1044-IEEE standard classification
for software anomalies (2009): This
standard provides for the core set of
attributes for classification of failures
and defects. It is recognized that there
are other attributes of failures or defects
that are of unique value to specific
applications or business requirements.

The aim here is that this standard is
applicable to any software (including
operating systems, database
management systems, applications,
testware, firmware, and embedded
software) and to any phase of the
project, product, or system life cycle by
which the software is developed,
operated, and sustained. Classification
attributes are unaffected by the choice
of life cycle model, and that choice is
outside the scope of this standard.
Some tailoring of classification attribute

35

values based on the chosen life cycle is
expected and consistent with the intent
of this standard.

 IEEE 106: A methodology for
establishing quality requirements,
identifying, implementing, analyzing,
and validating the process, and product
of software quality metrics.

IEEE 730: A standard for software
quality assurance plans.

IEEE 830: A guide for developing
system requirements specifications.
This is a beginner guide, but lacks
automation approaches, e.g. modelling
of requirements.
IEEE 1008: A standard for unit testing.
This standard has some old, but basic
approaches for unit testing, addressing
mostly procedural languages. And

36

missing most of the advancements of
Static Analysis and more modern test
technologies, e.g. mutation testing or
search-based testing existing today,
and as such basing itself in a relative
manual approach.

IEEE 1012: A standard for Software
Verification and Validation. This
standard is on a very high level, and
therefore easy to follow.

IEEE 1028: A standard for software
inspections. There is a simple (time
consuming) manual view of this
process, originating from Fagan
Inspections. It does not adhere to best
practice.

IEEE 1059: Guide for Software
Verification and Validation Plans.

37

IEEE 1061: A standard for software
quality metrics and methodology. This
standard has also a mark of being too
old.

IEEE 12207: A standard for software
life cycle processes and life cycle data.

BS 7925-1: Yet another vocabulary of
terms and definitions used in software
testing.

BS 7925-2: A standard for software
component testing now in (Software
Testing - ISO Standards). Basic metrics
for testing simple coverage.

Both of the BS standards has been
included in the new ISO/IEC/IEEE
29119 standard.

38

5. Model Based Testing Standard -
UML
5.1 OMG UML Testing Profile
The OMG UML Testing Profile
standards (i.e., version 1.x - the latest
published version was 1.3 - and version
2.0) are standardized test modeling
language based on UML for designing,
visualizing, specifying, analyzing,
constructing, and documenting relevant
artifacts of various testing approaches.
Since UML lacks dedicated testing
concepts, UTP closes this conceptual
gap of UML on one hand by introducing
dedicated concepts on abstract syntax
level. On the other hand, it supports a
visual and (semi-)formal approach of
building test specifications.

UTP is independent of any particular
methodology, thus, enabling its

39

application in various domains and
project contexts. Furthermore, UTP
reuses UML’s graphical syntax
(diagrams) in order to leverage the well-
established notation of UML for testing
purposes. Clear notations help to
overcome communication barriers
among stakeholders. Since both
system architects/engineers and test
engineers leverage the very same
underlying modeling language, a better
understanding of the outcome of either
side is fostered by UTP.

5.2 UML Testing Profile 1.x (UTP 1)
As far back as 2001, a dedicated
working group at the OMG applied itself
to collecting industry accepted testing
practices and concepts in order to
make them available for MBT
approaches.

40

These efforts resulted in the adoption of
the UML Testing Profile (UTP) 1.0 by
the OMG in 2005 [2]. UTP 1.0 was the
first UML profile that was standardized
for the renewed UML 2.0; it was even
released before UML 2.0.

The design of UTP 1.x was influenced
by the concepts of TTCN-3. As a result,
a mapping from UTP 1.x models to
executable TTCN-3 test cases was a
part of the standard.
UTP 1.x consists of five main parts:
Test Architecture, Test Behavior,
Timer, Test Data and Test Planning,
herby described:
• Test Architecture: Offers concepts to

model the interfaces to the test item (or
system under test, SUT), the test
environment, in particular by means of
test components that run the test

41

cases, and the test configuration as
part of the test context.

• Test Behavior: Offers concepts to
define test cases, control statements
and test logs.

• Timer: Offers concepts to model timers
and the imperative use of them during
test case execution.

• Test Data: Offers concepts to define
test data and data pools. The Test Data
package is rather concise, since
concrete data values are already given
by UML Value Specifications.

• Test Planning: Offers concepts to
specify test objectives and the ability to
trace test cases to test objectives and
vice versa.

5.3 UML Testing Profile 2 (UTP 2)
In 2013, the renewal of UTP 2 started
at OMG, initiated with a Request for
Information (RFI) to solicit industrial

42

perception of UTP 1.x and needs for
UTP 2.0. Similar to UTP 1.x, UTP 2.0
primarily supports the activities of a
dynamic test process, in particular test
analysis & design, test evaluation and
the management of these activities.
Test execution is not targeted by UTP
in the first place, because UTP 2 is not
intended to be precise, yet executable
language. However, the generation of
executable test cases Is one of the
most important capabilities of UTP 2.
UTP 2 can be applied to:
● Specify the design and the

configuration of a test system
● Build the model-based test plans on

top of already existing system models.
● Model test cases & Model test data
● Model test environments
● Model deployment specifications of

test-specific artifacts

43

● Provide necessary information
pertinent to test scheduling
optimization

● Document test case execution results
● Document traceability to requirements

and other UML model artifacts.

UTP 2 offers a similar concept space as
UTP 1.x, although it offers much more
extensions. The main differences
between UTP 1.x and UTP 2 are:
● Simplification of test context and test

architectures.
● Provision of a dedicated test action

language.
● Explicit support for test design.
● Explicit integration with SysML
● Flexible arbitration also for non-

functional testing.
● Model-based test logging.

44

6. ETSI Standards
ETSI standards include world-leading
communication protocols in the
Telecom world (such as LTE, UMTS
etc.) as well as standardized test suites
for these protocols to simplify
conformance testing for vendors.
These standardized test suites are
specified with two key technical testing
standards:
● TTCN-3, and
● TDL

6.1 Testing and Test Control
Notation v3 (TTCN-3)
The standardized Testing and Test
Control Notation (TTCN-3) defines both
a strongly typed, component-based test
programming language and a test
automation architecture that enables
the implementation and automated

45

execution of test suites. TTCN-3 is
standardized by ETSI as a successor of
the TTCN (Tree and Tabular Combined
Notation). Its main application area at
ETSI was in particular for conformance,
interoperability and performance tests
of communication-based systems
including protocols, services, and
interfaces.

TTCN-3 is not a modeling language in
the sense of SysML. The language is
grammar-based and specified using
extended Backus-Naur form. It comes
along with an operational semantics
standard, thus, TTCN-3 is an
executable testing language. It defines
its own type system, independent of
any target platform or technology. Its
language is platform independent.

46

This allows for implementing TTCN-3-
based test automation solutions with
varying programming languages
retaining the ability to exchange TTCN-
3 test scripts (called modules) among
those test automation solutions.

The platform independency of TTCN-3
was one of the most important
characteristics for ETSI to develop
standardized conformance test suites
in a platform-/technology -independent
format. The TTCN-3 test automation
architecture is highly modularized.
TTCN-3 is not intended to be integrated
with a model-driven software
engineering approach, even if such
implementations exist. It is a platform-
independent specification of
executable test suites.

47

TTCN-3 contains automated test
execution of these test suites utilizing
dedicated system adaptor (SA)
implementations. System adaptors are
responsible to transform the platform-
independent types and actions into
technical requests against the system
under test and vice versa.

6.2 ETSI Test Definition Language
(TDL)
The Test Description Language (TDL)
is a language for the description of test
models with emphasis on test data and
test behavior including concepts of
time. TDL defines a standalone
metamodel, which resembles a subset
of UML. The specification includes a
comprehensive graphical syntax, which
is largely based on UML, and a
dedicated exchange format. Further,

48

there is an extension for structured test
objective specifications.

Very recently, the TDL standards family
has been enriched with a mapping to
executable TTCN-3, and with a UML
Profile for TDL.
TDL resembles UTP 1.x with respect to
its goals.
● Specification of easy-to-understand

test descriptions that can be presented
in different representation formats
suitable for different stakeholders
(graphical, textual, user-specific)

● Specification of test objectives and
development of tests by testers
lacking programming skills

● Independence from execution
languages and platforms and hiding of
implementation details

● Iterative test development along all
product development phases, from
requirements disambiguation, via

49

design, system and acceptance
testing

● Support of manually developed and
automatically generated tests by a
common platform.

Test cases described by TDL are
restricted to sequence diagrams solely.
Integration with SysML models is
achieved using the UML Profile for
TDL. A mapping to TTCN-3, which
facilitates test execution, is also part of
the standard. There is a lack of
dedicated concepts for test design
activities, test logging and test
evaluation. Similar to UTP 1.x, the
verdict calculation mechanism is static
and cannot be adapted to additional
needs.

50

7. Domain Specific Standards
7.1 Safety Critical Systems
The development of safety-critical
software systems requires the
introduction of mature development
process into the organization and the
use of acknowledged standards.
Certification of such a system relies on
the ability of the organization to
demonstrate and document proof of the
correct application of the processes
and standards. Example of safety
critical standards are ISO 26262 for
automotive, IEC 62279 for rail and
RTCA/DO-178C for avionics. Safety
standards are strongly recommended
or mandate specific testing and/or
static analysis approaches or coverage
models. These technologies are used
for specific Safety Integrity Levels
(SILs), i.e. levels that identify software

51

criticality. Furthermore, the safety
standards place strong requirements
on test processes and tools, before a
safety case can be fully certified. Most
Safety Critical Systems are regulated
both nationally in regulatory bodies,
and in organizations that are
international.

For safety-critical systems, the
certification process starts with the
initial requirements analysis. A
certification liaison person acts as the
main communicator between the
manufacturer of the system and the
certifying authority. For the specific
standards are mandatory, the liaison
will make sure that these are
documented from the very beginning of
the project. A verification plan should
be produced for approval by the

52

authority. During the project phases,
appropriate documentation and
supporting data should be produced
and submitted to the authority. A series
of reviews are conducted and if all
terms of the verification plan are met,
the certificate or license will be issue
[see ref. 11].
In principle the main caveat in safety
critical testing is keeping well described
documentation and traceability to all
artifacts. The test process and all
testing activities are then duly
performed and recorded.

53

In RTCA/ DO-178C The Test Process
of assurance can be seen in Figure 8.

Figure 8. RTCA/DO-178C Test Process

In the TESTOMAT Project our Safety
Critical parties, e.g. SAAB, Bombardier,
Ponsse, FFT, are all aiming for the
testing approach where we improved
on the existing standard. Our partners

54

check that this way of testing fulfills the
criteria for the regulatory authorities. In
fact, in the TESTOMAT Project we
have implemented new ways to test
that find more bugs on top of these
mandatory safety-critical standards.
We introduced a new test design
technology (i.e. mutation testing) that
really pushes the limit of existing
coverage requirements. Further we
found set of automation approaches
complementing non-functional testing,
by using extensive simulations – not
only saving costs, but also increasing
the reliability. As a result, we have
shown that these new approaches are
feasible to use in commercial context,
in real safety critical systems. By using
our result, we produced safer systems
at reasonable cost.

55

7. Conclusion and Discussion on
Standards
In this booklet, we have pointed out that
several techniques such as testing,
monitoring or customer feedback, have
been introduced in the last few years;
however, the potential for automating
quality properties analysis has not yet
been sufficiently studied and is lacking
in most of the existing standards
(except a few). Standards describe a
current ‘body of knowledge’ that
provides the basis for a professional
discipline (e.g., for communication,
certification schemes, compliance
schemes, interoperability and
consistency).
We can conclude that these are often
not updated with the latest research
and scientifically proven technologies.
It usually takes years for these scientific

56

results to be sufficiently cost efficient,
implemented and adapted to reach
common usage - and as such, make
their way into the standards. We still
feel that we should push further on our
findings of safety-critical software, as
this could potentially save lives. We
have taken the liberty to comment on
the actual status of some of these
standards, where there is a know-how
and experience of using them in the
TESTOMAT Project. For beginners in
the field, we think these standards
provide a good starting point for
knowledge.
In general, the Technological
Readiness Level (TRL) of the
automated solutions in testing for
quality standards vary depending on
the domain, applicable standards, and
quality attributes of interest.

57

The implementation of standards into
practice can be facilitated or hindered
depending on the factors in the
organization. The following list shows a
few of these factors:
● Understanding the standards used;
● Educating users about the benefits

and hazards of the standards;
● Using the right standards related to

the application domain;
● Using the standards only if they

provide a benefit; otherwise, they
will not be useful;

On the other hand, using too many
standards may adversely affect
software quality [see ref. 7]

References:
1. Bartleson, K. (2013). “10 Standards

Organizations That Affect You (Whether You
Know It Or Not)”.

58

https://www.electronicdesign.com/communicatio
ns/10-standards-organizations-affect-you-
whether-you-know-it-or-not

2. Hagar, J. (2014). “The Art of Software Testing
Standards”.
https://www.softwaretestpro.com/the-art-of-
software-testing-standards/

3. Hatcliff, J., Wassyng, A., Kelly, T., Comar,
C. and Jones, P. (2014). “Certifiably safe
software-dependent systems: Challenges
and directions”. In Proceedings of the
Future of Software Engineering, FOSE
2014, pages 182--200, New York, NY,
USA.

4. Harman, M., Jia, Y. and Zhang, Y. (2015)
“Achievements, open problems and
challenges for search based software
testing”. IEEE 8th International Conference
on Software Testing, Verification and
Validation (ICST), pages 1-12, April 2015.

5. ISO 25000:
https://iso25000.com/index.php/en/iso-25000-
standards/54-iso-iec-2504n

6. ISO/IEC/IEEE 29119-4:2015. “Software and
systems engineering — Software testing — Part
4: Test techniques)”
https://www.iso.org/obp/ui/#iso:std:iso-iec-
ieee:29119:-4:ed-1:v1:en

https://www.electronicdesign.com/communications/10-standards-organizations-affect-you-whether-you-know-it-or-not
https://www.electronicdesign.com/communications/10-standards-organizations-affect-you-whether-you-know-it-or-not
https://www.electronicdesign.com/communications/10-standards-organizations-affect-you-whether-you-know-it-or-not
https://www.softwaretestpro.com/the-art-of-software-testing-standards/
https://www.softwaretestpro.com/the-art-of-software-testing-standards/
https://iso25000.com/index.php/en/iso-25000-standards/54-iso-iec-2504n
https://iso25000.com/index.php/en/iso-25000-standards/54-iso-iec-2504n
https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:29119:-4:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:29119:-4:ed-1:v1:en

59

7. Laporte, C.Y. and April, A. “Software Quality
Assurance”. Wiley-IEEE Computer Society, Inc.,
2018.

8. Reid, S. (2013). “ISO/IEC/IEEE 29119, The New
International Software Testing Standards”.
Testing Solutions Group, London.
https://www.bcs.org/upload/pdf/sreid-120913.pdf

9. Software Testing - ISO Standards,
http://www.tutorialspoint.com/software_testing/s
oftware_testing_iso_standards.htm

10. The benchmark for software quality Quamoco:
 www.quamoco.de
11. Traussing, R. (2004). “Safety-Critical Systems:

Processes, Standards and Certification”.
Analysis, Design and Implementation of Reliable
Software” Seminar, Paderborn, Germany.

12. Yadav, M., Kumar, S. and Kumar, K. (2014).
“Quality standards for a software industry –A
review”. IOSR Journal of Computer Engineering
(IOSR-JCE), V. 16, pp 87-94.

13. Wagner, S. (2013). “Software product quality
control”. Springer-Verlag Berlin Heidelberg
2013, Springer, Berlin, Heidelberg

14. Roche, J. M. (1994). “Software metrics and
measurement principles”, ACM SIGSOFT
Software Engineering, Vol. 19, pp. 77-85.

15. Chulani, S. Boehm. B.; Modeling software
defect introduction and removal: COQUALMO
(COnstructive QUALity MOdel), by USC Center
for Software Engineering, 1999.

https://www.bcs.org/upload/pdf/sreid-120913.pdf
http://www.tutorialspoint.com/software_testing/software_testing_iso_standards.htm
http://www.tutorialspoint.com/software_testing/software_testing_iso_standards.htm
http://www.quamoco.de/

60

Acknowledgements:
This booklet is produced by
EUREKA ITEA3 TESTOMAT PROJECT
The Next Level of Test Automation

Find out about us on the

web:https://www.testomatproject.eu/

Follow us on Twitter @Testomatproject

https://www.testomatproject.eu/

61

This booklet is produced by a research collaboration
between the following partners:

Version 1.1.1 - 2019-09-27
Feedback and comments are welcome

Disclaimer: The content of this booklet is true to the best of our
current knowledge. The authors, publishers, participating partners of the
project as well as the funding agencies disclaim any liability in connection
to use of this information.

62

The TESTOMAT Project is Sponsored
by:

All rights reserved by

Printed with support of

	Content
	1. What is the purpose of the standards?
	2. Why is TESTOMAT Project interested in these standards?
	3. Standardization Bodies
	4. General Testing Standards
	5. Model Based Testing Standard - UML
	5.1 OMG UML Testing Profile
	5.2 UML Testing Profile 1.x (UTP 1)

	5.3 UML Testing Profile 2 (UTP 2)

	6. ETSI Standards
	6.1 Testing and Test Control Notation v3 (TTCN-3)
	6.2 ETSI Test Definition Language (TDL)

	7. Domain Specific Standards
	7.1 Safety Critical Systems
	References:
	Acknowledgements:

