

Application of Model-Based
Prioritization

D4.7 Deliverable

PUBLIC

2019-09-30

Edited by:

Andre Bergmann, Felix Jakob, Julian Becker, Karsten Meinecke, Xabier Valencia, Martin
Reider

Revision history 3

Introduction 4

Definition of Model-Based Testing 4

Definition of Model-Based Prioritization 4

Industry Application 5

Report of usage of Modica within Automotive Use Case 5

Report of usage of MBTCreator within Automotive Use Case 5

Industry Application of Model-Based Prioritization 8

Report of usage of SBTTool within Aerospace Use Case 8

SBTTool 9

Model Based Test Case Generation and Prioritization for Simulation Environments 10

Scenario Specification Model (SSM) 10

Test Suite Generation 12

Test Case Prioritization 13

Bibliography 14

2

Revision history
Date Version Comments

2019-05-20 0.1 Initial document, draft structure

3

Introduction

Definition of Model-Based Testing
Contribution by AKKA

In the last four centuries software became more complex than ever and software testing
became an important step in the software development process. Today the question is not if
a software was testet, the question is what has been tested, how was it tested, and how
much was it tested. [Winter2016]

Model-Based Testing (MBT) has the intention to enable and improve test automation in an
early state of a development process. In these early states the requirements are often written
in an everyday language. Testing in these states is usually based on manual methodologies.
Model-Based Testing focuses on creating a formal model, which is then being used to derive
test-cases. [Winter2016]

Definition of Model-Based Test Prioritization
Contribution by ifak

Test case prioritization techniques organize the test cases in a test suite by ordering such
that the most beneficial are executed first thus allowing for an increase in the effectiveness of
testing. One of the goals is a measure of how quickly faults are detected during the testing
process. In test case prioritization, each test case is assigned a priority. Priority is set
according to some criterion and test cases with highest priority are scheduled first. For
instance, a criterion may be that the test case which has faster code coverage gets the
highest priority [Srivastava2008]. For model based test prioritization, similar criterions can be
derived from model representations of the SUT.

Model-based test prioritization is a subset of test prioritization methods in which prioritization
metrics are derived from model-based representations of the system under test (SUT) or
requirements. Common modelling notations are graph-based models such as UML State
Machines, UML Activity Diagrams and high level Petri nets. Requirements models are usually
created by using notation languages that allow for the formalization of the requirement.

A number of suitable metrics are available for model-based test prioritization. Similar to code
coverage metrics, model-based coverage metrics can be utilized for test prioritization. These
are derived from coverage of model elements (e.g. nodes, edges, decisions, paths). For
model-based coverage of a test case, a differentiation between between total and additional
coverage can be made [Korel2009]. The first criterion provides information about the total
coverage of a single test case for the underlying model. Additional coverage assumes an
execution order and compares model coverage of for all test cases. Test cases that activate
parts of the model not yet covered are assigned a higher priority. In addition to coverage

4

metrics, test cases can be prioritized based on model changes in the development process.
Korel and Koutsogiannakis [Korel2007] propose a prioritization technique that compares
changes made to the model representation of the SUT. Test cases that cover the modified
parts of the model are assigned a higher priority.

To utilize model-based test prioritization techniques, linking of test cases to model elements
or requirement models is necessary. For scripted test cases, linking usually requires the
execution of test cases for the model using a suitable test adapter. Test cases can then be
linked to model elements activated during test execution. Model-based test prioritization is
particularly suitable for test cases generated from a model of the SUT or the requirements.
By utilizing information provided during the test case generation, linking of test cases to the
model elements they were derived from is possible. For more complex toolchains, that e.g.
derive the model of the SUT from requirement models, generated test case can be linked to
model elements and the requirements they were derived from by ensuring full traceability of
generated artifacts during the model based test process [Reider2018].

5

Industry Application

Report of usage of Modica within Automotive Use
Case
Contribution by AKKA, Expleo

MODICA is a tool for creating usage models of a test object. From these usage models, test
cases can be automatically deduced based on the possible sequences of interaction with the
test object. The generated test cases can be transferred to an automatic test execution
environment and are immediately ready for use in the target system.

MODICA model creation

AKKA’s UseCase is a software module,
implementing the approval of charging of
an electric cars battery. It decides upon
evaluating several inputs, if the charging
process of the battery may start or not.

The requirements were modeled into the
usage model within MODICA. The
default concept of the 3 main states was
kept.
The functional behaviour was
implemented in the inner state of the
Action state. All input values needed for
the functions are modeled as
self-transitions to re-trigger the actual
function execution within the action
state.

Figure X. Usage model of Use Case in MODICA

6

Figure X. Inner behaviour of the Action State

Generate test suites

To enable full test case
generation, MODICA needs some
information. Code snippets are
added to transitions and states
and a test case template is also
added. Prioritization features are
added as well. Executable test
suites can now be generated,
according to desired rules.

The screenshot shows the
overview for the target 100%
state coverage.

Figure X. Result of geneated tests with target 100% state coverage

7

Report of usage of MBTCreator within Automotive
Use Case
Contribution by ifak

The MBTCreator is a tool developed by ifak that combines various functionalities for
model-based testing. MBTCreator offers editors and a graphical user interface for a toolchain
that covers all steps from requirements to test case generation and prioritization. In the
following chapter, the tool and it’s features will be described and the results for it’s application
to the AKKA use case will be presented.

MbtCreator for model based testing generation and prioritization

In a first step, the tool features methods for formalization of requirements using a notation
language, the IRDL (Ifak Requirement Definition Language). This notation for requirement
description was developed on the basis of UML sequence diagrams and is specially adapted
to the needs of describing requirements as sequences. IRDL defines a series of model
elements (e.g. components, messages) with associated attributes (name, description,
recipient, sender, etc.). This enables a modular modelling of the requirements. Functional,
behavior-based requirements are described textually using ifakRDL and can then be
visualized graphically as sequence diagrams (Fig. X). Individual requirements can be
combined to features.

Figure X. Example for ifakRDL and graphical representation as a sequence chart

In a next step, the formalized requirements or features of the SUT can be combined into a
specification model using model synthesis. The sequence elements described there,
consisting of lifelines, messages, state statements, attribute statements and fragments for
time-dependent and alternative processes, are transformed using a rule-based algorithm into
equivalent elements of a UML state machine. The resulting specification model describes the
behavior of the test object from the requirements perspective and models it in the form of

8

states and transitions with start and end states, events as triggers and internal attributes to
describe data values. The approach formulated at ifak by Magnus et al. [Magnus2017] for the
formal description of requirements and model synthesis was implemented within the
academic tool ModgenApp in the project MASSIVE and is applied within the work in
TESTOMAT.

Based on a model of the demanded behavior (specification model) and with respect to
specified test goals, test cases with test data are generated in a systematic way by using a
suitable algorithm. Common modeling notations are graph based models like UML State
Machines, UML Activity Diagrams and high level Petri nets. Additionally, textual modeling
languages are used as input models of the used test generation tool. The specified test goals
are very important for the test generation results. Normally test goals are coverage criteria
regarding the used specification (requirements) including a specification model as the basis
for the test generation. Generally the specification model is a graph based model, so graph
based coverage criteria (all nodes, all edges, all paths, etc.) are very common as test goals.

Additionally other coverage criteria regarding the coverage of requirements properties have
also been established as test goals. These are linked to associated elements of the
specification model (usually nodes, edges) in order to enable the used test generation
method to generate the required test cases for an efficient test suite with regard to the test
goals. For test generation, the academic tool TcgApp (Fig. 1) developed at ifak was used in,
which is based on the methods developed in [Krause2011] on the basis of Petri net unfolding
for SPENAT models.

Basis of the model synthesis are formal behavioral requirements of selected features of the
test object. The result of the model synthesis is an UML State Machine. For test generation,
this UML State Machine is mapped to a SPENAT to generate test cases with respect to the
specified test goals.

Figure X. Process of model based test generation

Within TESTOMAT an extension of the toolchain in the form of a separate tool called MBTP
(Model Based Test Prioritization) was developed, with which the generated test cases are
prioritized via a combination of model-based cluster analysis and a requirements-based
evaluation procedure (see figure X). The model-based test process allows the seamless
linking of all information across the test process, from the behavioral requirements to the
generated test cases. This allows the use of metrics for test prioritization derived from the

9

SUTs requirements and other artifacts from the test process. The goal of the test prioritization
method presented here is to optimize test execution with regard to both test coverage and
the error detection rate in the early test process, thus enabling early feedback on faults to the
test engineer.

Figure X. Process of model based test prioritization

The first step is a cluster analysis (of generated test cases) using coverage metrics in regard
to the specification model. Here, all test cases are evaluated regarding the selected coverage
metric (e.g. state-, transition-, path-coverage etc.). In a second step, the test cases in each
cluster are prioritized according to one or several requirement-based criteria (e.g. complexity,
volatility, customer priority). The prioritization goal is to improve test coverage and fault
detection rate during early testing.

Application of toolchain within Automotive Use Case

The toolchain for model-based testing presented in the previous chapter was applied to the
use case provided by AKKA. The toolchain was applied separately for each of the two SUTs
(Charging Management and Charging Approval). As a result of the application, an extensive
set of abstract prioritized test cases could be generated. In the following chapter, the
application of the toolchain will be demonstrated.

1. Formalization of requirements

As part of use case 8, AKKA has provided functional and non-functional requirement
documents describing the expected behavior for each of the SUTs. As part of this report, only
the functional requirements were relevant for test in work package 4. Testing for the
non-functional requirements will be part of the collaboration in WP5 and are not further
detailed in this document.

Each of the statements describing functional behavior of both SUTs were treated as a
separate requirement. Overall, the Module Charging Approval is described by 10 separate
requirements and the module Charging Management by 11 separate requirements. Using
IRDL language, each of the requirement statements were formalized as separate
requirement models. In figure X, one of the requirement models is visualized as a sequence
diagram. The diagram belongs to a requirements of the module Charging Approval that
defines that the approval has to be withdrawn if the connection to the charging station is lost
for more than a predefined amount of time (here 500ms).

10

Figure X. IRDL model for withdrawal of charging approval in case of a connection timeout

2. Model synthesis

For the next step, the requirement models of each module were used as the input for model
synthesis. For model synthesis, the academic tool ModgenApp developed by ifak was used.
As a result, a graph-based representation of the functionality of each module as described by
their respective requirements was generated in the form of two UML statemachines. The
model of the module Charging Approval contains 6 states and 20 transitions, while the model
of the module Charging Management contains 10 states and 23 transitions. The validity of
each generated UML statemachines was manually validated based on the requirement
documents. In figure X, the UML statemachines of both modules are shown.

11

Figure X. UML Statemachines of Charging Management (left) and Charging Approval (right)

3. Test Generation

After model synthesis, the generated UML statemachines of both modules were used as an
input for test generation using the academic tool tcgApp developed by ifak. For test
generation, a set of test goals in the form of coverage criteria can be selected as shown if
figure X. Here, the coverage criteria “all-paths” was selected, which ensures that each
possible path in the UML statemachine is covered by at least one test case.

Figure X. Selection of test goals in the form of coverage criteria in the tool MbtCreator

By utilizing our test generation algorithm, a total of 780 test cases were generated for module
Charging Approval and 33 test cases were generated for module Charging Management.
The large difference in the number of test cases between both modules can be explained by
the higher input complexity of the charging approval. Approval is given when a large number
of different criteria is fulfilled, therefore tests are generated for all possible combinations of
the criteria.

In figure X, one of the generated test cases is visualized in the form of a sequence diagram.
Here, the test system interacts with the SUT and provides a number of valid criteria.
Afterwards, it is checked if Charging is approved by the module. Afterwards, one of the
criterias for charging approval is changed (here the vehicle speed) to be no longer valid and
the test system checks if the module withdraws the approval.

12

Figure X. Test case for module Charging Approval visualized as a sequence diagram

4. Test Prioritization

At last, the test cases generated for both of the modules were prioritized using the academic
tool MbtpApp developed by ifak. For the hierarchical, agglomerative cluster analysis, which is
the first step of the prioritization process, a coverage criteria has to be selected for which the
similarity of all test cases is calculated. Here, transition coverage in regard to the underlying
UML Statemachine of each module was selected because it allows for an adequate
comparison of test cases. The result of the cluster analysis can be visualized by a
dendrogram, as shown in figure X for the charging management.

Figure X. Dendrogram based on hierarchical, agglomerative cluster analysis of test cases

The next step of the test prioritization step is a requirement-based prioritization of test cases
in each cluster. Here, the attributes volatility, customer priority and complexity of a
requirement were selected for prioritization. The attribute values for volatility and customer
priority were provided by AKKA. The complexity of each requirement was calculated by the
tool for test prioritization. Here, the cyclomatic complexity of each requirement is measured

13

automatically by transformation of each individual requirement model into separate UML
statemachines. The cyclomatic complexity is then calculated for the number of edges and
nodes in the model.

Figure X. Assignment of values to requirement attributes in MbtCreator

As a result of the prioritization tool, a list of all test cases and their respective relative
priorities are provided for each module.

Outlook

In future work, a test adapter will be developed to connect the test system (MbtCreator) to the
SUTs provided by AKKA. The prioritized test cases will then be executed to evaluate the
effectiveness of the prioritization approach.

Industry Application of Model-Based Prioritization by
AKKA Technology
Contribution by AKKA Technology

Depending on certain requirements on customer projects, AKKA Technology applies a
methodology to do a prioritization on Model-Based Testing [Jakob2012]. This methodology
requires a specific test-model, which can also be derived from a system model. Since AKKA
is not a tool vendor the methodology does not depend on a specific tool. In the past the test
model was done in different tools such as PTC Integrity Modeler, MID Innovator, Sparx
Enterprise Architect or Expleo MODICA.

14

The test model has to be developed in such a way, that a test case generator can read the
test model and can generate test cases. Even though the test case generator applies specific
strategies for generating the test cases, the number of generated test cases can easily reach
a number, which are not handable anymore. For that purpose AKKA Technology combines
the test model with some analysis. These analysis can focus on different aspects such as
risk, security, likeliness, or severity. For its automotive customers AKKA Technology often
uses existing FMEAs and combine them with additional analysis.

The combination of the test model and analysis allows the test case generator to optimize its
generation. Depending on the technology used for the test case generator the additional
analysis can be seen as weights on a graph while applying graph theory. The analysis tells
the generator which test cases are more relevant, and therefore does a prioritization of test
cases.

Figure x. Test model extended with results of a risk analysis

Using this methodology AKKA Technology was able to realize test case generation for very
specific purposes with optimization on running time, risk, security, costs, known errors,
requirements and other attributes, with coverage regarding functionality, transitions,
requirements, risk, functional safety, user experience, likelihood and many more.

Industry Application for Expleo
Contribution by Expleo

Model-Based Prioritization is done with the inhouse tool MODICA. Therefore the generation
of the test cases based on the model can be altered to produce better or less test cases that
cover the same requirements or testing criteria.

The test set to be generated should often reach a desired coverage but should remain
compact in the number or length of test cases. This is an initially very abstract requirement

15

which has a wide range of impacts and presents a challenge for the manual and automatic
(or model-based) test case finding. In many cases, it may be useful to involve the domain
knowledge of the tester and, for example, to provoke particularly interesting partial
sequences in a more generic model. Such guidance of the generator is possible in MODICA
via the sequence rules. This can be a useful tool for increasing the test depth, especially in a
combination of model-based approaches and black-box testing.

Report of usage of SBTTool within Aerospace Use
Case
Contribution by Alerion and Mondragon University

Alerion Technologies develops and commercializes turnkey small aerial autonomous robots
for industrial applications, including infrastructure inspection and automatic damage
detection. To achieve this, it is necessary to develop an autonomous high-performance
embedded computer software and navigation system for unmanned aerial vehicles as well as
real-time image processing and data analytics. What is more, the platforms are designed to
fly very close to structures or objects, which can have disastrous consequences when the
software has not been thoroughly tested.

The system testing is divided into four phases: Unit testing (Phase 1), Integrity testing (Phase
2), Simulation-based testing (Phase 3), Real flight testing (Phase 4). Currently, Phases 1 and
2 are performed automatically, unlike Phase 3. Simulations must be launched manually
which is extremely time consuming and inefficient as it requires constant human operation.
With the TESTOMAT project, the aim is to automate Phase 3. This can be achieved by
automating (i) the generation and prioritization of test cases, (ii) configuration of the
simulation environment and (iii) the execution and evaluation of the simulation. As a result,
the time necessary to prepare, run and evaluate the simulations will be significantly reduced.
This in turn will enable the system to carry out more test cases, leading to more robust
software. In the following section, the tool SBTTool is detailed, which will allow Phase 3
testing automation process.

SBTTool
The SBTTool is composed of the Jenkins tool, which is in charge of orchestrating the
different components: the simulation environment (ROS [2019] + Gazebo [2019]), the test
suite generator, the test case prioritizer and the Oracle (see Figure 1). To automate the
setup, deployment and launch of the simulations and evaluations, each component will be
delivered in a Docker container.

The SBTTool will allow Phase 3 testing automation process as follows. First, a test suite must
be created (see step 1 in Figure 1) and after that, test cases are prioritized based on the
established criterion (see step 2 in Figure 1). Afterwards, the simulation docker container
receives as input the software under test and the test case to execute (see step 3 in Figure
1). Once the simulation has finished, the ​Oracle (see step 4 in Figure 1) evaluates whether

16

the result of the simulation was satisfactory or not and stores its data for further analysis (see
step 5 in Figure 1).

Figure 1. Phase 3 automation process

Model Based Test Case Generation and Prioritization for Simulation
Environments
The test case generator is based on a model (Scenario Specification Model) that defines the
relevant parameters of the simulation scenario to be tested, such as, the inspection of
petroleum pipelines, hydroelectric dams, bridges or wind turbines among other
infrastructures.

Despite the fact that the model can be used for different purposes, inspection of bridges, gas
pipelines, etc., the use case provided by Alerion in the TESTOMAT project named ​Test
Prioritisation to handle Automated Tests of Robotic Platforms​ will be used as an example.

Scenario Specification Model (SSM)
The SSM, as can be seen in Figure 2, is formed by a ​Test Scenario that comprises a set of
initial parameters (​Initial Param Set​) and execution parameters (​Execution Param Set​).

The ​Initial Parameters Set ​is composed of those parameters that must be set before running
the simulation. A few examples of these kinds of parameters are, the height of a bridge
abutment, the angle of the blade in a windmill, the width of a dam floodgate, etc. The ​Initial
Parameters Set has a unique ​name​, a ​description​, ​units and can have either a range (​Range​)
or enumeration (​Enum​) values.

The ​Range type parameter has a ​minimum​, ​maximum and a ​step value. Thus, it is possible
to define all the range values in which the drone should be able to perform its job properly. In
the use case provided by Alerion, the initial range type parameters are the inspection
distance (​d1​), initial drone yaw (​a1​), initial drone shift (​d3​), and blade position (​a2​) (see

17

Figure 3). Conversely, when the number of possible parameter values is reduced or does
not follow a pattern, the type would be ​Emum​. An example of this type of parameter in the
use case is the size of the blades (​d2​).

Figure 2. Scenario Specification Model

The ​Execution Param Set type parameters are used to define those events that can occur
during the simulation. Two types of execution parameters have been differentiated: those that
can be defined with a value (​Threshold​) and those that require a command to make it happen
(​Command​). ​Threshold type parameters can be used, for example, (i) to simulate
communication problems, such as a time that has passed without communicating, or (ii) to
define a constant atmospheric phenomena, like rain with a predefined intensity during the
simulation. ​Command type parameters, on the other hand, can be used to simulate problems
in the modules under test.

18

Figure 3. Windmills inspection scenario, Initial Param Set type parameters description

Execution Param Set ​parameters require establishing either the specific moment in which it
will occur (time) or when a specific state of a state machine has been reached. For the use
case, two ​Threshold parameters have been defined: ​Communication ​lapse and ​LIDAR noise​.
Furthermore, four ​Command type parameters have been defined: ​autopilot crash​, ​autopilot
abort​, ​LIDAR crash​ and ​windsurveryor crash​.

The parameters can have in addition, a ​log associated with the expected value in a
satisfactory simulation for the given parameter. In such a manner, the ​Oracle ​will be capable
of assessing the outcome of the simulation. The ​Execution Param Set can have two types of
logs: Pre log for the results expected before the execution, and Post log for the results
expected after its execution. The ​Oracle will use this information, among others, to determine
the result of the simulation carried out.

Test Suite Generation
The test case generator uses an adaptive random algorithm to create test cases. This
algorithm was selected to cover the widest spectrum with the fewest test cases, which will
allow more faults to be found. To create a test suite, the test case generator needs four
inputs: (i) the Scenario Specification Model, (ii) the number of test cases to generate, (iii) the
number of test case candidates and (iv) the algorithm to measure the distance between the
test cases.

First, the scenario parameters have to be defined with the SSM. Once the parameters have
been defined, it is necessary to translate this to an XML file, so the test case generator can
interpret it. The transformation from the visual model to the XML format nowadays is done

19

manually. However, a tool to translate the information automatically will be developed, to
facilitate the creation of the XML-based Scenario Specification Models.

The number of test cases to include in the test suite, the number of test case candidates and
the distance algorithm must be selected. Although the system currently calculates the
distance between test cases using Euclidean distance measurement, other measurements
such as Jaccard coefficient or Hamming distance will be added as well.

Once all inputs are set up, the test case generator reads each parameter and randomly
selects a value from the range of the possible values for that parameter. When all parameters
are accomplished, a test case candidate is created when it is checked that it does not already
exist in the test suite or candidates set. Once the candidate is valid, the distance is calculated
against the test cases that are already part of the test suite. When the required candidates
are generated, the candidate with the largest distance becomes part of the test suite. This
process is repeated until the desired number of test cases for the test suite is reached.
Finally, as a result, a YAML is created with the test suite.

Test Case Prioritization
The prioritization will be performed in two phases. In the first phase, the primary goal is to
create historical data about the simulations, failures found, execution times, coverage
achieved, and so on. On the other hand, in the second phase, historical data generated in the
first phase will be considered for prioritization.

In the first phase, the prioritizer receives as input the test suite in a YAML format, the number
of test cases to execute and the algorithm to calculate the distances between test cases. The
system first selects a test case randomly from the test suite and inserts it in the selected test
cases. Then it searches for the most different test case in the test suite, considering all test
cases selected until that moment. This process is repeated until the desired number of test
cases is obtained. As a result, a YAML file with the prioritized test cases is obtained. Once
the simulations have been executed, the Oracle evaluates the results and saves the historical
data.

The aim of the second phase is to carry out prioritisation based on the historical data
obtained from the first phase. The prioritizer will receive a test suite in YAML format and the
desired number of test cases. Unlike in the first phase, the YAML will also include historical
data about previous test case executions which will be used to carry out prioritization.
Although the prioritization algorithm of this second phase is still undefined, algorithms based
on weights or multi-objectives are being studied to this end.

20

Bibliography
[Winter2016] Winter, M., Roßner, T., Brandes, C., Goetz, H., Basiswissen Modellbasierter
Test, dpunkt.Verlag, Heidelberg, 2016

[ROS 2019] ROS, 2019,​ ​https://www.ros.org

[GAZEBO 2019] Gazebo, 2019, ​http://gazebosim.org/

[Jakob2012] Jakob et al, Risk-based Testing of Bluetooth Functionality in an Automotive
Environment, ​http://publica.fraunhofer.de/documents/N-263969.html

[Srivastava2008] Srivastava, P. R. (2008): “Test case prioritization,” Journal of Theoretical
and Applied Information Technology , vol. 4, pp. 178-181.

[Korel2007] Korel, B., Koutsogiannakis, G. and Tahat L.H. (2007): “Model-based test
prioritization heuristic methods and their evaluation”. Proceedings of the 3rd International
Workshop Advances in Model Based Testing, AMOST 2007

[Korel2009] Korel, B. and Koutsogiannakis, G. (2009): “Experimental Comparison of
Code-Based and Model-Based Test Prioritization,” IEEE International Conference on
Software Testing, Verification, and Validation Workshops.

[Reider2018] Reider, M.; Magnus, S.; Krause, J. (2018): „Feature-based testing by using
model synthesis, test generation and parameterizable test prioritization,“ ​2018 IEEE
International Conference on Software Testing, Verification and Validation Workshops
(ICSTW), ​S. 130-137.

[Magnus2017] Magnus, S.; Ruß, T.; Krause, J.; Diedrich, C.: „Modellsynthese für die
Testfallgenerierung sowie Testdurchführung unter Nutzung von Methoden zur
Netzwerkanalyse,“ in ​at-Automatisierungstechnik, Volume 65(1)​, 2017, S. 73-86.

[Krause2011] Krause, J.: Testfallgenerierung aus modellbasierten Systemspezifikationen auf
der Basis von Petrinetzentfaltungen, Magdeburg: Shaker Verlag, 2011.

21

https://www.ros.org/
https://www.ros.org/
http://gazebosim.org/
http://publica.fraunhofer.de/documents/N-263969.html

