
ITEA 3 Call 4: Smart Engineering
State-of-the-art report on requirements-based variabilitymodelling and abstract test case generation

Project References
PROJECT ACRONYM XIVT

PROJECT TITLE EXCELLENCE IN VARIANT TESTING
PROJECT NUMBER 17039
PROJECT STARTDATE NOVEMBER 1, 2018 PROJECTDURATION

36
MONTHS

PROJECT MANAGER GUNNAR WIDFORSS, BOMBARDIER TRANSPORTATION, SWEDEN
WEBSITE HTTPS://WWW.XIVT.ORG/

Document References
WORK PACKAGE WP3 — TESTING OF CONFIGURABLE PRODUCT

TASK
T3.1 — REQUIREMENTS-BASED VARIABILITY MODELLING AND
ABSTRACT TEST CASE GENERATION
TASK LEAD — QA CONSULTANTS

VERSION V1.0 NOV. 11, 2019
DELIVERABLE TYPE R (REPORT)

DISSEMINATIONLEVEL PUBLIC.



DN—NAME

CONFIDENTIAL 2 V1.0

Summary
Executive summary: This report summarizes the state of the art in requirements-based variability modelling and abstract test case generation. It describes variousformalisms which have been described in the literature for feature modelling and themodelling of variability, and presents methods for the generation of abstract testcases from various informal, semi-formal and formal description techniques. Finally,the report elaborates on available industrial and academic tools both for variabilitymodelling and model-based test generation.
Summary: The present report presents a survey of variability modelling and abstracttest case generation approaches for software projects. Feature modelling isintroduced as the common denominator among variability modelling techniques,which differ in notation (e.g. UML, XML) as well as in support for hierarchicalstructures, constraints on feature combinations, representation of variation points andother semantic characteristics. In contrast, abstract test generation methods aredistinguished by inputs, which may be source code, requirement specifications informal notation or natural language, UML diagrams, etc; how are tests generated,either statically via input manipulation (which may involve Machine Learning orNatural Language Processing) or dynamically through e.g. model execution; andwhether test suites can run automatically or must be performed manually. It is noticedthere are remarkably few available references on test generation processes forhighly-variant and configurable systems. The report concludes with a review of toolsfor variability modelling and system testing



DN—NAME

CONFIDENTIAL 3 V1.0

Table of Contents
1 Introduction 4
2 Requirement-based Variability Modelling 6

2.1 Feature Modelling 6
2.2 Variability Modelling in UML 7
2.3 XML - Variability Exchange Language 8
2.4 Software Product Line Architecture Languages 9

3 Abstract Test Case Generation 11
3.1 Machine Learning-based Test Case Generation 11
3.2 Test Case Generation from Natural Language Descriptions 13
3.3 Test Case Generation from Formal Notations and Restricted or ControlledNatural Language 15
3.4 Test Case Generation from UML Models 16
3.5 Test Case Generation from Implementation Models (e.g., Simulink) 17
3.6 Test Case Generation from Tables and Data Models 18
3.7 Mutation Testing for Variant-intensive Systems 19

4 Combined Approaches 23
5 Tools 25

5.1 Variability Modelling Tools 25
5.2 Model-based Testing Tools 26

6 References 30



DN—NAME

CONFIDENTIAL 4 V1.0

1 Introduction
Reducing the amount of repeated work is a common pursuit in many areas, softwaredevelopment among them. Copying libraries or source code from one project to thenext is a simple way to reduce implementation costs, however this is often done in anad hoc manner. In contrast, Software Product Line Engineering (SPLE) aims tooptimize development by enabling systematic asset reuse among systems sharingcommon characteristics. It relies on variability modelling methods for the catalogingof features, their dependencies and conflicts across a whole product line (i.e. a familyof systems), allowing the quick identification and application of related artifacts in newprojects.Another important problem in software development is ensuring systems are properlytested before deployment. This is commonly evaluated relative to some metric, forexample, how many different scenarios or what proportion of system features arecovered by the test suite. Theoretically the more comprehensive the coverage thebetter, however in practice this has to be balanced against time and costconsiderations — in particular, the effort required to create the tests themselves. Inthis regard automatic generation of test case suites from project artifacts — be itrequirements specifications, architecture models or source code — can greatly helpconserve resources while at the same time ensuring the quality of test cases. This isespecially desirable for software product lines, where depending on the number offeatures and variety of possible combinations it may be impractical to maintain testsuites manually.Variability modelling and test case generation can be seen as largely orthogonalactivities — the former focus primarily inwards into the feature structure of a wholeproduct line, while the latter mainly seeks to audit the outward behavior of specificfeatures or systems. On the other hand, the context of a family of systems related bycommon features and a shared development history opens new frontiers for testoptimization: avoiding retesting the same feature across several products, orevaluating how different combinations affect the performance of individual features,become pertinent considerations. Moreover there may be advantages to adoptingvariability modelling and test generation methods that work on the same artifact types(e.g. UML diagrams), especially if the outputs of the former are used as inputs to thelatter. Therefore it is reasonable to evaluate both processes jointly.



DN—NAME

CONFIDENTIAL 5 V1.0

Within the XIVT project, the ambition of WP3 is to develop a method and tool chainfor model-based testing of configurable and multi-variant systems. There are twosides to this endeavor: Model-based testing, and modelling of configurable and multi-variant systems. Consequently, this state-of-the-art report consists of two parts: Inthe first, we discuss approaches to model variability in software-intensive systems. Insoftware product lines, feature models are used to describe commonalities anddifferences between various products in the line. For UML, the unified modellinglanguage, specific extensions for variability modelling such as CVL, the commonvariability language, have been suggested. In previous projects, also XML-basedlanguages such as VEL, the variability exchange language, have been defined.
In the second part, we review the huge amount of literature on the generation ofabstract test cases from various kinds of models. Some recent approaches are basedon machine learning, where supervised and unsupervised learning algorithms areused to build models and extract useful patterns based on training data sets. Testgeneration from natural language descriptions is still in its infancy; most of the work inthis area is focussed on informal use case descriptions, from which keywords andexetion patterns are extracted to generate semi-formal artifacts. Many authors alsorequire that for the description of tests, natural language is only used in a controlledor sytactically restricted way; different approaches, varying by the degree offormalization of the input language have been proposed. Test generation from UMLmodels is the most advanced area, where mostly class diagrams and state machinesor sequence diagrams are used to model test cases. Implementation models such asSimulink diagrams or Scade descriptions have also been used to generate testcases; however, if both the implementation and the test suite are automaticallygenerated from the same model, the fault-detection capability of the test execution isvery limited. Dedicated test description languages such as TTCN-3 or data modelshave been suggested, and are described in this deliverable. To conclude the secondpart, we review the literature on mutation testing for variant-intensive systems, wherefaults are artificially seeded into the application to assess the effectiveness of thetesting process.
The third part of this report deals with commercial and academic tools andworkbenches. Again, we present the two areas: tools for variability modelling, andtools for test case generation from various types of models.
An extensive list of references concludes the report.



DN—NAME

CONFIDENTIAL 6 V1.0

2 Requirement-based Variability Modelling
On a conceptual level, there are two different modelling languages at the core ofmost approaches: Feature Modelling (FM) and Orthogonal Variability Modelling(OVM). While in principle they share most of their concepts and in most instanceseven under the same name, there is one essential difference: Feature Modellingprovides a hierarchical decomposition of a system into features, denoted as a featuretree and consisting of both common and variable parts. In contrast, OVM onlyconsiders the variable parts of a system through the notions of variation points andvariants. In order to increase the interoperability of approaches based on theselanguages, a transformation between FM and OVM models is proposed in [1].
2.1 Feature Modelling
Feature modelling is a procedure applied in product line software engineering.Product line software engineering aims to systematically manage commonalities anddifferences in a product family, see [2] for an overview. The goal is to exploit thecommonalities for an economic production, i.e., to develop products from core assetsrather than one by one from scratch. It is founded on marketing; a product planderived from a market analysis is the primary input.Feature modelling is the identification and classification of commonalities anddifferences in a domain in terms of “product features”. A survey can be found in [3]and [4]. An explicit representation of a product’s features has several advantages.First, the concept of a feature as a common language enables effectivecommunication among stakeholders from different fields. Second, feature-orienteddomain analysis is an effective way to identify variability among different products ina domain. Finally, feature models can provide a basis for developing, parametrizing,and configuring various reusable assets and enables management and configurationof multiple products in a domain.In feature oriented domain analysis (FODA, see [1]), a feature is defined as aprominent and distinctive user visible characteristic of a system/product. It isdistinguishable from functions, objects, and aspects in terms of identificationviewpoints: A feature is an externally visible characteristics that can differentiate oneproduct from another, while the former characteristics are identifiable from internalviewpoints.Product features are identified and classified in terms of capabilities, domaintechnologies, implementation techniques, and operating environments, see [3].Features that are common between the different products are modelled as



DN—NAME

CONFIDENTIAL 7 V1.0

mandatory, selectable features as optional. Features are alternative if no more thanone feature can be selected for a product.To capture structural or conceptual relationships between features, they are arrangedin a feature diagram. To create a feature diagram, the selection of a domain andclarification of its boundaries is the first step. Then, the relevant features areidentified, organized, and refined.There are three types of relationships that can be represented in such a diagram:The composed-of relationship for a feature and its constituting subfeatures, thegeneralization/specialization relationship if a feature is a generalization of asubfeature, and the implemented-by relationship if one feature is necessary toimplement the other. The feature model can be supplemented with composition rulesor constraints that indicate mutual dependency and mutual exclusion relationships,constraining the selection from optional and alternative features.There exist extensions of the basic feature model concept, one of the most commonbeing cardinality based feature models, see, e.g., [5], where features or featuregroups are being assigned an UML-like cardinality [a..b], implementing mandatoryand optionality and allowing cloning of features or groups.
2.2 Variability Modelling in UML
UML is extensively used in the modelling community, and is a widely recognizedstandard. During requirements analysis, use case diagrams help to identify the actorsand to establish the behavior of a system by means of use cases. UML defines asmall set of relationships to structure actors and use cases: extend, include, andgeneralization, see, e.g. [6]. The extend relationship can model conditional optionalityof features, but the other variability types cannot be modelled directly with use casediagrams. Therefore new use case modelling elements are needed to explicitlyexpress all types of variability described above. There are straightforwardapproaches to expand the UML model in order to allow building feature models, see,e.g., [7], [8].
However, in [9], it is emphasized that concepts and features in feature modelling areabstracted from bearing semantic concepts. Hence, a simple extension of UMLbased on stereotypes of classes and their relationships is ruled out. They thereforepropose to go to the UML meta-model in order to derive concepts and features frommore abstract elements without unwanted semantics. By deriving from meta-classesand introducing certain stereotypes, they generate features and feature relationships.



DN—NAME

CONFIDENTIAL 8 V1.0

In [6], the use case meta-model is extended by the new relationships option andalternative. If the base and extension use case are in the option relationship, thebehavior of the base use case may be executed in the extension use case. If theyare in the alternative relationship, exactly one alternative use case must be executed.In [10], a similar approach is pursued by allowing use cases to be marked with anoption stereotype, and the extend relationship to be marked with stereotypesalternative and specialization.Nonetheless, in [6], it is mentioned that use cases can only model system behavior,not static structures and characteristics of systems, Therefore, a combination offeature graphs and extended use case diagrams is proposed.
Resulting from a standardization effort by the OMG, the Common VariabilityLanguage (CVL) was intended to provide consistent variability modelling capabilitiesfor diverse Domain Specific Languages (DSL) independent from the specificlanguage of the base model. According to informed but unverifiable sources,standardization activities were discontinued because of patent issues. However, CVLhas already been presented at conferences [11], [12] and was subject to evaluationwith regard to its usability in [13]. A detailed description of CVL as well as threeexamples of its application to different DSLs, i.e. ARI, TCL and UML, is given in [14].Further, there is an adaption of CVL for specific industrial use cases resulting fromthe VARIES project and the DREAMS project [15], called Better Variability Results(BVR) and presented in [16].
Another approach to modelling variants in the context of systems engineering ispresented in [17]. While technically not based on UML but SysML’s customizedsubset of UML, it uses the UML profile mechanism to extend UML with variantmodelling capabilities. For that purpose, the SYSMOD profile is used, containing aset of stereotypes that reflect concepts from OVM, which serves as the theoreticalfoundation.
2.3 XML - Variability Exchange Language
The Variability Exchange Language [18] has been developed within the GermanSPES_XT project as a standardized format to exchange information about variabilitybetween different stakeholders. It is an XML based data exchange format for differentsoftware engineering tasks. Tools for variant management frequently interact withartifacts such as model based specifications, program code, or requirementsdocuments. This is often a two-way communication: variant management tools import



DN—NAME

CONFIDENTIAL 9 V1.0

variability information from an artifact, and in return export variant configurations. Forexample, they need to gather information about the variation points that arecontained in the artifact, need to know which variants are already defined, and thenmodify existing or define new variants.The VariabilityAPI serves two purposes. First, it provides a generic description of thevariation points that are contained in an artifact. Variation points may come in twoflavors:
● Variation points may be locations in an artifact which are removed or setinactive in a binding process. This is implemented by defining a condition foreach variation point.
● Variation points may be parameters. Such variation points provide expressionswhich are used by the binding process to assign a value to the parameter.Variation points may also exhibit dependencies; for example a set of variation pointsmay be designated as a set of alternatives, which means that all but one of them willbe removed during the binding process (although the actual semantics of the bindingprocess is beyond the scope of this concept).Second, the VariabilityAPI can define specific variant configurations. In our context, avariant configuration is an assignment of fixed values to the conditions or expressionsthat are associated with variation points.The VariabilityAPI defines a number of operations for exporting and importingvariability information, where tools may only implement selected parts of thespecification.

2.4 Software Product Line Architecture Languages
In their “Comparison of Software Product Line Architecture Design Methods” [19]Matinlassi describes and compares five different methods for the design of SPLarchitectures. Two categories of their evaluation framework are particularlyinteresting in the context of this report: Language, i.e. whether a method defines “alanguage or notation to represent the models, diagrams and other artifacts itproduces”, and Variability, i.e. how a method supports variability expression.Unfortunately, they cover this aspect only very briefly, but it becomes apparent, thatthe methods commonly either build on UML (QADA and KobrA) or make noreference to any specific SPLAL. For FORM it is mentioned, that it uses featuremodels known from FODA [20] as its conceptual foundation.
In “ADLARS: An Architecture Description Language for Software Product Lines” [21]Bashroush et. al. describe an ADL for SPLs with a three-level view on the product



DN—NAME

CONFIDENTIAL 10 V1.0

line: The system level, a task level and a component level. A system is modeled as acollection of concurrently running tasks, interacting via event messages. Albeit notexplicitly stated in the paper, tasks resemble services in a micro-service architecture.Task and components are instances of task and component templates. Templatescan refer to specified features, which can then be used in their definition of interfacesand internal structure.
As can be inferred from its name, “LightPL-ACME” [22] is based on ACME, a genericarchitecture description language that provides a set of basic elements for thedescription of (software) architectures. After its publication in 1997, many of theprovided concepts were incorporated in the UML standard, in particular Component,Connector, Port and Role and mappings between ACME and UML 2.0 weresuggested in [23], [24]. In order to cater to the specific needs of product lineengineering, LightPL-ACME adds the elements ProductLine, Feature and Product, aswell as a mapping of architectural elements to features through a MappedTorelationship. Arising from the close resemblance of ACME and later versions of UML,it suggests itself to transfer the concepts from LightPL-ACME to a UML basedapproach to product line engineering.



DN—NAME

CONFIDENTIAL 11 V1.0

3 Abstract Test Case Generation
3.1 Machine Learning-based Test Case Generation
Machine learning techniques are mainly based on detecting useful patterns(associations) in the data or training smart agents to solve the problems (tasks).Supervised and unsupervised learning algorithms are the machine learningtechniques mainly involve building models and extracting useful patterns based ontraining data sets, while reinforcement learning algorithms are intended to teach theagent (learner) how to solve a problem through interaction with the environment in atrial and error way.Regarding the application of supervised and unsupervised learning algorithms,various data on software testing activities, information on execution traces andcoverage can be collected at different levels of details. The main point with regard tothe application of these categories of machine algorithms is that how those collecteddata are used to address the existing challenges in software testing, such asautomated test case generation. MELBA (MachinE Learning based refinement ofBlAck-box test specification) [25], [26] is a machine learning-based process whichbasically uses C4.5 decision tree algorithm to generate expert-level test cases basedon the existing test cases or through the high-level system specification. Theproposed process uses an initial set of test cases which can be either the existingtest cases or generated from high-level system specification. Afterwards, the outputdomain of the SUT is divided into equivalence classes and the input domain of theprogram is modelled based on Category-Partition (CP) categories and choices. Then,the initial set of test cases are converted to abstract test cases which are presentedin terms of output equivalence classes and input pairs of categories and choices.C4.5 algorithm learns the association rules connecting the inputs (pairs of categoryand choice) to outputs (equivalence classes). The learned rules are analyzed usingsome heuristics to detect potential drawbacks in the extracted rules such asmisclassification of test cases, absence of certain categories or choices (absence ofcertain input parameters). The refinement is done iteratively to lead to generation ofexpert-level test cases.
RUBAR: RUle-BAsed statement Ranking [27] is a machine learning-based techniqueto identify the statements containing a fault leading to a failure. In other words, it isintended to generate test cases leading to failures. Like MELBA, it works withgenerating the rules connecting the input CP categories and choices to output



DN—NAME

CONFIDENTIAL 12 V1.0

equivalence classes, but particularly it uses additional information, i.e., defining somecategories in terms of relations between the parameters, to generate effective testcases resulting in failures.In [28] an ML-based technique, which aims at learning the program behavior throughdata on execution traces of the program, is proposed. It uses a classifier, whichproduces a map between the execution statistics like branch execution profiles andthe class of program behavior like “pass” or “fail”. The classifier works based on anactive learning paradigm and is trained incrementally on labelled data. The traininginstances are Markov models of program behavior, then a hierarchical clusteringtechnique is applied to cluster the training instances based on the behavior labels. Atthe last step, a final classifier is built to make a map between the generated clustersand “pass” or “fail” behavior labels. However, this approach could be considerablyeffective at determining if a new test case is a useful or redundant one, but lesseffective in generating new effective test cases. This approach requires an initial testdata generator and also construction of oracle.Another example of ML-based approaches working based on execution trace togenerate test cases or extension the set of test cases is [29]. The proposedtechnique in [29] uses some invariants which are reversed-engineered specificationsfrom passing test cases (correct executions), to make an operational model of theprogram and then examine whether the automatically generated test cases are likelyto be illegal, to produce normal operation or to reveal a fault. It presents a guided testinput generation which is a classification based on the operational model.
The aforementioned primary studies were mostly describing some applications ofnumerical-based ML approaches to test case generation in software testing. Inaddition to numerical-based ML approaches, automaton learning is another type ofML technique. It is a symbolic approach conforming with eXplainable AI (XAI). All thefeatures in the final learnt model in automaton learning is traceable backwards to thedata values in the training set. Once the model constructed, it is subjected to modelchecker to verify the behavior requirements. Automaton learning-based testing is anML-based black box testing. It combines machine learning with model checking andprovides automated test case generation, test case execution and oracleconstruction. This approach makes a model of the SUT and refines it iteratively. Aninitial model of the SUT is generated, then the automaton learning algorithm refinesthe model into a more detailed one and sends the partial model to a model-checker.It is subjected to model checking against a temporal logic requirement. Any counter



DN—NAME

CONFIDENTIAL 13 V1.0

example resulted from the model checking could be a potential test case revealingerrors [30], [31].The role of machine learning is important since they are particularly suitabletechniques to black-box testing of complex systems such as cyber-physical systemsin industrial domains like automotive, railway, telecommunication. They can handlelarge input spaces and complex behavior patterns of software systems. They can beused with different testing techniques like model-based testing and in many differentdomains of testing such as model-in-loop (MIL), software-in-loop (SIL) and hardware-in-loop (HIL) testing.
Generally, to summarize, the application of the family of supervised learningalgorithms, it is worth noting that the supervised learning algorithms mainly aim atfinding a model on training data set (including known input and output). Then, theextracted model could be used for prediction purposes. The supervised learningalgorithms work based on classification or regression. Classification techniques buildmodels on discrete data and to predict discrete output. Whereas regressiontechniques are used to produce/predict continuous output. A couple of commonclassification algorithms are k Nearest Neighbor (KNN), Support Vector Machine(SVM), neural networks, naiive bayes and decision trees and some of the commonregression techniques are Gaussian process regression models, SVM regression,regression trees and generalized linear models [32]. The classification andregression algorithms could be used for classifying the large test data, filtering theredundant ones and generating the effective test cases.Unsupervised learning explores data to find hidden patterns/structures. It is can beuseful for reducing the dimensions of data. Cluster analysis techniques are the mostcommon algorithms in the category of unsupervised learning. A number of commonalgorithms for hard and soft clustering are K-means, K-Medois, hierarchicalclustering, self-organizing maps, Fuzzy c-means and Gaussian mixture models [32].They could be used for different purposes in handling the test data and generatingthe effective test cases.

3.2 Test Case Generation from Natural Language Descriptions
This section of the document focuses on test case generation for variant-intensivesoftware systems using Natural-Language Requirements Description as a mainartifact.



DN—NAME

CONFIDENTIAL 14 V1.0

Most of the literature in this area is focused on test case generation fromrequirements written in form of use cases. The use case diagram is an effective wayto communicate the system under development with stakeholders. To enable the usecases to be used for expressing and analysis of product lines, extensions were madeto the existing use case approaches.Product Line Use Case (PLUC) [33] is one such example of extended use casesbased on the use case in literature [34]. This extension explicitly focuses onmodelling the variability with the use cases using tags such as alternative, parametricand optional. Relationships between use cases can also be modeled in PLUC byreferring to them in natural language text. The use case elements are supposed to beenclosed in curly brackets and tags in square brackets. Product Line Use Case TestOptimization (PLUTO) [35], [36] is a test case generation approach developed togenerate test cases from the PLUC specification. PLUTO extends the categorypartition method for test case generation. In category partition, the use cases areparsed and analyzed for high-level functions which can be tested in isolation. Thecategory partition method relies on the input and choices (alternative scenarios) inthe use case description provided by the tester to generate a test suite whichexercises all the combination of the choices and input. The PLUTO also acts thesame as category partition but in PLUTO high-level functions are the use cases andthe choices are the variability tags embedded into PLUC. The PLUTO can also beused to derive test cases for a specific variant of the product line. PLUTO is alsoextended for the dynamic software product lines [37]. This is achieved by a newcontrolled natural language which defines the syntax for reuse, variation point,execution steps (like loops and conditions), and control statements (such as IF). Theabove controlled natural language allows the description of the dynamic softwareproduct lines and enables the generation of concrete test cases. This approach alsouses the category partition method to derive test cases from the use cases and theapproach reduces the manual testing efforts by 40 percent.TaRGeT [38] is an open source tool for test case generation from constrained naturallanguage use case specification. TaRGeT guides the end user in writing completeuse cases by using an integrated grammar checker. The complete use casespecification written in the form of use cases can then be transformed into systemmodels and then test cases can be generated and selected. TaRGeT allows theselection of test cases based on coverage, specific requirements/use cases, diversityin test cases and test purpose.Delta modelling is an approach to model the system’s core assets and deltaseparately. This modular approach helps in modelling the variabilities and



DN—NAME

CONFIDENTIAL 15 V1.0

commonalities explicitly in the software product lines. Test effort reductionapproaches based on delta modelling which can significantly reduce the test effortscan be found in the literature. In many cases, these modelling approaches are notused, but requirements and test description in natural language are used to capturethis information. Michael et al. [39] applied the delta-oriented testing approach on therequirements level. The approach relies on human input for classification ofrequirements for core and variable assets. The test cases linked to the core andvariable assets requirements are then classified as Invalid, New, Re-usable and Re-test. The approach was found feasible in evaluation.Unified Modeling Language (UML) use case diagram are also extended [40] to modelthe variabilities and commonalities to support test case generation. The extensionrequires contracts of the use cases to be written in the form of a proposed first-orderlanguage. To enable the generation of tests for a specific product, the approach usesthe extended use case models to generate test objectives (high-level testdescription). The test objectives are incomplete and are not executable test cases.The approach requires implementation details in form of sequence diagrams with preand post conditions written in Object Constraint Language (OCL) to generateexecutable test cases. The approach was applied to three products for evaluation.
3.3 Test Case Generation from Formal Notations and Restricted or ControlledNatural Language
In the literature, there are different approaches to the generation of abstract testcases from formal notations and controlled natural language. The differentapproaches mostly differ by the degree of formalization of their input (ranging fromnatural language over controlled natural language to formal notations) and thedegree of automation and tool support.[41] and [42] propose methods to derive test cases from requirements specified asbehavior trees (not to be confused with the behavior tree concept currently beingused in the AI community) as a means of formalization for natural languagerequirements. It is arguable whether the input of this approach is natural language orformal notation. On the one hand, any requirements-based approach likely starts withrequirements formulated in natural language, which are then refined and formalizedinto an appropriate input format. From this point of view, the specific input to thisapproach are behavior trees.
While [41] takes the behavior tree as a given, [42] emphasizes on the process offormalizing requirements and the integration and specification of different modelling



DN—NAME

CONFIDENTIAL 16 V1.0

artifacts along the way. The process then results in a Testing Behavior Tree. Theyfurther suggest transforming this Testing Behavior Tree into a UML state machine,which can then serve as input for test case generation methods such as described inthe following section on test case generation from UML models. Unfortunately, theydo not provide concrete transformation rules, but state these as a subject for futurework. An attempt at such a transformation is made in [41] by interpreting the differentaspects of Behavior Tree nodes as either states or events and thus deriving a state-based transition system from a Requirements Behavior Tree. They then suggestusing depth-first-search in order to find test cases, which they link to therequirements in a trace matrix in order to facilitate test case prioritization andselection.
Another approach based on a more formalized description of the requirements, i.e.using controlled natural language, is presented in [43]. There, the requirements areformulated in SysReq-CNL, “a Controlled Natural Language (CNL) specially tailoredfor editing unambiguous requirements of data-flow reactive systems”. They are thentransformed into an intermediary Software Cost Reduction (SCR) requirementsformat, serving as an input to test case generation using T-VEC.
Advancing from (controlled) natural language towards formal notations, [44] presentsan approach based on UML state machines, the UML Testing Profile, and a formalnotation, which serves as an input format for Microsoft Spec Explorer. While the UMLaspect is discussed in the following section, the rest of this approach may beconsidered independent. The notation is based on C# and consists of a set ofannotations that help to denote methods as part of the model, e.g. as rule methods.This is being used in order to write so called model programs, representing thebehavior of the system under test. Whereas the model program expresses all legalsequences of actions and behaviors of the system under test, an additional “Cord”script defines constraints that are necessary for the generation of practical test cases.The Spec Explorer tool then builds an internal state-based representation of themodel and explores it according to the provided configuration. This results in a set oftest sequences.
3.4 Test Case Generation from UML Models
The Unified Modeling Language (UML) is a general-purpose, developmental,modelling language in the field of software engineering that is intended to provide astandard way to visualize the design of a system. UML has gained a lot of attention



DN—NAME

CONFIDENTIAL 17 V1.0

from researchers in the field of testing and the UML Testing Profile (UTP) wasdeveloped and standardized as a testing oriented extension to UML. UML offersdifferent types of integrated diagrams such as use case, activity and sequencediagrams providing different perspectives of the model. Even though each type ofUML diagram offers a view of the system, there are some limitations to each type ofdiagram in generating test cases. Each type offers unique features and is useful incertain scenarios but holds some limitation to generate test cases when they areused in a different scenario.Model-Based Testing (MBT) uses the design models for software testing. It providesan efficient way of testing as it provides a methodology with a combination of sourcecode and system requirements for software testers to test the software. In MBT, testcases are generated using the models. One of the major advantage of MBT is itsability to detect errors from the early stage of development and generating test casewithout being dependent on any implementation of the design.From the literature review, we could observe that there are different methodsavailable to generate test cases using different UML diagrams: that are activitydiagram [45], sequence diagram [46], [47] and state chart diagram [48]–[50]. Everyresearch has used its own method of test case generation using different UMLdiagrams. Some research studies use a single UML diagram where as other use acombination of UML diagrams. Most of the researches have used a technique ofconverting the UML diagram into an intermediate graph which is used to generatetest cases. The graph is traversed based on coverage criteria and fault model togenerate test cases. In some studies, the researchers use a combination of UMLdiagrams as sequence diagram and state chart diagram are not alone sufficient togenerate test cases. Because of this limitation an integration of two UML diagrams isrequired in some cases.
3.5 Test Case Generation from Implementation Models (e.g., Simulink)
Implementation-based testing is usually performed at unit level to manually orautomatically create tests that exercise different aspects of the program structure. Tosupport developers in testing code, implementation-based test generation has beenexplored in a considerable amount of work [51] in the last couple of years from codecoverage criteria to mutation testing.
Numerous techniques for automatic test generation based on code coverage criteria[52]–[56] have been proposed in the last decade. An example of such an approach isEvoSuite [52], a tool based on genetic algorithms for automatic test generation of



DN—NAME

CONFIDENTIAL 18 V1.0

Java programs. Another automatic test generation tool is KLEE [53] which is basedon dynamic symbolic execution and uses constraint solving optimization as well assearch heuristics to obtain high code coverage. CompleteTest [57], a tool developedfor IEC 61131-3 implementation models, is an example of a whitebox tool focusing onembedded software for generating timed sequences of inputs.
Another very popular implementation model is Simulink that has gained a lot ofattention. Matinnejad et al. proposed an approach for generating test cases forSimulink models [58]. Ben Abdesalem et al., focused on the automated generation oftest cases based on multi-objective search algorithms combined with artificialintelligence techniques for autonomous vehicles [59]. Other approaches use mutationtesting, where the idea lies on generating faulty versions of the system andmeasuring the number of faults detected by the test suite [60]–[63]. Nevertheless,these approaches focused solely on generating test inputs for testing CPSs at asingle test level (MiL or SiL), and require significant manual effort to concretise testcases for their execution in further test levels (e.g., HiL). Furthermore, the lack of testoracles makes the evaluation after the test cases are executed mostly manual, whichis a non-systematic and error-prone process.
Simulink has, Model in the Loop (MIL), Software in the Loop (SIL), Processor in theLoop (PIL) and Hardware in the Loop (HIL) support with one test case (with back toback support) [64], [65]. Using code coverage settings, automatic test cases can begenerated [66]. Using simulink test assessment blocks, test oracles are created andcan verify the model performs as expected [67].
3.6 Test Case Generation from Tables and Data Models
Combination test generation techniques are test generation methods where tests arecreated by combining the input data values of the software based on a certaincombinatorial strategy. Combinatorial testing can be helpful in the creation of testcases by generating certain combinations among parameter values. Severaltechniques have been proposed for combinatorial testing [68]–[72] in order togenerate a test suite which covers the combinations of t parameter values at leastonce or in a certain interaction strategy (e.g., each-used, pairwise, t-wise, basechoice). One of the most used combinatorial criteria is pairwise or 2-wise.
Recently, researchers have shown an increased interest in combinatorial softwaretesting. There are a number of studies in which combinatorial testing tools and



DN—NAME

CONFIDENTIAL 19 V1.0

techniques are being evaluated (e.g., [73]–[75]) in their use of combinatorialmodelling and testing of industrial systems. Borazjany et al. [73] performed a casestudy in which they applied combinatorial testing on an industrial system by usingACTS to generate tests. The purpose of their study was to apply combinatorialtesting to a real-world system and evaluate its effectiveness, as well as gainingexperience and insight in the practical application of combinatorial testing, includingthe input modelling process. The tests are generated for testing both the functionalityand the system robustness. Another study conducted at Lockheed Martin [75] reportsabout an introduction of combinatorial testing in a large organization. The applicabilityof combinatorial testing was evaluated by comparing different features contained in aset of combinatorial test tools and then applying these tools to real world systems. Anumber of pilot projects were conducted where ACTS was used as the primary tool.According to the results of this study, ACTS continued to be used by a number ofteams once the pilot projects ended. Lei et al. [73] conducted a study to generalizethe pairwise IPO strategy to t-way testing, and implemented this new strategy inFireEye. The tool was evaluated in terms of efficiency by using different systemconfigurations. The experiments showed that the number of tests increased rapidlywith the t-strength. FireEye and four other test generation tools were applied to aTraffic Collision Avoidance System (TCAS) module. The results show that FireEyeperformed considerably better in both size of test suites and generation time forhigher strength t-way testing. Another approach used for embedded systems istimed-base choice criterion by Bergstrom et al. [76], in which timing information isincorporated in the input space used for test generation.
3.7 Mutation Testing for Variant-intensive Systems
Testing a software product line may be very tricky since the product line can be usedto derive a combination of products. The products can grow significantly and testingall possible combination might not be feasible. Mutation testing is used to improve thetest suite or evaluate existing test suite. The mutation testing approaches are basedon mutation operators, meaning that they rely on injecting potential bugs (mutationoperators) into the software (modified versions are called mutants) and see if the testsuite detects them. If a test is failed to execute on a modified (potentially buggy)version of the software, the mutant is considered as “killed”. If the mutant is not killed,then either the test suite needs to be improved or the mutant is equivalent to theoriginal software. Mutation testing is generally applied at the code-level but evidenceof applying mutation testing at model-level can also be found in the literature. This



DN—NAME

CONFIDENTIAL 20 V1.0

section of the document focuses on the use of mutation testing for software productlines.Christopher et al. [77] applied the mutation testing on the feature model-level toassess the quality of test suites. Particularly, Christopher et al. proposed twomutation operators for feature models to evaluate if diverse test cases kill moremutants. This work uses the formula representation of the feature model andproposes two mutation operators, one operator replaces a literal in a clause and theother operator replace a clause with two newly generated clauses. Products are thenderived from the original feature model, using SAT solvers. The derived products arethen checked with the formulas of the mutants to calculate the mutation score.Diverse test cases were found to be more effective in killing the generated mutants.Variability can be realized in different ways. One way to handle variability in C++software systems is using the preprocessor constructs (such as #if def and #ifdefined etc.).Mustafa et al. [78] proposed mutation operators for preprocessors-based variablesystems. A proposed taxonomy is used to derive the mutation operators, whichincludes variability model faults (faults in features and their dependencies), variabilitymapping faults (faults in the mapping of code to the configuration) and domainartifact faults (faults in the code of feature interaction). The operators remove arandom feature from the feature model, modify a feature dependency, add anadditional condition to the feature, conditionally use traditional mutation operators,remove #ifdef blocks, and move the code around an #ifdef block. The authors
then discussed how their mutation operators represent the real faults in the domain ofvariant-intensive software systems.Dennis et al. [79] also proposed a variety of mutation operators on feature modellevel. Their mutation operators include creating a feature, moving features, settingthe feature as optional, creating feature groups, moving feature groups and manyothers. These simple mutation operators reflect the small syntactic errors. Theauthors also addressed the problem of mutant selection using both random andsimilarity-based strategies. For similarity, the authors considered equality as ameasure and considered the definition of it in the future. Tool support for the mutationsampling was provided and the approach was evaluated for applicability,effectiveness, and efficiency.To deal with the huge number of combinations and to enable the use of modelcheckers for product lines, the Feature Transition Systems (FTS) was proposed [80].Xavier et al. [81] based their work on the FTS and feature models to present a visionfor efficient mutation testing. The mutation is supposed to be described in feature



DN—NAME

CONFIDENTIAL 21 V1.0

diagrams and it can be replicated in the behavioral FTSs. After that, configuratorscan help in deriving the mutated version of concrete products and test cases can beexecuted on all mutants at the same time. Thus, the approach may speed theprocess of mutation analysis in the software product lines.Mutation Testing is also used for the reduction of testing efforts in terms of testconfigurations. An approach [82] in the literature uses mutated feature models toevaluate test configurations being generated by an evolutionary algorithm. Theevolutionary algorithm (1+1 evolutionary) is guided by a maximization fitness functionfor the mutation score. The proposed search-based approach for the generation oftest configuration was evaluated for effectiveness (in terms of mutation score) andthe number of test configuration generated were also compared to random strategy.On average, the search-based test configuration generation approach improved themutation score by 68%.Feature mapping models are used to model the features on system design (UMLmodels). Mutation operators targeting the mapping models and UML models are alsoproposed in the literature [83]. The operators include deleting a mapping, deletingtarget elements of the mapping, inserting an extra element to the target of themapping and flipping the features of the mapping. The operators for UML modelsfocused on the transition of UML state machines. The mutation operators wereapplied to three software product lines case studies. Their test suites were analyzedagainst each mutation operator. The authors concluded that transition coverageshould not be used as a criterion for test case selection in product lines because itmight result in a low mutation kill rate.It might be really hard to find a benchmark for evaluation of a testing strategy for asoftware product line. Work on generating a benchmark with potential bugs isreported in the literature [84]. The work uses the code of products and generatesbenchmark test cases using EvoSuite [85]. The products are then mutated usingrandom and direct mutation, and test cases are executed to find the mutation score.This approach can be very useful when evaluating new testing strategies.
Mutation testing has been used also for embedded software by Enoiu et al. [86]. Thistechnique is used for producing test cases using an automated test generationapproach that operates using mutation testing for software written in IEC 61131-3language, a programming standard for safety-critical embedded software, commonlyused for Programmable Logic Controllers (PLCs). This approach uses the UPPAALmodel checker and is based on a combined model that contains all the mutants andthe original program.



DN—NAME

CONFIDENTIAL 22 V1.0

4 Combined Approaches
In [87], [88] the model-based software product line testing (MoSo-PoLiTe) concept isintroduced, providing a method for combinatorial SPL testing and its implementationby a tool chain.State charts are used as a test model for the SPL, whose states and transitions arethen mapped to features of a feature model. This model is flattened and transformedinto a constraint satisfaction problem, and a greedy ad-hoc algorithm, the AETG(Automatic Efficient Test Case Generator System, see [89]) is applied in order togenerate a set of test cases fulfilling the desired combinatorial coverage criteria.
The following problems of testing SPL are identified in [90], and approached with analgorithm defined in [91]: The time provided for software tests is inflexible, test caseshave to be provided and executed in a restricted time frame. The testing of invalidsoftware configurations of an SPL naturally leads to errors. Hence, a form ofconstraint management is necessary. Also, test sets often lack in measurable testcoverage criteria if they are provided manually and chosen from experience.The authors provide methods to identify the variation points of a SPL and construct avariability feature model. Subsequently, they present an algorithm to automaticallygenerate a – with regards to a given amount of time - minimal set of configurationscovering all pairwise interactions between the features and satisfying all constraints.For this purpose, the feature model is converted into a constraint model: A matrixwith columns representing the features and rows representing possibleconfigurations, where the number of rows is dynamic. Three types of constraints canbe modelled: Inheritance links that represent hierarchical relations between features(opt, and, or, xor), cross-tree links (mutex, requires) and the constraints that enforcea certain level of coverage (e.g. pairwise coverage). A constrained anytimeminimization algorithm is applied. The result is a so-called mixed level covering arraythat represents test cases sufficient for the desired level of coverage, of minimal sizewith respect to the assigned generating time.The approach was tested on a case study of a video conferencing SPL. Timewise,the combination of constructing the feature model and performing the algorithmgenerated test sets 7 times faster than the manual approach. Those test sets were17% smaller and did not contain any invalid test cases. They provided full pairwisecoverage, compared with around 19% pairwise coverage of the manual approach.
Both approaches presented above have the disadvantage that the notion ofvariability is very narrow: It is basically synonymous with configurability. Furthermore,



DN—NAME

CONFIDENTIAL 23 V1.0

they can only be applied if the variability is fixed from the beginning. The case thatvariants are added one after another is not covered, although it is a relevant scenarioin industry.
Delta modelling [92] takes the model of a core product as a base and models variantsof it by expressing the addition, removal and modification of features by deltas. Here,in principle, multiple deltas can implement a feature, and, vice versa, one delta canbe used to implement multiple features. So, instead of having to deal with a full modelfor each variant, the latter can be represented by a (much smaller) set of deltas.[93] investigate the prioritization of variants for delta models. As a measure ofdistance of two variants they choose the Hamming distance, i.e., up to scaling, thenumber of deltas resp. features in which the two variants differ. As a first product totest, the core product (preferably the largest/most error prone product) is chosen.Further variants to test are selected by computing the minimum distance to the set ofalready tested products for all possible not-yet-tested candidates. The candidate withthe largest minimum distance is then chosen as the next test object.The error-finding capabilities are measured against a random approach and theMoSo- PoLiTe algorithm, both of which they outperform.This approach also has limitations. Using the Hamming distance does not lead tooptimal feature coverage properties, as removed features are weighted as much asadditional features. Nonetheless, in [94], it is mentioned that the absence of featurescan also trigger errors.Also, measuring the distance between a variant and a set of variants by taking theminimal distance to any element of the set does not lead to optimal feature coverage.A variant might have a relatively large distance to all elements of the set, yet, it mightnot contain any features that are not in the set yet.



DN—NAME

CONFIDENTIAL 24 V1.0

5 Tools
Following the line of discussion from the previous two chapters, we describe twotypes of tools: First, we review tools with the main focus on variant modelling andmanagement. Then, we review available tools for the generation of abstract testcases from different types of models.
5.1 Variability Modelling Tools
5.1.1pure::variants
Pure::variants by pure.systems is a major product for variant management. It allowsto generate feature models, define instantiations, and link the features to manydifferent types of artefacts in the development process, including requirements,software modules, and test cases. It contains connectors to DOORS, RationalRhapsody, Enterprise Architect, Magic Draw, Simulink, and other softwareengineering tools. A free community edition, which is limited in the size of the models,is available.
5.1.2BigLever Gears
Gears by BigLever Inc. is one of the main competitors of pure::variants and has alarge overlap in functionality. The main features of Gears are:
 Feature models and product feature profiles: The modelling language used byGears differs in large parts from the one used by pure::variants and models arenot interchangeable. For any product in the portfolio a profile is created, whichunambiguously identifies the product by its features according to the featuremodel.
 Configuration and variance points: In Gears, variance points are „intelligentcasings for product variability”. Gears provides a language to describe variancepoints such that they can be configured according to a product profile. A productconfigurator allows to assemble the required components such as softwaremodules, requirements and tests, for the individual products of the SPL.
 Self-contained IDE: In contrast to pure::variants, Gears offers a “console” for theportfolio-specific development aspects. This ensures a wide degree ofindependence from external influences. Similar to pure::systems there areconnectors to established software development environments. In particular, thereis a tight integration between Gears and Rhapsody for model-based development.



DN—NAME

CONFIDENTIAL 25 V1.0

Additionally, there is a “bridge” to DOORS, Rational Quality Manager and ClearCase.
5.1.3Eclipse FeatureIDE, Eclipse EMF Feature Model/Feature Diagram Editor
The FeatureIDE project [https://featureide.github.io] aims to provide a completeSoftware Product Line Engineering solution, implemented as a collection of Eclipseplugins. The toolchain covers the whole engineering lifecycle, from domain andrequirements analysis all the way to feature implementation, product generation andtesting.The code base is licensed under L-GPL 3, and as of 2019 still sees activedevelopment — the latest version 3.6 was released August 30. Software packagescan be installed on an existing Eclipse environment or downloaded alongside thebase IDE as a self-contained application. Online documentation is sparse, but theMastering Software Variability with FeatureIDE book (written for version 3.3) seemsto be a satisfactory guide.FeatureIDE supports variability modelling through Feature Models, and deltas atprogramming level, but automated test generation does not seem to be included yet— though automated configuration generation and integration to JUnit are touted asfeatures. The toolchain is also extensible, with a number of external projects havingbeen built on top of it. All factors considered, FeatureIDE seems at first glance acomprehensive SPLE solution, and merits closer examination as a possible basis forimplementing a test generation tool for variant systems.
5.1.4Other approaches
Wikipedia [https://en.wikipedia.org/wiki/Feature_model] lists 27 tools supporting theediting and/or analysis of feature models (including the ones mentioned above).Many of these tools are outdated, no longer supported, or not well-integrated intomodern development processes.
5.2 Model-based Testing Tools
5.2.1Expleo Modica
MODICA is a test generation tool that employs a usage model as a source. A usagemodel describes a system from the perspective of its usage, with states as its nodesand state transitions as its edges. To this model, the test case generation algorithmcan be applied that aims to comply with specified coverage criteria, using thesmallest possible number of test steps in the test cases. Coverage criteria can begiven by requirements, the request that (certain) states, state transitions or paths are



DN—NAME

CONFIDENTIAL 26 V1.0

covered, or the choice of special test sequences that are otherwise hard to reach. InMODICA, there is also a variant handling available that allows to specify testgeneration strategies for different variants of the usage model. See [95] for details.
5.2.2Expleo Testona
TESTONA is a test case generation tool based on the classification tree method [96].The classification tree of a test object, e.g. a product, specifies its functionality bydividing it into its aspects/parameters (classifications) and theirspecifications/parameter values (classes). Furthermore, constraints on thecombination of these classes can be expressed in dependency rules.Possible test cases are then admissible combinations of classes from differentclassifications. For the generation of a suite of test cases, there are different modesavailable that represent different levels of test coverage: In minimal combination,every class appears in at least one test case, in pairwise and threewise combination,the same holds for every pair and triple of classes, respectively. In maximalcombination, all possible test cases are generated.In addition, it is possible to weight the classes depending on their frequency or errorrisk and consequently obtain a prioritization of test cases. A variability managementis built in, allowing the user to specify variants from the generic model and applyTESTONA-applications specifically to them. See [97] for details.
5.2.3Expleo Meran
MERAN is an integration tool for requirement management that also supports variantmanagement. It allows the creation of generic entities of requirements or testspecifiations, in a way that their properties are fragmented in small units. Once aspecific variant is chosen, the requirements or test specifications can be adapted bychoice of parameters or text segments. See [98] for details.
5.2.4 Ifak MBT Creator
The MBTCreator is a tool suite that combines various functionalities for model-basedtesting and test prioritization. MBTCreator offers editors and a graphical userinterface for a toolchain that covers all steps from requirements to test casegeneration, prioritization and execution.In a first step, the tool features methods for formalization of requirements using anotation language, the IRDL (Ifak Requirement Description Language). A statemachine can then be generated from formalized requirements, which models allbehavior of the SUT as described in the requirements. Abstract test cases are thengenerated for the state machine using one of several coverage based test goals.



DN—NAME

CONFIDENTIAL 27 V1.0

Additionally, MBTCreator features a test prioritization method which prioritizes testcases via a combination of model-based cluster analysis and a requirements-basedevaluation procedure to enable optimization of the test execution process.To execute the abstract test cases, a test manager has recently been included intoMBTCreator. It evaluates the abstract test cases and derives a suitable test program.To run the test cases for the SUT, a test adapter has been developed, which enablescommunication between the MBT Creator and the SUT. Currently, communication viaOPC UA and Shared Memory is supported.
5.2.5SaFRel: ML-based performance (stress) test case generation (RISE)
SaFReL is a self-adaptive fuzzy reinforcement learning-based performance (stress)testing framework which makes the tester agent able to learn the optimal policy forgenerating stress test conditions without having a performance model of the system.Finding the performance breaking point of the software under test (SUT), at which thesystem functionality breaks, or the performance requirements are not satisfiedanymore, is the main objective of the stress testing in this framework. In stresstesting, providing extreme (stress) test conditions involves changing (manipulating)the platform- and workload-wise factors affecting the performance. The currentprototype mainly focuses on stress testing regarding manipulating the resourceavailability.It assumes two learning phases, i.e., initial and transfer learning. First, it learns theoptimal policy through the initial learning and then reuses the learnt policy forobserved software systems with performance sensitivity analogous to alreadyobserved ones while still keeping the learning running in the long-term. The currentprototype uses a performance prediction module to estimate the effects of the appliedactions. It gets the initial resource utilization and nominal response time of thesystem, which have been measured in an isolated, contention free executionenvironment, and the performance sensitivity indicators as inputs. This frameworkcould be executed on a virtual machine containing the SUT, and it would beaugmented by an actuator doing the resource scaling within the VM. In this case, itwill be able to use the (resource) monitoring tools (services) like PercepioTracealyzer to receive the status data.
5.2.6 IntegrationDistiller: Automating generation of Integration Test Cases(RISE)
IntegrationDistiller is a solution and tool for automatic generation of integration leveltest cases for object-oriented .NET applications. It has a static analysis engine,implemented using Roslyn .NET compiler platforms APIs, which can automatically



DN—NAME

CONFIDENTIAL 28 V1.0

parse the source code and based on the concept of coupling-based testing, identifiesdifferent coupling relationships that can exist between classes, methods and theirparameters, and generate test paths to cover different interaction scenarios. Moredetails can be found in http://www.es.mdh.se/pdf_publications/5282.pdf.
5.2.7Other
There is a number of tools which have been developed, but are either out of date, nolonger maintained, or otherwise unavailable. We mention them mostly forcompleteness, since some of the underlying ideas are (still) relevant for XIVT:

● Imbus Variant Test, https://www.imbus.ca/testbench/variant-test/● IT Power Contino Prova, https://itpower.de/de/produkt/continoprova/● T-VEC, http://www.t-vec.com/● vEXgine, http://caosd.lcc.uma.es/vexgine/● Fokus!MBT● Behavior Engineering Support Environment



DN—NAME

CONFIDENTIAL 29 V1.0

6 References
[1] F. Roos-Frantz, D. Benavides, and A. Ruiz-Cortes, “Feature Model to OrthogonalVariability Model Transformation towards Interoperability between Tools,” p. 9.[2] L. M. Northrop and P. C. Clements, “A Framework for Software Product LinePractice, Version 5.0,” p. 258.[3] K. Lee, K. Chul Kang, and J. Lee, “Concepts and Guidelines of Feature Modelingfor Product Line Software Engineering,” presented at the 7th InternationalConference on Software Reuse: Methods, Techniques and Tools, 2002, pp.62–77.[4] K. C. Kang and H. Lee, “Variability Modeling,” in Systems and Software VariabilityManagement, R. Capilla, J. Bosch, and K.-C. Kang, Eds. Berlin, Heidelberg:Springer Berlin Heidelberg, 2013, pp. 25–42.[5] K. Czarnecki and C. H. P. Kim, “Cardinality-Based Feature Modeling andConstraints: A Progress Report,” p. 9.[6] T. von der Maßen and H. Lichter, “Modeling Variability by UML Use CaseDiagrams,” in Proceedings of International Workshop on RequirementsEngineering for Product Lines, Essen, Germany, 2002.[7] M. Clauß, “Modeling variability with UML,” p. 5.[8] A. Bragança and R. J. Machado, “Deriving Software Product Line’s ArchitecturalRequirements from Use Cases: an Experimental Approach,” p. 15.[9] V. Vranic, “Integrating Feature Modeling into UML,” p. 13.[10] S. Azevedo, R. J. Machado, A. Bragança, and H. Ribeiro, “On the refinementof use case models with variability support,” Innovations Syst Softw Eng, vol. 8,no. 1, pp. 51–64, Mar. 2012.[11] F. Fleurey, “The Common Variablility Language (CVL),” p. 28.[12] Ø. Haugen, A. Wąsowski, and K. Czarnecki, “CVL,” in Proceedings of the 17thInternational Software Product Line Conference on - SPLC ’13, New York, NewYork, USA, 2013, p. 277.[13] J. Echeverria, J. Font, C. Cetina, and O. Pastor, “Usability evaluation ofvariability modeling by means of common variability language,” in CEURWorkshop Proceedings, 2015.[14] Ø. Haugen, B. Møller-Pedersen, J. Oldevik, G. K. Olsen, and A. Svendsen,“Adding Standardized Variability to Domain Specific Languages,” in 2008 12thInternational Software Product Line Conference, 2008, pp. 139–148.[15] O. Haugen, “Variability Modelling in DREAMS,” p. 21.[16] Ø. Haugen and O. Øgård, “BVR – Better Variability Results,” in SystemAnalysis and Modeling: Models and Reusability, vol. 8769, D. Amyot, P. Fonsecai Casas, and G. Mussbacher, Eds. Cham: Springer International Publishing, 2014,pp. 1–15.[17] T. Weilkiens, Variant Modeling with SysML. Leanpub, 2014.[18] “Variability Exchange Language | Variability-Exchange-Language.” [Online].Available: https://www.variability-exchange-language.org/. [Accessed: 30-Jul-2019].



DN—NAME

CONFIDENTIAL 30 V1.0

[19] M. Matinlassi, “Comparison of software product line architecture designmethods: COPA, FAST, FORM, KobrA and QADA,” in Proceedings. 26thInternational Conference on Software Engineering, 2004, pp. 127–136.[20] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,“Feature-Oriented Domain Analysis (FODA) Feasibility Study:,” DefenseTechnical Information Center, Fort Belvoir, VA, Nov. 1990.[21] R. Bashroush, T. J. Brown, I. Spence, and P. Kilpatrick, “ADLARS: AnArchitecture Description Language for Software Product Lines,” in 29th AnnualIEEE/NASA Software Engineering Workshop, Greenbelt, MD, USA, 2005, pp.163–173.[22] E. Silva, A. L. Medeiros, E. Cavalcante, and T. Batista, “A LightweightLanguage for Software Product Lines Architecture Description,” in SoftwareArchitecture, vol. 7957, K. Drira, Ed. Berlin, Heidelberg: Springer BerlinHeidelberg, 2013, pp. 114–121.[23] M. Goulão, “Bridging the gap between Acme and UML 2.0 for CBD,” p. 5.[24] C. Mokarat and W. Vatanawood, “UML Component Diagram to AcmeCompiler,” in 2013 International Conference on Information Science andApplications (ICISA), 2013, pp. 1–4.[25] L. C. Briand, “Novel Applications of Machine Learning in Software Testing,” in2008 The Eighth International Conference on Quality Software, 2008, pp. 3–10.[26] L. C. Briand, Y. Labiche, and Z. Bawar, “Using Machine Learning to RefineBlack-Box Test Specifications and Test Suites,” in 2008 The Eighth InternationalConference on Quality Software, 2008, pp. 135–144.[27] L. C. Briand, Y. Labiche, and X. Liu, “Using Machine Learning to SupportDebugging with Tarantula,” in The 18th IEEE International Symposium onSoftware Reliability (ISSRE ’07), 2007, pp. 137–146.[28] J. F. Bowring, J. M. Rehg, and M. J. Harrold, “Active Learning for AutomaticClassification of Software Behavior,” p. 11.[29] C. Pacheco and M. D. Ernst, “Eclat: Automatic Generation and Classificationof Test Inputs,” in ECOOP 2005 - Object-Oriented Programming, vol. 3586, A. P.Black, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 504–527.[30] H. Khosrowjerdi and K. Meinke, “Learning-based Testing for AutonomousSystems Using Spatial and Temporal Requirements,” in Proceedings of the 1stInternational Workshop on Machine Learning and Software Engineering inSymbiosis, New York, NY, USA, 2018, pp. 6–15.[31] K. Meinke, “Learning-Based Testing: Recent Progress and Future Prospects,”in Machine Learning for Dynamic Software Analysis: Potentials and Limits:International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27,2016, Revised Papers, A. Bennaceur, R. Hähnle, and K. Meinke, Eds. Cham:Springer International Publishing, 2018, pp. 53–73.[32] “Machine Learning with MATLAB.” [Online]. Available:https://www.mathworks.com/campaigns/offers/machine-learning-with-matlab.html.[Accessed: 12-Aug-2019].[33] A. Bertolino, A. Fantechi, S. Gnesi, and G. Lami, “Product Line Use Cases:Scenario-Based Specification and Testing of Requirements,” in Software Product



DN—NAME

CONFIDENTIAL 31 V1.0

Lines, T. Käköla and J. C. Duenas, Eds. Berlin, Heidelberg: Springer BerlinHeidelberg, 2006, pp. 425–445.[34] A. Cockburn, Writing Effective Use Cases, 1st ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2000.[35] A. Bertolino and S. Gnesi, “PLUTO: A Test Methodology for Product Families,”in Software Product-Family Engineering, vol. 3014, F. J. van der Linden, Ed.Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 181–197.[36] A. Bertolino and S. Gnesi, “Use Case-based Testing of Product Lines,” inProceedings of the 9th European Software Engineering Conference Held Jointlywith 11th ACM SIGSOFT International Symposium on Foundations of SoftwareEngineering, New York, NY, USA, 2003, pp. 355–358.[37] I. L. Araújo, I. S. Santos, J. B. F. Filho, R. M. C. Andrade, and P. S. Neto,“Generating test cases and procedures from use cases in dynamic softwareproduct lines,” in Proceedings of the Symposium on Applied Computing -SAC ’17, Marrakech, Morocco, 2017, pp. 1296–1301.[38] F. Ferreira, L. Neves, M. Silva, and P. Borba, “TaRGeT: a Model BasedProduct Line Testing Tool,” p. 7.[39] M. Dukaczewski, I. Schaefer, R. Lachmann, and M. Lochau, “Requirements-based delta-oriented SPL testing,” in 2013 4th International Workshop on ProductLinE Approaches in Software Engineering (PLEASE), 2013, pp. 49–52.[40] C. Nebut, Y. L. Traon, and J.-M. Jezequel, “System Testing of Product Lines:From Requirements to Test Cases,” in Software Product Lines, T. Käköla and J.C. Duenas, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp.447–477.[41] Y. I. Salem and R. Hassan, “Requirement-based test case generation andprioritization,” in 2010 International Computer Engineering Conference (ICENCO),2010, pp. 152–157.[42] M.-F. Wendland, I. Schieferdecker, and A. Vouffo-Feudjio, “Requirements-Driven Testing with Behavior Trees,” in 2011 IEEE Fourth InternationalConference on Software Testing, Verification and Validation Workshops, 2011,pp. 501–510.[43] G. Carvalho et al., “Test case generation from natural language requirementsbased on SCR specifications,” in Proceedings of the 28th Annual ACMSymposium on Applied Computing - SAC ’13, 2013, p. 1217.[44] M.-F. Wendland, A. Hoffmann, and I. Schieferdecker, “Fokus!MBT: a multi-paradigmatic test modeling environment,” in Proceedings of the workshop onACadeMics Tooling with Eclipse - ACME ’13, New York, New York, USA, 2013,pp. 1–10.[45] C. Mingsong, Q. Xiaokang, and L. Xuandong, “Automatic test case generationfor UML activity diagrams,” in Proceedings of the 2006 international workshop onAutomation of software test - AST ’06, New York, New York, USA, 2006, p. 2.[46] E. G. Cartaxo, F. G. O. Neto, and P. D. L. Machado, “Test case generation bymeans of UML sequence diagrams and labeled transition systems,” inConference Proceedings - IEEE International Conference on Systems, Man andCybernetics, 2007.



DN—NAME

CONFIDENTIAL 32 V1.0

[47] M. Sarma, D. Kundu, and R. Mall, “Automatic Test Case Generation from UMLSequence Diagram,” in 15th International Conference on Advanced Computingand Communications (ADCOM 2007), 2007, pp. 60–67.[48] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann, “Generating test data fromstate-based specifications,” Softw. Test. Verif. Reliab., vol. 13, no. 1, pp. 25–53,Jan. 2003.[49] S. Gnesi, D. Latella, and M. Massink, “Formal test-case generation for UMLstatecharts,” in Proceedings. Ninth IEEE International Conference on Engineeringof Complex Computer Systems, 2004, pp. 75–84.[50] P. Samuel, R. Mall, and A. K. Bothra, “Automatic test case generation usingunified modeling language (UML) state diagrams,” IET Software, vol. 2, pp.79–93, 2008.[51] A. Orso and G. Rothermel, “Software Testing: A Research Travelogue(2000–2014),” in Proceedings of the on Future of Software Engineering, NewYork, NY, USA, 2014, pp. 117–132.[52] G. Fraser and A. Arcuri, “EvoSuite: Automatic Test Suite Generation forObject-oriented Software,” in Proceedings of the 19th ACM SIGSOFTSymposium and the 13th European Conference on Foundations of SoftwareEngineering, New York, NY, USA, 2011, pp. 416–419.[53] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and AutomaticGeneration of High-Coverage Tests for Complex Systems Programs,” p. 14.[54] N. Tillmann and J. de Halleux, “Pex-White Box Test Generation for .NET,” inTAP, 2008.[55] S. Zhang, D. Saff, Y. Bu, and M. D. Ernst, “Combined static and dynamicautomated test generation,” in Proceedings of the 2011 International Symposiumon Software Testing and Analysis - ISSTA ’11, Toronto, Ontario, Canada, 2011,p. 353.[56] Y. Kim, Y. Kim, T. Kim, L. Gunwoo, Y. Jang, and M. Kim, “Automated unittesting of large industrial embedded software using concolic testing,” presented atthe 2013 28th IEEE/ACM International Conference on Automated SoftwareEngineering, ASE 2013 - Proceedings, 2013, pp. 519–528.[57] E. P. Enoiu, A. Čaušević, T. J. Ostrand, E. J. Weyuker, D. Sundmark, and P.Pettersson, “Automated test generation using model checking: an industrialevaluation,” Int J Softw Tools Technol Transfer, vol. 18, no. 3, pp. 335–353, Jun.2016.[58] R. Matinnejad, S. Nejati, L. Briand, and T. Bruckmann, “Test Generation andTest Prioritization for Simulink Models with Dynamic Behavior,” IEEETransactions on Software Engineering, vol. PP, pp. 1–1, Mar. 2018.[59] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing advanceddriver assistance systems using multi-objective search and neural networks,” inProceedings of the 31st IEEE/ACM International Conference on AutomatedSoftware Engineering - ASE 2016, Singapore, Singapore, 2016, pp. 63–74.[60] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Törner,“Increasing Efficiency of ISO 26262 Verification and Validation by CombiningFault Injection and Mutation Testing with Model Based Development,” 2013.



DN—NAME

CONFIDENTIAL 33 V1.0

[61] L. Thi My Hanh, T. Khuat, and B. Nguyen, “Mutation-based Test DataGeneration for Simulink Models using Genetic Algorithm and SimulatedAnnealing,” International Journal of Computer and Information Technology(IJCIT), vol. 03, pp. 763–771, Jul. 2014.[62] Y. Zhan and J. A. Clark, “Search-based mutation testing for Simulink models,”in Proceedings of the 2005 conference on Genetic and evolutionary computation- GECCO ’05, Washington DC, USA, 2005, p. 1061.[63] Y. Zhan and J. A. Clark, “A search-based framework for automatic testing ofMATLAB/Simulink models,” Journal of Systems and Software, vol. 81, no. 2, pp.262–285, Feb. 2008.[64] “Speedgoat Hardware Support for Real-Time Simulation and Testing fromSimulink Real-Time.” [Online]. Available: https://se.mathworks.com/hardware-support/real-time-simulation-and-testing-with-speedgoat-hardware.html.[Accessed: 24-Oct-2019].[65] “Create and Run a Back-to-Back Test - MATLAB & Simulink - MathWorksNordic.” [Online]. Available: https://se.mathworks.com/help/sltest/ug/create-and-run-a-back-to-back-test.html. [Accessed: 24-Oct-2019].[66] “Automatically Create a Set of Test Cases - MATLAB & Simulink - MathWorksNordic.” [Online]. Available: https://se.mathworks.com/help/sltest/ug/generate-test-cases-from-model-components.html#mw_590f3b16-953e-423e-b049-b11bfe19330e. [Accessed: 24-Oct-2019].[67] “Assess simulation testing scenarios, function calls, and assessments -Simulink - MathWorks Nordic.” [Online]. Available:https://se.mathworks.com/help/sltest/ref/testassessment.html. [Accessed: 24-Oct-2019].[68] C. Nie and H. Leung, “A Survey of Combinatorial Testing,” ACM Comput.Surv., vol. 43, no. 2, pp. 11:1–11:29, Feb. 2011.[69] D. R. Kuhn, R. N. Kacker, and Y. Lei, “SP 800-142. Practical CombinatorialTesting,” National Institute of Standards & Technology, Gaithersburg, MD, UnitedStates, 2010.[70] L. Yu, Y. Lei, R. N. Kacker, and D. R. Kuhn, “ACTS: A Combinatorial TestGeneration Tool,” in Verification and Validation 2013 IEEE Sixth InternationalConference on Software Testing, 2013, pp. 370–375.[71] D. Kuhn, R. Kacker, yu Lei, and J. Hunter, “Combinatorial Software Testing,”Computer, vol. 42, pp. 94–96, Sep. 2009.[72] D. R. Kuhn, R. N. Kacker, and Y. Lei, “Combinatorial Testing,” Encyclopedia ofSoftware Engineering, p. 30.[73] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, “IPOG: A GeneralStrategy for T-Way Software Testing,” in 14th Annual IEEE InternationalConference and Workshops on the Engineering of Computer-Based Systems(ECBS’07), 2007, pp. 549–556.[74] M. N. Borazjany, L. Yu, Y. Lei, R. Kacker, and R. Kuhn, “Combinatorial Testingof ACTS: A Case Study,” in Verification and Validation 2012 IEEE FifthInternational Conference on Software Testing, 2012, pp. 591–600.



DN—NAME

CONFIDENTIAL 34 V1.0

[75] J. D. Hagar, T. L. Wissink, D. R. Kuhn, and R. N. Kacker, “IntroducingCombinatorial Testing in a Large Organization,” Computer, vol. 48, no. 4, pp.64–72, Apr. 2015.[76] H. Bergström and E. P. Enoiu, “Using Timed Base-Choice Coverage Criterionfor Testing Industrial Control Software,” in 2017 IEEE International Conference onSoftware Testing, Verification and Validation Workshops (ICSTW), 2017, pp.216–219.[77] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. L. Traon, “AssessingSoftware Product Line Testing Via Model-Based Mutation: An Application toSimilarity Testing,” in 2013 IEEE Sixth International Conference on SoftwareTesting, Verification and Validation Workshops, 2013, pp. 188–197.[78] M. Al-Hajjaji, F. Benduhn, T. Thüm, T. Leich, and G. Saake, “MutationOperators for Preprocessor-Based Variability,” in Proceedings of the TenthInternational Workshop on Variability Modelling of Software-intensive Systems -VaMoS ’16, Salvador, Brazil, 2016, pp. 81–88.[79] D. Reuling, J. Bürdek, S. Rotärmel, M. Lochau, and U. Kelter, “Fault-basedProduct-line Testing: Effective Sample Generation Based on Feature-diagramMutation,” in Proceedings of the 19th International Conference on SoftwareProduct Line, New York, NY, USA, 2015, pp. 131–140.[80] A. Classen, M. Cordy, P. Schobbens, P. Heymans, A. Legay, and J. Raskin,“Featured Transition Systems: Foundations for Verifying Variability-IntensiveSystems and Their Application to LTL Model Checking,” IEEE Transactions onSoftware Engineering, vol. 39, no. 8, pp. 1069–1089, Aug. 2013.[81] X. Devroey, G. Perrouin, M. Cordy, M. Papadakis, A. Legay, and P. Y.Schobbens, “A Variability Perspective of Mutation Analysis,” 2014.[82] C. Henard, M. Papadakis, and Y. Le Traon, “Mutation-Based Generation ofSoftware Product Line Test Configurations,” 2014, pp. 92–106.[83] H. Lackner and M. Schmidt, “Towards the Assessment of Software ProductLine Tests: A Mutation System for Variable Systems,” in Proceedings of the 18thInternational Software Product Line Conference: Companion Volume forWorkshops, Demonstrations and Tools - Volume 2, New York, NY, USA, 2014,pp. 62–69.[84] S. Fischer, R. E. Lopez-Herrejon, and A. Egyed, “Towards a Fault-detectionBenchmark for Evaluating Software Product Line Testing Approaches,” inProceedings of the 33rd Annual ACM Symposium on Applied Computing, NewYork, NY, USA, 2018, pp. 2034–2041.[85] G. Fraser and A. Arcuri, “EvoSuite at the SBST 2016 Tool Competition,” inProceedings of the 9th International Workshop on Search-Based SoftwareTesting, New York, NY, USA, 2016, pp. 33–36.[86] E. P. Enoiu, D. Sundmark, A. Čaušević, R. Feldt, and P. Pettersson,“Mutation-Based Test Generation for PLC Embedded Software Using ModelChecking,” in Testing Software and Systems, vol. 9976, F. Wotawa, M. Nica, andN. Kushik, Eds. Cham: Springer International Publishing, 2016, pp. 155–171.[87] S. Oster, T. Darmstadt, and F. Elektrotechnik, “Feature Model-based SoftwareProduct Line Testing,” p. 236.



DN—NAME

CONFIDENTIAL 35 V1.0

[88] S. Oster, I. Zorcic, F. Markert, and M. Lochau, “MoSo-PoLiTe: tool support forpairwise and model-based software product line testing,” in VaMoS, 2011.[89] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The AETGSystem: An Approach to Testing Based on Combinatorial Design,” IEEE Trans.Softw. Eng., vol. 23, no. 7, pp. 437–444, Jul. 1997.[90] D. Marijan, A. Gotlieb, S. Sen, and A. Hervieu, “Practical pairwise testing forsoftware product lines,” in Proceedings of the 17th International Software ProductLine Conference on - SPLC ’13, Tokyo, Japan, 2013, p. 227.[91] A. Hervieu, B. Baudry, and A. Gotlieb, “PACOGEN: Automatic Generation ofPairwise Test Configurations from Feature Models,” in 2011 IEEE 22ndInternational Symposium on Software Reliability Engineering, Hiroshima, Japan,2011, pp. 120–129.[92] I. Schaefer, “Variability Modelling for Model-Driven Development of SoftwareProduct Lines,” p. 8, 2010.[93] M. Al-Hajjaji, S. Lity, R. Lachmann, T. Thum, I. Schaefer, and G. Saake,“Delta-Oriented Product Prioritization for Similarity-Based Product-Line Testing,”in 2017 IEEE/ACM 2nd International Workshop on Variability and Complexity inSoftware Design (VACE), Buenos Aires, Argentina, 2017, pp. 34–40.[94] I. Abal, C. Brabrand, and A. Wasowski, “42 variability bugs in the linux kernel:a qualitative analysis,” in Proceedings of the 29th ACM/IEEE internationalconference on Automated software engineering - ASE ’14, Vasteras, Sweden,2014, pp. 421–432.[95] P. Kruse and J. Reiner, “Usage Models for the Systematic Generation of TestCases with MODICA,” 2016, pp. 113–121.[96] M. Grochtmann and K. Grimm, “Classification trees for partition testing,”Software Testing, Verification and Reliability, vol. 3, no. 2, pp. 63–82, 1993.[97] P. Kruse and M. Luniak, “Automated Test Case Generation UsingClassification Trees,” Software Quality Professional, vol. 13, pp. 4–12, Jan. 2010.[98] C. Robinson-Mallett, M. Grochtmann, J. Wegener, J. Köhnlein, and S. Kühn,“Modelling Requirements to Support Testing of Product Lines,” presented at theICSTW 2010 - 3rd International Conference on Software Testing, Verification, andValidation Workshops, 2010, pp. 11–18.


