
 

Selecting the Right Tests 
at the Right Time 

A Guideline for Test Prioritization 
and Test Selection 

 

Version 1.2 
Feedback of any kind is welcome! Contact us via 

Twitter @TestomatProject or using this ​feedback ​form: 
https://goo.gl/J5wnjm  

Please take part in our ​survey ​on test prioritization! 
https://goo.gl/PCSpU6  

CONTENT  

1. Why Prioritize Your Tests 
Systematically? 

2. When to Prioritize Your Tests 
Systematically? 

3. Prioritization Versus Development 
Methodologies 

4. Some Different Prioritizations 
○ What do we test? 
○ Manual Test Case 

Selection for Regression 
Testing 

○ Automated Prioritization for 
Variable CI/CD Testing 

5. Classification of Test prioritization 
methods 

○ Test Prioritization 

https://goo.gl/J5wnjm
https://goo.gl/PCSpU6


 

○ Test Minimization 
○ Test Selection 
○ Test Scheduling 

6. Test Prioritization in Industry 

Why Prioritize Your Tests 

Systematically? 

The ideal situation for test is that you        
could test everything, but this is often not        
feasible for real-world systems. But it is       
often surprising how a statement like this,       
will allow major functionality to go      
untested, and communicates to people     
that you do not need to test (all) aspects         
(that you know). One must understand      
that it is feasible to cover almost       
everything at a decent cost, so aiming for        

zero-fault tolerance should be a goal for       
most test teams. By using prioritization      
and optimization techniques in a clever      
way - no unnecessary repetitions and      
waste of time is achieved. The more       
automated these processes are - the less       
time is spent on wasteful activities. Instead       
- Adding and complementing the test suite       
with new test cases addressing new      
aspects can be the main concern for the        
testers. 
 
Prioritization of what you are testing can       
mean: 

● Importance: ​To first make sure     
that within the time given, you have       
created tests for aspects of your      
software that are important to you      



 

overall, or for a specific level or       
loop in the flow 

● Fast Feedback: To reorder an     
existing test suite to increase its      
efficiency during test execution to     
e.g. do the changes to the software       
first, or the last bug-fixes first. 

● Execution schedule: To choose    
when to run which tests at what       
time in the development and     
delivery cycle. 

● Clean-up:​ To  

● Improve your Automation or    
Test-flow: To select manual or     
semi-manual tests for full    
automation. One example could be     
to automate the test outcome and      

verdict, a difficult thing for     
non-functional testing that could    
involve several steps of post     
processing and analysis.  

 
which allows you to... 
 

● Save time, effort and cost 

● Make sure you focus on what is       
important for you, your    
development speed, your users    
and customers 

● Save on hardware utilization and     
test environment but not repeating     
unnecessary test cases 



 

● Save on energy and power, be      
more sustainable to the    
environment  

● Create a test suite that optimizes      
your test process (e.g. lower cost,      
less time, higher fault detection     
rate) 

● Get an earlier feedback regarding     
faults or success e.g. when you      
have changed something or if you      
have very large test suites 

The main goal is to avoid unnecessary       
repetition of test, e.g. if we already know        
the test will lead to a faulty verdict, it         
should not be repeated, or, if it is not         
expected to give any new information, e.g.       
nothing that impacts this particular test      

case has changed, it should not be       
re-executed.  
 
In many modern systems, the traceability      
of the system to a test is lost and you are           
forced to re-test “everything”, - if you are        
also running in an agile way, this might        
mean you are really wasting resources.      
Here it could be beneficial to build up        
intelligence on what test cases are related       
to what particular code, and utilize      
learning to get “smart” test prioritization      
and scheduling schemes. It is simply      
smart to utilize your test suite as efficiently        
and effective as possible.  
The different methods of test prioritization      
can be used and adapted to achieve       
various goals in various phases of the test        



 

process. By using test prioritization     
methods like test case selection, removal,      
or scheduling, you will be able to improve        
the efficiency in your processes by      
reducing testing effort, time, and cost.  
 
In the case of test case prioritization,       
which is a part of test case scheduling, a         
prioritized and reordered test suite allows      
you to increase the rate of fault detection        
in an early phase of testing without       
compromising on test coverage. This is      
especially interesting for large test suites,      
where an early feedback regarding faults      
is often beneficial.  
Prioritizing Safety Critical code 
It is noteworthy that when you optimize       
and prioritize testing using safety-critical     

code, it is often required by standards,       
e.g. ISO/IEC 26262 to state the reasons       
for how and in what way you did your test          
case selection, ordering and prioritization.  

 
Figure 1. Two aspects of test automation 



 

When to Prioritize Your Tests - in               

your Development & Test Process 

Prioritization is done all the time, both with        
a long and short time-scale. When we talk        
about a long time, it could for a software         
systems entire life-cycle be years or      
decades, but the normal context for most       
software development and test activities it      
is done on a daily basis, and even every         
hour or “on demand”. This means that       
methods of test prioritization can be      
applied from the moment you design your       
requirements and choose what you are to       
test, from decisions to what test cases       
your are to automate, but most often we        
mean in the execution phase, or in the        

regression test phase: In other words,      
every time you run your tests during at        
every level of testing.  
 
The absolute first prioritization is done      
when you are in the process of creating        
tests. How do you select what test cases        
should be written? What is the “best set”        
that would sufficiently test you software      
system given a specific quality criteria?      
The goal should be to test the best you         
can with the time given, and a multitude of         
techniques, ways of writing tests etc can       
aid you in that prioritization, which is called        
“Test Design”. We will not discuss these       
test design methods further in this booklet. 
 



 

More important is to know that the earlier        
you start to plan for test prioritization in        
your testing process, the easier it will be to         
actually implement and use prioritization     
methods. To utilize test prioritization, it      
might be necessary to make changes to       
your existing test process, which means      
additional cost and man hours for      
implementation. Changing an existing test     
suite to allow for efficient prioritization can       
be a lot more work than having your test         
model optimized for prioritization from the      
beginning.  
A very simple thing is that prioritized and        
main requirements with a corresponding     
key test cases, would from the beginning       
marked with “regression test” - since it       
must always work. One such example      

could be to prioritize test cases that       
traverses a large part of the system       
functionality, often called “End-to End test      
cases”.  
 
So far, we only talked about when to start         
implementing test prioritization schemes.    
Another important topic is when to actually       
use your implemented test prioritization     
methods. This depends on various factors,      
for one the cost of utilizing it. Another        
factor that impacts cost is the actual size        
of the test suite. If you have thousands of         
developers adding code and test cases      
simultaneously - your prioritization will look      
very different than if you look at a small         
team owning one repository for one piece       
of software. Size matters. 



 

 
Generally speaking, using a prioritization     
method will always be beneficial as soon       
as a full execution of an existing test suite         
will either be too expensive regarding cost       
or time. For example, if a full execution of         
a test suite takes several days and an        
early feedback regarding faults is     
necessary, it is beneficial to only execute       
the important test cases which are      
determined by the prioritization. A goal      
here could be to return information within       
minutes of a change - or for some systems         
within the hour. We all want answers       
immediately - but getting a result of a        
complex test suite, might be sometimes      
needed more computational time than     
available.  

 
Alternatively, if the test suite is prioritized       
using adequate methods and metrics to      
increase the fault detection rate early in       
the testing process, the entire test suite       
can still be executed - but most of the         
faults will be reported in the first few hours         
of test execution (assuming that an      
efficient prioritization method has been     
chosen). A goal could be “small changes       
-fast feedback, big changes - takes a bit        
longer.''  

Prioritization Versus Development     

Methodologies 

For software development different    
standard approaches exist in order to      



 

achieve a certain quality. Depending on      
the project and its boundary conditions the       
waterfall approach, the Agile/Scrum    
approach, or the DevOps approach might      
be suiting. Regardless of the chosen      
approach a prioritization technologies are     
useful, as software systems is known to       
evolve over time. 

Some Different Prioritizations 

First you must decide what the key quality        
attributes are to know what to prioritize in        
your test of your system. It is often our first          
priority to test the functionality or features       
that our customer demands. This testing      
phase has its own requirements regarding      
the test process which are often different       

to those of later regression testing.      
Depending on where you are in your       
testing process (or which level of      
automation you have already reached),     
we can differentiate between different     
prioritization approaches: 

1. Initial test prioritization (what 
requirements or aspects of 
requirements to prioritize 

2. Regression testing or Retesting 
(when you have found a bug or 
done any slight change or update 
to your hardware or software in 
you system). 

3. Automated prioritization for 
variable CI/CD testing - where you 
might have one too many “loops” 
of test case evaluation. 



 

 
Each type has two major steps: The       
selection and the ordering of execution.  

What to test? 
The general question here is: What do I        
actually have to test? Meaning, we want to        
know what aspects we have to create test        
cases for; also called “defining the test       
scope”. This question can most of the time        
only be answered generally, because it      
really depends on what kind of software       
you are developing and what your      
customer requirements are. 
 
There can be a variety of factors that        
influence your decision - but in most of the         

cases, it should at least satisfy the       
stakeholders. 
 
Example of stakeholders are:  

- Customers 
- Users of systems 
- Company strategy 
- Economic situation 

 
Most other aspects can be summed up as        
TEST CRITERIA: 

- Requirements/User Stories (if it    
was important to describe in a      
requirement - it is important to test       
that it fulfills the requirement) 

- Non-functional aspects (e.g. using    
quality attributes from the ISO/IEC     
std 25010) 



 

- Necessity of certification and    
standardization adherence (there could be     
some necessity test that must be      
executed) 
  
We could also assume we already have a        
test suite existing. If it is a manual set of          
test cases, we will be forced to select        
carefully among which of these tests we       
have time to test again, in addition to the         
re-test necessary for tests that revealed      
faults. Such an existing test suite can be        
prioritized using the same prioritization     
metrics that are used for prioritization type       
3 (see chapter: “Type 3: Prioritization for       
your variable CI/CD testing”). However,     
the goal of testing (increasing fault      

detection rate, decreasing risk etc.) might      
be a different one.  

Manual Test Case Selection for     
Regression Testing 
If you have automated your testing      
process - this choice would appear trivial:       
You simply test everything again. When      
you work e.g. agile with a continuous build        
and test manner, and have automated      
most of your tests, you are likely to        
encounter these problems quickly: 

1. The time to run all tests is too long 
2. The number of tests is too high (for 

the time given) 
3. It is a waste of energy and 

resources to rerun every test 



 

4. That currently run tests are not 
related or important for the 
moment 

 
Then you need to select among your       
automated suite of tests to choose in       
which order you want to test them. 
 

Select Test cases for Regression     
Testing 
As mentioned, this assumes that you are       
working manually, otherwise you would go      
for our next automated test selection (as       
the test case is already implemented). 
 
Various prioritization criteria may be     

applied to the regression test suite. Test       
cases can be prioritized in terms of: 
● random 
● total or additional coverage  1

● failure rates 
● fault exposing potential  

of the test cases. Test case prioritization       
can help with detecting high risk faults       
earlier in the testing life cycle, improving       
the detection of regression errors related      
to code changes, enhancing the coverage      
of the code and making a system reliable.        
Test case prioritization thus helps in      

1 Note, there are many different coverage,       
statement, branch/decision, basic condition,    
MC/DC, Mutation, Model, etc... check out our       
other TESTOMAT Booklet on Coverage to      
learn more about this. 



 

reducing the effort and therefore time and       
cost of testing [7]. 
 
Manual prioritization also covers the     
prioritization process when deciding which     
test cases are automated first. This first       
selection can be done by choosing test       
cases that: 

● “cover” as many different aspects of the       
system under test as possible (code,      
model, system architecture, modules,    
functionality, requirements,  
non-functional aspects, etc.) 

● need re-testing (that found a fault in the        
earlier version) and still has to be       

confirmed as “fault-free” (note that this      2

option does not necessarily mean you      
should automate for it) 

● you think has a high probability of finding        
a fault (e.g error guessing)  

Automated Prioritization For   
Variable CI/CD Testing 
Changing the software to correct faults or       
add new functionality can cause the      
existing functionality to regress,    
introducing new faults. To avoid such kind       
of defects, software can be retested after       

2 ​It is important to note that in software         
testing, tests can be used to show the        
presence of bugs, but never to show their        
absence! 



 

modification which is known as regression      
testing. Regression testing is known to be       
one of the most expensive parts of       
software maintenance and therefore, it is      
necessary to prioritize test cases in test       
suites. Several techniques are available     
for prioritizing the test cases to accelerate       
the rate of fault detection in regression       
testing. Some existing approaches rely on      
requirement coverage. These approaches    
consider prioritization as an unordered,     
independent and one-time model. They do      
not take into account the performance of       
test cases [6]. 
 
When choosing a regression test     
selection, a goal oriented approach is      
generally a good idea. Here, a test       

selection for regression testing can be      
chosen according to one or more of the        
following goals: 
● Increase fault detection rate 
● Decrease risk of faults 
● Decrease testing time 
● Decrease cost of testing 
● Feature-based prioritization focused   

on testing of current development  
● A mix of those described by an       

optimization problem: maximize test    
coverage for a limited available testing      
time 

 
An automated prioritization of your     
regression testing could be based on one       
or several of the following prioritization      
metrics: 



 

● Coverage (additional) based on 
○ Configuration  
○ Test Environment 
○ System architecture, structure 
○ Customer prioritization 
○ Code Coverage in case of white 

box testing [1] 
○ Model Coverage in case of black 

box testing 
○ N-F Quality Attributes  

● Time for execution of TC [8] 
● Type of TC (Level, or specific quality 

attribute) 
● Resources required 

○ Availability of Test Environment 
(context) needed 

● History of TC 

○ Latest 1- x test results 
(pass/fail) [4] 

○ How long ago a TC was last 
executed 

○ When a TC was introduced 
(age) 

● Code Churn (based on latest 
changes of the code) [19] 
○ Dependability analysis 
○ Static Analysis 
○ Build information 

● Dependency in group, If 
verdict/results reacts “together” in 
a group - only select one in a 
group of “similar” TC 

● Code complexity or model 
complexity 

● Requirements 



 

○ Requirement changes [2] 
○ Requirement complexity [2] 

● Risk-based metrics [3] 
● Error-Probability-based metrics 

○ Based on Bayesian networks 
[5] 

● Other constraints - e.g. goal to 
fulfill  

Example of such selection criteria for      
different ordering or group’s are:  

● Time/Duration to execute the Test     
suite overall (or a specific TC) 

● “group”, e.g. Smoke tests,    
Functional tests, Non-functional   
tests 

 

 

 

How Do You Implement Test     
Prioritization? 
Implementing an effective and robust test      
prioritization process that doesn’t    
jeopardize the software quality in the long       
term requires a certain amount of planning       
and a clear definition of prioritization      
goals. The benefit of prioritization however      
will outweigh the initial cost of setup by        
reducing test execution time and cost for       
regression testing. Comparing testing with     
an industrial process, parallels to lean      
manufacturing can be drawn. Instead of      
running all the tests all the time, test        
prioritization tries to identify those tests      
that add value (by finding faults and aiding        
in improving software quality) and reduce      
test cases which add only minimal or no        



 

value at all. Comparing test prioritization      
with just-in-time manufacturing, it can be      
argued that it might be more beneficial to        
run only those tests at a time, which are         
actually necessary for reaching a certain      
testing goal. 
 
While concrete prioritization methods differ     
a lot based on which testing goals they        
were designed for, often a first      
prioritization-like step can be identified.     
Prioritization helps in identifying all test      
cases which aid in reaching a certain       
testing goal. To give an example, imagine       
a test suite for which full execution takes a         
whole week. Prioritizing the test suite and       
running those test cases, which were      
identified as being the most important      

according to some metric first, will allow       
for a much earlier feedback to the testers.        
Test prioritization methods are therefore     
basically trying to identify the most      
important test cases based on some      
metric and rearrange the execution order      
of the test suite. 
 
Consider the following example excerpted     
from [18] where a test suite is composed        
of 5 test cases (i.e., A, B, C, D, E). The           
ability of each test case to detect faults is         
presented in the following table. 

 
 
 
 



 

Table 1. Fault Matrix for test cases

 
Suppose we “randomly” sort test cases of 
the test suite in order A-B-C-D-E. We can 
measure how rapidly a test suite detects 
faults by using the weighted Average of 
the Percentage of Faults Detected 
(APFD). The values range from 0 to 100, 
while a higher APFD means faster fault 
detection rate. In this example, the APFD 
metric obtained from this “random” order is 
50%. However, if the prioritized order is 

C-E-B-A-D, the obtained APFD metric is 
84%. It can be observed that when the 
test suite is ordered based on suitable 
prioritization, faults are detected earlier. 

 
Figure 2. APFD-Graph for prioritized and 
randomly sorted test orders 
 
A step further from simple prioritization      
methods are test selection techniques.     



 

Instead of only reordering the test suite,       
the number of total test cases that are        
actually run is reduced by selecting only       
the most important test cases by some       
metric. A basic selection technique is      
designed by introducing restrictions to a      
prioritization method. The goal for a      
selection method could for example be to       
maximize test coverage with the least      
amount of test cases. Another goal could       
be to run test cases based on some metric         
derived from fault history until a certain       
testing coverage has been reached. 
Test minimization techniques can be     
similar to test selection. However, for test       
minimization the goal is to identify test       
cases which are in some sense redundant       

or no longer needed and therefore      
removed from the test suite permanently. 
A drawback of test selection is that before        
running a test, it is unknown if the test         
case will detect a fault. By omitting certain        
test cases, these faults will not be       
detected. To counter this problem, test      
selection can be combined with a test       
scheduling strategy. Basically, test    
scheduling defines at which times tests      
are run. In combination with a test       
selection method, this allows to run test       
cases that were e.g. selected by different       
prioritization metrics at different times.     
Additionally, full execution of the test suite       
can be planned at certain intervals to       
prevent missing certain faults completely. 
 



 

 
 

Classification of Test Prioritization       

Methods 

In the following, we classify test      
prioritization methods as discussed in the      
previous section. Starting with basic     
prioritization of tests, we discuss methods      
for deciding which test cases are better or        
more important according to some     
prioritization metric. We then continue with      
minimization and selection techniques    
which are usually based on some      
prioritization. Additionally, test scheduling    
based on different sets of selected test       

cases and also different quality levels is       
discussed. 

Test Prioritization (Sorting) 

Test case prioritization techniques involve     
scheduling over test cases in an order that        
improves the performance of regression     
testing. It is not efficient to re-execute       
every test case (a.k.a retest all [12]) for        
every program function if a change occurs,       
but this depends on the size of the test         
suite. Overall the concept of CI/CD test in        
agile methods assumes that all tests are       
to be repeated every time. In a more        
sustainable world, it is worth to save       
energy by not retesting unnecessarily.     
Test case prioritization techniques    



 

organize the test cases in a test suite by         
ordering such that the most beneficial are       
executed first thus allowing for an increase       
in the effectiveness of testing. One of the        
goals is a measure of how quickly faults        
are detected during the testing process. In       
Test Case prioritization, each test case is       
assigned a priority. Priority is set      
according to some criterion and test cases       
with highest priority are scheduled first.      
For instance, criterion may be that the test        
case which has faster code coverage gets       
the highest priority [9]. A list of possible        
prioritization metrics is given in chapter 3       
in this booklet. For ordering the test cases        
for a given criterion, several search      
algorithms can be used. Sorting is of       
course easy for simpler metrics, were you       

simply sort from highest to lowest value or        
reverse (e.g. Total coverage metrics). For      
some metrics, more advanced search     
algorithms might be useful (e.g. Additional      
coverage metric) [1]. 
 

Test minimization 
Different techniques have been proposed     
in literature for test case minimization. The       
techniques include Heuristic H, GRE, and      
Divide and conquer approach, Genetic     
algorithm, selective redundancy,   
TestFilter, Integer Linear Programming    
based DILP, Cluster analysis, set theory      
etc. Many of them generated significant      
reduction in test suite, but it is harder to         
tell which one performs best. Heuristic      



 

based approach produced significant    
reduction but less fault detection     
effectiveness. ILP based approach    
guaranteed minimal set but more complex      
and increased cost. For a technique to be        
efficient it should be good in both -        
reduced test suite size and improved fault       
detection efficiency [10]. Table shows the      
quick overview of common techniques: 
 
Table 2. Test case minimization techniques 
[10] 

Technique Result 

Heuristic H Produced smaller 
size reduced set 

Heuristic GRE Produced optimal 
representative set 

Concept Analysis of 
relation between test 
cases and 
requirements  

Reduced sets were 
either same or less 
in size than greedy 
approach 

Branch coverage and 
all-uses coverage 
obtained by data-flow 
analysis 

Larger test suites 
but better fault 
detection capability 

Statement coverage 
as weight  

This can find 
redundant test 
cases and reduced 
cost 

Dynamic call trees 
for reducing and 
prioritizing test cases 

Constructing call 
trees increase 13% 
testing time 

Combination of 
distribution-based 
and coverage-based 

Reduced test suites 
with less fault 
detection loss 



 

techniques 

Hybrid, multi 
objective genetic 
algorithm with greedy 
approach 

More efficient 
testing decisions 

Genetic algorithm Produced optimal 
sized test-suite 
taking execution 
time and coverage 
factors into account 

Set theory, Greedy 
algorithm  

All requirements 
are covered, 
reduced set same 
as greedy 

Genetic algorithm 
with time constraints  

Reduced test suite 
and low running 
time 

 
  



 

Test Selection 
Test selection is an approach that aims at 
selecting a subset of test cases within a 
specific domain according to a certain test 
goal. They are key for the definition of an 
efficient test strategy that aims to eliminate 
redundant or unnecessary test cases and 
maximize fault detection for a test run, 
usually during regression testing. For 
example, test selection techniques can be 
used to reduce the effort of testing by 
reducing the number of test cases per test 
run and therefore reducing test time and 
cost while keeping the quality of testing at 
an acceptable level. However, unlike 
minimization techniques, test selection 
techniques do not aim to remove test 

cases permanently from the test suite. 
Both academia and industry have made a 
great effort to propose effective 
techniques for the selection of test cases. 
This effort has been reflected in numerous 
studies and reviews [12, 13, 14, 15, 16, 
17]. Most of the selection methods found 
in literature are based on heuristics, which 
are not deterministic and based on 
experience or judgement of human 
beings. Therefore there is no guarantee 
that the adoption of a selection method 
build on certain assumptions of the 
heuristic approach will always result in an 
effective test case selection. The most 
usual heuristic approaches for test case 
selection are usually either based on 
random selection, coverage-based 



 

selection or similarity-based selection. For 
random selection, the assumption is that 
random selection of test cases can result 
in an effective test that requires low 
computational cost. For coverage-based 
methods, the aim is to maximize test 
coverage with the least amount of test 
cases. Similarity-based methods are build 
on the assumption that the diversification 
of test cases tends to maximize the fault 
detection ability, because dissimilar test 
cases tend to reveal different faults in a 
program. Usually algorithms for test case 
selection are first prioritizing the given set 
of test cases for a test goal or test criteria 
(e.g. coverage, similarity, cost, risk, time 
based metrics) and then selecting test 
cases by introducing a certain restriction 

(e.g. cost, time, coverage, number of tc). 
Consequently, all test cases with lower 
priority are removed until the given 
restriction is met. However, other 
approaches for test case selection exist 
and their practicability is dependent on the 
test goal as well as the software domain 
they are applied in (Reactive systems, 
mobile devices, web services, embedded 
systems, GUI, etc.). 
Usual methods for TCS found in literature 
are: 

● Random TCS 
● Adaptive Random TCS 
● Genetics Algorithms for TCS 
● Clustering for TCS 
● Greedy-Algorithms for TCS 



 

● Coverage Relationship Model 
based TCS 

● Particle Swarm Optimization for 
TCS 

● Pareto Efficient TCS 
● Fuzzy Logic for TCS 
● Model/Requirement based TCS 

 
Additionally, test case selection is often 
optimized for the different flow stages, 
which is increased for more complex 
systems. Optimization is based based on 
a series of criterion at each point. E.g. if 
you have inner-loop testing, focus is on 
churn and coverage - also new test cases 
are given preference. Here a variety of 
technologies are used. E.g. if you have a 
traceable set of TC and you know exactly 

what test cases are affected (and should 
be selected for regression test) when you 
change a piece code, test selection will be 
trivial. For more complex test selection 
criteria and test goals or if traceability of 
TC is not given, test case selection 
becomes a less trivial problem.  

Test Scheduling in different “loops” 
or test levels (Quality levels) e.g. in 
an Agile Development Flow 
When you have larger software 
system, with more integration points, 
with using and testing dependent of 
different configurations (set up), 
phases or levels of test. In a CI/CD 
continuous development, build and 



 

test. In this context, there are often 
several “levels” of tests that is 
“hidden”. Ways to manage this are e.g. 
separation of e.g. “inner loop” tests 
(unit or structural low level testing).  
When testing on a short, inner loop way, 
the essential aspect is to get feedback for 
the developer that has just created and 
submitted code - to check if it fulfilled the 
quality. In a CI/CD tool chain, the aim is to 
qualify and add test cases at different 
levels, e.g. functional and use case testing 
can then be added, as well as specific 
system test cases. Early levels are often 
simulated to add speed to the process and 
support fast feedback. Some system test 
aspects might only make sense to test in 

real environment, or in a semi-simulated, 
environment. Testing virtually/or simulated 
can be very efficient.  Usually in an Agile 
automated CI/CD flow, the first level is to 
ensure (qualify, test) is that the code churn 
(the changed part of the code) has not 
broken the system.  If using TDD you 
submit the test cases first, and then write 
code to “pass” them - Testing as a 
“requirement specification” (which still 
means you need to complement your test 
suite. You want your test prioritization to 
select your suite for fast d, and for most 
developers the main goal is to check that 
your testing has not altered anything else, 
e.g. e.g. legacy code, has not been 
broken. Assuring a specific change has 
not altered anything else can be very 



 

difficult, in modern parallel, distributed 
systems.  
 

 

Test prioritization in industry 

Ericsson/Telecommunication 
 
Prioritization Problem 
As Ericsson test suites are many, and at        
many levels of tests - often with test flow         
integrating many products, serving a     
multitude of agile teams - In summary,       
Ericsson is executing and thus managing      
millions of test cases. For reasons as said        
in this booklet, fast feedback, finding faults       
early, saving cost and energy, since we       

are testing often, prioritization and smart      
scheduling is a necessity at every level of        
test in the DevOps flow. 
 
Prioritization Metrics and Goals 
Ericsson focuses on machine learning     
based multi-objective algorithms for test     
prioritization, which differ in the different      
loops in the CI flow. On lower level, giving         
feedback to the developer on the latest       
changes are prioritized - specifically     
focused if it breaks the existing build. In        
later stages of testing, prioritization could      
be on specific test beds. Overall, the goal        
is to have efficient, minimal test cases,       
that runs regularly, but that all test cases        
are travers regularly in the flow.  
 



 

Prioritization Methods and Tools 
Ericsson has a set of proprietary tools and        
algorithms to optimize the flow. Most of       
these tools are using machine-learning     
algorithms, with multi-objective goals,    
varying at the stage of testing, level, and        
flow.  
Tools on prioritization must be combined      
with different cost aspects, e.g.     
configurations and hardware. Extensive    
work is done to optimize configurations      
and combinations of equipment. In     
TESTOMAT Project, we have made an      
overview of successful and less     
successful approaches - and tried to      
create a better roadmap of how to       
optimize our different types of selection,      
scheduling and prioritization. Where the     

most difficult prioritization is take place up       
front: To provide sufficient test cases to       
cover requirements “in full” and in all       
aspects of all characteristics.  
  



 

References:  
[1] S. Elbaum, A. Malishevsky and G. Rothermel, “Test Case          
Prioritization: A Family of Empirical Studies,” in ​IEEE        
Transactions on Software Engineering, Vol. 28, No. 2​, 2002. 
[2] H. Srikanth, L. Williams and J. Osborne, “System Test Case           
Prioritization of New and Regression Test Cases,” in ​2005         
International Symposium on Empirical Software Engineering​,      
Raleigh, NC, 2005.  
[3] H. Stahlbaum, A. Metzger and K. Pohl, “An Automated          
Technique for Risk-based Test Case Generation and       
Prioritization,” in ​AST '08 Proceedings of the 3rd international         
workshop on Automation of software test​, Leipzig, 2008. 
[4] C. T. Lin, C. D. Chen, C. S. Tsai and G. M. Kapfhammer,              
“History-based Test Case Prioritization with Software Version       
Awareness,” in ​18th International Conference on Engineering       
of Complex Computer Systems​, Singapore, 2013. 
[5] S. Mirarab , L. Tahvildari , A prioritization approach for           
software test cases based on Bayesian networks, Fundam.        
Approaches Softw. Eng. Springer Berlin Heidelberg 4422       
(2007) 276–290 . 
[6] A. Khalilian, M.A. Azgomi, Y. Fazlalizadeh, “An improved         
method for test case prioritization by incorporating historical test         
case data,” ​Science of Computer Programming Vol. 78, (2012),         
pp.93–116. 

[7] A. Ansari, A. Khan, A. Khan, K. Mukadam, “Optimized          
Regression Test using Test Case Prioritization,” Procedia       
Computer Science, Vol. 79 ( 2016 ), pp. 152 – 160. 
[8] Kristen R. Walcott, Mary Lou Soffa, Gregory M.         
Kapfhammer, and Robert S. Roos. Timeaware test suite        
prioritization. In Proceedings of the 2006 International       
Symposium on Software Testing and Analysis, ISST​A '06,        
pages 1--12, New York, NY, USA, 2006. ACM. 
[9] Srivastava, P. R. (2008). “​Test case prioritization​,” Journal         
of Theoretical and Applied Information Technology , vol. 4, pp.          
178-181. 
[10] Singh R. and Santosh M. (2013. “Test Case Minimization          
Techniques: A Review,” International Journal of Engineering       
Research & Technology (IJERT), Vol. 2, pp. 1048-1056. 
[11] Z. Li, M. Harman und R. M. Hierons, “Search Algorithms           
for Regression Test Case Prioritization,“ in ​IEEE Transactions        
on Software Engineering, vol. 33, no. 4​, 2007 
[12] E. Engström, P. Runeson, M. Skoglund, “A systematic         
review on regression test selection techniques“ in ​Information        
and Software Technology​, Volume 52, Pages 14-30, 2010 
[13] T.L. Graves, M.J. Harrold, J-M. Kim, A. Porter, G.          
Rothermel, “An empirical study of regression test selection        
techniques“ in ​ACM Transactions on Software Engineering and        
Methodology (TOSEM)​, Volume 10, Pages 184--208, 2001 



 

[14] S. Yoo, M. Harman, “Regression testing minimization,        
selection and prioritization: a survey“ in ​Software Testing,        
Verification and Reliability​, Volume 22, Pages 67--120, 2012 
[15] S. Biswas, R. Mall, M. Satpathy, S. Sukumaran,         
“Regression test selection techniques: A survey“ in ​Informatica​,        
Volume 35, 2011 
[16] R.H. Rosero, O.S. Gomez, and G. Rodriguez, “15 years of           
software regression testing techniques—A survey“ in      
International Journal of Software Engineering and Knowledge       
Engineering​, Volume 26, Pages 675--689, 2016 
[17] R. Kazmi, D. Jawawi, R. Mohamad, I. Ghani, “Effective          
regression test case selection: A systematic literature review“ in         
ACM Computing Surveys (CSUR)​, Volume 50, 2017 
[18] S. Elbaum, A. Malishevsky, G. Rothermel, “Incorporating        
varying test costs and fault severities into test case         
prioritization“ in ​Proceedings of the 23rd International       
Conference on Software Engineering​, Pages 329--338, 2001 
[19] M. Campbell, K. Martin, F. Bozóki and M. Atkinson,          
"Dynamic Test Selection Using Source Code Changes," in ​2017         
IEEE International Conference on Software Quality, Reliability       
and Security Companion (QRS-C)​, Prague, 2017, pp. 597-598. 

 
 

Further Reading  
 
[1] B. Jian, W.K. Chan, “Input-based adaptive randomized test         
case prioritization: A local beam search approach,” ​Journal of         
Systems and Software, 105, (2015), pp. 91-106. 
[2] S. Sharma, P. Gera, “Test Case Prioritization in Regression          
Testing using Various Metrics,” ​International Journal of Latest        
Trends in Engineering and Technology, Vol. 4 Issue 2, 2014. 
[3]R. Pradeepa, K. VimalaDevi, “Effectiveness of Testcase       
Prioritization using APFD Metric: Survey,” ​International      
Conference on Research Trends in Computer Technologies       
(ICRTCT - 2013). 

Abbreviations & Terminology  
CI = Continuous Integration 
N-F = Non-Functional (or Extra-functional)     
test (based on quality attributes listed      
other than Functional Suitability in     
ISO/IEC Standard 25010) 
SUT = System Under Test 



 

TC = Test Case or Test Cases 
TCS = Test Case Selection 
 
 
 
 
 
 
 
 
 
 
 
  



 

This booklet was produced by a research collaboration        
between the following partners: 

  

 
 
Acknowledgements:  
This booklet is produced by  
EUREKA ITEA3 TESTOMAT   
PROJECT 
The Next Level of Test Automation 
Find out about us on the web: 
https://www.testomatproject.eu/ 

Follow us on Twitter  @Testomatproject 
Copyright:  All rights reserved 
The Testomat Project is sponsored by: 

Disclaimer: The content of this booklet is true to the best           
of our current knowledge. The authors, publishers,       
participating partners of the project as well as the funding          
agencies disclaim any liability in connection to use of this          
information. 

https://www.testomatproject.eu/
https://www.testomatproject.eu/

