

Test Prioritization
Tools

This is a booklet in a series from the
EUREKA ITEA Testomat Project -
The Next Level of Test Automation

Please follow us on:
Web: www.TestomatProject.eu
Twitter: @TestomatProject
www.youtube.com/TestomatProject

Content
1. Introduction
2. Methods for different types of test

prioritization
3. Introduction to Research

tools/techniques in Testomat Project
3.1 MBTCreator and MBTP (ifak)
3.2 ​The SBTTool (Alerion/MGEP)

4. TESTONA & MODICA
5. Codescene by EMPEAR
6. sepp.med MBTsuite
7. Atlassian Jira Xray for Test

Management

8. Intel: Coverage based prioritization:
tselect (part of commercial C++15
compiler)

9. Coverage based prioritization:
(Java): Jnan Test Prioritization Tool

10. SmarTest
11. Conclusion

1. Introduction

Software testing plays an important role in
software development and increases in
value when the software system becomes
complicated and large-scale. In order to
improve the cost-effectiveness at different
stages of the development cycle and in
different test activities, two major

approaches are used: The obvious
approach is to aim for minimization through
test suite reduction, by removing old or
redundant test cases or test steps, and
secondly is to find an order or a selection
through test case prioritization. ​In test
prioritization, the goal is to order test cases
to locate faults early in the test execution
cycle. Test prioritization is important
because a large number of test cases can
accumulate over several life cycles of
software systems. Running all the test
cases is expensive, and thus, prioritization
methods are proposed that the test cases
based on certain criteria with the goal of
detecting faults quickly.

2. Test prioritization techniques

Test prioritization is important to give fast
feedback to changes in the software, and
put emphasis on what is important. In test
prioritization of existing test cases, the goal
is to order test cases from most important to
least important. A most important test case
could differ over time, and phase in testing -
and also differ among stakeholders. When
large test suites are created, running all the
test cases is expensive, and thus,
prioritization methods are proposed which
order the test cases based on certain
criteria with the goal of detecting faults

quickly. There are several benefits to
prioritize your tests: i) it provides a way to
find more bugs under resource constraint
condition and thus improves the reliability of
the system quickly; ii) faults are revealed
earlier, engineers have more time to fix
these bugs and adjust the project schedule.
The prioritization of test cases depends
upon various factors. The various factors
that classify the prioritization techniques in
the different classes are explained below: 1

Customer requirements: In the customer
requirements based prioritization techniques
test cases are prioritized on the factors
decided on the requirements of customers

1 ​Khandelwal and Bhadauria 2013

documented during the phase of
requirements gathering.
Coverage based: ​Based on coverage the
prioritization of the test cases are on the
quantity of the source code of a program
that has been exercised during testing. In
this approach the test cases having the
capability of testing a larger part of the code
are prioritized.
Cost effective: The test cases are
prioritized on the basis of the cost factor in
this approach. The cost can be the cost of
requirement gathering, cost of regression
testing, cost of execution and validating test
cases, the cost of analyses to select and
support a test case, cost of prioritization of

test cases or any other implicit cost, e.g.
test environment (hardware), competence
or other cost pending factors in the
development or production cycle.
History based: The test cases are
prioritized based upon the history of the test
case itself which means priority of test case
depends upon its previous execution time,
rate of of finding failures and other
performance metrics. 2

Churn: Testing can also be prioritized
based on churn, e.g. changes. Meaning 3

that you prioritize the test cases affected by
the latest code change. Depending on your

2 Khalilian et al., 2012
3 ​Knauss et al, 2015

architecture, programming language choice
and many other development factors e.g.
how you associate and connect your tests
with the code.
Fault-based: ​By constantly collecting
statistics on every execution of the software,
information from e.g. customers, changes,
and pass-fail history of the test case,
prioritization can be based on the fault
history, including severity, occurrence.

2.1 ​Requirement Prioritization Impacting
Test Case Prioritization
In this technique, the requirement is tested
first and assigned the higher weight and the
test cases covering that requirement are

given higher priority of execution. There are
four factors to decide the weight of the
requirement.
Business value measure: ​This is the factor
in which the requirements are assigned rank
according to their importance.
Project Change Volatility: This factor
depends on how many times customer
modify the project requirements during the
software development cycle.
Development Complexity: This factor
depends on development efforts,
technology used for development,
environmental constraints and the time
consumed or the complexity of the
development phase.

Fault Impact of Requirements : ​This factor
considers requirements which are error
prone according to the historical data,
failure reported by the customer.
Developers can identify requirements that
are expected to be error free by using the
prior data collected from older versions.

3. Introduction to Tools/Techniques in
Testomat Project

3.1 MBTCreator and MBTP (ifak)

The MBTCreator is a tool that combines
various functionalities for model-based
testing and test prioritization. MBTCreator

offers editors and a graphical user interface
for a toolchain that covers all steps from
requirements to test case generation and
prioritization.
In a first step, the tool features methods for
formalization of requirements using a
notation language, the IRDL (Ifak
Requirement Description Language). A
state machine can then be generated from
formalized requirements, which models all
behavior of the SUT as described in the
requirements. Test cases are then
generated for the state machine using one
of several coverage based test goals. Within
TESTOMAT, an extension of the toolchain
in the form of a separate tool called MBTP

(Model Based Test Prioritization) was
developed, with which the generated test
cases are prioritized via a combination of
model-based cluster analysis and a
requirements-based evaluation procedure
(see figure 3).
The first step is a cluster analysis (of
generated test cases) using coverage
metrics in regard to the specification model.
Here, all test cases are evaluated regarding
the selected coverage metric (e.g. state-,
transition-, path-coverage etc.). In a second
step, the test cases in each cluster are
prioritized according to one or several
requirement-based criteria (e.g. complexity,
volatility, risk, customer priority). The

prioritization goal is to improve test
coverage and fault detection rate during
early testing.

Figure 1. Basic functionality of mbtp

3.2 ​ ​The SBTTool (Alerion/MGEP)

The SBTTool is a tool including test suite
generator and test case prioritizer, and it
facilitates simulation-based testing, by
automating the generation and prioritization
of test cases. The SBTTool can be
integrated with a Continuous Integration (CI)
tool such as Jenkins, that can be in charge
of orchestrating the simulation-based testing
components. We use it in Alerion in our
simulation environment consisting of ROS
[1] and Gazebo[2]. The SBTTool also has a
Test Oracle that determines the outcome of
the test (see Figure 2).

Figure 2. Alerion Simulation based testing
process

3.2.1 Test Suite generation in ​SBTTool

The test case generator is based on a
model, a so called Scenario Specification
Model (SSM) that defines the relevant
parameters of the simulation scenario to be
tested, such as the inspection of petroleum
pipelines, hydroelectric dams, bridges or
wind turbines among other infrastructures.

The SSM, as can be seen in Figure 3, is
created by a Test Scenario that comprises a
set of initial parameters (Initial Param Set)
and execution parameters (Execution
Param Set). The Initial Parameters Set is
composed of those parameters that must be

set before running the simulation. A few
examples of these kinds of parameters are,
the height of a bridge abutment, the angle of
the blade in a windmill, the width of a dam
floodgate, etc.

Figure 3. Scenario Specification Model

The Execution Param Set type parameters
are used to define those events that can
occur during the simulation. Such as
problem in a hardware/software module,
communications problems or atmospheric
phenomena, like rain, that can occur with a
predefined intensity during the simulation.

The test case generator uses an adaptive
random algorithm to create test cases. This
algorithm was selected to cover the widest
spectrum with the fewest test cases, which
will allow more faults to be found. To create
a test suite, the test case generator needs
four inputs: (i) the Scenario Specification
Model, (ii) the number of test cases to

generate, (iii) the number of test case
candidates and (iv) the algorithm to
measure the distance between the test
cases.

3.2.2 Test case prioritization

The prioritization will be performed in two
phases. In the first phase, the primary goal
is to analyze and create (gather) historical
data about the simulations, failures found,
execution times, coverage achieved, and so
on. In the second phase, historical data
generated in the first phase will be then
considered for prioritization.

In the first phase, during analysis, the
prioritizer receives as input the test suite,
the number of test cases to execute and the
algorithm to calculate the distances
between test cases. The system first selects
a test case randomly from the test suite and
inserts it in the selected test cases. Then it
searches for the most different test cases in
the test suite, considering all test cases
selected until that moment. To calculate the
differences between test cases, the
prioritization parameters values are
considered and the Euclidean distance is
calculated to select the test case with the
highest value. This process is repeated until

the desired number of test cases is
obtained.

The aim of the second phase is to carry out
prioritisation based on the historical data
obtained from the first phase. The prioritizer
will receive a test suite and the desired
number of test cases. Unlike in the first
phase, the test suite will also include
historical data about previous test case
executions which will be used to carry out
prioritization.

4. TESTONA & MODICA (Expleo)

With TESTONA and MODICA, Expleo offers
two major tools in the area of test

prioritization. Both these tools can be used
independently of a specific test execution
platforms such as JUnit, EXAM and Canoe.

TESTONA ​is a test design, test generation
and test prioritization tool based on the
classification tree method that classifies
tests (and other artifacts) into a tree of
different classes.

The classes can represent variations in
configuration data, tested steps or different
Systems under Test. The tree can also be
used to model a test oracle using
dependency rules that formalize allowed
combinations of classes. Especially when

Figure 4. TESTONA overview
the number of classes is big or their
dependencies are complex, a main purpose

of TESTONA is not simply organizing tests
but generating them in the first place. This
generation can be restricted and
parameterized in many ways to prioritize
certain kinds of test goals.
In many contexts, classes or their
combinations can be linked to metrics such
as usage frequency, risks, code complexity,
etc. Armed with this data, TESTONA can
both prioritize existing test suites and
generate test suites that are optimized
accordingly. Therefore the user can select
different algorithms and metrics for
prioritizing the test suite. Examples would
be to generate a test suite containing
pairwise combinations of all classes that

have minimal execution time or has the
maximal probability of containing faults.
Furthermore, the generated tests can easily
be annotated with traceability data that can
be used when prioritization is required in a
later process stage (e.g. when the
prioritization also depends on variables not
available during test design time).

MODICA is a tool for model based testing
(MBT). It allows to graphically model

Figure 5. A simple state machine in MODICA

systems and their environment using
hierarchical UML-state machines.

Figure 6. Workflow in MODICA

By default, the test generation maximizes
the coverage of all structural statechart
elements (states, transitions, …) and all of
the generation aspects can be customized.
There are different presets that the user can

select and more advanced prioritization
schemes that match the importance of
these elements individually or their
combinations can be defined. Multiple sets
of these settings can be defined for a single
model for example when test suites for
different test stages are automatically
generated with different prioritizations.
Similarly to TESTONA, MODICA also allows
to automatically calculate metrics relevant
for prioritization based on the path taken
through the model. These metrics include
requirement coverage, amount of
conditional branchings and coverage of
states or transitions. These metrics can also
be combined. MODICA will then present a

test suite sorted by the used metrics to the
user. This data can then be used when
prioritization should be done in later process
stages.

5. Codescene by EMPEAR

CodeScene applies machine learning
algorithms to identify and prioritize technical
debt in both application code and test code.
The tool goes beyond code as CodeScene
considers the organization and people side
of the system, as recorded in
version-control history. That way, the tool
can predict off-boarding risks and detect
inter-team coordination needs as well.

Figure 7. CodeScene prioritizes technical
debt in automated tests

CodeScene’s virtual code reviewer includes
automated detection of test code smells.
Based on these findings, an organization
can refactor their automated test code

based on where code improvements have
the most likely return on investment.

In addition, CodeScene’s predictive
analytics detect delivery risks, which lets an
organization focus additional testing and
verification activities to where they are likely
to be needed the most.

Figure 8. CodeScene’s real-time detection of
delivery risks on system and component
levels

CodeScene supports a goal-oriented
workflow to make its technical debt priorities
actionable and visible to the whole software
organization. For this purpose, CodeScene

lets stakeholders plan goals and record
decisions directly in the tool. Those goals
are then automatically supervised, and
feedback and progress is delivered via the
following channels:

● Quality gates in a build pipeline.
● Automated code review comments

on pull requests.
● Auto-generated PDF reports

targeting
architects/managers/testers.

● Warnings for violated goals on the
analysis dashboards.

Figure 9. A high-level dashboard presents
the technical debt and goal fulfillment for all
products in the organisation

6. sepp.med MBTsuite

Together with sepp.med AKKA extended
the MBTsuite for better prioritization by
introducing the dynamic tag filter. MBTsuite
is a specialized test case generator based
on the model-based-testing method. The
MBTsuite automatically generates
executable test cases and test data from
graphical (UML) test design models. All
generated test cases are
platform-independent and may be exported
into various formats or test management
tool to use for manual testing or any test
automation tool.

Figure 10. MBTsuite screenshot

The user benefits from the models as a
basis for discussion and decision-making.
With the MBTsuite you have the chance to
synchronize the test process with the
development process, as you constantly

actualize the test model parallel to the
development progress. MBTsuite supports
test management by defining meaningful
test coverage and traces the requirements
to test cases down to the test steps.
The Dynamic Tag Filter allows the users to
filter test cases very individually. Logical
expressions can be used to filter exactly for
those test cases which meet certain criteria,
based on attributes the user defines.

In a customer project AKKA used this
dynamic tag filter to prioritize test cases
based on risk analysis, user experience
analysis, and FMEAs. In this way test sets
were based on more important test cases in

respect of security, but also allowed a
general coverage of the testing space.

7. Atlassian Jira Xray for Test
Management
Jira provides as plugin an overarching tool
for Test Management called Xray. It can be
utilized during the entire testing life cycle
and provides an efficient solution for each
phase of the life cycle: test planning, test
design, test execution or test reporting. In
the test design phase and once the test
cases are identified, a wide range of options
are provided to define pre-conditions, label
the testing level, priority of the test case and
the testing methodology to be used for

execution of test cases etc. The tester doing
the test design based on his understanding
of the requirement has to define the priority
of each test case. Thus, this predefined
prioritization of test cases makes it easier to
include the test case in the final test
execution plan.
Xray provides a comprehensive report of
the entire test execution activity. Once the
test execution tasks have been completed,
a report can be generated automatically and
the report contains a graphical matrix about
the total number of successfully executed
test cases, failed test cases and the number
of bug tickets created. Moreover, the test
execution plan also provides the execution

history of each test case i.e. how many
times a test cases passed and failed.
Therefore, based on matrix in the Xray
report, it becomes comparatively easier for
the testers to identify test cases for future
test execution. Additionally, it also helps in
determining the quality of the product based
on the number of times a test case failed
and the number of bug tickets being
created.

8. Intel: Coverage based prioritization:
tselect (part of commercial C++15
compiler)

The test prioritization tool, also known as
the tselect tool, enables the profile-guided
optimizations on all supported Intel® 4

architecture, on Linux, Windows, and OS X
operating systems, to select and prioritize
tests for an application based on prior
execution profiles.The tool offers a potential
of significant time savings in testing and
developing large-scale applications where
testing is the major bottleneck. The test

4 ​User and Reference Guide for the Intel® C++ Compiler
15.0

prioritization tool lets software developers
select and prioritize application tests as
application profiles change.

The test prioritization tool provides an
effective testing hierarchy based on the
code coverage for an application. The
following list summarizes the advantages of
using the tool:

● Minimizing the number of tests that
are required to achieve a given
overall coverage for any subset of
the application: the tool defines the
smallest subset of the application
tests that achieve exactly the same
code coverage as the entire set of
tests.

● Reducing the turn-around time of
testing: instead of spending a long
time on finding a possibly large
number of failures, the tool enables
the users to quickly find a small
number of tests that expose the
defects associated with the
regressions caused by a change set.

● Selecting and prioritizing the tests to
achieve a certain level of code
coverage in a minimal time based on
the data of the tests' execution time.

Usage Model: ​The following figure
illustrates a typical test prioritization tool
usage model.

Figure 11. Usage Model

9. Coverage based prioritization: (Java):
Jnan Test Prioritization Tool

An Automated coverage collection tool that
can capture the statement coverage for the
program under test and then use the
information to prioritize the test classes in
the test suite. The tool uses ASM bytecode
manipulation framework to manipulate the
bytecode. Bytecode manipulation is
performed on the fly by a Java Agent which
makes use of the Instrumentation API. A
JUnit listener is used to capture the start
and end events for each JUnit test method.
The agent jar file and the JUnit listener
class can be integrated with any maven

project to perform code coverage. This is
done by updating the pom.xml file present in
the project root directory. 5

10. SmarTest

SmarTest is a testing module for
accelerating the detection of faults in
Drupal. Also, SmarTest allows the testers 6

to prioritize the executions of the test
modules in order to detect faults as fast as
possible.

5 Paul and Balasubramanian, 2017
6 ​Sánchez, 2015

A Test prioritization tool for drupal, includes
support for cyclomatic complexity, relevant
commits for module, code covered by tests,
module size, test fault history. SmarTest
enables a dashboard with statistics about
the Drupal system in real time. This
information allows to guide the testing the
system through faults propensity data in
different parts of the code.

11. Dextool Mutate (​Saab Aeronautics)

One of the plugins for Dextool, called
Mutate, is a Mutation Testing tool for C/C++.
This tool contains several different reporting
options for mutation testing that allows the

user to prioritize test based on different
criteria. In general, developers use a
combination of the options in order to better
prioritize their tests.

11.1 Minimal set

With time the number of test cases
increases and the runtime with it. Sooner or
later the test suite is too slow to run
continuously for a development team, but
the team does not want to leave the testing
to the end. They want a collection of test
cases that have a high probability of
catching the common mistakes. One of the
report options can be used to generate such
a smoke screen test suite automatically.

The report collect a set of test cases that
achieve the current mutation score. This
has been shown by experience to always be
less than the total number of test cases
(30%-80%).

11.2 Test Case Uniqueness

In order to establish, or get an indication,
that test cases have become redundant and
can be removed from the test suite, an
option for reporting the test case
uniqueness is provided in Dextool Mutate.
This options reports what test cases that kill
mutants "uniquely" and test cases that have
no unique killed mutants. Using this feature
can help prioritize which tests that needs to

be reworked, can be removed completely,
or just subject to further investigation.

11.3 Test Case Similarity

A team that are working with a test
uniqueness report to understand how to
reduce the current test cases may want help
to compare the available test cases with
each other. The test case similarity report
calculate how test cases intersect with each
other and present these intersections and
differences to the developer. This has
successfully been used to merge test cases
that have a high similarity, or to remove
parts of test cases that are "overtested".

12. Axini Modeling Suite

The Axini modeling suite (AMS) consists of
the components: modeling, testing and
application generation. AMS is used in the
financial, high-tech and rail industries.
Examples are pension administration
systems, medical devices and 24/7 rail
control systems.
 In the modeling environment modelers
create, visualize, debug and document their
models. A strong characteristic of the
modeling language is that it supports
actions, data and time. The testing
environment automates the entire
test-process: test-case generation,

execution of test-cases and evaluation of
the test-result. For models with enough
detail it is possible to generate applications
and/or smart-stubs.

Figure 12. AMS editor and visualization

For test-case prioritization there are several
test-strategies. There are generic strategies
that focus on coverage of model-properties

like state-coverage, transition-coverage,
data-coverage; it is also possible to focus
on specific states, transitions or actions.
Another generic strategy handles the type of
test-cases: good-weather, bad-weather,
ugly weather. The specific strategies focus
on specific areas of the system or use-case
that are important for the client. Examples
are the coverage of specific requirements,
use-cases and error-conditions.

13. Conclusion

In order to improve the cost-effectiveness of
test activities, test case prioritization have
been proposed. The main purpose of test

case prioritization is to rank test cases
execution order to deliver fast feedback to
developers and testers, and detect fault as
early as possible which means secure what
is most important at the moment.

In this booklet, we have presented a small
selection of test prioritization tools used,
within the TESTOMAT Project, where some
of our tools are also available to procure.
Our goal is to make our research accessible
and useful to both the academic and the
industrial community. We are aware that
there is an abundance of other prioritization
tools on the market, and also locally
produced, which we have not addressed, as

this booklet is not to be seen as complete
tools overview on the subject.

References:

Elbaum, S., Rothermel, G., & Penix, J. (2014).
“Techniques for improving regression testing in
continuous integration development environments”. In
Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
pp. 235-245.

Khalilian, A., Azgomi, M. A. and Fazlalizadeh, Y.
(2012). “An improved method for test case
prioritization by incorporating historical test case
data”. Science of Computer Programming Vol. 78,
pp. 93–116.

Khandelwal, E. and Bhadauria, M. (2013). “Various
techniques used for prioritization of test cases”.

International Journal of Scientific and Research
Publications, Volume 3, Issue 6.

Khatibsyarbini, M., Isa, M. A., Jawawi, D. N., &
Tumeng, R. (2018). “Test case prioritization
approaches in regression testing: A systematic
literature review”. Information and Software
Technology, pp. 74-93.

Knauss, E., Staron, M., Meding, W., Söder, O.,
Nilsson, A., & Castell, M. (2015). “Supporting
continuous integration by code-churn based test
selection”. In Proceedings of the Second International
Workshop on Rapid Continuous Software
Engineering, IEEE Press, pp. 19-25.

Ma, Z. and Zhao, J. “Test case prioritization based on
analysis of program structure”. Department of
Computer Science Shanghai Jiao Tong University,
China.

Paul, J. and Balasubramanian, N. (2017). “Jnan Test
Prioritization Tool”, University of Texas at Dallas
(UTD)
https://github.com/Nandita-93/Test-Prioritization-Tool

Sampath, S., Bryce R.C, Jain S. and Manchester, S.
(2011). “A Tool for combinatorial-based prioritization
and reduction of user-session based test suites,” 27th
IEEE International Conference on Software
Maintenance (ICSM).

Sánchez, A.B., Segura, S. and Ruiz-Cortés, A.
(2013). “A comparison of test case prioritization
criteria for software product lines”. Applied Software
Engineering Research Group University of Seville,
Spain.

Sánchez, A.B. (2015). “​SmarTest”. Departamento de
Lenguajes y Sistemas Informáticos Escuela Técnica

https://github.com/Nandita-93/Test-Prioritization-Tool

Superior de Ingeniería Informática Universidad de
Sevilla Spain ​http://www.isa.us.es/smartest/index.html

User and Reference Guide for the Intel® C++
Compiler 15.0
https://software.intel.com/en-us/node/522744

References for Tools/Contact Person
MBTCreator and MBTP (ifak): It is not
open source yet, but in the long term they
will be open source

Contact person:​ ​martin.reider@ifak.eu

The SBTTool (Alerion/MGEP):
The type of license for the tool is still to be
defined. In case you are interested in using

it, please get in touch with one of the
contact persons, for more details.
Contact persons​: Oier Peñagaricano:
oier@aleriontec.com and Leire Etxeberria
letxeberria@mondragon.edu​ .

TESTONA (Expleo): ​TESTONA and all
information is available at
http://www.testona.net/

MODICA (Expleo): ​MODICA and all
information is available at
https://www.expleo-germany.com/en/produc
ts/modica/

http://www.isa.us.es/smartest/index.html
https://software.intel.com/en-us/node/522744
mailto:martin.reider@ifak.eu
mailto:oier@aleriontec.com
mailto:letxeberria@mondragon.edu
http://www.testona.net/
https://www.expleo-germany.com/en/products/modica/
https://www.expleo-germany.com/en/products/modica/

Codescene by EMPEAR: ​CodeScene is
available as a SaaS at ​https://codescene.io/
and in an on-prem version via
https://empear.com/

Contact person:
adam.tornhill@empear.com

Dextool Mutate (Saab Aeronautics):
https://github.com/joakim-brannstrom/dexto
ol/tree/master/plugin/mutate

Contact person:
joakim.k.brannstrom@saabgroup.com,
niklas.pettersson2@saabgroup.com

MBTsuite (sepp.med):
https://www.seppmed.de/de/portfolio/mbtsui
te/

Contact person:
martin.beisser@seppmed.de

Axini Modeling Suite:
https://www.axini.com/

Contact person:
Dr. Ir. Machiel van der Bijl
vdbijl@axini.com

https://codescene.io/
https://empear.com/
https://www.seppmed.de/de/portfolio/mbtsuite/
https://www.seppmed.de/de/portfolio/mbtsuite/
mailto:martin.beisser@seppmed.de
https://www.axini.com/
mailto:vdbijl@axini.com

Acknowledgements:
This booklet is produced by
EUREKA ITEA3 TESTOMAT PROJECT
The Next Level of Test Automation
Find out about us on the web:
https://www.testomatproject.eu/

Follow us on Twitter
@Testomatproject

This booklet was produced by a research collaboration
between the following partners:

https://www.testomatproject.eu/
https://www.testomatproject.eu/

Copyright: All rights reserved
The Testomat Project is sponsored by:

Disclaimer: The content of this booklet is true to the best of
our current knowledge. The authors, publishers, participating
partners of the project as well as the funding agencies
disclaim any liability in connection with the use of this
information.

We’d love to hear feedback from you! Contact us via Twitter

or this feedback form: ​https://goo.gl/J5wnjm

https://goo.gl/J5wnjm

