

AMALTHEA

ITEA 2 - 09013
Model Based Open Source Development Environment for

Automotive Multi Core Systems

Work Package 1

Continuous design flow and methodology

Task 1.1

Evaluation/Analysis of existing design flow methods

Deliverable D1.1

State of the art of Design Flow and verification
methods and tools

Document type
Document version
Document Preparation Date
Classification
Contract Start Date
Duration

: Deliverable
: Final
: 01.07.2011 (delivery: T0+7)
: public
: 01.07.2011
: 31.12.2013

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Final approval Name Partner

Review Task Level Markus Kelanti Uni Oulu

Review WP Level
 Heiko Adamczyk
 Ralf Messerschmidt

 ifak

Review Board Level Karlheinz Topp Bosch

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 3

Executive summary

This document is the first deliverable of the itea2 project AMALTHEA. It is
established within Task 1.1 Evaluation/Analysis of existing design flow methods of
WP1 Tasks Continuous design flow and methodology.

It provides the relevant state of the art as a common basic knowledge for
AMALTHEA concerning the main goal of the project - the development of a
consistent, open, expandable, multicore tool platform for automotive engineering,
based on the model driven approach as basic engineering methodology.

The document is structured in the following main chapters:

 Chapter 1: Introduction
 Chapter 2: Relevant standards and guidelines
 Chapter 3: Methodology, Concepts and Best Practices
 Chapter 4: State of the art and related work
 Chapter 5: Conclusion

Chapter 2 investigates the important standards and standard-like guidelines.
Standards of general industrial importance and derived standards adapted to
automotive industry are considered. The standards can be further categorized
concerning functional safety related, process reference model related and process
assessment related.

Chapter 3 will explain Methodology, Concepts and Best Practices. This chapter uses
at first a structure which is based on a given software development model, e.g. well
established V-Model. This linear model is a process oriented model and simply
divided into a certain number if processes or simply steps. These steps e.g. are
Requirement Engineering, Architecture & Design, Coding as well as Verification and
Validation. Further aspects which AMALTHEA will take into account are Model Based
Design, Safety/Security Design issues and Simulation. One of the important aspects
in AMALTHEA is of course the multi core aspects. Hence, the chapter 3 and also the
chapter 4 follow a structure based on the above features.

Chapter 4 shows the State of the Art concerning tools and frameworks. The
subchapters belongs also to the above descripted feature list. Nevertheless, in the
beginning there are tool chains descripted those covering at least two or more
features of the overall software development process. Afterwards single tools will be
described which are more or less focused on one feature. Most of the selected tools
are established in the automotive as well as the industrial automation domain. For
sure, the Eclipse based solutions like TOPCASED, Artop and YAKINDU are in main
focus of AMALTHEA.

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Contents

Executive summary ... 3

Contents .. 4

List of Tables ... 7

List of Figures .. 7

1. Introduction .. 8

2. Relevant standards and guidelines ... 9

2.1. IEC61508 .. 9

2.1.1. Scope of IEC 61508 ... 9
2.1.2. Overview .. 9
2.1.3. Relevance ...16

2.2. ISO 26262 ..18

2.2.1. Scope ...18
2.2.2. Overview of ISO 26262 ...19
2.2.3. Relevance for Amalthea ..22

2.3. ISO / IEC 12207:2008 "Systems and software engineering – Software life cycle

processes" ..23

2.3.1. Scope ...23
2.3.2. Overview ...23
2.3.3. Relevance ...25

2.4. Capability Maturity Model Integration ..25

2.4.1. Scope ...25
2.4.2. Overview ...25
2.4.3. Relevance ...27
2.4.4. References ...28

2.5. Automotive SPICE ..28

2.5.1. Scope ...28
2.5.2. Overview ...28
2.5.3. Relevance ...31
2.5.4. References ...31

2.6. AUTOSAR ..31

2.6.1. Scope ...31
2.6.2. Overview ...31
2.6.3. Relevance ...37
2.6.4. References ...37

3. Methodology, Concepts and Best Practices ..39

3.1. Activities for the overall development process ..39

3.1.1. Traceability ...39
3.1.2. Variant Handling ...41

3.2. Requirement engineering ...43

3.2.1. Requirements traceability ..43
3.2.2. Complexity ..43
3.2.3. Timing ...44

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium

3.2.4 References ..45
3.3. Architecture & design ...45

3.4. Model-based design/Model-driven design ..48

3.5. Safety/Security design ..49

3.6. Resource mapping ...49

3.6.1. Model-based Partitioning and Allocation ...50
3.6.2. Scheduling ..50
3.6.3. Model-based Timing Simulation ..51
3.6.4 References ..53

3.7. Verification & validation ..53

3.7.1. Methods for Model analysis and validation ..53
3.7.2. Test cases generation ...54
3.7.3 Syntactic Verification And Validation Methods ...55
3.7.4. Timing validation ...55
3.7.5. References ...56

4. State of the art tools and frameworks ..56

4.1. Selected tools and frameworks ...56

4.1.1. Eclipse Community tools and frameworks ...56
4.1.2. Eclipse Industry Working Groups ..66

4.2. Requirement engineering ...68

4.2.1. Topcased ..68
4.2.2. Rational Doors ..69
4.2.3. Polarion...70
4.2.4. Rational Focal Point ..73
4.2.5. Accept 360 ..74
4.2.6. IBM Rational Rhapsody ..74

4.3. System architecture design ..75

4.3.1. IBM Rational Rhapsody ..75
4.3.2. Atego - Artisan Studio ...75
4.3.3. Sparx Systems - Enterprise Architect ..76

4.4. Module design ..77

4.4.1. IBM Rational Rhapsody ..77
4.4.2. Mathworks - Matlab/Simulink ..77
4.4.3. YAKINDU - Damos ...77

4.5. Coding (Target Mapping) ..78

4.5.1. IBM Rational Rhapsody ..78
4.5.2. Visual Studio 2010 ..78
4.5.3. Mercurial (revision control) ..79
4.5.4. Xpand ...79
4.5.5. References ...79

4.6. Verification & validation ..80

4.6.1. IBM Rational Rhapsody ..80
4.7. Simulation ..80

4.7.1. Inchron - chronSIM ...80
4.7.2. Inchron - chronVal ...81
4.7.3. Symtavision - Symta/S ..82
4.7.4. Synopsys - Platform Architect ...83
4.7.5. Windriver - Simics ...83

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

4.7.6. criticalblue - prism ...84
4.7.7. Fraunhofer First - Precision Pro ..84
4.7.8. Vector Fabrics - vfEmbedded ..85
4.7.9. Cheddar ..85
4.7.10. OMNeT++ ...86

4.8. Functional Safety and IT Security ...87

4.8.1. Model-based Analysis & Engineering of Novel Architectures for Dependable
Electric Vehicles (MAENAD) ...87
4.8.2. Open Vulnerability Assessment System ..87

4.9. Domain Specific Languages and Editors ..89

4.9.1. Xtext&Xtend ..89
4.9.2. Timing Augmented Description Language ...90
4.9.3. Secure Use Cases ..92
4.9.4. MisUse-Cases...92
4.9.5. Security Problem Frames ..93

5. Conclusion ..96

6. Glossary ..97

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium

List of Tables

Table 2-1: IEC 61508 safety integrity levels ... 10
Table 3-1: Basic terminology for software architecture ... 46
Table 3-2: Examples of Frameworks and Architecture Description Languages 48

List of Figures

Figure 1-1: Overview of relevant standards for AMALTHEA .. 8
Figure 2-1: Functional safety in the sense of the IEC 61508 ... 11

Figure 2-2: Overall safety lifecycle .. 16
Figure 2-3: Overall structure of ISO 26262 ... 19
Figure 2-4: Tool classification and tool qualification levels in ISO26262 22
Figure 2-5: ISO 12207 Lifecycle process groups ... 24

Figure 2-6: Overview Automotive SPICE processes ... 29
Figure 2-7: Overview of the AUTOSAR methodology and timing specification [6] 33
Figure 2-8: AUTOSAR traceability concept .. 36

Figure 2-9: Volume of ECUs with AUTOSAR ... 37
Figure 3-1: Feature model .. 42
Figure 3-2: Conceptual model of ISO 42010:2011 .. 47

Figure 3-3: Example for time stamp tracing of interactions between different agents 52
Figure 3-4: Estimated, actual, and observed WCET/BCET [1] .. 56

Figure 4-1: TOPCASED components structure ... 61

Figure 4-2: Problem Frame 6 ... 62

Figure 4-3: YAKINDU Architecture ... 64
Figure 4-4: OpenVAS architecture .. 88

Figure 4-5: Simplified extract of the TADL UML meta-model (TIMMO Open Workshop

26.03.2009) ... 90
Figure 4-6: Problem Frame 6 ... 94
Figure 4-7: Security Problem Frame template 7 .. 95

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 8 / 97 © The AMALTHEA consortium

1. Introduction

The goal of this task is to obtain an overview of state of the art design flow methods
and to provide the needed information for making a selection of these methods which
will be used within this project. The methods cover tasks as: requirement
engineering, system architecture design, module design, coding, V&V and system
simulation. The main focus lies on the exploration of usability in existing open-source
software solutions and their evaluation (e.g. EPF – Eclipse Process Framework –
which is based on EMF).

Selected design flow methods (integrating certification aspects) are augmented by
domain specific languages in order to fit the needs of multi-ECU and multicore
design; which implies tools to be augmented with DSL bridges.

Figure 1-1 gives an overview of the standards with importance for AMALTHEA and
shows the relations between these standards, which will be described in the first
chapter Relevant standards and guidelines.

Figure 1-1: Overview of relevant standards for AMALTHEA

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 9

2. Relevant standards and guidelines

The focus of the following chapter is to describe the main relevant standards and
guidelines, which AMALTHEA has to take into account. Three different groups can
be identified. The first group is dealing with functional safety aspects. The second
group can be seen as an extract of the main important software development
models. This group explains process reference models and also process assessment
related aspects. Finally, the third group considers most relevant standards for the
automotive industry sector.

However, many more standards are available those covering the entire lifecycle of a
software development process. During the first analysis in this task 1.1, the two
selected standards were selected which shows the basic principle of such models. All
the over standards identified are close to each other that is why these number of
standards wouldn’t listed here. Fortunately, during the later specification of the
AMALTHEA approach, it could be happen that more standards will be finally
considered as the number mentioned here in the next chapters.

2.1. IEC61508

2.1.1. Scope of IEC 61508

An error or failure of safety-related systems and machines may be a risk for people
and the environment as well as a threat to the function of the systems. These risks
must be identified and judged by the operator of the plant. On the basis of this risk
analysis it is necessary to take measures to identify and prevent errors. The object of
our efforts is to reduce risks for the whole system.

A part of the whole safety is the functional safety. Functional safety covers systems
which carry out safety functions with a certain probability if there are identified causes
of errors. If these safety functions use electrical, electronic or programmable
electronic systems (E/E/PE), these systems and their components must meet the
conditions of IEC 61508.

On the one hand IEC 61508 defines the requirements on safety-related E/E/PE
systems regardless of its use. On the other hand the described methods enable a
quantitative judgment of safety-related E/E/PE systems.

The described requirements counter risks which are caused by failure of safety-
related systems. It is important that IEC 61508 is applied to safety functions of the
whole safety-related E/E/EP system. That means, all components – sensor, control,
actuator, communication system and errors of the user – are taken into account.

2.1.2. Overview

For the purpose of quantitative judgment of safety-related E/E/PE systems the IEC
61508 distinguishes between “low demand mode of operation” and “high demand or
continuous mode of operation”. Furthermore the systems are divided into 4 groups

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 10 / 97 © The AMALTHEA consortium

which are related to their minimum requirement on conditional probability of failure of
safety equipment; it is called safety integrity level (see Table 2-1).

Table 2-1: IEC 61508 safety integrity levels

Safety
integrity level

Low demand mode of operation
(Average probability of failure to
perform its design function on
demand)

High demand or
continuous mode of
operation
(Probability of a
dangerous failure per
hour)

4 >= 10 -5 to < 10 -4 >= 10 -9 to < 10 -8

3 >= 10 -4 to < 10 -3 >= 10 -8 to < 10 -7

2 >= 10 -3 to < 10 -2 >= 10 -7 to < 10 -6

1 >= 10 -2 to < 10 -1 >= 10 -6 to < 10 -5

Furthermore IEC 61508 describes systematically how to meet the requirements of a
safety-related E/E/PE system for the whole life cycle. That means, it is not enough to
meet the requirements just once, it must be guaranteed to meet the requirements for
the period of the whole life cycle of a safety-related E/E/PE system.

For the process of software development, which contains all steps of development
and implementation, IEC 61508 refers to the V-model. In detail this means, all steps
of development – starting with requirements and coding until integration – must be
traceable and described. Besides it is necessary that each step of development can
be verified and defined within the design process.

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 11

Figure 2-1: Functional safety in the sense of the IEC 61508

2.1.2.1. Safety functions and safety-related systems

Generally, the significant hazards for equipment and any associated control system
in its intended environment have to be identified by the specifier or developer via a
hazard analysis. The analysis determines whether functional safety is necessary to
ensure adequate protection against each significant hazard. If so, it has to be taken
into account in an appropriate manner in the design. Functional safety is just one
method of dealing with hazards, and other means for their elimination or reduction,
such as inherent safety through design, are of primary importance.

The term safety-related is used to describe systems that are required to perform a
specific function or functions to ensure risks are kept at an accepted level. Such
functions are, by definition, safety functions. Two types of requirements are
necessary to achieve functional safety:

 safety function requirements (what the function does) and
 safety integrity requirements (the likelihood of a safety function being

performed satisfactorily).

The safety function requirements are derived from the hazard analysis and the safety
integrity requirements are derived from a risk assessment. The higher the level of
safety integrity, the lower the likelihood of dangerous failure.

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 12 / 97 © The AMALTHEA consortium

Any system, implemented in any technology, which carries out safety functions is a
safety related system. A safety-related system may be separate from any equipment
control system or the equipment control system may itself carry out safety functions.
In the latter case, the equipment control system will be a safety-related system.
Higher levels of safety integrity necessitate greater rigour in the engineering of the
safety-related system.

2.1.2.2. Example of functional safety

Consider a machine with a rotating blade that is protected by a hinged solid cover.
The blade is accessed for routine cleaning by lifting the cover. The cover is
interlocked so that whenever it is lifted an electrical circuit de-energises the motor
and applies a brake. In this way, the blade is stopped before it could injure the
operator.
In order to ensure that safety is achieved, both hazard analysis and risk assessment
are necessary.

1. The hazard analysis identifies the hazards associated with cleaning the blade.
For this machine it might show that it should not be possible to lift the hinged
cover more than 5 mm without the brake activating and stopping the blade.
Further analysis could reveal that the time for the blade to stop shall be 1 s or
less. Together, these describe the safety function.

2. The risk assessment determines the performance requirements of the safety
function. The aim is to ensure that the safety integrity of the safety function is
sufficient to ensure that no one is exposed to an unacceptable risk associated
with this hazardous event. The harm resulting from a failure of the safety
function could be amputation of the operator’s hand or could be just a bruise.
The risk also depends on how frequently the cover has to be lifted, which
might be many times during daily operation or might be less than once a
month. The level of safety integrity required increases with the severity of
injury and the frequency of exposure to the hazard.

The safety integrity of the safety function will depend on all the equipment that is
necessary for the safety function to be carried out correctly, i.e. the interlock, the
associated electrical circuit and the motor and braking system. Both the safety
function and its safety integrity specify the required behavior for the systems as a
whole within a particular environment. To summarise, the hazard analysis identifies
what has to be done to avoid the hazardous event, or events, associated with the
blade. The risk assessment gives the safety integrity required of the interlocking
system for the risk to be acceptable. These two elements, “What safety function has
to be performed?” – the safety function requirements – and “What degree of certainty
is necessary that the safety function will be carried out?” – the safety integrity
requirements – are the foundations of functional safety.

2.1.2.3. Challenges in achieving functional safety

Safety functions are increasingly being carried out by electrical, electronic or
programmable electronic systems. These systems are usually complex, making it
impossible in practice to fully determine every failure mode or to test all possible
behavior. It is difficult to predict the safety performance, although testing is still

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 13

essential. The challenge is to design the system in such a way as to prevent
dangerous failures or to control them when they arise. Dangerous failures may arise
from:

 incorrect specifications of the system, hardware or software;
 omissions in the safety requirements specification (e.g. failure to develop all

relevant safety functions during different modes of operation);
 random hardware failure mechanisms;
 systematic hardware failure mechanisms;
 software errors;
 common cause failures;

2.1.2.4. Nominative references and parts framework of IEC 61508

The IEC 61508 consists of 8 parts:

 IEC 61508-0, Functional safety and IEC 61508
 IEC 61508-1, General requirements
 IEC 61508-2, Requirements for electrical/electronic/programmable electronic

safety-related systems
 IEC 61508-3, Software requirements
 IEC 61508-4, Definitions and abbreviations
 IEC 61508-5, Examples of methods for the determination of safety integrity

levels
 IEC 61508-6, Guidelines on the application of IEC 61508- 2 and IEC 61508-3
 IEC 61508-7, Overview of techniques and measures

additional papers:
 IEC Guide 104, The preparation of safety publications and the use of basic

safety publications and group safety publications
 ISO/IEC Guide 51, Safety aspects – Guidelines for their inclusion in standards

2.1.2.5. Functional safety of E/E/PE safety-related systems

2.1.2.5.1. Objectives

IEC 61508 aims to:

 release the potential of E/E/PE technology to improve both safety and
economic performance;

 enable technological developments to take place within an overall safety
framework;

 provide a technically sound, system based approach, with sufficient flexibility
for the future;

 provide a risk-based approach for determining the required performance of
safety-related systems;

 provide a generically-based standard that can be used directly by industry but
can also help with developing sector standards (e.g. machinery, process
chemical plants, medical or rail) or product standards (e.g. power drive
systems);

 provide a means for users and regulators to gain confidence when using
computer-based technology;

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 14 / 97 © The AMALTHEA consortium

 provide requirements based on common underlying principles to facilitate:
o improved efficiencies in the supply chain for suppliers of subsystems

and components to various sectors,
o improvements in communication and requirements (i.e. to increase

clarity of what needs to be specified),
o the development of techniques and measures that could be used

across all sectors, increasing available resources,
o the development of conformity assessment services if required.

IEC 61508 does not cover the precautions that may be necessary to prevent
unauthorised persons damaging, and/or otherwise adversely affecting, the functional
safety achieved by E/E/PE safety-related systems.

2.1.2.5.2. E/E/PE safety-related systems

IEC 61508 is concerned with functional safety, achieved by safety-related systems
that are primarily implemented in electrical and/or electronic and/or programmable
electronic (E/E/PE) technologies, i.e. E/E/PE safety related systems. The standard is
generic in that it applies to these systems irrespective of their application.
Some requirements of the standard relate to development activities where the
implementation technology may not yet have been fully decided. This includes
development of the overall safety requirements (concept, scope definition, hazard
analysis and risk assessment). If there is a possibility that E/E/PE technologies might
be used, the standard should be applied so that the functional safety requirements
for any E/E/PE safety-related systems are determined in a methodical, risk-based
manner.
Other requirements of the standard are not solely specific to E/E/PE technology,
including documentation, management of functional safety, functional safety
assessment and competence. All requirements that are not technology-specific might
usefully be applied to other safety-related systems although these systems are not
within the scope of the standard.

An E/E/PE safety-related system covers all parts of the system that are necessary to
carry out the safety function (i.e. from sensor, through control logic and
communication systems, to final actuator, including any critical actions of a human
operator). Since the definition of E/E/PE safety-related system is derived from the
definition of safety, it also concerns freedom from unacceptable risk of both physical
injury and damage to the health of people. The harm can arise indirectly as a result
of damage to property or the environment. However, some systems will be designed
primarily to protect against failures with serious economic implications. IEC 61508
can be used to develop any E/E/PE system that has critical functions, such as the
protection of equipment or products.

2.1.2.5.3. Technical approach

The technical approach uses a risk based approach to determine the safety integrity
requirements of E/E/PE safety-related systems, and includes a number of examples
of how this can be done;

 uses an overall safety lifecycle model as the technical framework for the
activities necessary for ensuring functional safety is achieved by the E/E/PE

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 15

safety-related systems; covers all safety lifecycle activities from initial concept,
through hazard analysis and risk assessment, development of the safety
requirements, specification, design and implementation, operation and
maintenance, and modification, to final decommissioning and/or disposal;

 encompasses system aspects (comprising all the subsystems carrying out the
safety functions, including hardware and software) and failure mechanisms
(random hardware and systematic);

 contains both requirements for preventing failures (avoiding the introduction of
faults) and requirements for controlling failures (ensuring safety even when
faults are present);

 specifies the techniques and measures that are necessary to achieve the
required safety integrity.

2.1.2.5.4. Safety integrity levels (SIL)

IEC 61508 specifies 4 levels of safety performance for a safety function. These are
called safety integrity levels. Safety integrity level 1 (SIL1) is the lowest level of safety
integrity and safety integrity level 4 (SIL4) is the highest level. The standard details
the requirements necessary to achieve each safety integrity level. These
requirements are more rigorous at higher levels of safety integrity in order to achieve
the required lower likelihood of dangerous failure.

An E/E/PE safety-related system will usually implement more than one safety
function. If the safety integrity requirements for these safety functions differ, unless
there is sufficient independence of implementation between them, the requirements
applicable to the highest relevant safety integrity level shall apply to the entire E/E/PE
safety-related system. If a single E/E/PE system is capable of providing all the
required safety functions, and the required safety integrity is less than that specified
for SIL1, then IEC 61508 does not apply.

2.1.2.6. Overall safety lifecycle requirements

In order to deal in a systematic manner with all the activities necessary to achieve the
required safety integrity level for the E/E/PE safety-related systems, this standard
adopts an overall safety lifecycle (see Figure 2-2) as the technical framework.
The overall safety lifecycle encompasses the following risk reduction measures:

 E/E/PE safety-related systems;
 other technology safety-related systems;
 external risk reduction facilities.

The portion of the overall safety lifecycle dealing with E/E/PE safety-related systems
is expanded and shown in Figure 2-2. This is termed the E/E/PES safety lifecycle
and forms the technical framework for IEC 61508-2. The software safety lifecycle is
shown in Figure 2-2 and forms the technical framework for IEC 61508-3. The
relationship of the overall safety lifecycle to the E/E/PES and software safety
lifecycles for safety-related systems is shown in Figure 2-2.

The overall, E/E/PES and software safety lifecycle are simplified views of reality and
as such do not show all the iterations relating to specific phases or between phases.

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 16 / 97 © The AMALTHEA consortium

Iteration, however, is an essential and vital part of development through the overall,
E/E/PES and software safety lifecycles.

Activities relating to the management of functional safety (clause 6), verification and
functional safety assessment (clause 8) are not shown on the overall, E/E/PES or
software safety lifecycles. This has been done in order to reduce the complexity of
the overall, E/E/PES and software safety lifecycle figures. These activities, where
required, will need to be applied at the relevant phases of the overall, E/E/PES and
software safety lifecycles.

Figure 2-2: Overall safety lifecycle (IEC 61508)

2.1.3. Relevance

"A major objective of this standard is to facilitate the development of product and
application sector international standards by the technical committees responsible for
the product or application sector."..." A second objective of this standard is to enable
the development of E/E/PE safety-related systems where product or application
sector international standards do not exist." The later sentence implies that if a

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 17

safety-related international standard for a special application field exists, this
standard has to be applied for product developments at that field-and not the IEC
61508.

2.1.3.1. The IEC 61508 as a basis for other standards

Standard writers need to address functional safety in their safety standard if the
hazard analysis carried out by a Technical Committee identifies that this is necessary
to adequately protect against a significant hazard or hazardous event.

Parts 1, 2, 3 and 4 of IEC 61508 are IEC basic safety publications. One of the
responsibilities of IEC Technical Committees is, wherever practical, to make use of
these parts of IEC 61508 in the preparation of their own sector or product standards
that have E/E/PE safety-related systems within their scope. For more details see IEC
Guide 104 and ISO/IEC Guide 51.

IEC 61508 is the basis for published sector standards (e.g. process sector). It is also
currently being used as a basis for developing other sector standards and product
standards. It is therefore influencing the development of E/E/PE safety-related
systems and products across all sectors.

Sector specific standards based on IEC 61508:

 are aimed at system designers, system integrators and users;
 take account of specific sector practice, which can allow less complex

requirements;
 use sector terminology to increase clarity;
 may specify particular constraints appropriate for the sector;
 usually rely on the requirements of IEC 61508 for detailed design of

subsystems;
 may allow end users to achieve functional safety without having to consider

IEC 61508 themselves.

Such a specific standard derived from IEC 61508 is IEC 26262 which is the
adaptation for the specific field of road vehicles.

The basic safety publication status of IEC 61508 described above does not apply for
low complexity E/E/PE safety-related systems (see 4.2 of IEC 61508-1). These are
E/E/PE safety related systems in which the failure modes of each individual
component are well-defined and the behaviour of the system under fault conditions
can be completely determined. An example is a system comprising of one or more
limit switches, operating one or more contactors to de-energise an electric motor,
possibly via interposing electromechanical relays.

2.1.3.2. The IEC 61508 as a stand-alone standard

All parts of IEC 61508 can be used directly by the industry as “stand-alone”
publications. This includes use of the standard:

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 18 / 97 © The AMALTHEA consortium

 as a set of general requirements for E/E/PE safety-related systems where no
application sector or product standards exist or where they are not
appropriate;

 by suppliers of E/E/PE components and subsystems for use in all sectors (e.g.
hardware and software of sensors, smart actuators, programmable controllers,
data communication);

 by system builders to meet user specifications for E/E/PE safety-related
systems;

 by users to specify requirements in terms of the safety functions to be
performed together with the performance requirements of those safety
functions;

 to facilitate the maintenance of the "as designed" safety integrity of E/E/PE
safety-related systems;

 to provide the technical framework for conformity assessment and certification
services;

 as a basis for carrying out assessments of safety lifecycle activities.

2.2. ISO 26262

2.2.1. Scope

The following information is taken from [ISO26262]

ISO 26262 is intended to be applied to safety-related systems that include one or
more electrical and/or electronic (E/E) systems and that are installed in series
production passenger cars with a maximum gross vehicle mass up to 3 500 kg. ISO
26262 does not address unique E/E systems in special purpose vehicles such as
vehicles designed for drivers with disabilities.

Systems and their components released for production, or systems and their
components already under development prior to the publication date of ISO 26262,
are exempted from the scope. For further development or alterations based on
systems and their components released for production prior to the publication of ISO
26262, only the modifications will be developed in accordance with ISO 26262.

ISO 26262 addresses possible hazards caused by malfunctioning behaviour of E/E
safety-related systems, including interaction of these systems. It does not address
hazards related to electric shock, fire, smoke, heat, radiation, toxicity, flammability,
reactivity, corrosion, release of energy and similar hazards, unless directly caused by
malfunctioning behaviour of E/E safety-related systems.

ISO 26262 does not address the nominal performance of E/E systems, even if
dedicated functional performance standards exist for these systems (e.g. active and
passive safety systems, brake systems, Adaptive Cruise Control).

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 19

2.2.2. Overview of ISO 26262

ISO 26262:

 provides an automotive safety lifecycle (management, development,
production, operation, service, decommissioning) and supports tailoring the
necessary activities during these lifecycle phases,

 provides an automotive specific risk-based approach for determining integrity
levels (Automotive Safety Integrity Levels (ASIL)),

 uses ASILs for specifying the applicable requirements of ISO 26262 for
avoiding unreasonable residual risk,

 provides requirements for validation and confirmation measures to ensure a
sufficient and acceptable level of safety is being achieved,

 provides requirements for the relation with suppliers and
 requires an independent assessment of the development process

Figure 2-3: Overall structure of ISO 26262

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 20 / 97 © The AMALTHEA consortium

Figure 2-3 shows the overall structure of Baseline 19 from July 2011 of ISO 26262. It
has ten parts and is based upon a V-model as a reference process model for the
different phases of product development. Within the Figure 2-3:

 the shaded "V"s represent the interconnection between ISO 26262-3, ISO
26262-4, ISO 26262-5, ISO 26262-6 and ISO 26262-7,

 the specific clauses are indicated in the following manner: “m-n”, where “m”
represents the number of the part and “n” indicates the number of the clause
within that part.

2.2.2.1. Table of contents of ISO 26262

The following information is taken from [ISO26262].

Part 1: Vocabulary
Part 2: Management of functional safety
Part 3: Concept phase
Part 4: Product development at the system level
Part 5: Product development at the hardware level
Part 6: Product development at the software level
Part 7: Production and operation
Part 8: Supporting processes
Part 9: Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented
analyses
Part 10: Guideline on ISO 26262

ISO 26262-1:2011 specifies the terms, definitions and abbreviated terms for
application in all parts of ISO 26262.

ISO 26262-2:2011 specifies the requirements for functional safety management for
automotive applications, including the following:

 project-independent requirements with regard to the organizations involved
(overall safety management), and

 project-specific requirements with regard to the management activities in the
safety lifecycle (i.e. management during the concept phase and product
development, and after the release for production).

ISO 26262-3:2011 specifies the requirements for the concept phase for automotive
applications, including the following:

 item definition,
 initiation of the safety lifecycle,
 hazard analysis and risk assessment, and
 functional safety concept.

ISO 26262-4:2011 specifies the requirements for product development at the system
level for automotive applications, including the following:

 requirements for the initiation of product development at the system level,

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 21

 specification of the technical safety requirements,
 the technical safety concept,
 system design,
 item integration and testing,
 safety validation,
 functional safety assessment, and
 product release.

ISO 26262-5:2011 specifies the requirements for product development at the
hardware level for automotive applications, including the following:

 requirements for the initiation of product development at the hardware level,
 specification of the hardware safety requirements,
 hardware design,
 hardware architectural metrics, and
 evaluation of violation of the safety goal due to random hardware failures and

hardware integration and testing.

The requirements of ISO 26262-5:2011 for hardware elements are applicable both to
non-programmable and programmable elements, such as ASIC, FPGA and PLD.
Furthermore, for programmable electronic elements, requirements in ISO 26262-6,
ISO 26262-8:2011, Clause 11, and ISO 26262-8:2011, Clause 12, are applicable.

ISO 26262-6:2011 specifies the requirements for product development at the
software level for automotive applications, including the following:

 requirements for initiation of product development at the software level,
 specification of the software safety requirements,
 software architectural design,
 software unit design and implementation,
 software unit testing,
 software integration and testing, and
 verification of software safety requirements.

ISO 26262-7:2011 specifies the requirements for production, operation, service and
decommissioning.

ISO 26262-8:2011 specifies the requirements for supporting processes, including the
following:

 interfaces within distributed developments,
 overall management of safety requirements,
 configuration management,
 change management,
 verification,
 documentation,
 confidence in the use of software tools,
 qualification of software components,
 qualification of hardware components, and
 proven in use argument.

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 22 / 97 © The AMALTHEA consortium

ISO 26262-9:2011 specifies the requirements for Automotive Safety Integrity Level
(ASIL)-oriented and safety-oriented analyses, including the following:

 requirements decomposition with respect to ASIL tailoring,
 criteria for coexistence of elements,
 analysis of dependent failures, and
 safety analyses.

End of material from ISO Web-page

2.2.3. Relevance for Amalthea

For the purpose of Amalthea, Parts 6 and 8 are most important, especially chapter
8.11 Confidence in the Use of Software Tools

An example of the application of ISO 26262, is provided in [Mathw2010] where the
authors show how to apply ISO 26262 to software tools and how they got
qualification.

Please note, that there has been a change in nomenclature since July 2010.

1. Henceforward, there are only three tool confidence levels instead of four.
With some reservations, this may be seen as a merging of TCL2old and
TCL3old to TCL2new.

2. Tool impact has been renamed (TI0old -> TI1new , TI1old -> TI2new)
See the changes referring the former nomenclature depicted in the following
diagram:

Figure 2-4: Tool classification and tool qualification levels in ISO26262

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 23

References

[ISO26262] ISO 26262:2011, www.iso.org.

[Mathw2010] Conrad, Mirko; Munier, Patrick; Rauch Frank: Qualifying Software Tools
According to ISO 26262, MBEES2010, Dagstuhl-Workshop MBEES: Model-
Based Development of Embedded Systems, Munich 2010.

2.3. ISO / IEC 12207:2008 "Systems and software engineering –
Software life cycle processes"

2.3.1. Scope

This standard for software industry "establishes a common framework for software
life cycle processes, with well-defined terminology" [ISO/IEC12207:2008].

The Process Reference Model does not represent a particular process
implementation approach nor does it prescribe a system/software life cycle model,
methodology or technique. Instead the reference model is intended to be adopted by
an organization based on its business needs and application domain. The
organization’s defined process is adopted by the organization’s projects in the
context of the customer requirements.
The following process fields are defined:

1. Agreement Processes — two processes
2. Organizational Project-Enabling Processes — five processes
3. Project Processes — seven processes
4. Technical Processes — eleven processes
5. Software Implementation Processes — seven processes
6. Software Support Processes — eight processes
7. Software Reuse Processes — three processes

ISO 12207 is related to software, the corresponding standard for systems is the ISO
15288 - System life cycle processes, both standards are using the same terminology
and are now harmonized. "In many cases, the processes of this International
Standard directly correspond to processes of ISO/IEC 15288 but with some
specialization for software products and services" [ISO/IEC12207:2008]. ISO 12207
emphasizes, that software should be "considered as an integral part of the system
and system design processes".

2.3.2. Overview

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 24 / 97 © The AMALTHEA consortium

Figure 2-5: ISO 12207 Lifecycle process groups

Important for AMALTHEA are:

 Software Implementation Processes
 Software Requirements Analysis Process
 Software Architectural Design Process
 Software Detailed Design Process
 Software Construction Process
 Software Integration Process
 Software Configuration Management Process
 Software Verification and Validation Process

the following processes have to be considered:

 Software Quality Assurance Process
 Software Documentation Management Process
 Software Qualification Testing Process

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 25

2.3.3. Relevance

As stated in the scope the reference model of ISO 12207 is generic and is expected
to be adapted to specific fields. Such an adaptation for automotive industry is
included in Automotive SPICE. Automotive industry is an important application field
for AMALTHEA but not the only application field, so the generic versions of standards
are an important aspect for the usability of AMALTHEA outcome in various
application fields.

2.4. Capability Maturity Model Integration

2.4.1. Scope

Capability Maturity Model Integration (CMMI) is a process improvement approach
with the goal to help organizations to improve their efficiency and performance.
CMMI can be used to guide process improvement across a project, a division, or an
entire organization. Currently supported is CMMI Version 1.3 (release date
November 1, 2010). CMMI has its roots in an initiative of the US defense department
and the Software Engineering Institute (SEI) of the Carnegie Mellon
University/Pittsburgh for the development of an evaluation system for the maturity of
software. The technical reports are freely downloadable at:
http://www.sei.cmu.edu/cmmi

2.4.2. Overview

The reports describe intensively general organizational relationships and practices in
a praxis-related way. Beside three Integration models

 CMMI for Acquisition (CMMI-ACQ),
 CMMI for Development (CMMI-DEV),
 CMMI for Services (CMMI-SVC), - also a
 People CMM has been released.

The models are collections of best practices but they are not processes or process
descriptions. The actual processes used in an organization depend on many factors,
including application domains and organization structure and size. In particular, the
process areas of a CMMI model typically do not map one to one with the processes
used in a specific organization.

The best practices can be distinguished as following: there are general practices -
belonging to all models, shared practices which are part of more than one model, and
specific practices which are uniquely used in one model. The best practices are
clustered in process areas and the process areas are allocated to categories. There
are the three categories Project Management, Support, and Process Management
which are used in all models. Furthermore there are the model specific categories
Engineering (CMMI-DEV), Acquisition (CMMI-ACQ), and Service Establishment and
Delivery (CMMI-SVC).

For the evaluation of organization's processes two different kinds of levels are used
in CMMI. Maturity levels - used to describe the degree of process improvement

http://www.sei.cmu.edu/cmmi

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 26 / 97 © The AMALTHEA consortium

across a predefined set of process areas in which all goals in the set are attained.
Capability levels - used to describe the achievement of process improvement within
an individual process area. Both capability levels and maturity levels provide a way to
improve the processes of an organization and measure how well organizations can
and do improve their processes. By this the levels itself are also considered
describing an evolutionary improvement-path.

Four capability levels are defined (incomplete, performed, managed and defined) and
there are fife maturity levels defined (inital, managed, defined, quantitatively
managed and optimising).

For applying CMMI contents to an organization a concrete target of improvement is
strictly recommended.

Within a so called appraisal an organization's processes will be appraised (assessed)
and a maturity level will be allocated to the organization.

CMMI for Acquisition (CMMI-ACQ)

Provides best practices for acquiring products and services.

CMMI for Development (CMMI-DEV)

Provides best practices for developing products and services. It covers the product’s
lifecycle from conception through delivery and maintenance. It was the first of the
three CMMI models released in year 2000.

CMMI-DEV contains the 22 process areas listed in the table below. Of those process
areas, 16 are core process areas, 1 is a shared process area, and 5 (category
Engineering) are development specific process areas.

Table: CMMI-DEV process areas with associated categories and maturity levels

Process Area Category
Maturity
Level

Project Planning (PP) Project Management 2

Requirements Management (REQM) Project Management 2

Supplier Agreement Management (SAM) Project Management 2

Project Monitoring and Control (PMC) Project Management 2

Risk Management (RSKM) Project Management 3

Integrated Project Management (IPM) Project Management 3

Quantitative Project Management (QPM) Project Management 4

Product Integration (PI) Engineering 3

Requirements Development (RD) Engineering 3

Technical Solution (TS) Engineering 3

Validation (VAL) Engineering 3

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 27

Verification (VER) Engineering 3

Organizational Process Definition (OPD)
Process
Management

3

Organizational Process Focus (OPF)
Process
Management

3

Organizational Training (OT)
Process
Management

3

Organizational Process Performance (OPP)
Process
Management

4

Organizational Performance Management
(OPM)

Process
Management

5

Configuration Management (CM/SCM) Support 2

Measurement and Analysis (MA) Support 2

Process and Product Quality Assurance
(PPQA)

Support 2

Decision Analysis and Resolution (DAR) Support 3

Causal Analysis and Resolution (CAR) Support 5

CMMI for Services (CMMI-SVC)

Provides best practices for organizations providing services.

People CMM

People CMM addresses the critical human capital issue of organizations by providing
best practices for managing and developing an organization's workforce. Example
issues are: human resources, knowledge management, or organizational
development.

2.4.3. Relevance

CMMI for Development (CMMI-DEV) will be the most relevant part for AMALTHEA.

2.4.3.1. Comparing with other norms

CMMI follows the same intension as DIN EN ISO 9001, while ISO 9001 (Quality
management systems – Requirements) covers the entirety of organizational process
fields, CMMI goes more in depth but for a restricted number of process fields. Beside
CMMI there are also ISO/IEC 12207 (Systems and software engineering – Software
life cycle processes) for software development and ISO 15288 (Systems and
software engineering – System life cycle processes) for system development. Both
norms have equal demands as CMMI-Dev. The explanations in CMMI are more in
depth, while the structure of ISO 12207 is easier to grasp.
The process assessment model for the ISO 12207 defined in ISO/IEC 15504 (also
referred to as SPICE) part 5 (Information technology, Process Assessment, Part 5:
An exemplar Process Assessment Model) is CMMI-independent, but CMMI follows
the same process requirements from ISO/IEC 15504.

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 28 / 97 © The AMALTHEA consortium

2.4.4. References

http://www.sei.cmu.edu/cmmi/start/index.cfm

2.5. Automotive SPICE

2.5.1. Scope

Automotive SPICE is a domain specific derivate of the international standard ISO/IEC
15504 (SPICE). This variant focuses on the development of embedded automotive
electronic control units and is a subset of the ISO/IEC 15504. Additionally, about 15%
of the text has been rewritten in order to better fit to the development of embedded
systems.

2.5.2. Overview

Automotive SPICE defines a process reference model (PRM) and an process
assessment model (PAM).

2.5.2.1. Automotive SPICE - Process Reference Model (PRM)

The Automotive SPICE process reference model is derived from ISO/IEC 15504 (part
2) which refers to the process model defined in ISO/IEC 12207. Automotive SPICE
focuses on 26 of the 48 processes defined in ISO/IEC 15504 and adds 5 additional
processes. Since the effort for performing an assessment of all 31 Automotive SPICE
processes is still very high, the Hersteller-Initiative Software (HIS) a group of German
car manufacturers (Audi, BMW, Daimler, Porsche and Volkswagen) has defined a
minimal subset of Automotive SPICE processes which should be considered during
an assessment.

The following Figure 2-6 gives an overview over the processes defined in ISO/IEC
15504 and the focus in Automotive SPICE as well as the scope defined by the HIS
group. (See also Höhn, Sechser, Dussa-Zieger, Messnarz, Hindel. "Software
Engineering nach Automotive SPICE").

http://www.sei.cmu.edu/cmmi/start/index.cfm

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 29

Figure 2-6: Overview Automotive SPICE processes

The following text is an extract from the Automotive SPICE process reference model
specification that describes the process groups:

 The Acquisition process group (ACQ) consists of processes that are
performed by the customer, or by the supplier when acting as a customer for
its own suppliers, in order to acquire a product and/or service.

 The Supply process group (SPL) consists of processes performed by the
supplier in order to supply a product and/or a service.

 The Engineering process group (ENG) consists of processes that directly elicit
and manage the customer's requirements, specify, implement, or maintain the
software product, its relation to the system.

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 30 / 97 © The AMALTHEA consortium

 The Supporting life cycle processes category (SUP) consists of processes in
the PRM that may be employed by any of the other processes at various
points in the life cycle.

 The Management process group (MAN) consists of processes that contain
practices that may be used by anyone who manages any type of project or
process within the life cycle.

 The Process Improvement process group (PIM) consists of processes
performed in order to define, deploy and improve the processes performed in
the organizational unit.

 The Reuse process group (REU) consists of processes performed in order to
systematically exploit reuse opportunities in organization’s reuse programs.

2.5.2.2. Automotive SPICE - Process Assessment Model (PAM)

The process assessment model (PAM) defines assessment indicators for the
performance and capability of the aforementioned Automotive SPICE processes. The
following capability levels are defined:

 Level 0: Incomplete process
The process is not implemented, or fails to achieve its process purpose. At this
level, there is little or no evidence of any systematic achievement of the
process purpose.

 Level 1: Performed process
The implemented process achieves its process purpose.

 Level 2: Managed process
The previously described Performed process is now implemented in a
managed fashion (planned, monitored and adjusted) and its work products are
appropriately established, controlled and maintained.

 Level 3: Established process
The previously described Managed process is now implemented using a
defined process that is capable of achieving its process outcomes

 Level 4: Predictable process
The previously described Established process now operates within defined
limits to achieve its process outcomes.

 Level 5: Optimizing process
The previously described Predictable process is continuously improved to
meet relevant current and projected business goals.

The PAM defines a set of base practices for each process that need to be performed
in order to demonstrate at least capability level 1. Additionally, generic practices are
defined for each capability level which allow measuring the performance of the
processes.

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 31

2.5.3. Relevance

In the automotive domain suppliers are often required to prove that the processes
used during a given development project are performed according to Automotive
SPICE level 2 or even level 3. Proving the bidirectional traceability from requirements
via architecture, design and implementation to tests is often considered to be a
challenge.

2.5.4. References

[AutoSpice1] Automotive SIG. "Automotive SPICE® Process Assessment Model
(v2.5)". 2010-05-10. URL: http://www.automotivespice.com/web/download.html
[AutoSpice2] Automotive SIG. "Automotive SPICE® Process Reference Model
(v4.5)". 2010-05-10. URL: http://www.automotivespice.com/web/download.html
[Hoehn3] Höhn, Sechser, Dussa-Zieger, Messnarz, Hindel. "Software Engineering
nach Automotive SPICE. Entwicklungsprozesse in der Praxis - Ein Continental-
Projekt auf dem Weg zu Level 3". dpunkt.verlag. Heidelbert. 2009.

2.6. AUTOSAR

2.6.1. Scope

The AUTOSAR scope includes all vehicle domains. AUTOSAR focuses on body,
power train and chassis domains first. All vehicle control applications are addressed,
particularly with respect to distributed functions (e.g. via busses). In addition to the
automotive domain, products that are derived from a commercially available and
proven in use automotive AUTOSAR product may be applied in technical fields such
as railway, agriculture and forestry machinery, construction machinery, compressors,
pumps or power generators and marine including military transportation vessels.
Please note, that the following fields are explicitly excluded from the AUTOSAR
scope: aviation, aerospace, nuclear power, chemical and biological reactors and in
the petrochemical and military sectors and more generally for ultra hazardous
applications.

2.6.2. Overview

The Automotive Open System Architecture (AUTOSAR) is a model-based design
approach commonly used for automotive software development. It has been
developed by leading automotive manufacturers and suppliers. AUTOSAR provides
standardized functional interfaces that enable different suppliers and OEMs to
develop their vehicle applications more independent of the hardware. Therefore, on
the highest level of abstraction the AUTOSAR specifications distinguish three
software layers that run on a microcontroller:

 Application
 Runtime Environment (RTE)
 Basic Software (BSW)

http://www.automotivespice.com/web/download.html
http://www.automotivespice.com/web/download.html

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 32 / 97 © The AMALTHEA consortium

In the AUTOSAR specification, all the modeling elements are defined in the
AUTOSAR meta-model. On the top-level, applications are described through
software components, each encapsulating a certain piece of functionality, and
connections among them. These software components include so called runnables
(often a C-function), which can be seen as the smallest unit of code that can be
scheduled.

To allow hardware independent development of the application, the communication
between the different software components as well as the communication between a
software component and the hardware is made transparent by the RTE. The
underlying modeling concept in AUTOSAR is called virtual functional bus (VFB). To
avoid a mapping of applications to the hardware in early design stages, all
communications are modeled the same way, i.e. regardless of whether it is inter- or
intra-ECU communication. In this way system developers can model applications and
their connections independent of the technology on that they are running at the end
of the development process.

Finally, when the SWCs have been mapped to the ECUs, the RTE implements the
VFB-functionality used by a SWC on the specific ECU. Therefore, the RTE uses the
BSW, which provides infrastructural functionality on the ECUs. The BSW itself
consists of different BSW-modules, which might be hardware dependent, that for
example contain services such as an operating system and bus communication (cf.
[AR_Homepage]).

With AUTOSAR Release 4.0 additional concepts that are highly relevant for the
Automotive Industry have been added to the standard. Those concept include

 Timing Extension
 Multicore
 Traceability of Requirements
 Variant Handling

2.6.2.1. Timing Extensions

As already mentioned above the AUTOSAR methodology provides several well-
defined process steps and with those a set of artifacts that are provided or needed.
With AUTOSAR Release 4.0 an additional methodology focusing on the timing
specification was introduced. Therefore depending on the availability of necessary
information, the role a certain artifact is playing and the development phase five
different views were introduced:

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 33

Figure 2-7: Overview of the AUTOSAR methodology and timing specification [6]

 VfbTiming
This view deals with timing information related to the interaction of
SwComponentTypes at VFB level meaning they only refer to
SwCmponentTypes, PortPrototypes and their connections. Typically, real end-
to-end timing constraints are captured in this view.

 SwcTiming
This view deals with timing information related to the SwcInternalBehavior of
AtomicSwComponentTypes, which specify the component’s behavioral
decomposition into RunnableEntities. Thus constraints can refer to the
activation, start, and termination of the execution of RunnableEntities.

 SystemTiming
This view deals with timing information related to a System, utilizing
information about the mapping of software components to concrete target
hardware, where local and remote communication has to be considered.

 BswModuleTiming
This view deals with timing information related to the BswInternalBehavior of
BSW modules. Similar to the SwcTiming view, constraints can refer to the
activation, start and end of the execution of BswModuleEntities.

 EcuTiming
This view deals with timing information related to the EcucValueCollection.
Constraints refer to isolated BSW modules as well as to the inter BSW module
relations on one specific ECU.

To be able to capture the observable behavior within a system at a certain point in
time, AUTOSAR extends the formal basis of events by TimingDescriptionEvent.
Additionally TimingDescriptionEventChain is introduced to relate timing events to

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 34 / 97 © The AMALTHEA consortium

each other. Based on those events and event chains, it is possible to express various
specific timing constraints. Depending on the concrete view, different types of timing
events and thus event chains, as well as different timing constraints are available to
specify the timing behavior.

2.6.2.2. Multicore

The main motivations for multi-core in the automotive domain are functional safety
and performance.

1. Functional safety:
o a multi-core processor can run in the so-called lock-step mode. In this

mode, two cores are executing the same software and the results are
compared. The system can be operated with existing software and
behaves like a single processor from the outside view.

o a multi-core processor can support partitioning between independent
applications with different ASILs. If each application uses it's own
core(s), temporal interference can be avoided.

2. Performance: To increase the overall performance the software has to be
distributed to different cores that execute parts of the software in parallel.

In AUTOSAR R4.0.1, multi-core support for the system was introduced as optional
part of the standard. This release mainly describes the multi-core extensions to the
operating system and gives hints to the overall architecture.

2.6.2.2.1. Software extensions

The basic mechanisms are built into the AUTOSAR operating system (OS) and
consist of the following features:

 OS applications are the basis for the mapping of application code to cores.
This means that all objects that pertain to the same OS application (tasks,
ISRs, alarms, etc.) are placed on the same core.

 The scheduling policy has not changed, but each core has its “own” (local)
scheduler which selects the (local) tasks to be run.

 Cross-core TASK activation and setting of EVENTS across cores is supported.
 Communication between cores is implemented with an Inter OS-Application

Communication (IOC).
 The IOC is based on the principles of (queued / unqueued) messages and can

be used from the RTE. Its internal functionality is closely connected to the
Operating System.

 For synchronization between basic software (BSW) modules or complex
device drivers (CDD), spinlocks were introduced. Spinlocks can be used to
build critical sections, which allow protecting resources which are accessed
from different cores.

 A spinlock is a locking mechanism where the TASK waits in a loop ("spins")
repeatedly checking for a shared variable that indicates whether the lock is
free or not. In Multi-Core systems the comparison and changing of the variable
typically requires an atomic operation. As the TASK remains active but is not
doing anything useful, a spinlock is a busy waiting mechanism.

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 35

This first application of a multi-core system only enforces minimal changes to the
single-core system. Therefore the BSW is declared "safe for single-core use only",
and force the system to execute the BSW (with few exceptions like OS and ECU
state manager) always on the same core, called the BSW or master core.

The challenge for AUTOSAR projects is the mapping of applications and basic
software to the different cores. The mapping decides whether it is possible to use the
full performance of such a multicore MCU.

2.6.2.2.2. Hardware assumptions

CPU Core features

 The hardware supports atomic read and atomic write operations for a fixed
word length depending on the hardware.

Memory features

 Shared RAM is available to all cores; at least all cores can share a substantial
part of the memory.

 Flash shall be shared between all cores at least. However, performance can
be improved if Flash/RAM can be partitioned so that there are separate
pathways from cores to Flash.

 A single address space is assumed, at least in the shared parts of the memory
address space.

 The AUTOSAR Multi-Core architecture shall be capable to run on systems
that do and do not support memory protection. If memory protection exists, all
cores are covered by a hardware based memory protection.

2.6.2.2.3. Software assumptions

Decisions made in AUTOSAR R4.0:

 The scheduling algorithm does not assign tasks dynamically to cores.
 The AUTOSAR OS RESOURCE algorithm is not supported across cores.
 Interrupts can only be disabled on the same core.
 All BSW modules that would be present on a Single-Core system usually

reside on the master core.

2.6.2.2.4. Next steps

The definition of Multi-Core concepts is going on. AUTOSAR R4.0.4 already includes
new concepts like “Enhanced BSW allocation in partitioned systems“ (Concept #24)
and the “Definition of resource locking behavior” (Concept #26). Other concepts like
the "Distribution / splitting of SW-Components” (Concept #25) are still under
discussion and are postponed to later releases.

2.6.2.3. Requirement and Traceability

In order to improve the overall consistency of the AUTOSAR standard documents
and in order to follow the requirements of bidirectional traceability between artifacts

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 36 / 97 © The AMALTHEA consortium

within the development cycle, AUTOSAR has integrated a formal approach for
establishing traceability between requirements, use cases, specification items, etc. of
the AUTOSAR standard documents.

Figure 2-8: AUTOSAR traceability concept

This traceability concept is highly optimized for traceability between items within the
AUTOSAR standard specifications and does not replace more general requirements
management and traceability solutions that e.g. allow adding custom attributes for
requirements or support following the life of a requirement through the complete
development process.

2.6.2.4. Variant Handling

The motivations for Variant Handling in AUTOSAR are to build a bridge between
OEM’s and suppliers, to avoid redundancy between artifacts, and to provide a basis
for expressing basic product lines in AUTOSAR. Of course, variant handling
concepts do already exist at most companies, but they are typically not standardized
(beyond company borders), and thus it is difficult for OEM’s and suppliers to talk to
each other on this subject. Consider the following example. An OEM sends a model
which contains variants to a supplier. The supplier generates code from this model,
but does not resolve all variants. What the OEM gets back is object code with some
variants bound, and other variants left “open” for binding at load time. This can only
work if both parties speak the same language, and have the same understanding
about variants. And quite often, more than two parties are involved.

Hence, variant handling in AUTOSAR is mostly about documenting variants:

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 37

 Variation Points are locations in the model that are variable. That is, they
may not exist in all variants, or may have different characteristics in different
variants.

 The Binding Time is the latest possible time when a variation point may be
bound.

 Binding Expressions specify under which condition(s) a variable element
exists, or determine certain variable characteristics.

Since AUTOSAR Release 4.0, the concept of variant handling is integrated in the
AUTOSAR DSL. In order to reduce complexity of the variant handling concept, the
binding expressions refer to a set of central system constants. A specific variant is
selected by assigning values to these system constants.

The AUTOSAR variant handling concepts allows for exchanging information about
variability in AUTOSAR models between the different stakeholders within the system
development process. However, it doesn't provide a solution for managing the
general question about how to manage variability and how to define an architecture
of a good product line.

2.6.3. Relevance

The AUTOSAR core partners (BMW, Bosch, Continental, Daimler, Ford, GM, PSA,
Toyota, Volkswagen) are already using AUTOSAR or are planning to adapt to
AUTOSAR in the near future. In 2016 more than 200 Million AUTOSAR based ECUs
are expected on the market (see Figure 2-9).

Figure 2-9: Volume of ECUs with AUTOSAR

2.6.4. References

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 38 / 97 © The AMALTHEA consortium

[AR_HOMPAGE] AUTOSAR, "Homepage", http://www.autosar.org
[AR_FAQ] AUTOSAR, "FAQ", http://www.autosar.org/index.php?p=1&up=6&uup=0
[AR_DERIVED_APPS] AUTOSAR, "Development Partnership AUTOSAR to extend
scope of applications to non-automotive areas",
http://www.autosar.org/download/media_release/Development%20Partnership%20A
UTOSAR%20to%20extend%20scope%20of%20applications%20to%20non-
automotive%20areas.pdf
[AR_EXPLOITATION] AUTOSAR, "Core Partner Exploitation Plans",
http://www.autosar.org/download/conferencedocs11/04_AUTOSAR_CP_Exploitation
_Plan_2011_OpenConf2011.pdf
[AR_TPS_GENERIC_STRUCTURE] AUTOSAR, "Generic Structure Template",
http://www.autosar.org/download/R4.0/AUTOSAR_TPS_GenericStructureTemplate.p
df
[AR_TPS_TIMING] AUTOSAR, "Timing Extensions",
http://autosar.org/download/R4.0/AUTOSAR_TPS_TimingExtensions.pdf
[AR_SWS_MULTICORE] AUTOSAR, "Multi-core OS",
http://www.autosar.org/download/R4.0/AUTOSAR_SWS_MultiCoreOS.pdf

http://www.autosar.org/
http://www.autosar.org/index.php?p=1&up=6&uup=0
http://www.autosar.org/download/media_release/Development%20Partnership%20AUTOSAR%20to%20extend%20scope%20of%20applications%20to%20non-automotive%20areas.pdf
http://www.autosar.org/download/media_release/Development%20Partnership%20AUTOSAR%20to%20extend%20scope%20of%20applications%20to%20non-automotive%20areas.pdf
http://www.autosar.org/download/media_release/Development%20Partnership%20AUTOSAR%20to%20extend%20scope%20of%20applications%20to%20non-automotive%20areas.pdf
http://www.autosar.org/download/conferencedocs11/04_AUTOSAR_CP_Exploitation_Plan_2011_OpenConf2011.pdf
http://www.autosar.org/download/conferencedocs11/04_AUTOSAR_CP_Exploitation_Plan_2011_OpenConf2011.pdf
http://www.autosar.org/download/R4.0/AUTOSAR_TPS_GenericStructureTemplate.pdf
http://www.autosar.org/download/R4.0/AUTOSAR_TPS_GenericStructureTemplate.pdf
http://autosar.org/download/R4.0/AUTOSAR_TPS_TimingExtensions.pdf
http://www.autosar.org/download/R4.0/AUTOSAR_SWS_MultiCoreOS.pdf

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 39

3. Methodology, Concepts and Best

Practices

3.1. Activities for the overall development process

This chapter describes activities that are related to all phases of the software
development process:

 Traceability
 Variant Handling

3.1.1. Traceability

Traceability is an essential activity within state of the art software development. It is
used to e.g. ensure that the right artifacts are created at each phase of the software
development life cycle, to track the progress during development and to reduce the
effort required to determine the impact of requested changes.

3.1.1.1. Definition

Automotive SPICE and the IEEE Standard Glossary of Software Engineering
Terminology define traceability as “The degree to which a relationship can be
established between two or more products of the development process, especially
products having a predecessor-successor or master-subordinate relationship to one
another”.
CMMI defines it as “A discernable association among two or more logical entities
such as requirements, system elements, verifications, or tasks.”

Forward traceability refers to tracing a source artifact (origin) to its resulting artifacts.
E.g. trace each unique requirement forward into the design elements that implement
that requirement, trace each design element to the code units that implement the
design element or trace each code unit to the test cases that validate the code unit.

Backward traceability refers to tracing each unique artifact (e.g., architecture
element, design element, code unit, and test) back to its origin, e.g. tracing each
architecture element backward to the implemented requirements (the origins).

Bidirectional traceability refers to tracing in both directions (backwards and forward).

3.1.1.2. Traceability - a good practice

The process standard Automotive SPICE requires “Ensuring consistency and
bilateral traceability” between subsequent work products within the development life
cycle. Why is this important?

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 40 / 97 © The AMALTHEA consortium

Forward traceability ensures proper direction of the evolving product (that we are
building the right product) and indicates the completeness of the subsequent
implementation. For example, if a requirement can’t be traced forward to one or more
elements within the architecture, then the architecture is incomplete and the resulting
product might not meet the requirements.

Additionally, if good forward traceability is maintained, changed requirements can be
traced forward to the subsequent artifacts such as architecture elements, design
elements, code units, test cases, etc. This helps determining the impact and effort for
implementing the change request in the product. Furthermore, it helps keeping the
overall system and its documentation in a consistent state. E.g. If an automotive
instrument cluster that was developed for the European market is to be adapted for
the American market, it needs to handle the speed in miles per hour instead of
kilometer per hour. Forward traceability helps identifying all development artifacts
including architecture and design specifications, code units, human machine
interface layouts and tests that have to be updated. Incomplete modifications would
most likely lead to defective software and inconsistent documentation.

Backwards traceability helps ensure that the evolving product remains on the correct
track with regards to the original and/or evolving requirements (that we are building
the product right).

The objective is to focus on the original scope of the product and to avoid adding
unintended functionality (i.e., „gold plating“). Examples of scenarios that benefit from
backwards traceability are:

 If during implementation a developer comes up with an innovative new
solution, then the solution should be traced backwards to the original
requirements in order to ensure that the solution still fits to the original scope
of the project.

 If during development it turns out that an artifact cannot be traced backwards,
then this might indicate that this artifact is not required or that the preceding
artefact’s are not complete and need to be updated. The overall impact of this
change can again be determined using forward traceability.

 If a defect is identified, then backwards traceability can help identifying the
root of the problem which might not only exist in the code unit but possibly
already in the architecture specification or even in the requirements
specification.

To summarize, typical use cases that highly benefit from traceability are:

 impact analysis
 coverage analysis (checking for completeness)
 determine project status
 help understanding the system

3.1.1.3. State of the art methodologies

Traceability is identified as a good practice for improving the quality within system
and software development and is thus required by process standards such as

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 41

SPICE, CMMI and ISO 26262. Especially when applying agile methods where
functionality is implemented in small increments, it is crucial to understand the impact
of the new features on the overall system.

The classical methodology for implementing traceability is the construction of trace
matrixes. A trace matrix contains one column for the source artifacts and one column
for each resulting artifact. Using this approach, the trace information is kept as a
separate work product during the development process.

Another approach for implementing traceability are trace tags. These tags usually
identify the origin of each artifact. The tags are maintained directly within the
development artifacts. This allows easy creation of backwards traceability. However,
forward traceability requires additional tool support.

A precondition for the creation of a trace matrix and of using the trace tag approach
is the unique identification of each traced element.

3.1.1.4. Challenges for implementation

The biggest challenge for implementing traceability from requirements via
architecture, design and implementation to code and documentation is the
maintenance of the trace information. Although some tools already have some built-
in support for the creation, maintenance and analysis of trace information, these tools
often do not cover the complete development life cycle and only have limited
connectivity to traceable elements that are constructed in other tools. This results in
high manual effort and poor quality of trace data.

3.1.1.5. Relevance

Today, this traceability is often only established for parts of he development process.
Additionally, it is often created and maintained manually in late phases of the system
development process in order to fulfill requirements imposed by conformity to
Automotive SPICE, etc. Adding and maintaining the traceability early in the
development process has high potential for increasing the understandability and
consistency of the overall systems. This of course requires a solid underlying
methodology and tool support that helps keeping the effort for maintaining the
traceability as low as possible.

3.1.1.6. References

[WESTFALL] Linda Westfall, "Bidirectional Requirements Traceability",
http://www.compaid.com/caiinternet/ezine/westfall-bidirectional.pdf

3.1.2. Variant Handling

Software products showing a high variability are difficult to manage because of
different aspects. On the one hand it is a complex task to manage the lifecycle due to
dependencies between different components, which may vary in each final product,
on the other hand such a product will be further developed due to new requirements
or improvements. To manage these aspects in the software development, software
product lines [CLEMENTS2007] can be used.

http://www.compaid.com/caiinternet/ezine/westfall-bidirectional.pdf

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 42 / 97 © The AMALTHEA consortium

The central element for the representation of common and variable parts of a product
line is one or more feature model [KANG1990, APEL2008]. Each feature model has
many features, which represent stakeholder requirements or product characteristics
[APEL2009, CZARNECKI2002, CZANRECKI2005]. These features are arranged
hierarchically and may have dependencies to other features. Supplementary each
feature has a semantic which indicates the meaning within a group (optional,
mandatory, or, alternative). The feature itself is associated with a concrete software
component or software artifact, so that it is possible to produce software based on a
selection of features and their dependencies. A defined and valid selection of
features represents one configuration (product) of the product line.

Figure 3-1: Feature model

Figure 3-1 shows an example of a feature model for the software of a (simplified)
navigation system. The feature model let’s you select for example, if you want the
Traffic Message Channel (TMC) service to be included in your system or not. Based
on this kind of description, many different features and their relationships of a
configurable system can be developed and finally lead to a highly variable product.
To handle the variability of the product and to support the development of products
based on software features, the concept of feature models has been extended in
numerous approaches [APEL2008, CZARNECKI2002, CZANRECKI2005,
APEL2006, BENAVIDES2005]. Apart from the support to handle the variability of a
system, a software product line can also be used to provide support for the quality
management of a product. While the variability of a system brings challenges in the
field of testing due to the large number of different products that can be created, the
product line can also be used to provide different test cases according to the selected
configuration.

3.1.2.1. References

[CLEMENTS2007] Paul Clements and Linda Northrop.Software Product Lines:
Practices and Patterns, Addison Wesley, 6th edit, 2007.
[KANG1990] K.C. Kang. Feature-oriented domain analysis (FODA) feasibility
study.Report, DTIC Document, 1990.
[APEL2008] S. Apel, T. Leich and G. Saake. Aspectual feature modules.In IEEE
Transactions on Software Engineering, pages 162--180.IEEE Computer Society,
2008.

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 43

[APEL2009] Sven Apel and Christian Kästner.An overview of feature-oriented
software development. _Journal of Object Technology (JOT), pages 49--84, 2009.
[CZARNECKI2002] Krzysztof Czarnecki, Thomas Bednasch, Peter Unger and Ulrich
Eisenecker. Generative Programming for Embedded Software ,An Industrial
Experience Report, Pages 156--172, 2002.
[CZANRECKI2005] Krzysztof Czarnecki, Chang Hwan and Peter Kim. Cardinality-
Based Feature Modeling and Constraints :A Progress Report, 2005.
[APEL2006] S. Apel, M. Kuhlemann and T. Leich. Generic feature modules: Two-
staged program customization. In Proceedings of the International Conference on
Software and Data Technologies (ICSOFT), pages 127--132, 2006.
[BENAVIDES2005] D. Benavides and P. Trinidad. Using Constraint Programming to
Reason on Feature Models.In The Seventeenth International Conference on
Software Engineering and Knowledge Engineering (SEKE’05), 2005.

3.2. Requirement engineering

3.2.1. Requirements traceability

The traceability of requirements through the overall development process is an
essential activity for improving software development processes. More details about
traceability is described in the Activities for the overall development process chapter.

3.2.2. Complexity

Complexity increases when system in question grows in size, in other words it
includes more entities and connections between them. In software systems the
reason for increasing complexity is more demands for richer functionality by
customers along with shortening development times as functionality is needed
quicker [CLARK2008]. The advancements in hardware and network technologies
introduce more software-based systems in order to provide the services current
society needs. This leads to ever-increasing complexity in embedded systems as
they need to operate in an environment that can contain different devices like mobile
phones, sensors, personal laptops and so on. And yet they need to be able to
communicate between each other or share information (E-mail, phone calls, video
streams..) [GRACE2005,ZHANG2005].

When the amount of stakeholders (often customers) rise, it can lead to tens of
thousands of requirements increasing the complexity as the interconnections
between these requirements and the sheer count of them makes their management
and analysis a time consuming task. Regnell et al. [REGNELL2008] use the term
“Very Large-Scale Requirements Engineering” (VLSRE) to describe this situation and
identify three potential research opportunities to reduce the complexity:

 Sustainable requirements architectures. The information content and data
structure of requirements should aim for simpler and sustainable form that can
cope with the increasing amount of requirements. Often in VLSRE the sheer
cumulative amount of the information from the requirements and the
connections between these requirements grow and cause information
overload. Therefore, the question of deciding what information is important

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 44 / 97 © The AMALTHEA consortium

and what structure and format can sustain tens of thousands of requirements
and connections between them becomes critical.

 Effective requirements abstractions. In VLSRE where interdependencies
(prioritisation, resource estimation, change impact analysis...) among and
between requirements are important, tens of thousands requirements with
such connections between increase the complexity of the RE. In case of 20-50
requirements, finding all interdependencies is still possible but when the
number increases to thousands, it becomes almost impossible. This problem
can be tackled with abstraction mechanisms and experience-based heuristics
by bundling the requirements and choosing the level-of-detail. Still, the
problem lies on finding the actual interconnections, how to support humans to
navigate and search in the RE database and how to display only relevant
information in a huge database containing tens of thousands of requirements.

 Emergent quality predictions. In order to match the competitive market and
large set of demanding stakeholders, fighting the over-scoping becomes a
critical question in order to meet the quality expectations of the product. With a
huge set of requirements, predicting the system level quality aspects becomes
increasingly hard from the requirement’s details and increase the risk of over-
scoping in the platform development.

Even the with the advancement with development environments and software
programming languages, leaning only to code-centric development and technologies
when developing software systems proves to be difficult and costly [FRANCE2007].
MDD has arisen as one of the possible solutions for the complexity problem. It shifts
the development from programming in solution space into modelling the problem
space first. The purpose is to cover the underlying complexities in implementation
platform from the developer as the platform itself can include varying amount of
computers, networks, middleware and other entities and functionality needed for the
system to work. Models therefore dictate the development in MDD; they are the main
artefacts and the models are then transformed into the actual running systems
[FRANCE2007]. If strong complexity management is required, it has been often
shown that automation of mundane development tasks and support for concern
separation is needed [FRANCE2006]. MDD tries to do just that by promoting the use
of models and model technologies to increase the abstraction levels in development
process. This would allow the process itself ot be less complex still maintaining
enough formality to allow automation.

3.2.3. Timing

The influence of timing constraints in a system engineering process starts right at the
beginning with the definition of user requirements. Thereby it is specified what the
system should be able to provide. While functional requirements are used to define
the specific behaviours of the system, additional non-functional requirements
emerge. Those describe how a system should behave and are especially defined by
the safety requirements of norms and standards which the system has to achieve.
Additional timing constraints come along with the specification of the technical
system architecture. When the specific hardware and the distribution of functionality
is defined, real-time requirements are generated according to the information flow
between all participating communication partners in order to ensure a timely
interaction with a reactive environment.

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 45

Typically two different types of timing requirements are known: rate of execution and
response time. The rate of execution deals with the event-to-event timing within a
software function. This can be the timing between a new sensor value and the
respective actuator output, time between samples of an input, or some combination
of both. Response time, on the other hand, is the time between the first occurrence of
an event and the time of the first response to that event. Thus those requirements
determine how quickly a program must recognize an event and begin executing the
appropriate software routine to handle it.

3.2.4 References

[CLARK2008] T. Clark, P. Sammut& J. Willans, “Applied Metamodelling: A
Foundation for Language Driven Development”, Second Edition, Ceteva 2008.
[FRANCE2007] R. B. France and B. Rumpe, "Model-driven development of complex
software: A research roadmap," in FOSE '07: 2007 Future of Software Engineering.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 37-54.
[FRANCE2006] R. B. France, S. Ghosh, T. Dinh-Trong, and A. Solberg, "Modeldriven
development using uml 2.0: promises and pitfalls," Computer, vol. 39, no. 2, pp. 59-
66, 2006.
[GRACE2005] P. Grace, G. Coulson, G. S. Blair, and B. Porter. Deep middleware for
the divergent grid. In Proceedings of the IFIP/ACM/USENIX Middleware 2005,
Grenoble, France, November 2005.
[ZHANG2005] J. Zhang and B. H. C. Cheng. Model-based development of
dynamically adaptive software. In Proceedings of the IEEE International Conference
on Software Engineering (ICSE06), Shanghai, China, May 2006.
[REGNELL2008] Regnell, B., Svensson, R., B., Wnuk, K. Can We Beat the
Complexity of Very Large-Scale Requirements Engineering? Proceedings of the 14th
international conference on Requirements Engineering (REFSQ 08), pp. 123-128,
2008.

3.3. Architecture & design

Software Architecture and Architecture description standard

Development of software system usually starts with elicitation of needs. Needs
expressed by various stakeholders in this phase can be seen as a foundation on
which a software system is developed. However, expressed needs can often be met
with more than one design solution, which in turn can yield more or less valuable
outcome. Each of those design solutions is determined with decisions made during
the software architecting phase. Most often, Software Architecture (SA) is defined as
the structure of the components of a program/system, their interrelationships, and
principles and guidelines governing their design and evolution over time
[GARLAN1995]. Beside this definition, literature offers many other interpretation of
SA. Most of them can be found in [SWARCHITECTURE2012].

Development of SA is recognized as one of the technical processes defined by ISO
12207:2008 standard for “Systems and software engineering – software life cycle
processes” and a significant process for AMALTHEA project. Because SA is abstract
in nature and it always depends on domain, software type or on specific group or
stakeholders, SA is not a candidate for standardization process. However,

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 46 / 97 © The AMALTHEA consortium

conceptualization of SA is. International standard ISO/IEC/IEEE 42010:2011 for
“Systems and software engineering – Architecture description” specifies the manner
how SA descriptions are organized and expressed. It provides terms, concept
definitions and motivation behind them thus enabling SA community to share the
same conceptual framework for SA description. This International Standard
addresses the creation, analysis and sustainment of architectures of systems through
the use of architecture descriptions. Remaining text is based on ("Systems and
software engineering – Architecture description," ISO/IEC/IEEE 42010:2011(E)
(Revision of ISO/IEC 42010:2007 and IEEE Std 1471-2000)) [ISO/IEC/IEEE
42010:2011]

Table 3-1: Basic terminology for software architecture

Term Description

architecture
(system) fundamental concepts or properties of a system in its
environment embodied in its elements, relationships, and in the
principles of its design and evolution

architecture
description

work product used to express an architecture (products of
architecting)

architecture
framework

conventions, principles and practices for the description of
architectures established within a specific domain of application
and/or community of stakeholders

architecture
view

work product expressing the architecture of a system from the
perspective of specific system concerns

architecture
viewpoint

work product establishing the conventions for the construction,
interpretation and use of architecture views to frame specific system
concerns

concern
(system) interest in a system relevant to one or more of its
stakeholders

environment
(system) context determining the setting and circumstances of all
influences upon a system

model kind conventions for a type of modelling

stakeholder
(system) individual, team, organization, or classes thereof, having
an interest in a system

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 47

Figure 3-2: Conceptual model of ISO 42010:2011

This International Standard distinguishes an architecture of a system from an
architecture description. Architecture descriptions, not architectures, are the subject
of this International Standard. Whereas an architecture description is a work product,
an architecture is abstract, consisting of concepts and properties. This International
Standard specifies requirements on architecture descriptions. There are no
requirements in this International Standard pertaining to architectures, or to systems
or to their environments.

This International Standard does not specify any format or media for recording
architecture descriptions. It is intended to be usable for a range of approaches to
architecture description including document-centric, model-based, and repository-
based techniques.

This International Standard does not prescribe the process or method used to
produce architecture descriptions. This International Standard does not assume or
prescribe specific architecting methods, models, notations or techniques used to
produce architecture descriptions.

Two most often used ways to develop SA are frameworks (FW) and architecture
description languages (ADL). For clarity reasons, it is a good practice to build FWs
and ADLs on top of concepts that are defined in this standard.
Purpose of the FW is to establish a common practice for creating, interpreting,

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 48 / 97 © The AMALTHEA consortium

analysing and using architecture descriptions within a particular domain of application
or stakeholder community. ADLs, on the other hand, are framing stakeholders
concerns using one or more model kinds. More often than FWs, ADLs are supported
with automated tool.

Table 3-2: Examples of Frameworks and Architecture Description Languages

Frameworks
Architecture Description
Languages

Zachman Information System Architecture
Framework

Rapide

TOGAF Wright

Kruchten’s 4+1 view SysML

Siemens 4w ArchiMate

RM-ODP RM-ODP viewpoint language

3.4. Model-based design/Model-driven design

In [SELIC2006], B. Selic describes model-based design as an approach to software
development that raises the level of abstraction compared to classical high-level
programming languages, such as Java, C, C++ and makes extensive use of tool
automation. Although these classical programming languages also have underlying
models, designers have to deal with implementation issues that are irrelevant for
solving the design problem. In the model-based approach, the goal is to use higher-
level formalisms, abstracting from the unnecessary low-level details, which allow
describing things directly in the high-level problem domain. The whole system
developed finally consists of the set of models, all describing certain parts of the
system, potentially with different levels of abstraction. To take advantage of the
model-based approach, a tool chain is needed that allows automated code
generation out of the whole set of models (system specification).

The whole set of models can be seen as a system (wide) model. This means, it
serves as a reference whenever subgroups want to test/include new/improved parts
of the system. Therefore, it allows the creation of the system among domain frontiers.
Here, you can see another fundamental idea of model-based design: evolving
systems. Experimentation, already possible in early design phases, helps taking the
right decisions. The system then evolves from abstract descriptions by adding more
and more details to the final system specification, which is found in an iterative way
(and round-trips).

To achieve these advantages of model-based design, B. Selic specifies some
requirements concerning the characteristics of a model (cf. [SELIC2006]):

 Abstraction
 Understandable (i.e. intuitive notation/expression)
 Accurate (i.e. aspects of interest have to be described correctly)
 Predictive (i.e. the model has to provide accurate predictions concerning the

aspects of interest)

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 49

Models must be distinguished from their representation. A model itself is a theoretical
construct whereas its representation is a description/visualization of the model.
Hence there can be different representations, each highlighting another aspect of the
same model.

Model-based design finally raises a number of challenges. Some questions that have
to be answered are: When is a system completely described and which models are
needed? Some glue might be needed that keeps all the models together. It is
important to identify any ambiguous parts in the whole set of models. Another
challenge comes with the tooling platform, as tools need to be adaptable for each
domain and for different development steps. Therefore, well specified interfaces
between tools and model-transformation rules have to be an integral part of a tool
chain.

3.5. Safety/Security design

During the architectural and functional design, there are a lot of patterns available.
This is the fact that no software projects begins really at zero. There are always
existing software artefacts available and the new software project has to integrate it
(best practice approach).

The following design principles will be considered in AMALTHEA:

 Economy of mechanism: use a simple design where possible
 Need-To-Know principle: allow user to access the system with a minimum

access right and privilege needed to perform the requested service
 Fail-safe defaults: design no access by default and define rules, which allows

user to have access according to their rights
 Open design: open the design of the system to a group of experts those can

evaluate and improve the system design
 Usability: the functionality and particularly the handling of the system should

be simply and ambiguity, the GUI should be clearly arranged and represented
 Defence-In-Depth principle: implementing several complementary security

techniques at multiple system levels
 Redundancy principle: reduce the likelihood and impact of problems which

occur due to excessive consumption of system resources like DoS

3.6. Resource mapping

The term resource mapping shall cover all aspects in the design and development
process related to mapping software to software/hardware. This means that design
decisions in the software development process with impact on the hardware/software
mapping should be considered already in early stages of the development process.
For example, there could be an early validation through low detail system simulation
with the help of abstract hardware models. One important requirement for the
mapping solution is that the non-functional requirements, meaning timing,
performance and dependability constraints, of the application must be fulfilled by the
solution. Tool support for this mapping and automation in generation of running
systems through code generation helps designers to increase the efficiency of this
job and keep track with different variants and the amount of possible configurations.

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 50 / 97 © The AMALTHEA consortium

The problem that finally has to be solved is to partition and allocate the executable
pieces of software on the available processing cores, so that they can be scheduled
by the OS without violating any timing constraints. However, additional goals for
reaching an optimal mapping solution, such as a reliable solution which guarantees
timing constraints also in case of underestimated resource efforts of different
software parts, might have to be fulfilled. The final allocation cannot be made before
all necessary information, which includes the application code as well as all hardware
dependent software modules (in AUTOSAR this refers to the Basic Software
modules), for the mapping is available. In the following subsections, an overview of
the important steps related to target mapping, namely partitioning and allocation,
scheduling and timing simulation, is given.

3.6.1. Model-based Partitioning and Allocation

Model-based partitioning is the mapping of software components into parts, which
can be used by the model based allocation in order to allocate them to available
scheduler of hardware elements, i.e. the cores in the case of a multicore processor.
The benefit of allocating software parts first to a scheduler, allows using advanced
global scheduling algorithms.

The goal of this two-staged, but iterative, process is to find a mapping which is
feasible at minimal costs. Those costs can be for example the worst case execution
time or CPU utilization. This however is a very complex problem and known to be
NP-hard.
In general once the non-functional behaviour of the software components is defined
at least in an abstract manner, parts of the software, i.e. functions or sub-functions,
are assigned to a task or Interrupt Service Routine. At some stage, the execution
times, communication costs, data and control dependencies of all the tasks become
known and each task can be assigned to a specific scheduler, which i.e. manages a
number of processors or cores. Based on this methodology it is possible to determine
the actual costs by using a scheduling analysis or evaluation. This procedure maybe
repeated until the mapping satisfies all requirements.

3.6.2. Scheduling

Solutions to the scheduling problem yield a splitting or fusion from tasks to time slots
during that these are executed on a processor, or rather core (cf. [
MARWEDEL2011]). The challenge is to find a mapping for a given set of tasks and
their properties, such as deadlines, periods and execution times, on a given set of
cores that allows an operating system scheduler to fulfil all the requirements and
constraints of the application. In addition to timing constraints, there might be
precedence constraints and resource constraints as well. Finding a solution to the
scheduling problem is therefore highly related to the partitioning problem. Scheduling
analysis can be used to guarantee that an operating system scheduler, following a
certain scheduling algorithm, is able to keep all these constraints at run-time and that
is optimal with respect to a specific criterion. Some characteristics of a schedule,
which can be used as optimality criterion, are

 Max. lateness (max. delay of a task completion with respect to its deadline)

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 51

 Latency (time, that is spent for bus communication, memory access etc. during
task execution)

 Throughput (average number of completed tasks per time unit)

Because some of these attributes are in conflict (e.g. throughput and latency), there
is no universal best scheduling algorithm available. So, a feasible scheduling
algorithm has to be chosen with respect to the specific system and its requirements.
For example, at a hard real-time embedded system all tasks have to keep their
deadlines. Hence, in this case the focus of a scheduling algorithm will be set less on
maximizing throughput and stronger on minimizing the max. lateness. A scheduler
needs processing time just as the considered task set. Hence, another aspect of
scheduling that must be taken into account is the complexity and run-time behaviour
of the scheduling algorithm, as scheduling causes computation-overhead by itself.

Well known scheduling algorithms of single-core systems are, for example, EDF
(Earliest Deadline First) and Rate Monotonic (cf. [BUTTAZZO2011]). At multi-core
systems, scheduling gets much harder than at single-core systems, because
additionally to the aspects of a single-core system, for example, there must be
considered the inter-core-communication as well as the access of shared memory by
different cores. Therefore scheduling algorithms known from single-core systems
need to be adapted or rather extended to work also at multi-core systems.

Multi-core scheduling approaches can be divided into two domains, namely global
and local scheduling. Global scheduling captures the scheduling algorithms that
allow migration, i.e. tasks are allocated to cores at runtime. An example of such an
algorithm is EDZL (Earliest Deadline Zero Laxity, cf. [CIRINEI2007]), which is based
on the already mentioned EDF.

In contrast, when using local scheduling tasks are allocated to cores already offline,
i.e. migration of tasks is not allowed at runtime. Hence, there can be used single-core
scheduling algorithms at each core of the multi-core system. However, to use local
scheduling, a feasible allocation of tasks to the cores of the multi-core system is
needed. Once again, this shows the high relation between the scheduling and
allocation problem.

3.6.3. Model-based Timing Simulation

By model-based timing simulation we understand a discrete-event simulation of a
given system model. Its goal is to provide the user a data basis for a clear statement
about the timing behaviour of the system. Hardware and software objects are
modelled by agents, whereas its behaviour is modelled by state machines. Each
agent is able to register at a central component in order to get triggered at a certain
time and sending an event to itself or to other agents. The interaction between the
different agents is traced with timestamp and exact identification, in order to apply
metrics on the events of the trace, as shown as example in the following Figure 3-3.

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 52 / 97 © The AMALTHEA consortium

Figure 3-3: Example for time stamp tracing of interactions between different agents

Analysis values - result from the specification of the system or the stimulation:

 Activation Delay Ti.φ is the timespan passed after the first activation of
instance Ti,j

 Activation Interval Ti.AIj is the timespan between the activation of the
instances Ti,j+1 and Ti,j. The Activation Interval Ti.AIj is determined for tasks
with periodic execution Ti.AIj = Ti.AI in the design step or result from tasks
activated by an event from their stimulation.

 Relative Deadline Ti.Dj is the timespan relative to Ti.aj in which the instance Ti,j
has to complete

Recorded values - are clocked by use of profiling:

 Starting Point Ti.sj is the point in time, where the execution of instance Ti,j is
started

 Finalization Ti.fj is the point in time, where the execution of instance Ti,j is
completed

Determined values - can be calculated from the values above:

 Activation Ti.aj is the point in time, where instance Ti,j gets activated. This is
given for periodic tasks by Ti.aj = Ti.φ + (j-1)Ti.AI. For tasks activated by an
event, Ti.aj is the point in time, where the event is triggered

 Absolute Deadline Ti.dj calculates from Ti.dj = Ti.aj + Ti.Dj
 Execution Time Ti.ej is the timespan a task takes for calculation
 Runtime Ti.rj is the timespan a task takes from its starting point Ti.sj until its

completion Ti.fj, Ti.rj = Ti.fj - Ti.sj, where Ti.rj = Ti.ej holds only, if the task was
not interrupted

Parameters of Real-time:
Release Jitter Ti.Jj, Response Time Tj.RTj und Lateness Tj.Lj

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 53

Metrics on the trace can be calculated online during simulation calculation time or
after simulation by using the stored trace file. The results of this analysis can then be
compared to the specified timing constraints of the system to verify whether the
system satisfies the specified requirements in the simulated time frame or not.

3.6.4 References

[BUTTAZZO2011] Buttazzo, G. C.: Hard Real-Time Computing Systems –
Predictable Scheduling Algorithms and Applications, Springer, 2011

[CIRINEI2007] Cirinei, M.; Baker, T.P.: “EDZL Scheduling Analysis”, in Proc. 19.
Euromicro Conference on Real-Time Systems, Pisa, Italy, July 2007, pp. 9-18

[GARLAN1995] David Garlan, D. P. (1995). Introduction to the Special Issue on
Software Architecture. IEEE Transactions on Software Engineering- Special issue on
software architecture .

[ISO/IEC/IEEE 42010:2011] "Systems and software engineering – Architecture
description," ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and
IEEE Std 1471-2000). (n.d.). Standard: IEEESTD.2011.6129467 .

[MARWEDEL2011] Marwedel, P.; Teich, J.; Kouveli, G.; Bacivarov, I.; Thiele, L.; Ha,
S.; Lee, C.; Xu, Q.; Huang, L.: „Mapping of Applications to MPSoCs,“ in Proc. 9.
International Conference on Hardware/Software Codesign and System Synthesis,
Taipei, Taiwan, October 2011, pp. 109-118

[SELIC2006] Selic, B.: "Model-driven development: its essence and opportunities," in
Proc. 9. IEEE International Symposium on Object and Component-Oriented Real-
Time Distributed Computing, Gyeongju, Korea, April 2006, pp. 313-319

[SWARCHITECTURE2012] Defining Software Architecture. (2012). Retrieved 2012,
from Software Engineering Institute:
http://www.sei.cmu.edu/architecture/start/definitions.cfm

3.7. Verification & validation

3.7.1. Methods for Model analysis and validation

For using a model as basis for the automatic execution of necessary activities within
a development process, it must be assured the specification model represents all the
test-relevant aspects for the composition of co-operating systems semantically-
correct. This verification is essential for achieving trustworthy results from any model-
depending, automatically executed activities.
Different validation and verification methods have been established in theory and
practice for approving designated capabilities of a specification model. In general it
can be distinguished between:

 •formal verification methods(static verification),

 •model based simulation (dynamic verification)and

http://www.sei.cmu.edu/architecture/start/definitions.cfm

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 54 / 97 © The AMALTHEA consortium

 •model analysis based on given design patterns respectively templates (static
verification).

 •syntactic validation and verification methods(static verification)

With methods of formal verification (e.g. model checking) defined characteristics of a
specification model can be guarantied. Therefore, these methods are applied
especially for approving documented evidence of security capabilities of a
specification model. But especially applied to complex models formal verification
methods can be very time and effort intensive.

In contrast to that with scenario-based simulation designated system capabilities can
be investigated also in case of complex system models. However this validation is
restricted to the considered simulation scenario, a guaranty of the considered system
capabilities cannot be achieved by scenario-based simulation.
With model-analysis methods based on given design pattern resp. templates basic,
designated characteristics especially of the model syntax can be verified.
Characteristics of the behaviour cannot be investigated with these methods. In fact
good models are assumed to meet certain templates, which have been extracted
from experiences with analog problem cases. Also the analysis of specification-
models concerning a given syntax is a task of the model validation.

All V&V methods are classified as either dynamic or static. For reliable software
projects, both dynamic and static methods are required. Static methods include
semantic and syntactic verification, model analysis and metric calculations. Dynamic
methods are all sorts of tests in small and large scales:

 Unit test,

 Module test,

 Integration test,

 System test,

 Functionality test,

 Stress test.

3.7.2. Test cases generation

The systematic generation of appropriate test-scenarios is a special challenge for
complex test-objects, which is often hardly achievable. This complexity further
increases if the test object is a distributed system with several components, in which
the communication of these components is subject of the testing. For the creation of
suitable test scenarios a systematic procedure is necessary fulfilling the requirements
of high specification coverage of the test cases and small test costs (small number of
test cases and/or test steps) for the test realization respectively. There are several
mostly model based methods for the automatic creation of test cases. Basis of these
methods is a model of the required behaviour, a specification model of the test
object. Therefore it is necessary to verify that the specification model is semantically
correct regarding the requirements, otherwise wrong test scenarios would be created
with model based test generation methods.

In general model based test generation methods explore the specification model with
different strategies in order to derive valid test scenarios. Thereby the most methods

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 55

don’t operate on the whole state space of the specification model being able to
generate test scenarios for complex specification models. With these approaches the
specification model is stimulated with valid input data, the model is executed and the
model reaction is observed. Valid input data are often deduced by genetic algorithms
or intelligent heuristics operating on the specification model. This procedure is
repeated until an abort criterion (e. g. specification coverage, max. execution time) is
reached. High coverage criteria cannot be guaranteed with these test generation
methods. This is only possible with test generation methods operating on the whole
state space of the specification model. But with these methods often a high number
of test scenarios are generated increasing the test costs. In practice it is necessary to
choose the most suitable test generation method for the used test process and the
specified requirements for the test cases. Here a trade-off between specification
coverage by generated test cases and resulting test costs must be found.

3.7.3 Syntactic Verification And Validation Methods

Syntactic methods are essentially the opposite of the formal methods where the
software is neither security nor safety critical. In model based systems’ case, each
model node’s implementation basically involves the usage of abstract dependency
graphs of the functions used in the software module.

Syntactic methods and formal methods can be applied simultaneously to the
separate modules of the whole project. The choice is made depending on the
balance between the cost and the robustness needs of each module. For instance,
the low-level framework of the ECU has high security and security requirements;
therefore it should be verified by using formal methods. But an integrated mobile
application that retrieves the temperature inside the car could be verified by syntactic
methods.

3.7.4. Timing validation

The correctness of embedded systems depends not only on the results of the
implemented functionality, but also on their timeliness. Especially hard real-time
systems have to meet rigid timing constraints, which are determined by the
surrounding physical environment. Embedded systems repeatedly acquire data from
the environment through a variety of sensors, process the data and finally respond
via actuators. One of the biggest challenges however is to guarantee that the timing
constraints of all executed tasks will be met taking account of a given processor
architecture, varying communication times over a bus or interconnection network and
the variable scheduling of tasks on the processing units. Thus the purpose of a timing
validation is to formally analyse the defined model of a system to calculate its
minimum and maximum timing. This is achieved by a static scheduling analysis.

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 56 / 97 © The AMALTHEA consortium

Figure 3-4: Estimated, actual, and observed WCET/BCET [1]

The goal of the static scheduling analysis is to guarantee for a system that all tasks
are schedulable in a way that no timing requirements are violated regardless of the
input. Therefore the worst-case response times (WCRTs) / best-case response times
(BCRTs) of all tasks in the system based on their worst-case execution times
(WCETs) / best-case execution times (BCETs), their periods, the chosen scheduling
algorithm, etc. are determined. That way a safe overestimate is calculated that is
greater than the actual WCET but never less and respectively smaller than the actual
BCET but never greater. The resulting calculated interval includes consequently the
real maximum and minimal timing. Finally, the WCRTs can be compared with the
defined timing constraints to determine if they can be met under all conditions.

3.7.5. References

Roychoudhury, Abhik: Embedded Systems and Software Validation, 2009, Morgan
Kaufmann Publishers, ISBN 978-0123742308

4. State of the art tools and frameworks

4.1. Selected tools and frameworks

4.1.1. Eclipse Community tools and frameworks

Eclipse is an open source community, whose projects are focused on building an
open development platform comprised of extensible frameworks, tools and runtimes
for building, deploying and managing software across the lifecycle. The Eclipse
Foundation is a not-for-profit, member supported corporation that hosts the Eclipse

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 57

projects and helps cultivate both an open source community and an ecosystem of
complementary products and services.

The Eclipse Project was originally created by IBM in November 2001 and supported
by a consortium of software vendors. The Eclipse Foundation was created in January
2004 as an independent not-for-profit corporation to act as the steward of the Eclipse
community. The independent not-for-profit corporation was created to allow a vendor
neutral and open, transparent community to be established around Eclipse. Today,
the Eclipse community consists of individuals and organizations from a cross section
of the software industry.

4.1.1.1. Eclipse Modelling Framework (Modeling.EMF)

The EMF project is a modelling framework and code generation facility for building
tools and other applications based on a structured data model. From a model
specification described in XMI, EMF provides tools and runtime support to produce a
set of Java classes for the model, along with a set of adapter classes that enable
viewing and command-based editing of the model, and a basic editor.

4.1.1.2. Eclipse Model-to-Model Transformation (Modeling.M2M)

Model-to-model transformation is a key aspect of model-driven development (MDD).
The M2M project will deliver a framework for model-to-model transformation
languages. The core part is the transformation infrastructure. Transformations are
executed by transformation engines that are plugged into the infrastructure. There
are three transformation engines that are developed in the scope of this project. Each
of the three represents a different category, which validates the functionality of the
infrastructure from multiple contexts.

4.1.1.3. Eclipse Model-to-Text Transformation (Modeling.M2T)

The Model to Text (M2T) project focuses on the generation of textual artifacts from
models. Its purpose is threefold:

1. Provide implementations of industry standard and defacto Eclipse standard
model-to-text engines

2. Provide exemplary development tools for these languages
3. Provide common infrastructure for this languages.

4.1.1.4. Eclipse Model Development Tools (Modeling.MDT)

The objectives of this project are to provide

1. an implementation of industry standard metamodels
2. and exemplary tools for developing models based on those metamodels.

4.1.1.4.1. Eclipse Sphinx (Modeling.MDT.Sphinx)

Sphinx provides an extensible platform that eases the creation of integrated
modelling tool environments supporting individual or multiple modelling languages

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 58 / 97 © The AMALTHEA consortium

(which can be UML-based or native DSLs) and has a particular focus on industrial
strength and interoperability.

Features that are provided by Sphinx are:

 Workspace Management This component is built on EMF, EMF Transaction,
and Eclipse Platform. It provides services for managing the lifecycle and
editing domains of model instances that need to be centrally provided and
shared in the workspace of Sphinx-based modelling tool applications.

 Navigator View and Editor Sockets This component is built on EMF, EMF
Transaction, Eclipse Common Navigator Framework, Eclipse UI Forms, and
GMF. It provides common logic for creating explorer views, form editors, and
graphical editors operating on shared model instances in Sphinx-based
modelling tool applications.

 Validation Runtime Extensions This component is built on EMF, EMF
Transaction, EMF Validation, and Eclipse Platform. It provides extended
runtime-level services for validating models or model fragments in Sphinx-
based modelling tool applications and visualizing validation results.

 Compare & Merge Integration This component is built on EMF, EMF
Transaction, EMF Compare, and Eclipse Compare Support. It provides
extensions enabling model-based compare/merge operations to be carried out
on shared model instances in Sphinx-based modelling tool applications.

 EMF Runtime & Eclipse Platform Extensions This component is built on
EMF, EMF Transaction, and Eclipse Platform. It provides common runtime-
level enhancements such as description of meta-models, description of shared
model instances including their scopes, meta-model compatibility services, as
well as a couple of performance optimizations and utilities. They are used by
all other Sphinx platform components and are also available to Sphinx-based
modelling tool applications.

4.1.1.4.2. Eclipse Requirements Modelling Framework (Modeling.MDT.RMF)

The Requirements Modelling Framework is an implementation of the Requirements
Interchange Format, including a GUI.

4.1.1.4.3. Eclipse Unified Modelling Language (Modeling.MDT.UML2)

Eclipse UML2 is an EMF-based implementation of the UML 2.x metamodel for the
Eclipse platform.

4.1.1.4.4. Eclipse Papyrus (Modeling.MDT.Papyrus)

Papyrus is aiming at providing an integrated and user-consumable environment for
editing any kind of EMF model and particularly supporting UML and related modelling
languages such as SysML and MARTE. Papyrus provides diagram editors for EMF-
based modelling languages amongst them UML 2 and SysML and the glue required
for integrating these editors (GMF-based or not) with other MBD and MDSD tools.

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 59

Papyrus also offers a very advanced support of UML profiles that enables users to
define editors for DSLs based on the UML 2 standard. The main feature of Papyrus
regarding this latter point is a set of very powerful customization mechanisms which
can be leveraged to create user-defined Papyrus perspectives and give it the same
look and feel as a "pure" DSL editor.

4.1.1.5. Eclipse Textual Modelling Framework (Modeling.TMF)

The Textual Modelling Framework is an umbrella project for textual modelling
frameworks at Eclipse.

4.1.1.5.1. Eclipse Xtext (Modeling.TMF.Xtext)

Xtext is a framework/tool for development of external textual DSLs. Just describe
your very own DSL using Xtext's simple EBNF grammar language and the generator
will create a parser, an AST-meta model (implemented in EMF) as well as a full-
featured Eclipse Text Editor from that.

The Framework integrates with technology from Eclipse Modelling such as EMF,
GMF, M2T and parts of EMFT. Development with Xtext is optimized for short
turnarounds, so that adding new features to an existing DSL can be done in seconds.
Still with the new version more sophisticated programming languages can be
implemented.

4.1.1.5.2. C/C++ Development Tooling (CDT)

The CDT Project provides a fully functional C and C++ Integrated Development
Environment based on the Eclipse platform. Features include:

 support for project creation and managed build for various tool chains
 standard make build
 source navigation
 various source knowledge tools, such as type hierarchy, call graph, include

browser, macro definition browser, code editor with syntax highlighting, folding
and hyperlink navigation, source code refactoring, code generation

 visual debugging tools, including memory, registers, and disassembly viewers.

4.1.1.6. Relevance

Eclipse is a large, vibrant, well-established open source community with over 200
open source projects, close to 1,000 committers, 170-plus member companies,
thousands of companies embedding Eclipse into products and applications, and
millions of users. Eclipse began as a Java IDE but has evolved into a much larger
and more diverse open source community. Eclipse has become a major destination
for people involved in developing software that includes open source software
[ECLIPSE_SURVEY2011]. Due to this great acceptance in the industry, Eclipse is of
very high relevance for the implementation of the AMALTHEA tool chain.

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 60 / 97 © The AMALTHEA consortium

4.1.1.7. References

[EMF] Eclipse, "Modelling Framework (EMF)", http://www.eclipse.org/modeling/emf
[M2M] Eclipse, "Model to Model Transformation (M2M)",
http://www.eclipse.org/modeling/m2m
[M2T] Eclipse, "Model to Text Transformation (M2T)",
http://www.eclipse.org/modeling/m2t
[MDT] Eclipse, "Model Development Tools (MDT)",
http://www.eclipse.org/modeling/mdt
[RMF] Eclipse, "Requirements Modeling Framework (RMF)",
http://www.eclipse.org/rmf
[SPHINX] Eclipse, "Sphinx (Sphinx)", http://www.eclipse.org/sphinx
[UML2] Eclipse, "Unified Modeling Language (UML2)",
http://www.eclipse.org/projects/project.php?id=modeling.mdt.uml2#
[TMF] Eclipse, "Textual Modeling Framework (TMF)",
http://www.eclipse.org/modeling/tmf
[XTEXT] Eclipse, "Xtext (Xtext)", http://www.eclipse.org/Xtext
[CDT] Eclipse, "C/C++ Development Tooling (CDT)", http://www.eclipse.org/cdt/
[ECLIPSE_SURVEY2011] Eclipse, "The OpenSource Developer Report, 2011
Eclipse Community Survey",
http://www.eclipse.org/org/community_survey/Eclipse_Survey_2011_Report.pdf

4.1.1.8. Toolkit in OPen-source for Critical Application and SystEms Development (TOPCASED)

TOPCASED is a modular, open-source, Eclipse-based software environment
providing methods and tools for critical embedded systems development, ranging
from system and architecture specifications to software and hardware implementation
through equipment definition. TOPCASED promotes model-driven engineering and
formal methods as key technologies.

TOPCASED includes the following components:

 TOPCASED - UML and SysML Editor The TOPCASED UML and SysML
Editor is moved from the TOPCASED project into the Eclipse Community and
is now available as Eclipse MDT Papyrus.

 TOPCASED - Requirements provides an editor for managing requirements,
import/export functionality as well as support for traceability between
requirements and between requirements and model elements. TOPCASED is
planning to use the Eclipse RMF for managing requirements. Note: The
traceability is currently limited to editors that are based on the Papyrus
backbone.

 TOPCASED - Gendoc2 allows for generating text documents out of models.
The generation is driven by templates described using MS Word or
OpenOffice.

 TOPCASED - Simulation aims to simulate UML activity diagrams and state
machine diagrams and to visualize the simulation in the diagrams.

 TOPCASED – OCL Tools provide an editor and a validation engine for OCL
constraints.

 TOPCASED – Model Transformation & Scripting integrates support for
model to model transformation and for scripting operations on models.

http://www.eclipse.org/modeling/emf
http://www.eclipse.org/modeling/m2m
http://www.eclipse.org/modeling/m2t
http://www.eclipse.org/modeling/mdt
http://www.eclipse.org/rmf
http://www.eclipse.org/sphinx
http://www.eclipse.org/projects/project.php?id=modeling.mdt.uml2
http://www.eclipse.org/modeling/tmf
http://www.eclipse.org/Xtext
http://www.eclipse.org/cdt/
http://www.eclipse.org/org/community_survey/Eclipse_Survey_2011_Report.pdf

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 61

The following Figure 4-1 describes the Eclipse components which TOPCASED is
built on and the TOPCASED components that are planned to be contributed to the
Eclipse community in 2012-2014.

Figure 4-1: TOPCASED components structure

4.1.1.8.1. References

[TOPCASED_HOMEPAGE] TOPCASED Homepage, http://www.topcased.org/
[TOPCASED_STATUS2011] The TOPCASED status : components view and
Industrial usage, http://gforge.enseeiht.fr/docman/view.php/52/4485/Eclipse+IDD+-
+Berlin+2011+-+TOPCASED+presentation-ed2.pdf

4.1.1.9. AUTOSAR Tool Platform (Artop)

4.1.1.9.1. Overview

The AUTOSAR Tool Platform (Artop) is an implementation of common base
functionality for AUTOSAR development tools. Artop, including its source code, is
available free of charge to all AUTOSAR members and partners. The Artop
development process is transparent and based on a community approach driven by
AUTOSAR members and partners. The community that develops Artop is organized
as the Artop User Group.

http://www.topcased.org/
http://gforge.enseeiht.fr/docman/view.php/52/4485/Eclipse+IDD+-+Berlin+2011+-+TOPCASED+presentation-ed2.pdf
http://gforge.enseeiht.fr/docman/view.php/52/4485/Eclipse+IDD+-+Berlin+2011+-+TOPCASED+presentation-ed2.pdf

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 62 / 97 © The AMALTHEA consortium

Artop is based on Eclipse, especially on EMF and Sphinx. The following AUTOSAR
specific components are provided by Artop:

Figure 4-2: Problem Frame 6

 AUTOSAR Metamodel Implementations The most important part of the
Artop platform is an implementation of the AUTOSAR metamodel.
The metamodel is implemented using the Java programming language and
the Eclipse Modelling Framework (EMF). Currently Artop contains support for
AUTOSAR release 2.0, 2.1, 3.0, 3.1, 3.2 as well as AUTOSAR release 4.0.
Support for upcoming AUTOSAR metamodel releases are added with later
versions of Artop. The goal is to provide metamodel implementations in Artop
close to the point in time when AUTOSAR releases them. Artop also provides
a Generic API Metamodel API that allows developing plug-ins which process
or manipulate AUTOSAR models of different AUTOSAR releases with one
common implementation. The Generic API is provided for certain commonly
used areas of the metamodel. Naturally the Generic API cannot cover the full
metamodels.

 AUTOSAR Serialization The Serialization component provides file-based
persistence for AUTOSAR models. It allows for serializing and de-serializing
AUTOSAR models to and from AUTOSAR XML files, based on the XSD
schema defined by AUTOSAR.

 AUTOSAR Workspace Management The AUTOSAR Workspace
Management supports managing of AUTOSAR models, which are spread over
more than one AUTOSAR XML file. It integrates into the Eclipse workspace
and provides the capability to load and save various file formats.

 AUTOSAR Metamodel Edit Metamodel Edit helps to create user interfaces
on top of the AUTOSAR model by enabling in-memory AUTOSAR models to
be displayed and modified. It is based on the EMF.Edit framework and
provides key features like content and label provider classes, property source
classes and a non-transactional command framework to create, modify and
delete model elements.

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 63

 AUTOSAR Validation Engine and Constraints Artop contains a generic
validation engine that minimizes the effort to create validation constraints for
AUTOSAR models. This component can validate constraints that correspond
to the standard AUTOSAR constraints, as well as project specific or custom
constraints that can easily be added via the extension point mechanism.

 AUTOSAR Compare Artop provides functionality that allows comparing
AUTOSAR models. This allows to easily tracking changes between different
versions of an AUTOSAR model file. The functionality is based on EMF
Compare that additionally allows visualizing the changes between models.

 AUTOSAR Example Components Some example components, mainly UI
components are also provided with Artop (orange components). These
components show the usage of Artop, but are not meant to be used by an
end-user. They will not be fully tested and documented and there is also no
guarantee that the API of these components will be stable.

4.1.1.9.2. Relevance

Artop is the only open platform that provides common basic functionality for
AUTOSAR development tools.

4.1.1.9.3. References

[ARTOP_HOMEPAGE] Artop Homepage, http://www.artop.org
[ARTOP_WHITEPAPER] Artop Whitepaper,
http://www.artop.org/artop_whitepaper.pdf

4.1.1.10. YAKINDU

4.1.1.10.1. Overview

YAKINDU [YAKINDU] is an open-source-toolkit built on Eclipse for the model-driven
development of embedded systems. Through the systematic use of models, it aims
at an integrated development process and an increase in quality and maintainability.
YAKINDU is not a monolithic application but a set of independent language modules.
These modules currently comprise the following list:

 SCT - statechart tools
 Damos - data-flow oriented modelling
 Mscript - math oriented scripting
 CReMa - (requirements) traceability
 CoMo - component model

The language modules are not bound to any specific methodology. They are
extendable and can be used in any domain specific tool chain independent from each
other. As Figure 4-3 below shows, the only common basis of the language modules
is a typesystem implementation with respect to the SI-units standard.

http://www.artop.org/
http://www.artop.org/artop_whitepaper.pdf

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 64 / 97 © The AMALTHEA consortium

Figure 4-3: YAKINDU Architecture

The statechart tools (SCT) module is used to model reactive systems. They are
designed to continuously interact with the environment the system is embedded in.
Beside the fact that events from the environment asynchronously trigger the
transitions of the statecharts, their core semantics is cycle driven. Thus, processing
of concurrent events is enabled. A model interpreter is used to simulate the behavior
of the statecharts. During simulation, transitions and current states are visualized and
events from the embedding environment can be triggered by the developer. Various
code generators exist to bring the statecharts onto the embedded device. Anyway,
the model interpreter for simulation and the generated code follow the same core
semantics.

In contrast to SCT, Damos [Ung] is a data-flow oriented modelling tool. It uses block
diagrams as syntax to describe system component functions and data-flow
connections between them. Data could be for example physical quantities like current
or voltage. Damos is used to model control systems or digital signal processing.
Damos supports a "two-dimensional" structuring of models. In the first dimension,
subsystems can be used to hierarchically structure the models for enabling various
implementations. A subsystem defines its provided interface. Subsystem realization
models implement those interfaces. Thus, product line engineering for example is
supported by implementing different realizations depending on the various product's
specifications. The second dimension is established by system fragments which can
be used to divide the model into multiple parts. For example, to support simulation of
the model, it might be divided into a functional fragment and a simulation fragment.
Thus, the "outer" world the model should be embedded in can be encapsulated into a

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 65

separate fragment which in turn can be removed once the model is brought into the
productive environment.

The Mscript module is a mathematical DSL to define functions independently from
the typesystem and its type ranges or type conversions. It can be used for example
in Damos to model system component functions. The code generation maps the
MScript functions to the concrete typesystem used on the embedding environment.

The typesystem the YAKINDU toolkit builds upon handles numeric datatypes by
incorporating their units of measurement with respect to the SI-units standard. When
no units are specified, a dimensionless value is assumed. Units are automatically
converted and calculated. The typesystem is used among others for model validation
and simulation.

The Cross Relational Manager (CReMa) is a tool that brings a tracing infrastructure
into any development environment. It connects pairs of so called tracepoints to define
traces between two development artifacts. A tracepoint binds an artifact of any kind -
a piece of source code, a requirement, a document, a model element, etc. - to a
trace. Artifacts might be assigned to multiple tracepoints and therefore to multiple
traces. Thus, traces for example from a requirement specification via some model
element to a piece of source code can be established to follow some specification to
its implementation. CReMa manages these traces and provides a user interface to
create and follow the traces. Its extendable architecture allows for implementation of
new tracepoint providers. They are a non-invasive means to enable traceability also
for other development artifacts. CReMa already ships with a requirements model
based on ReqIf, an OMG standard for requirements specification.

The component model (CoMo) module is currently under development. It can be
used to specify architectural elements of the system to be modelled. In the context of
the YAKINDU toolkit, components might be implemented by statecharts or block
diagrams. Anyway, the component model will be open to also be used by any other
tool in a tool chain that incorporates YAKINDU.

4.1.1.10.2. Relevance

The statechart tools as well as Damos perfectly fit into the AMALTHEA tool chain.
However, they still need to be extended for Multi-Core and product line engineering
support. CReMa could be the basis for traceability in the AMALTHEA tool chain.
Trace point providers can be implemented for each of the tools in the tool chain, thus,
enabling traceability for the whole tool chain. It is not clear yet, if CoMo might be
used in AMALTHEA, since AUTOSAR already defines a component model. Anyway,
in the telecommunication domain CoMo might be useful.

4.1.1.10.3. References

[Ung] Andreas Unger, Damos Blog - http://andreasunger.com/

[YAKINDU] YAKINDU - http://www.yakindu.org/

http://www.yakindu.org/

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 66 / 97 © The AMALTHEA consortium

4.1.2. Eclipse Industry Working Groups

4.1.2.1. Eclipse Automotive Industry Working Group

4.1.2.1.1. Overview

The Eclipse Automotive Industry Working Group defines and implements a standard
platform for the software development tools used in the automotive industry. The
main goals are:

 To provide an infrastructure for tool development required by the automotive
industry

 To address and support the needs for the whole automotive software
development cycle

 To avoid that the same non-competitive basic tool functionality is redeveloped
over and over again

 To join forces and meet current and future requirements in terms of tool
runtime performance and memory consumption

4.1.2.1.2. Relevance

The Eclipse Automotive Industry Working Group can be seen as a central gateway
between projects and other activities within the Automotive Industry and the activities
within the Eclipse Community.

4.1.2.1.3. References

[AUTO_IWG] Eclipse, "Automotive Industry Working Group",
http://wiki.eclipse.org/Auto_IWG

4.1.2.2. Eclipse Polarsys

4.1.2.2.1. Overview

The Polarsys initiative was founded at the end of 2011. The goal of the Polarsys
group is to collaboratively define, build and maintain open source tools for safety-
critical and embedded system development in demanding engineering domains, such
as aerospace, defence and security, transportation, energy, healthcare,
telecommunications.

These domains typically require maintenance of tool chains for the very long term –
from 30 to up to 50 to 70 years in some cases – which creates some very unique
issues. Another characteristic of the working group is to address material for
qualification processes – like in the DO 178 for Aircraft or ISO 26262 for Automotive.

Additionally, Polarsys intends to foster exchanges between academics and industrial
partners in these domains and manage the maturity of tools from early research
prototypes to the obsolescence of tools.

To implement this vision, the Polarsys group and the Eclipse Foundation will
collaborate to provide services and to:

http://wiki.eclipse.org/Auto_IWG

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 67

 Maintain the infrastructure required for the hosting of Polarsys projects,
including software repositories, software build and test facilities.

 Proceed to IP due diligence in order to provide clean open source software
released under EPL or other licenses validated by Polarsys such as BSD-like
and LGPL.

 Define the software tools to be contained in each release of the tool chains
(with specific roadmaps and release trains).

 Create a labelling process to recognize projects maturity and companies
know-how and commitment .

 Create a software quality assessment kit to define the maturity level of each
component.

 Digitally sign certified software releases made available under the Polarsys
banner.

 Make those binary software releases available only to the members of
Polarsys.

Polarsys focuses on techniques and tools to fulfil the Polarsys goals and vision, and
mainly on:

 System, Hardware and Software Modelling
 Code analysis (static code analysis)
 Debugging, tracing and other integration tools
 Transversal process support tools : Configuration Management, Change

tracking, Technical facts management, Project reporting
 Test and verification tools targeting embedded software methods, simulation

and early validation
 Embedded components (RTOS, Middleware, ...)
 System on Chip simulation and Hardware logic (VHDL, SystemC, ...)

Polarsys will build on the technology and innovation created in the very successful
TOPCASED open source project of the French cluster Aerospace Valley. Key
contributors and source code from the TopCased project will be moved into the
Polarsys working group.

4.1.2.2.2. References

[POLARSYS] Eclipse, "Polarsys Industry Working Group", http://www.polarsys.org/

4.1.2.3. IBM RATIONAL RHAPSODY

The Rational Rhapsody Developer from IBM is a commercial, UML/SysML-based
model-driven development (MDD) environment focused on embedded and real time
development. It provides:

 visual software development based on industry standard UML/SysML
 full behavioural code generation for C, C++, Java, Ada
 rapid prototyping
 visual debugging and animation of statecharts, activity and sequence

diagrams
 round trip and reverse engineering
 integration with Eclipse development environment

http://www.polarsys.org/

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 68 / 97 © The AMALTHEA consortium

 requirements traceability to design, code and test artifacts
 AUTOSAR 4.0 support for automotive applications
 MISRA-C and MISRA-C++ code to support automotive and safety related

development process
 model multicore affinity, generate code targeting multicore processors and

visualize multicore execution
 customizable documentation generation through ReporterPlus Add On
 automate testing and validation with Rational Rhapsody TestConductor Add

On
 integration to requirements management solutions through the Rational

Rhapsody Gateway Add On
 domain-specific language support for graphical C, MARTE or create your own

through profiles

4.1.2.3.1. References

Rhapsody, http://www-01.ibm.com/software/awdtools/rhapsody/

4.2. Requirement engineering

The information should be gathered in systematic manner using following strategy:

 Manufacturer webpage for initial information
 Scientific papers giving evaluations for the tools in question

Manufacturer’s webpage will provide the initial information about what the tool is
capable of doing and the scientific papers provide the information that can be used to
compare against the information provided by manufacturer. In short, this way it is
possible to collect the basic information and the possible evaluation information
(problems, comparisons...)

GUIDE FOR WRITING TOOL DESCRIPTIONS:

Each tool evaluation should have following topics written:

 Tool description (Short description about the tool and its usage)
 Relevance to AMALTHEA (Why the tool is relevant to the project, for example

will it set restrictions to data, is it required that the design flow interacts with
the tool and so on.)

4.2.1. Topcased

TOPCASED is strongly model-‐oriented. The main features concerning requirement
management are:

 Topcased allows a requirement import, supported formats are *.docx (Office
2007) and *.odt (Open Office), *.xlsx (Office 2007), *.ods (Open Office) and
*.csv (an older Office format must be converted to a newer version, i.e. *.doc
into *.docx)

http://www-01.ibm.com/software/awdtools/rhapsody/

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 69

 structured requirements can be used as it is, but it can also be adapt/extend
(e.g. predefined structure elements using Word: Req_ID, Req_Abstract,
Req_Text; self-defined elements using Excel)

 attach a requirements file to a di-model
 a user can define filter rules for the import process and he can search
 a uploaded requirements can when be attached to a model by simply drag &

drop (visible via “link to”)
 a dedicated “requirement view” in Topcased GUI shows all the requirements in

a list by reference, and in the details there are e.g. the “link to” to see
 in a properties view all requirements can be edited, managed including

deletion and insertion of a new req. without upstream
 if a model element is deleted, the corresponding req. will be listed as “Not

Affected”
 if a req. will be deleted, the req. will go to the end of the list (category

“deleted”)
 if a req. was updated and if this req. has been changed, it will be explicitly

shown as a warning and the user can set a valid flag to validate the changes
(the warning will when disappear)

 new req. are not highlighted in the list to show the user that this req. is not
used/linked

 it is also possible to split a model (e.g. in a collaborative work) and to duplicate
the single req. file

 after the distributed parallel work the submodels can be merged and the
corresponding req. files too

 This aims at exporting a matrix with traceability for: Upstreamed req. / Current
req. / Model elements
TOPCASED announces that there is an ongoing work on the requirements
management functionality. Until now, the process uses a triplet of models: the
DSL model, the graphical model (diagrams) and the requirement model which
are not in line with exting methods, e.g. sysML. Therefore, one objective will
be to keep the same principle without having a dedicated requirement model.
SysML will store the requirements and links to the model elements.

4.2.1.1. References

FAUDOU, FAURE, GABEL, MERTZ: Topcased Requirement: a Model Driven, Open-
Source and Generic Solution to Manage Requirement Traceability; ERTS; 19-21 May
2010; TOULOUSE (FRANCE)

4.2.2. Rational Doors

DOORS (Dynamic Object Oriented Requirements System) is originally created by
QSS Ltd and is today known as Rational Doors as a part of the IBM’s Rational
software product line. Rational DOORS is a multi-platform, enterprise-wide
requirements management tool including requirement traceability in system
engineering. Rational DOORS allows cross-functional teams to collaborate on
development projects and enables the usage of views to navigate through different
items in the database allowing user easily to obtain the information needed for the
work.

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 70 / 97 © The AMALTHEA consortium

Rational DOORS’ key feature for the requirements management is a central
repository for requirements that allow users to store their requirements in one place
allowing each team member to access and edit the same information. In addition,
Rational DOORS also supports changing requirement’s management, lifecycle
management and also provides a system for change proposals. Second key feature
is requirement’s traceability where Rational Doors allows users to track the
requirement’s history data. This is enabled by either adding links manually for those
items the traceability should be enabled or allowing Rational DOORS to do it
manually using user defined rules and attributes.

Rational DOORS provides import and export capabilities for a range of tools and
formats, including RTF, Word, WordPerfect, Excel, Lotus, Access, Plain Text, HTML,
PowerPoint, MS Project, Outlook and many others. A direct export from external tool
into Rational DOORS is also possible but requires a specifically made plug-in for the
tool.

Rational DOORS also supports UML modeling directly in the program if the Rational
DOORS Analyst Add On is installed. Additional Web Access add on provides a web
client with similar functionality as the Rational DOORS allowing users to access the
requirements database without the actual client installed into their computer.

In short, Rational DOORS:

 Provides a platform for requirements management
 GUI support for requirements management
 Allows web browser access for the requirements database (with additional add

on)
 Supports the Requirements Interchange Format
 Ability to link requirements to other items like test cases, system designs and

various other items
 Enables users to discuss and comment requirements
 Supports the Open Services for Lifecycle Collaboration (OSLC) specifications

for requirements management, change management and quality management
 Import and export supports wide range of tools and formats

4.2.2.1. References

http://www-01.ibm.com/software/awdtools/doors/

4.2.3. Polarion

Polarion Requirements is a commercial collaborative web based requirements
management solution with traceability and forensic level links and accountability.
Polarion Requirements supports any type of process or methodology for
organizations of any size in any industry. Polarion Requirements promises better
requirements elicitation and collaboration at the lowest cost of ownership in the
market, and to be as easy as MS Office.

Polarion Requirements support requirements document creation. Creation of
professional online requirements documents. Imported documents still look and edit

http://www-01.ibm.com/software/awdtools/doors/

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 71

like documents wit the usability of Microsoft Word without any of the limitations. The
Polarion Import Wizard easily recognizes and imports documents that contain
requirements, test cases, defects, etc. to a modern, web-based management
platform. Supports PDF, MS Word, Excel, XML, HTML. Requirements and/or other
entities are recognized both based on keywords (Must, Should, ”Ability to”, etc) or
using custom document styles.

To support reuse Polarion Requirements preserves and tracks the complete lifecycle
of a user story over time. Stakeholders can leverage knowledge and reuse for future
projects. For example, manage a requirements specification & related test cases in
one place and reuse some or all of them when implementing some variant of the
base specification in another project.

Traceability and audit trails are supported. Change control and impact analysis are a
vital part of the requirements management process. Polarion Requirements offer
visual impact analysis allowing the determination of the potential impact that the
changes may have on other requirements, release timelines, resource allocations,
etc. Application also allows linking; one to many or many to one and also across
projects.

Simplifies communication and collaboration (for example requirements negotiation or
prioritization) between developers by offering facilities for web based collaboration
via support for discussions, wikis, polling, subscriptions, alerts, and more.

 Real time collaboration across tools and teams. Subscriptions let to select
events to monitor and be notified of any changes.

 Enter and browse document comments from within Word documents or from
online collaborators.

 Vote or rank the importance of change requests, enhancements and defects.
 Read and sign documents electronically.

All aspects of collaboration such as discussion threads are recorded so they
can be trace and investigated to understand how various decisions were
agreed upon.

Polarion Requirements is flexible and adaptable, and it supports any methodology or
workflow:

 Agile/Lean, Traditional, Hybrid, or custom environments.
 FDD, XP, Scrum, RUP, Kanban, etc
 Attain compliance with a wide spectrum of industry standards like FDA, FAA,

CMMI, ISO, IEC, CPI, SPICE, and many more.
 Customizable workflow support - covers all the artifacts from requirements.

Test case management support that allows specifying, manages, and executes test
cases on a single platform. Easy to create test cases and easy to link them to their
corresponding work items such as requirements, change requests, other test cases,
etc. Polarion Requirements automatically create bug reports and tasks for developers
based on test failures. Offers bi-directional synch with automated testing suites such
as HP Quality Center.

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 72 / 97 © The AMALTHEA consortium

The facts about the Polarion requirements are:

 Document-like authoring. Author requirements, test cases and other work
items in a document-like editor.

 Database-like authoring. Create and manage requirements in a tree-table
interface by those who prefer to work with objects not documents.

 Web Client. A fully featured web client that allows people to collaborate online
on the documents and work items, and access any kind of reports live and
online.

 Microsoft Word Round-trip. Import and recognize the requirements from
Microsoft Word Documents. Export as professional looking Word Documents.
Seamlessly import back changes made outside of Polarion.

 Wiki collaboration and discussion. Supports discussions, comments, polling,
wikis, subscriptions, alerts, and more.

 Editable traceability matrix. Manage and edit many to many relationships
between different artifacts in the traceability matrix editor.

 Impact trees. Navigate through any level of links in the traceability and impact
trees to understand easily the impact of any change.

 Requirements workflow. Define and reuse a company or industry standard
document templates to speed up the specification process and ensure that all
the documents follow the corporate identity standards.

 Fully auditable with Electronic Signatures. Control the requirements lifecycle
via workflow engine, who and under what conditions can approve
requirements, automate routine task by workflow transition triggers, fully
customizable for any process you follow.

 Requirements templates. Attain compliance with a wide spectrum of industry
standards lie FDA, CMMI, FAA, ISO, IEC, CPI, SPICE, and many more that
require features like; electronic signatures, version and audit trails for all
artifacts, traceability across any number of levels and artifacts.

 Custom link types. Ability to link and qualify the link role for all the different one
to many or many to one relationships and do so across projects.

 Requirements Change Management. Workflow driven change management
process so you know any time what is the status of related requirements or
you can estimate the impact.

 Test Case Management. Specify, manage, and execute test cases on a single
platform.

 Cross project querying & reporting. Search and report across any number or
projects, any level of hierarchy easily.

Reuse:

 Polarion Requirements preserves and tracks the complete lifecycle of a user
story over time.

 Stakeholders can leverage knowledge and reuse for future projects.
 For example, manage a requirements specification & related test cases in one

place and reuse some or all of them when implementing some variant of the
base specification in another project.

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 73

4.2.3.1. References

POLARION REQUIREMENTS,
http://www.polarion.com/products/requirements/index.php

4.2.4. Rational Focal Point

Rational Focal Point (FP) is configurable, web based product and portfolio
management solution. Its main purpose is to facilitate product planning and
management capabilities. FP covers tasks from strategic planning and goals to
tactical tasks. Strategic tasks and management is facilitated with options to work on
product portfolio level, while the tactical tasks are covered with specific product and
requirements management functionalities.
Focal point’s main goal is to enable the development of the right product for the right
market at the right time. Its main users are portfolio managers, product managers
and requirement managers. Two main selling points are requirement management
and product planning functionalities.
This tool supports work with requirements by providing common repository, by
allowing mangers to customize their information content, and to perform different
analytical operation on top of them. Requirements from different sources are
recorded in common repository. Most common way of recording requirements is via
web browser access, but other ways (like custom applications access) are possible
to.
Requirements for different products have different information content. For this
reason it is important that tool offers ways to customize this content. In Focal Point,
managers are able to define the basic concepts like requirements and features, and
to define information content in a way it fits to all stakeholders needs.
Analysis of requirements spans form trivial functionality like visualization, coloring,
sorting and filtering to complex functionalities like prioritization according to
qualitative and quantitative metrics, ranking requirements according to value that
they bring to different groups of users, assigning weight factors to categories,
diagram representation of results, etc.
Observed from design flow point of view, Focal Point covers initial development
phases – product definition and requirements management. In order to allow
seamless integration with other tools in the chain, Focal Point offers a set of APIs
implemented with web service technology for access to its functionality.

In short, Focal Point offers:

 Completely web based solution|Extreme configurability and flexibility|Workflow
support|

 Role based access|Full history with audit trails|Integration possibilities|
 Excel import/export|Prioritizationsupport|Visualizations|
 Built-in calculations|Filteringcapabilities|Versioning and base-lining|
 Report generation (Excel, PDF, RTF)|Homepage / Dashboard|Word import|
 Views and filtering|TimeGrid|Investment Analyzer|
 Traceability views|Trendcharts|Gantt charts|
 Notifications|Mailimporter|and many more...|

http://www.polarion.com/products/requirements/index.php

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 74 / 97 © The AMALTHEA consortium

4.2.4.1. References

Focal Point, http://www-01.ibm.com/software/awdtools/focalpoint/

4.2.5. Accept 360

Accept 360 is an suit that includes strategic and portfolio planning tools,
requirements management tools, road-mapping tools, tools for project execution
(agile, traditional), and tool for idea harvesting and incubation. Accept360
Requirements is one of the tools from Accept 360 family. It creates a living repository
for product intelligence. Manage requirements in the context of your company's own
market drivers. Capture, collaborate and prioritize requirements with stakeholders
and create road-maps.

Accept 360 is web based application. It can be installed in client’s own IT
infrastructure or it can be used as SaaS. In first case, the burden of running and
maintaining the application is in scope of company’s IT personnel, while in case of
SaaS the provider of the service is responsible for running and maintenance.
Accept’s functionality is usually accessed via web browser, but other application like
outlook express or eclipse development tool can be enabled for access to.
Accept 360 is not only a requirement tool, it is an end to end solution for the initial
development phases. Tool covers idea generation, strategy, requirements, and
execution of requirements. In order to allow seamless integration with other tools in
the chain, Accept 360 offers a set of APIs. The Accept Requirements API is designed
to enable easy integration of information from third-party information systems into
Accept Requirements and to allow lightweight reporting on Accept Requirements
data. The API is standards based, uses web services technology, and supports any
modern development environment. It was designed with the goal of making the
integration as simple, easy and seamless as possible.
In short Accept 360 offers:

 End-to-End Solution - Ideation, Strategy, Requirements Management and
Execution

 Single System of Record for faster, more confident decision making
 Real-Time Alignment between company and product strategy
 Visibility and Predictability at all levels
 Integrated Collaboration and Communication
 Best practices to maximize the value of your investment
 Enterprise scalable across teams, locations, product lines

4.2.5.1. References

Accept 360, http://www.accept360.com/solutions/accept360-requirements/
Accept Req.,
http://d1p939z8j66sl5.cloudfront.net/Accept_Requirements_DS022011.pdf

4.2.6. IBM Rational Rhapsody

Rhapsody supports the requirements engineering with standard UML or SysML
Requirements. Requirements are stored in the model and relations (ids,

http://www-01.ibm.com/software/awdtools/focalpoint/
http://www.accept360.com/solutions/accept360-requirements/
http://d1p939z8j66sl5.cloudfront.net/Accept_Requirements_DS022011.pdf

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 75

specifications) can be generated into the design elements and test cases to support
the requirements traceability in the model and implementation code.
Advanced requirements analysis and traceability capabilities can be enabled by the
export of model information to requirements engineering tools via the Rhapsody
Gateway. The Rational Rhapsody Tools and Utilities Add On includes advanced
capabilities for bi-directional information exchange with third-party requirements
management /authoring tools, including Microsoft Word, Excel and PowerPoint, PDF,
ASCII, Adobe Acrobat 6.0+, Rational DOORS, Rational RequisitePro, Borland
CalibreRM, Mathworks Simulink.

The main used UML elements are use case/sequence diagram and informal
descriptions with text and charts.

4.2.6.1. References

IBM Rational Rhapsody, http://www-01.ibm.com/software/awdtools/rhapsody/

4.3. System architecture design

4.3.1. IBM Rational Rhapsody

Rhapsody uses particularly UML elements component and class diagram for the
system architecture.

4.3.2. Atego - Artisan Studio

Artisan Studio is a system and software modelling tool suite that features:

 Complete support for OMG UML and SysML
 Extended modelling notations to provide domain specific modelling profiles

including UPDM, DoDAF, MODAF, MARTE, IDL, ARINC 653
 Fully extensible meta-model and diagram notations with a graphical profile

editor, which implements consistent stereotyping and actively grammar
checker

 Provides collaboration between teams and team members through a multi-
user repository

 End-to-end traceability across all models
 Artifact synchronization with The Mathworks MATLAB/Simulink and IBM

Rational DOORS
 Configurable Microsoft Word and HTML document generation
 UML profiles, generators and reversers for ARINC 653, IDL3/ IDL3+, OMG

XMI, MARTE, and SPT
 Code synchronization using the Automatic Code Synchronizer (ACS) and the

Transformation Development Kit (TDK) for C, C++, C#, VB, Ada, Java, and
IDL

 Generation of traceability and allocation tables into Microsoft Excel
 Atego, http://www.atego.com/products/artisan-studio/

http://www-01.ibm.com/software/awdtools/rhapsody/
http://www.atego.com/products/artisan-studio/

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 76 / 97 © The AMALTHEA consortium

4.3.3. Sparx Systems - Enterprise Architect

http://www.sparxsystems.com/products/ea/index.html

Enterprise Architect is a visual modeling platform that provides full life cycle modeling
for:

 Business and IT systems
 Software and Systems Engineering
 Real-time and embedded development

It features built-in requirements management capabilities that makes it possible to
trace high-level specifications to analysis, design, implementation, test and
maintenance models using UML, SysML, BPMN and other open standards.
Moreover Enterprise Architect supports generation and reverse engineering of
source code for many popular languages, including:

 ActionScript
 Ada
 C and C++
 C#
 Java
 Delphi
 Verilog
 PHP
 VHDL
 Python
 System C
 VB.Net
 Visual Basic

A built-in source code editor allows navigating from model directly to source code in
the same environment. Reverse engineering from source code, jar files or .Net binary
assemblies helps to visualize applications and handle complexities.
It furthermore features among others:

 Version Control Integration
 Model Driven Architecture (MDA) transformations for C#, DDL, EJB, Java,

JUnit, NUnit, WSDL, XSD
 Built-in Debugging, Compiling of Executing Code and Testing Management
 Database Modeling for DB2, InterBase, Informix, Ingres MS Access, MySQL,

MS SQL Server, Oracle, PostgreSQL, Sybase ASE, ASA, Firebird
 Systems Engineering and Simulation
 Automation API and Scripting with JScript, VBScript and Javascript
 Report Generation: PDF, HTML and Rich-Text

http://www.sparxsystems.com/products/ea/index.html

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 77

4.4. Module design

4.4.1. IBM Rational Rhapsody

Rhapsody uses UML elements particularly class diagram, state machine, activity
diagram. Rational Rhapsody provides also a domain specific language (DSL) to
create own unique diagrams and diagram elements.

4.4.2. Mathworks - Matlab/Simulink

While MATLAB is a numerical computing environment, SIMULINK focuses on the
modeling, simulating and analyzing of multi-domain dynamic systems.
MATLAB specializes in

 Math, Statistics and Optimization
 Application Deployment
 Database Access and Reporting

Simulink however features

 Fixed-Point Modeling
 Event-Based Modeling
 Physical Modeling
 Rapid Prototyping and HIL Simulation
 Verification, Validation, and Test
 Simulation Graphics and Reporting

One of their key features is the code generation. Either Verilog or VHDL code for
FPGAs and ASICs or C / C++ code with built-in support for AUTOSAR and ASAP2
for embedded systems can be generated from Simulink and Stateflow diagrams or
MATLAB functions. Furthermore a basis to perform parallel computations on
multicore computers, GPUs, and computer clusters is provided.

4.4.2.1 References

http://www.mathworks.de/products/simulink/index.html

4.4.3. YAKINDU - Damos

The YAKINDU Damos tools [Ung] support a data-flow oriented modeling of modules.
For this purpose they include a block diagram editor that could be used e.g. for
control systems engineering or digital signal processing. Such use cases usually
model the flow of various physical quantities like temperatures, pressures, or
voltages. The conversion of such quantities often lead to errors. To avoid these
errors, Damos supports the usage of units of measurement within the block
diagrams, thus, enabling an early validation already within the design phase.

http://www.mathworks.de/products/simulink/index.html

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 78 / 97 © The AMALTHEA consortium

Beside the support for system structuring by subsystems and system fragments as
described in section "Selected tools and frameworks", Damos also includes a
simulator and a C code generator. In simulation, the continuous state of continuous
blocks need to be computed by numerical integration. Damos offers different solvers
for the integration method, like Euler, Runge-Kutta, or Dormand-Prince, each of them
with different accuracy and computation time. The C code generator is designed to
produce highly optimized C99 compliant code.

4.4.3.1 References

[Ung] Andreas Unger, Damos Blog - http://andreasunger.com/

4.5. Coding (Target Mapping)

4.5.1. IBM Rational Rhapsody

The Rational Rhapsody Developer supports full behavioral code generation for C,
C++, Java, Ada including rapid prototyping, round trip and reverse engineering.
Rhapsody generates code from object model diagrams and state charts (so-called
"constructive" UML elements). The Code generation can be controlled by code
generation properties.

Rhapsody in C comes with a number of specialized C language profiles, e.g. MicroC
for applications/targets without multi-tasking operation systems and limited memory
resources. The code generation is compliant with MISRA-C:1998.

4.5.2. Visual Studio 2010

http://www.microsoft.com/visualstudio/en-us

Microsoft Visual Studio is an Integrated Development Environment (IDE) that
currently supports the programming languages

 Visual Basic .NET
 C
 C++
 C++/CLI
 C#
 F#

Besides utilizing the built-in Microsoft debuggers it also provides methods like Static
Code Analysis, Profiling, Code Metrics for an additional diagnostic analysis. Modeling
the architectural design but also reverse engineering can be done in one of the
following UML compliant diagram types:

 Activity
 Use Case
 Sequence
 Class
 Component

http://www.microsoft.com/visualstudio/en-us

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 79

Extensive support for software testing, i.e. Unit Testing, Code Coverage, Test Impact
Analysis, Coded UI Test, or Load Testing is provided by the Test Manager included
in Visual Studio. The functionality, like utilizing different compilers, version control
interfaces or test frameworks, can also be increased through add-ins.

4.5.3. Mercurial (revision control)

Mercurial is a platform independent, distributed source control management for
software development licensed under the open source GNU GPLv2. In contrast to
traditional version control systems based on client-server architectures, Mercurial is
distributed, which means that each developer holds a local copy of the entire
development history. That way it works independent of network access or a central
server. Mercurial in general provides the following functionality:

 Create
Creating a repository

 Browse
Browsing files in the repository and viewing the history of changes

 Revert
Reverting the content of files to a previous state

 Merge
Merging different development branches of a repository

 Update
Synchronizing the content in a development branch

 Publish
Publishing local changes in the development branch to the repository

In addition its functionality can be further increased with extensions. Although
Mercurial is primarily run from command line graphical user-interfaces are also
available for all platforms. Different IDEs like Visual Studio or Eclipse can even make
Mercurial directly accessible in their user interface through plugins.

4.5.4. Xpand

Xpand [XPAND] is an open source code generation framework based on Eclipse. It
provides a statically-typed template language featuring

 polymorphic template invocation,

 aspect oriented programming,

 functional extensions,

 a flexible type system abstraction,

 model transformation,

 model validation and much more.

It includes an editor which provides features like syntax coloring, error highlighting,
navigation, refactoring, and code completion.

4.5.5. References

Mercurial, http://mercurial.selenic.com/

http://mercurial.selenic.com/

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 80 / 97 © The AMALTHEA consortium

[XPAND] Eclipse, Xpand, http://www.eclipse.org/modeling/m2t/?project=xpand

4.6. Verification & validation

4.6.1. IBM Rational Rhapsody

The Rational Rhapsody Developer provides design level debugging of the model via
visual debugging and animation of statecharts, activity and sequence diagrams,
event injection and sequence diagram generation from the running executable. The
sequence diagrams created can be compared with the expected behavior to validate
proper design operation.

The Rational Rhapsody TestConductor Add On provides a code-based test
generation and validation suite. It generates a test frame for the design to be tested.
Within this test frame the test cases can be defined as code, flowchart, statechart or
as a scenario. The TestConductor manages the test case execution, drives inputs,
monitors design responses and provides the results of the test, including model
coverage information for each test case.

The Rational Rhapsody Automatic Test Generation Add On is a UML model-based
testing solution generating test cases to test individual components for specific
purposes, such as state and transition coverage, MC/DC coverage, or isolation of a
particular class from the overall design. Additionally it supports the identification of
not covered model elements (dead code).

The Rational Rhapsody Tools and Utilities Add On supports the creation of graphical
user interfaces for rapid prototyping with graphical panels and various widgets such
as knobs, buttons, dials, meters and displays.

4.6.1.1. References

IBM Rational Rhapsody, http://www-01.ibm.com/software/awdtools/rhapsody/

4.7. Simulation

4.7.1. Inchron - chronSIM

chronSIM is a development tool for the simulation and analysis of real-time critical
systems. Therefore, the user has to define the soft- and hardware architecture of an
individual system or several networked ones at first. Applications can be modelled by
using either the GUI or with C code, which can be imported from existing source
code. Various stimuli are used to emulate the environment of systems in real
operating conditions. With help of the following types of timing requirements it is
possible to validate the real-time behaviour:

 Call Nesting: Limitation of nesting depth for function calls
 Recursion: Limitation of function recursion
 RTOS Failures
 Requirement Group: Container element for hierarchically structuring

requirements

http://www-01.ibm.com/software/awdtools/rhapsody/

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 81

 Response Time: Limitation of the response time for processes
 Event Timing: Limitation of the time between two events
 Load: Limitation of workload for a CPU or bus resource
 Event Chain: Limitation of time between two steps of an event-chain
 Event Chain Break Off: Incomplete processing of an event-chain
 Event Chain Multiple Processing: Event-chains that show multiple processing

of identical steps

The simulator then emulates the run-time behaviour on the projected processors or
different CPU cores of the dynamic embedded systems according the set scheduling
algorithm. Available therefore are FCFS, fixed priority, Round Robin, TDMA, OSEK
and AUTOSAR Task. Finally the results are visualized in various diagrams:

 Sequence Diagram: Visualizes the information flow between tasks as well as
between tasks and ISR-routines

 Stack Diagram: Visualizes the stack consumption of the tasks
 State Diagram: Visualizes in chronological sequence the activity of processes

based on the states it can have and messages on the CAN- and FlexRay-
busses

 Nesting Diagram: Visualizes the nesting depth of function calls for individual
processes

 Event Chain Diagram: Visualizes the progress of event-chains
 Load Diagram: Visualizes the workload of resources
 Histogram: Bar chart that visualizes the statistical distribution of events

Based on that information and the validation of the predefined timing requirements,
the user can analyse the static as well as the flow dependent execution path. For
documentation a HTML reporting with an overview of the defined system and the
results of the requirement evaluation can be created. Additionally a plain XML output
for a personal analysis is available. A batch processing enables an automated
analysis.

4.7.1.1. References

Inchron, http://www.inchron.com/chronsim.html

4.7.2. Inchron - chronVal

chronVAL is a real-time analysis tool for the analysis and validation of embedded
systems. Therefore, the user has to define the soft- and hardware architecture at
first. In this process individual or distributed systems are supported as well as multi-
processor ones. Applications can be modelled by using either the GUI or with C
code, which can be imported from existing source code. Various stimuli are used to
emulate the environment of systems in real operating conditions. Models of the hard-
and software system architecture are therefore abstracted on the level of individual
tasks. Especially the dynamic run-time behaviour of software and the bus
communication across microprocessors can be evaluated. It mathematically analyses
the real-time behaviour of software taking account of a specific hardware under the
influence of external events. chronVAL displays detailed system information about
maximum CPU loads, burst lengths as well as task blocking and suspension times,

http://www.inchron.com/chronsim.html

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 82 / 97 © The AMALTHEA consortium

which can then be used to determine the best and worst cases for end-to-end
timings, task suspension times, bus and CPU loads.

4.7.2.1. References

Inchron, http://www.inchron.com/chronval.html

4.7.3. Symtavision - Symta/S

SymTA/S is an Eclipse-based tool to design and verify the timing behaviour of
embedded controllers, networks and distributed real-time systems. Therefore, the
user has to define the soft- and hardware architecture of the target system in
hierarchical levels at first. In this process individual or distributed systems are
supported as well as multi-core ones. There is also the possibility to import existing
configurations from an AUTOSAR, FIBEX or DBC file. Based on that information a
mathematical model is built, which then is used to analyse the timing behaviour in a
worst-case scheduling analysis as well as a distribution analysis and scenario
analysis. The scheduling analysis provides the following results:

 Resource consumption time: Time required by an element to be executed on a
resource excluding activation and preemptions

 Response time (best case, worst case, distribution): Time required by an
element to be executed on a resource including activation and preemptions

 Load (total, overhead, for entire resource or each element individually): Long
term load for an endless time range

 Execution backlog buffer: Required buffer size for each element that no
activation gets lost

 Deadline violations: Report if an element response time exceeds its deadline

The system and the results are then visualized by SymTA/S in various ways:

 System graph: Architecture overview of the defined system
 Path Graph: Visualizes the information flow between tasks
 Task Graph: Visualizes tasks on an ECU as well as their variable and chaining

connections
 Gantt Chart: Illustrates the schedule of a task or runable
 Line Chart: Visualizes the min./max. response time for tasks
 Pie chart: Visualizes the workload for tasks, cores, CPUs or resources
 Histogram Chart: Visualizes the distribution of response times
 Box & Whisker Chart: Visualizes the distribution of response times

With all the information determined during the scheduling analysis the user can
design, verify and optimize a system considering specific parameters. A report
generation to PDF or HTML containing all properties of the model as well as the
results of the analysis helps to track and archive the engineering process.

4.7.3.1. References

Symtavision, http://www.symtavision.com/symtas.html

http://www.inchron.com/chronval.html
http://www.symtavision.com/symtas.html

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 83

4.7.4. Synopsys - Platform Architect

Platform Architect is a graphical environment to capture, simulate and analyse the
system-level performance of a SoC as well as multi-core systems. Therefore the user
captures at first a SystemC based performance model of the platform in the graphical
user interface. In addition stimuli have to be defined to represent the application
workload. The simulator then executes the workload model on the platform model
and gathers information on performance metrics like latency, throughput, and
utilization. Once finished the results get listed in tabular form and can be used for a
performance analysis. To support this, individual constraints for the gathered metrics
can be specified manually, which then get color-coded in case of violations. To
explore the impact of design parameters on the system performance metrics
permutations of different design parameter scenarios can be defined in a csv-file.
The results of this sensitivity analysis are stored in another csv-file, which can then
be used to aggregate and explore the results in a spreadsheet application using
various types of charts, like bar or pivot charts. Based on this analysis the design can
iteratively be modify and analysed to get an optimal architecture, where all
performance requirements are fulfilled.

4.7.4.1. References

Synopsys,
http://www.synopsys.com/systems/architecturedesign/pages/platformarchitect.aspx

4.7.5. Windriver - Simics

Simics is a full-system simulator based on the Eclipse platform that emulates the
hardware of any digital system in a virtual platform in order to run software the way it
does on the real physical hardware. The systems can thereby be composed of
multiple heterogeneous and multi-core processors running multiple software stacks
and operating systems and can in addition be connected via local bus, rack
backplane, internal network or the internet. On those virtual platforms then real
system software can be executed and their performance evaluated without any
alterations to the original source code. Simics can therefore single-step any code
forward as well as backward, break on hardware accesses and exceptions using the
built-in Eclipse C/C++ debugger. Information on the memory management unit state,
both virtual and physical memory contents, and the precise state on any processor
are accessible at any time. In addition a full system process list, system execution
time line, and code coverage report in HTML or plain text is available to analyse the
software applications running on the virtual platform. To also be able to run what-if
scenarios and investigate different system architectures Simics supports functional
models of hardware devices written in C, C++, SystemC, and Python.

4.7.5.1. References

Windriver, http://www.windriver.com/products/simics/

http://www.synopsys.com/systems/architecturedesign/pages/platformarchitect.aspx
http://www.windriver.com/products/simics/

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 84 / 97 © The AMALTHEA consortium

4.7.6. criticalblue - prism

Prism is a software analysis environment based on the Eclipse framework to analyze,
design, implement, verify and tune software for multicore platforms. Existing C or
C++ projects of the Eclipse CDT (C/C++ Development Tooling) can be used without
any need of modifications. At first a dynamic analysis is used to profile the sequential
execution of the initial source code. The information of the resulting application traces
are then visualized in different views:

 Graph: Graphical representation of the structure and runtime behaviour of the
application

 Functions: Lists all functions and their caused workload
 Call Hierarchy: Shows function inter-relationships and frequency
 Dependencies: Lists data dependencies and their types
 Races: Lists data races and their types
 Code Performance: Lists regions of the code where most of the runtime is

spent
 Schedule: Illustrates the schedule of a task in a Gantt chart
 Wait Hotspots: Overview of task activity
 Memory: Details about the regions of memory accessed, created and

destroyed
 Cache Performance: Lists and visualizes the performance of tasks on the

cache level

Based on that information the user can easily identify functions which consume the
most execution time and understand the data dependencies between those.
Before modifying any code, different parallel scenarios can be explored. The user
therefore can emulate different numbers of cores, threads and dependencies in the
system and specific tasks can be mapped to individual cores. The impact of those
approaches on the target system is then updated in all the views mentioned above.
That way the most suitable strategy for introducing parallelism can be selected and
finally implemented accordingly. This however is not done automatically by Prism but
has to be done by the user itself using POSIX Threads. Tracing the application after
these changes however can now be used to confirm that the implementation safely
achieves the desired results. Finally opportunities for further parallelization can be
analyzed by reapplying the previous steps until the desired degree of parallelization
is reached.

4.7.6.1. References

criticalblue, http://www.criticalblue.com/prism/

4.7.7. Fraunhofer First - Precision Pro

PrecisionPro is a planning tool to generate static schedules for safety-critical systems
based on multi-core processors. At first the user has to define the timing
requirements and the relational dependencies that a valid schedule has to fulfill. This
is done in a simple ASCII file using a special problem description language and an

http://www.criticalblue.com/prism/

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 85

arbitrary text editor. After the system starts up such a problem specification can be
loaded and displayed in the user interface. The lower part of the user interface
displays in a table the information of the problem specification like priority, execution
time, and periods among others. This data is enriched by additional information like
workload and min/max execution time once the results of the scheduling are
available. The schedules of the individual tasks and their assignment to the available
CPU cores on the other hand are visualized with colored rectangles, which represent
the time slices, in the upper segment. In that view moreover already scheduled time
slices can be removed from the processor assignment as well as yet unplanned ones
scheduled based on their minimal or maximal time value or at an individual starting
time. The generated schedule can finally be exported to an ASCII file in a predefined
format.

4.7.7.1. References

Precision Pro,
http://www.first.fraunhofer.de/en/department_systems_architecture/research_group_
embedded_multicore/

4.7.8. Vector Fabrics - vfEmbedded

vfEmbedded is a web based environment to analyse, partition, and map a C program
onto a specific multicore platform. It can perform both a static and dynamic analysis.
The user therefore defines the hardware architecture of an individual system or
several networked ones. Applications are imported by uploading existing C source
code. The relative operating sequence of that program is then visualized in a list view
as well as in a 3D rectangle representation. Complementing the latter one a graph
illustrating the dependencies is available in addition. All representations indicate the
nesting relationships of invocations and the hierarchy of tasks. Various detailed
pieces of information on the individual components are provided to identify possible
bottlenecks. The components can then be selected to be parallelized and as a result
vfEmbedded determines the impact of those actions on the performance. Finally, the
original source code provided with statements for multitasking according the
developed design can be downloaded.

4.7.8.1. References

vfEmbedded, http://www.vectorfabrics.com/products/vfembedded

4.7.9. Cheddar

Cheddar is an open-source scheduling simulator for real-time systems developed
and maintained by a team composed of the LISyC laboratory/Université de Bretagne
Occidentale and Ellidiss Technologies and published under the GNU General Public
License. It is designed to validate the temporal constraints of tasks on a real-time
system. The system therefore can either be described with AADL or in the Cheddar
architecture design language by using the graphical editor. Cheddar features the
possibility to run feasibility tests on the one hand but it also has a scheduling engine
on the other hand, which can generate a schedule and automatically look for violated
timing constraints. The tool therefore supports a variety of scheduling algorithms as

http://www.first.fraunhofer.de/en/department_systems_architecture/research_group_embedded_multicore/
http://www.first.fraunhofer.de/en/department_systems_architecture/research_group_embedded_multicore/
http://www.vectorfabrics.com/products/vfembedded

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 86 / 97 © The AMALTHEA consortium

well as properties, like assigning tasks to different processors in a multi-processor
system.
The generated schedule is modestly displayed in a Gantt chart with an overview of
activity for each task. Additional textual information about the results is also provided.
Cheddar can be run as a stand-alone application but a TOPCASED plugin is also
provided.

4.7.9.1. References

Cheddar, http://beru.univ-brest.fr/~singhoff/cheddar/#]

4.7.10. OMNeT++

OMNeT++ is a discrete event simulation environment, primarily for building network
simulators. It is free for academic and non-profit use; commercial users must obtain a
license. OMNeT++ offers

 an component-based C++ framework with topology description language
NED,

 an Eclipse-based IDE with graphical NED editor,
 a graphical runtime environment for simulation execution,
 a command-line user interface for simulation execution,
 event logging function and sequence chart generator
 result logging function and analysis tool
 documentation generator

Omnet runs on Linux, Mac OS X, other Unix-like systems and on Windows.
Independent model frameworks include domain-specific functionality such as support
for sensor networks, wireless ad-hoc networks, Internet protocols, performance
modeling, photonic networks, etc.

OMNeT++ is based on component architecture. The simulation models are specified
in the Network Description (NED) language. It comprises mainly elements for the
architecture design.

A model is called network and consists of communicating, hierarchically nested
modules. There are two types of modules: compound modules build the hierarchical
system structure, simple modules contain the component behaviour (written in C++).
Modules can be connected via gates and channels and communicate with messages
through these channels. The messages may contain data and attributes.

Components (modules) can be further structured in subordinated modules, but in the
end the behavior is specified in the simple modules (leaves of module tree) as C++
code. Simple module types will be defined by subclassing the cSimpleModule class
of the OMNeT++ class library and redefining it's methods for module generation,
initialization and finishing as well as the receive packet handlers.

The OMNeT++ environment contains a compiler for the NED topology description
language. The other parts of models (simple module behaviour) and framework
(OMNet++ class library) are directly written in C++.

http://beru.univ-brest.fr/~singhoff/cheddar/

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 87

OMNeT++ contains both a graphical runtime environment and a command-line user
interface for simulation execution. Furthermore powerful capabilities for event logging
and sequence chart generation as well as for result recording are integrated. Result
analysis and chart generation can be done with the IDE integrated analysis tool or
alternatively with several third-party tools. For example the OMNeT++ R package
supports loading the content of OMNeT++ result files into GNU R, a free software
environment for statistical computing and graphics with powerful plotting capabilities.

4.7.10.1. References

OMNeT++, http://www.omnetpp.org/

4.8. Functional Safety and IT Security

4.8.1. Model-based Analysis & Engineering of Novel Architectures for Dependable

Electric Vehicles (MAENAD)

MAENAD is an FP7 project funded by the European Commission that started in
September 2010 for a period of three years. It focuses on the model-based analysis
and engineering of novel architectures for dependable electric vehicles. Due to the
fact that the challenges faced in engineering Fully Electric Vehicles (FEVs) are
already partly met by EAST-ADL2, an emerging automotive architecture description
language that is compliant with AUTOSAR, MAENADs main goal is to refine the
current EAST-ADL standard by advanced capabilities to facilitate development of
dependable, efficient and affordable FEVs. The following thematic priorities are
scheduled to be achieved by this project:

 Provision of support for the automotive safety standard ISO 26262, including a
novel approach for automatic allocation of safety requirements to components
of an evolving architecture

 Provision of an effective model-based prediction of quality attributes for FEVs
such as the dependability and performance via use of advanced, scalable and
automated techniques

 Provision of an automated exploration of potentially huge design spaces to
achieve better or optimal trade-offs among dependability, performance & cost

Since the approach of the AMALTHEA project is also model-based the results of
MAENAD might also benefit the development of the tool chain.

4.8.1.1. References

MAENAD, http://www.maenad.eu/index.html

4.8.2. Open Vulnerability Assessment System

OpenVAS - Open Vulnerability Assessment System - is a framework offering services
and tools providing security vulnerability scanning and vulnerability management
solution. OpenVAS is a free implementation of the well-known commercial framework
Nessus, it is built and further developed upon the last free version of Nessus (2.2).

http://www.omnetpp.org/
http://www.maenad.eu/index.html

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 88 / 97 © The AMALTHEA consortium

All OpenVAS products are Free Software. Most components are licensed under the
GNU General Public License (GNU GPL).

Figure 4-4 shows the structure and main components of the framework.

Figure 4-4: OpenVAS architecture

The core of this SSL-secured service-oriented architecture is the OpenVAS Scanner.
The scanner executes the actual Network Vulnerability Tests (NVTs). NVTs are test-
cases written in a script language and loaded as plug-in. So own NVTs can be
written and loaded. But there are over 20,000 freely accessible NVTs and there is a
daily update service.

The OpenVAS Manager is the central service that consolidates plain vulnerability
scanning into a full vulnerability management solution. The Manager controls the
Scanner via OTP (OpenVAS Transfer Protocol) and itself offers the XML-based,
stateless OpenVAS Management Protocol (OMP). All intelligence is implemented in
the Manager so that it is possible to implement various lean clients that will behave
consistently e.g. with regard to filtering or sorting scan results. The Manager also
controls a SQL database (sqlite-based) where all configuration and scan result data
is centrally stored. The Manger also supports False Positive management.

A couple of different OMP clients are available: The Greenbone Security Assistant
(GSA) is a lean web service offering a user interface for web browsers. GSA uses
XSL transformation stylesheet that converts OMP responses into HTML.

The Greenbone Security Desktop (GSD) is a Qt-based desktop client for OMP. It
runs on various Linux, Windows and other operating systems.
OpenVAS CLI contains the command line (cli) tool "omp" which allows creating batch
processes to drive OpenVAS Manager.
The OpenVAS Administrator acts as a command line tool or as a full service daemon
offering the OpenVAS Administration Protocol (OAP). The most important tasks are

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 89

the user management and feed management. GSA support OAP and users with the
role "Admin" can access the OAP functionality.

Most of the above tools share functionality that is aggregated in the OpenVAS
Libraries.

The OpenVAS Scanner offers the communication protocol OTP (OpenVAS Transfer
Protocol) which allows to control the scan execution. This protocol is subject to be
eventually replaced and thus it is not recommended to develop OTP clients.
Traditionally, the desktop- and cli-tool OpenVAS Client acts as a direct OTP client.

4.8.2.1. References

OpenVAS, http://www.openvas.org

4.9. Domain Specific Languages and Editors

4.9.1. Xtext&Xtend

Xtext [XTEXT] is an open source framework for the development of domain specific
languages (DSLs) or programming languages. It is part of the Eclipse modelling
framework (EMF) project. In contrast to common parser generators Xtext does not
only generate a parser but it also generates a model for the abstract syntax tree and
tool support for the Eclipse environment. This includes a fully-fledged text editor that
supports syntax coloring based on the lexical structure and the semantic data of DSL
source code documents. An Xtext-generated editor proposes valid code completions
at any place in the document, helping the users with the syntactical details of the
DSL. Xtext supports for static analysis and validation of the models described by the
DSL documents. Errors and warnings in the DSL documents are visualized. Custom
quick fixes can be implemented to correct these with a single keystroke. The
infrastructure generated for the DSL also comprises linking, thus enabling the model
to be splitted into multiple DSL source code documents linking each other. An
infrastructure for refactoring enables the consistent renaming of model elements that
will be incorporated into all places where the model element is linked in the various
DSL documents.

Software systems are not only made up of structure. At some point behavior and
computations have to be defined. These aspects are implemented using
expressions. Xtext ships with Xbase which is a predefined set of expressions. It can
easily be embedded into any language developed with Xtext. It not only provides the
necessary grammar, but also comes with a reusable compiler, an interpreter, and
Eclipse tooling. Xbase supports static typing, type inference, closures and operator
overloading. The language can be easily extended to add further expressions to a
DSL.

The parsed model will be represented as an EMF model. Thus, it can be easily
processed by interpreters, code generators, or model transformators. For code
generation, Xtext also ships with Xtend. Xtend is a statically-typed template
language, which eases the development and maintenance of code generators. It
compiles directly to readable Java code, and its syntax is similar to Java but is much

http://www.openvas.org/

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 90 / 97 © The AMALTHEA consortium

less verbose. The language itself is developed with Xtext and is based on Xbase.
Code generators make heavy use of string concatenation. Therefore they are usually
implemented using a template language. So far people tend to reuse a template
language used in web development, which lack static typing and easy reuse of
template snippets. Xtend's template expressions allow the developer to write
readable and maintainable code generators.

4.9.2. Timing Augmented Description Language

The Timing Augmented Description Language (TADL) was developed in the ITEA2
project TIMMO, which ran from April 2007 to September 2009. The projects main
goal was to develop a formal, standardized approach to describing timing-related
information in embedded-system design for the automotive industry. The resulting
TADL provides a method for formal specification, analysis and verification of timing
constraints at different levels of abstractions as well as throughout the entire
development process. It is based on the modelling concepts of the common
infrastructures of EAST-ADL and AUTOSAR. Those concepts are then augmented
by adding information related to timing and events referring to structural elements.
EAST-ADL is used to model the higher abstraction levels (vehicle, analysis, and
design) while AUTOSAR specifies the implementation level. The timing constraints
however are defined separately from the structural modelling in TADL. They are then
associated with structural elements via Event Chains and Events according the meta-
model shown in Figure 4-5.

Figure 4-5: Simplified extract of the TADL UML meta-model (TIMMO Open Workshop 26.03.2009)

As specified by MARTE, the UML profile for Modelling and Analysis of Real-Time and
Embedded Systems, constraints defined by TADL also have a constraint kind which
specifies the distinction between whether a constraint is offered, required or a
contract. Additionally all TADL constraints have a timing bound and a mode.
In general the following three different end-to-end constrains can be differentiated in
TADL:

 Reaction Constraint
defines the maximum difference between a stimulus and its response

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 91

 Output Synchronization Constraint
defines the maximum difference between a set of responses

 Input Synchronization Constraint
defines the maximum difference between a set of stimuli

TADL also benefits of the requirement support provided by EAST-ADL, which allows
for tracing from solutions modelled in the structural model to requirements and from
verification cases to requirements. The TADL constraints are thereby defined as
refinements of existing requirements. Further support in EAST-ADL includes the
tracing between abstraction levels by realization for the structural elements and
derivation between requirements.

For all the functionality mentioned above the following relationships are available in
EAST-ADL:

 ADLSatisfy
Indicates, that the modelled function satisfies a specific requirement

 ADLDeriveReqt
Indicates, that a requirement is derived from another

 ADLRefine
Used to refine a requirement by timing constraints

 ADLVerify
Indicates, that a verification case verifies a specific requirement

 ADLRealization
Traces requirements between EAST-ADL abstraction levels

However, not only a way to model timing information was developed by the project
but also a methodology of how to apply the TADL.

The methodology follows once again EAST-ADL and AUTOSAR. That is why the
Software Process Engineering Meta-model (SPEM), a standard for modeling arbitrary
software and system development processes, was chosen for the underlying meta-
model. Furthermore, the process is inspired by the V-Model development approach.
Based on the abstraction levels available in EAST-ADL (vehicle, analysis, design and
implementation level) and the different views of AUTOSAR (VFB, System and ECU)
the methodology describes the tasks that are necessary to process the timing
information. Therefore a textual description in form of a table in the main description
is added to exactly specify which input work products are used as source for an
individual output work product. The basic idea behind the methodology is to introduce
time budgeting using the capability to specify Events, Event Chains and Event Chain
Segments respectively. TADL enables then the subsequent refinement of time
budgets across different level of abstractions and therefore in different phases of the
development process. This timing information can then be iteratively exchanged
between car manufacturer and suppliers to systematically control and validate the
design stages. Finally the methodology also provides recommendations on when a
set of tools, like simulators, can be applied to validate the model, what data are
required to make use of the mentioned validation method and what the possible
results are.

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 92 / 97 © The AMALTHEA consortium

A follow-on ITEA2 project is already available. TIMMO-2-USE started in October
2010 with two years of duration. Its goal is the development of novel tools,
algorithms, languages and a methodology validated by use cases. The AMALTHEA
project might benefit of their results in the area of partitioning and modeling of multi-
core systems and of the integration of TADL into the tool chain as one of the
underlying DSLs.

4.9.2.1. References

Timing Augmented Description Language, http://timmo-2-use.org/timmo/index.htm

4.9.3. Secure Use Cases

The so called secure use cases are to be used to examine possible attacks in
different use case scenarios. Use cases based on simple text and figures are well
accepted in the requirement phase. Based on the depicted attack scenarios a
possible mitigation by dedicated countermeasures can be defined. This approach
can also be seen as the definition of IT security related requirements.
The right responses to the attacks and the attacks themselves can be viewed as
patterns. They can be taken from catalogues such as the hazard and actions
catalogues of the German Federal Office for Information Security (BSI).
Hence, a certain use case on which an attack is possible, i.e. confidential or sensitive
data was readed by an unauthorized threat agent, must be protected. Then a general
IT security objective would be to warrant authorization. In result only authorized
agents should have access 1 in the given use case. This scenario can be fully
depicted using security use cases. Therein different IT security relevant interactions
will be shown. It is also possible to define the roles and they rights for the acteuers,
i.e. persons or objects.

Consideration of the Secure-use cases is limited to authorization problems. Security
protection goals such as integrity or availability cannot be displayed. The restriction
to the use-case view the created models are easy to understand, even people who
are not otherwise make use of the UML in a position to capture the contents of the
models quickly.

4.9.4. MisUse-Cases

The MisUse-Cases are originally developed by Sindre and Opdahl 2 and it has been
refined by Ian Alexander 3. However, they use a similar principle as the Secure Use
Cases but the concept was extended, i.e. elements. In contrast to the Secure Use
Cases, the MisUse Cases is based on the objectives of different actors and not from
systems operations. The essential element is the "MisUser" that is a person or object
that intentionally or unintentionally cause a certain risk to a given use case scenario.
Between the Use Cases and MisUse Cases there are various relations exists. These
relations are "threaten", "reinforced", "mitigated" and "conflict". In addition, there are
also the standard UML relations "extend" and "include". The relations are defined as
follows 4:

 „MisUse-Case A “threatened a „Use Case B“ if achieving the goal of A, and
the system cannot reach its own goal B.

http://timmo-2-use.org/timmo/index.htm

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 93

 „Use Case A“ is mitigating a „MisUse Case B“ if the effects like threats will be
reduced.

 A given „Use Case“ or „MisUse Case A“ amplifies an also given „MisUse-Case
B“, if the likelihood of success or the damage of B increases.

 Two „Use Cases“ A and B are in conflict, if during the way to A the reaching of
the goal of B is more difficult and vice versa.

 The goals of actors are the main part of the considerations, so they must be
identified at first. The objectives of the actors, which may interact with the
object to be developed, are shown in white ellipses (authorized agents). The
goals of the attacker (a MisUse) are shown in color-inverted ellipses. In the
literature there are not many details about the specific procedure for the
implementation of MisUse-Case diagrams. However, it is clear that an
approach in which all the actors and objectives of a system are shown in just
one diagram is not optimal. The final model looks then overloaded and a
requirement analysis is the more difficult.
For this reason, the following procedure has been established. First of all, the
MisUse Case model should be created with just two actors. One actor
represent the major user of the system and the other one the general attacker.
Afterwards, both actors are defined by they goals and between these goals
relationships will be assigned (using mitigation, conflicts etc.). This procedure
is like a first iteration. The next iterations will do the same thing but going into
more details, e.g. more or all possible threats should be mentioned in this
model.
With such a simple syntax, the MisUse Case is based on the well-known Use
Case approach. It extents Use Case with a possible attacker view. Finally it is
easy to follow such method and the modelling approach is also simple
because of they easy syntax.
Use Cases are widely accepted and also more and more used for
specifications. Particularly in safety related automotive and industrial
applications, MisUse Cases could enlarge the threat risk analysis based
approach.

4.9.5. Security Problem Frames

The security problem frames are an extension developed by Michael Jackson,
Problem frames and method used to describe problems during software
development. Jackson himself wrote about problem frames: A problem frame is a
kind of pattern. It defines an identifiable problem in terms of its context, the
characteristics of its domain and its requirements and interfaces 5.
The goal of general problem frame approach is to develop a so called "machine"
which can influence or improve the behaviour of the environment in which the end-
user application is working. This machine can be considered as a software system.
Problem Frames are defined using context diagrams those consist of rectangles and
connections between them. The rectangles represent domains (problem areas) and
are divided into "causal" (physical rules), "lexical" (representing data) and "biddable"
(people).
The context diagram is used to identify the problems that exist in a reaction of the
machine and to recognize their relationship. Requirements are not defined in these
diagrams. After creating the context diagram, several sub-problems will be derived.
This is formalized and extended by requirements to develop problem-diagrams.

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 94 / 97 © The AMALTHEA consortium

Requirements are shown with a dashed ellipse. Also between the requirements and
the domains represented by lines interfaces exists. If the line is dashed, it represents
a dependence of the request if it also has an arrow, it is a limiting function.

Figure 4-6: Problem Frame 6 [MaTRoRo]

Figure 4-6 shows an "X", that means that the domain is lexical Workpieces. The "B"
indicates that the user is "biddable". A domain, which is "causal" would be marked by
a "C". The interfaces between the domains contain comments, these have the
following meaning: The comment "E! E1" indicates that the property is the domain of
E1 E (the editor) controls. The comment "U! E3" indicates that the property E3 (user
commands) through the user-controlled domain. The subdivision of context diagrams
takes place so that the resulting problem diagrams to fit existing problem frames. For
this, the problem frames "instantiated", so described by the exact requirements,
domains and interfaces. If the problem diagrams structured exactly like the problem
frames, they have similar characteristics. The solution to a problem that has frames
and similar characteristics. Jackson has defined five basic problems. The problem
frame is described by him to the "Work Pieces" problem shown in figure 2-6. As a
complement to the frame problem developed Jackson Abuse-frames, in this place
needs to be anti-mapped requirements, these are the demands of an aggressor.
Security problem frames are specially concerned the security problem frames, they
were developed at the University of Duisburg under the supervision of Prof. Dr.
Maritta Heisel. They treat problems such as problem-frames only, they do not
prescribe solutions. However, they can be more accurately described by
"Concretized security problem frames". These included approaches and can
sometimes even be associated with the design phase. Security problem frames can
thus be viewed as a kind of transition between the phases.

In various publications (e.g. 6) there are patterns descripted which can be helpful in
the AMALTHEA project. Most of the patterns coming from the software engineering
group at the University of Duisburg. The main security objectives are integrity,
confidentiality and authenticity. The approaches can be taken in the design phase.
Unfortunately, the notation and the modelling approach of this method are unfamiliar,
but well described.

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 95

Figure 4-7: Security Problem Frame template 7 [MaTRoRo]

4.9.5.1. References

1 E. Fernandez-Medina and M. Piattini, “Designing secure databases, ”Information
and Software Technology, vol. 47, no. 7, pp. 463–477, 2005.
2 G. Sindre and A. L. Opdahl, “Capturing security requirements through misuse
cases,” 2001.
3 I. F. Alexander, “Modelling the interplay of conflicting goals with use and misuse
cases,” in GBPM, 2002.
4 I. Alexander, “2002-initial industrial experience of misuse cases in trade-off
analysis,” in Proceedings of IEEE Joint International Requirements Engineering
Conference, pp. 61–68, 2002.
5 M. Jackson, Problem Frames: Analysing and Structuring Software Development
Problems.Addison-Wesley, 2000.
6 D. Hatebur, M. Heisel, and H. Schmidt, “Using problem frames for security
engineering,” tech. rep., Faculty Of Engineering, University of Duisburg-Essen, 2006.
7 D. Hatebur, M. Heisel, and H. Schmidt, “A security engineering process based on
patterns,” in Proceedings of the International Workshop on Secure Systems
Methodologies using Patterns (SPatterns), DEXA 2007, pp. 734–738, IEEE
Computer Society, 2007.
[XTEXT] Xtext - http://www.eclipse.org/Xtext/.
[MaTRoRo] Master Thesis Roland Rothe, Otto-von-Guericke University Magdeburg

http://www.eclipse.org/Xtext/

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

Page 96 / 97 © The AMALTHEA consortium

5. Conclusion

The main contribution of this deliverable is the selection and analysis of relevant
standards, academic approaches and available tools in the context of the intended
AMALTHEA goals.
All of the listed standards, methodologies and concept as well as the list of available
well established tools and tool chains can be understand as the initial position of the
AMALTHEA approach. Based on this deliverable, the next steps in AMATHEA
project particularly work package 1 is to identify requirements to the overall
AMALTHEA approach. Anyway, a good basis to identify requirements is in one hand
the herein listed standards and in the other hand the analyses of end user stories or
respectively use cases.

D1.1 V1.0 State of the art of Design Flow and verification methods and tools ITEA 2 - 09013 AMALTHEA

© The AMALTHEA consortium Page 97

6. Glossary

Expression Explanation
AADL Architecture Analysis & Design Language
BCRT / WCRT Best-case / Worst-case Response Time
BCET / WCET Best-case / Worst-case Response Time
BSW Basic Software, abstraction level in AUTOSAR
CMMI Capability Maturity Model Integration
DSL Domain-specific Language
E/E/PE Electrical, Electronic or Programmable Electronic
ECU Engine Control Unit
IDE Integrated Development Environment
ISR Interrupt Service Routine
MAENAD Model-based Analysis & Engineering of Novel Architectures for

Dependable Electric Vehicles, itea2 project
MDD / MDA Model-driven Development / Architecture
RTOS Real-time Operating System
SoC System on a Chip
SPICE Software Process Improvement and Capability Determination
SysML Systems Modeling Language
TADL Timing Augmented Description Language
TDMA Time Division Multiple Access, scheduling algorithm
UML Unified Modeling Language
VFB Virtual Functional Bus, abstraction level in AUTOSAR

