

D1.1.2 VISDOM input to ITEA Living
Roadmap

Programme ITEA3

Challenge Smart Engineering

Project number 17038

Project name Visual diagnosis for DevOps software development

Project duration 1st October 2018 – 30st June 2022

Project website

Project WP WP1 - Pre-studies and requirements

Project Task Task 1.1 – Update of state-of-art and state-of-the practice analysis for
visualization in software projects in DevOps context

Deliverable type X Doc Textual deliverable

 SW Software deliverable

Version V19

Delivered 10/02/2020

Access x Public

 Abstracts are public

 Confidential

D1.1.1 Public state of the art document

 2

Document Contributors

Partber Author Role

EXPERIS Ester Sancho editor

EXPERIS Miriam Moreno writer

GRO Paris Avgeriou writer

INVENCO Mika Koivuluoma writer

OCE Lou Somers writer/reviewer

OULU Markus Kelanti writer

TAU Kari Systä writer/reviewer

TAU Outi Sievi-Korte writer/reviewer

TIOBE Paul Jansen writer

TIOBE Marvin Wener writer

UPC Lidia López writer

UPC Xavier Franch writer

VINCIT Veli-Pekka Eloranta writer

BEIA George Suciu writer/reviewer

Document History

Date Version Editors Status

18/06/2019 ToC EXPERIS Table of Content

10/07/2019 V01 TAU Draft

30/09/2019 V02 OCE/GRO Draft

17/10/2019 V06 TIOBE Draft

22/10/2019 V08 OULU Draft

12/11/2019 V09 VINCIT 1ST Final Draft

20/11/2019 V10 OCE Reviewed version

26/11/2019 V12 UPC/EXPERIS/TAU 2nd Final Draft

10/12/2019 V16 EXPERIS Final Version

16/12/2019 V16.01 TAU Peer Review

18/12/2019 V17 EXPERIS Submission

07/02/2020 V18 BEIA Reviewed version

10/02/2020 V19 EXPERIS Re-submission to
ITEA STG

 D1.1.1 Public state of the art document

 3

Table of Contents
Executive Summary ... 6

1. Introduction to VISDOM ... 8

2. State-of-Art of Visualizations IN Software PROJECTS ... 10

2.1. State-of-the-art of Visualizations in Quality Aspects .. 10

2.2. State-of-the-art of Visualizations in International SaaS-business 13

2.3. State-of-the-art of Visualizations in Teaching ... 13

3. State-of-the-art on the DevOps & Supporting Tools .. 19

3.1. DevOps Supporting Tools .. 21

4. Competence analysis on software analytics and visualization ... 25

4.1. Software Analytics based on Commercial Approaches .. 25

4.2. Software Analytics Community-oriented Approaches.. 41

5. Visdom State of Practice ... 46

5.1. State of Practice at OCE .. 46

5.2. State of Practice at EXPERIS / UPC .. 47

5.3. State of Practice at QENTINEL ... 51

5.4. State of Practice at TAU .. 52

5.5. State of Practice at INVENCO .. 54

5.6. State of Practice at VINCIT .. 56

6. Conclusions ... 58

References .. 59

Appendix A: ... 64

D1.1.1 Public state of the art document

 4

Table of Figures & Tables

Figure 1: Example of very simple heat map implemented with vue-heatmap.js (Vue-Heatmap, 2019)

 .. 13

Figure 2: RESCON Gantt charts and resource profiles (Deblaere et al., 2011) 14

Figure 3: PpcProject Gantt chart and resource visualization (Morera et al., 2013) 15

Figure 4: Sprint burndown chart (Igaki et al., 2014) ... 15

Figure 5: A second-level diamod (Espinosa-Curiel et al., 2010) .. 16

Figure 6: A third-level diamod (Espinosa-Curiel et al., 2010) ... 17

Figure 7: Radar chart provided by ScrumLint (Matthies et al., 2016). .. 18

Figure 8: Continuous deployment pipeline ... 19

Figure 9: Example of tools used in DataOps Value Pipeline ... 20

Figure 10: CD logical pipeline example, source dzone.com .. 21

Figure 11. Bitergia Dashboard... 27

Figure 12. Datadog Dashboard ... 28

Figure 13. Kiuwan Dashboards.. 29

Figure 14. Kiuwan simulation feature ... 29

Figure 15. New Relic Dashboard ... 30

Figure 16: SonarQube Dashboard ... 31

Figure 17. SonarCloud Dashboard .. 32

Figure 18. SonarCloud charts .. 32

Figure 19. SonarCloud code improvement suggestion ... 33

Figure 20. Splunk Dashboard .. 34

Figure 21. Splunk business processes ... 34

Figure 22. Splunk prediction ... 35

Figure 23. Tasktop Dashboard .. 35

Figure 24. Tasktop integrations visualization ... 36

Figure 25: CAST SW Dashboard .. 37

Figure 26: NDepend Dashboard .. 38

Figure 27: Teamscale Dashboard .. 39

Figure 28: TiCS Framework Dashboard ... 40

Figure 29: Grafana Dashboard .. 41

Figure 30. Codefeedr solution .. 42

Figure 31. MEASURE Platform Dashboard .. 43

Figure 32:Analysed tools by DevOps pipeline categorization ... 45

Figure 33 Dashboad focused on print usage .. 46

Figure 34: Example of an error occurrence graph .. 47

Figure 35: Example of an error occurrence table ... 47

Figure 36. QaSD visualizations (graphical & textual) .. 48

Figure 37. QaSD navigation schema ... 48

Figure 38. Q-Rapids Raw Data Dashboard .. 49

Figure 39. QaSD prediction view ... 49

Figure 40. QaSD simulation view .. 50

Figure 41. QaSDquality alert and QR suggestion .. 50

Figure 42. Q-Rapids QR simulation ... 51

Figure 43: Qentinel Quality Intelligence for DevOps Dashboard .. 52

Figure 44: Visualizations for teaching produced by TAU. ... 53

 D1.1.1 Public state of the art document

 5

Figure 45: Visualizations produced by Agilefant .. 54

Figure 46: Example from the monitoring tool UI, showing e.g. some crucial SQL Server related

information. .. 55

Figure 47: Example Power BI report from the certain BI environment status with drill-down capabilities

 .. 55

Figure 48: Example of a LaaS MixPanel (a) ... 56

Figure 49 : Example of a LaaS MixPanel (b) .. 56

Figure 50:Visualization of LaaS companion app data ... 57

Table 1: OSLC Domain Specifications .. 23

Table 2. Commercial Approaches Comparison ... 25

Table 3. Community Approaches Details .. 41

D1.1.1 Public state of the art document

 6

EXECUTIVE SUMMARY

VISDOM project aims at developing new types of visualizations that utilise and merge data from

several data sources in modern DevOps development. The final goal is to provide simple "health

check" visualizations on the status of the development process, software and usage.

Nowadays the visualization of data and information generated by a company has become an

important part of the decision process that covers all the departments of a company. Visualization is

a powerful method for internal communication within a team of developers, but even more, it is useful

in interdisciplinary communication processes including stakeholders with different roles, skills and

experience. Making the communication process effective needs the most advanced visualization tools.

Visualization is particularly useful for communicating information related to software projects-related

information at near real-time to stakeholders directing development-efforts, such as customers and

managers.

Current IT tools used for software development collect data from several phases and tasks in the

development process, and are thus a useful data source for various visualizations. Examples of such

tools include project management, error tracking, version management, IDE (integrated development

environment) and automated testing in different environments. We also need to particularly consider

DevOps, as Continuous Deployment requires tools that monitor applications and systems

administration tools, bringing with it additional data sources. However, while there are several

software development tools that offer visualizations of some data source, there are none that would

offer an integrated visual analysis that combines all the data sources involved in a development

process.

The general aim of the project is both develop new types of visualizations and to develop an integrated

platform that supports these visualizations of DevOps environments, enabling merging data from

several data sources. The goal is to develop easy-to-use “health check” visualizations, leaning on

analogies from medicine, that will enable quickly grasping the status of a software development

project.

The proposed visualizations and platform have several goals and potential uses. Firstly, they are aimed

to improve communication both within a software development team and between the team and

outside stakeholders. Secondly, they can be used to improve DevOps practices in various contexts.

Finally, visualizations can be used to train a new generation of software experts by effectively teaching

modern software development processes and practices with the help of visualizations.

In summary, the ultimate objective of this document is to review the latest advances in analysis and

visualization in the software industry and its development processes. It also reviews the advances

achieved in DevOps environments and different support tools available.

In the introduction section, we offer an overview of all the layers covered by VISDOM, from data

mining and modelling, to analysation and visualisation of information of interest. This is followed by

an overview of the state of the art, which not only covers the quality of the software, but also covers

current approaches to the use of visualisations in teaching and we pay special attention to the

visualisation of SaaS (Software-as-a-Service), as this is the most common approach to software

delivery in DevOps.

 D1.1.1 Public state of the art document

 7

Subsequently we conduct a study of solutions that can currently be found in the market offering

analysis and visualization of software quality and development, in order to assess our potential

competition and differentiate ourselves.

Finally, we explore the existing visualization practices in the companies that participate in VISDOM.

D1.1.1 Public state of the art document

 8

1. INTRODUCTION TO VISDOM

The VISDOM project presents the opportunity to address the challenges of integrating data from

different sources and visualizing metrics. More importantly, it will ensure feedback from different

stakeholders in the software project to also include those outside of the software development and

operation processes, thus differentiating it from existing displays used for dashboards, which typically

target a single group of stakeholders.

The project involves the following processes:

1. collecting data from various DevOps development tools such as project management, time

tracking, messaging and communication, issue tracking, version management, IDE, automated

testing, and system monitoring.

2. analysing the data and forming new metrics to support DevOps development

3. visualising the metrics in the form of a customisable dashboard with the possibility of

lowering the level to analyse in detail which are the possible problems and their causes.

VISDOM visualizations will use data from several sources, the system needs to combine data from

several sources. On a conceptual level this is a known problem (Wiederhold, 1992; Wiederhold, 2017)

that requires a lot of work in each practical case (Otto Hylli, 2015). Also, the implementation is not

that straightforward as it involves dealing with multiple protocols with varying authentication

mechanisms. Even though dealing with heterogeneous data sources is not the main focus of the

project, we expect innovative solutions to the management of data sources, where authentication is

required, and contributions to software architecture research.

According to what has been said, VISDOM could be structured in the following layers or processes:

The first step is to acquire the necessary data. Datamining is the process in which, through a set of

techniques and technologies, large databases can be explored, automatically or semi-automatically,

with the aim of finding repetitive patterns, anomalies, trends, correlations or rules that explain the

behaviour of data in a given context to predict results. It uses statistical practices and in some cases,

search algorithms close to artificial intelligence and neuronal networks.

Secondly it is needed to analyse all this data. The results will define the data mining model and it could

be applied for forecasting, risk and probability, recommendations, finding sequences or grouping. To

build a data mining model, there are various steps to follow in any type of project:

Define the problem and the objective:

Different businesses have different goals, so defining the problem and the goal is very important. The

first step is to perform an availability study to investigate the needs of the business and the available

data. It is necessary to be sure that the data support the needs of the goal.

Extract and classify information:

Data can be in different formats, contain inconsistences and incorrect or missing entries. Data can be

stored in different places. Therefore it´s necessary to prepare the data such as cleaning, removing or

interpolating missing values.

Depending of the nature of the problem, identifying sources of data that are the most accurate and

determine which data are the most appropriate for use in analysis to get the results defined in the

objective. Currently under WP2 umbrella, all use cases are under deep analysis, in order to identify

 D1.1.1 Public state of the art document

 9

specific information that will guide VISDOMs final solutions as well as its implementation. Meanwhile,

a first draft of the data classification related to the VISDOM project can be seen in Appendix A.

Analyze the information and find patterns:

The patterns, correlations and relationships identified by data mining techniques are inspected,

evaluated and analyzed. The evaluation is done by using parameters of interest to determine which

patterns are really valid for our purpose.

Development of knowledge through different techniques:

Define the data to create a mining structure. This structure is linked to the source data, but doesn´t

contain any data until it is processed. When the mining structure is processed information is returned

that can be used by any mining model based on the structure. This process applies algorithms to input

data and uses parameters to adjust each algorithm.

Data Visualization:

The knowledge resulting from the evaluation and interpretation will now have to be presented to the

interested parties. The presentation is done regularly through visualization techniques and other

knowledge representation mechanisms. Once presented, knowledge can, or will be, used to make

business decisions. The correct visualization of the data is essential to validate the models.

D1.1.1 Public state of the art document

 10

2. STATE-OF-ART OF VISUALIZATIONS IN SOFTWARE

PROJECTS

2.1. State-of-the-art of Visualizations in Quality Aspects

In this section, we present a summary of recent works in the current state of the art for quality

measurement and technical debt, including its visualization. Example figures of visualizations are given

in Section 4, where we cover commercial and open source tools in this area in more detail.

Quality measurement

Quality attributes like maintainability and reusability are of paramount importance for the evolution

of a software system. A complex and poorly designed software system can be hard and expensive for

software developers to maintain – sometimes even impossible. Therefore, measuring and maintaining

the quality of software is an essential task in software development.

There have been a number of metrics and metric suites proposed by software engineering researchers

to assess the maintainability of a software system over the past decades. Some of the well-known

ones have been extensively used in practice by software developers. For example, the number of lines

of codes and cyclomatic complexity (McCabe 1976) are used to measure the complexity of methods,

while depth of inheritance tree, coupling between objects and lack of cohesion of methods

(Chidamber and Kemerer 1994) are used to assess the quality of an object oriented design. Several

tools proposed by researchers (Tahir and MacDonell 2012), as well as industrial tools (e.g. SonarQube)

are able to measure the proposed metrics for the quality of source code and software quality in

general. Metrics to measure the quality of a software architecture are not commonly used. Recent

studies have attempted to change that by proposing metrics that measure software architecture

quality per se. For example, (Mo et al. 2016) propose a new metric for architectural-level maintenance.

The metric depends on a clustering algorithm to identify independent modules.

Technical debt

Achieving high maintainability is rather challenging because of the realities of industrial software

development. Due to business pressure and the fast pace of development, software engineers often

prefer short-term (but lower quality) solutions, which might impact the quality of software gradually.

Such trade-offs between expedience and software quality have been termed ‘technical debt’;

researchers in the past few years focused on understanding and addressing the impact of technical

debt on the quality of software system.

(Avgeriou et al. 2016) define technical debt as “a collection of design or implementation constructs

that are expedient in the short term, but set up a technical context that can make future changes more

costly or impossible. Technical debt presents an actual or contingent liability whose impact is limited

to internal system qualities, primarily maintainability and evolvability”.

In the past few years several empirical studies have attempted to understand the technical debt

phenomenon. (T Besker, Martini, and Bosch 2017) conducted a survey with software developers to

determine time, which is wasted during software development. The results of the study show that

36% of the development time is wasted due to technical debt. Another important finding from the

study is the negative impact of complex architectural design, which increases the wasted time during

software development. These results align with the study from Ernst et al. (2015), which shows that

bad architectural choices are the most common source for technical debt.

 D1.1.1 Public state of the art document

 11

Technical debt can be classified according to its sources and granularity (e.g. code debt, requirements

debt, design debt, test debt and architectural debt). We elaborate on the three most prominent types

of technical debt in the following paragraphs, namely code, design and architectural debt.

Code debt

Code debt is a type of technical debt, which emanates from bad source code and wrong programming

practices (e.g. code smells, violations of programming guidelines). Due to the complexity and variety

of modern software development environments (e.g. within a DevOps environment), researchers try

to understand aspects of code debt in various settings. For example, (Ståhl, Martini, and Mårtensson

2019) explored the relationship between the complexity of source code and source code commits in

a continuous integration development environment. The study shows that large commits increase the

complexity of source code and consequently technical debt. (Lerina and Nardi 2019) conducted a

quantitative study to analyse the impact of software code clones (i.e. duplicated source code) on

technical debt. The study verifies that code clones increase technical debt. Self-admitted technical

debt concerns intentional source code issues, which are introduced by developers as quick or

temporary fixes, as described by (Potdar and Shihab 2014). Their study shows that up to 31% of the

files in a project contain items of self-admitted technical debt. Moreover, only between 26% and 63%

of the items are corrected. This phenomenon of self-admitted technical debt is further studied by

other researchers (e.g. (Zampetti, Serebrenik, and Di Penta 2018)).

In addition to empirical studies on code debt, researchers proposed approaches to identify, measure

and prioritize code debt. For example, (d. S. Maldonado, Shihab, and Tsantalis 2017) proposed an

approach to identify self-admitted code debt from source code using methods from natural language

processing. (di Biase et al. 2019) proposed a new maintainability model to identify technical debt of a

software system. The model measures code changes and commits by assessing the risk of change for

each commit. (Mori et al. 2018) evaluated the usefulness of metrics on several domains to identify

technical debt. They determined a method to set suitable thresholds for a project and a domain.

Design debt

Design debt is concerned with technical debt, which occurs due to inappropriate design of software

(e.g. wrong application of design patterns). Approaches have been proposed to identify and prioritize

design debt items. For example, (Zampetti et al. 2017) proposed a machine learning approach to

identify self-admitted design debt in source code. The approach depends on features from source

code, as well as structural and readability metrics. (Plösch et al. 2018) proposed an approach to

prioritize design debt items by quantifying them using benchmarking techniques. (Eposhi et al. 2019)

analysed the impact of design refactoring on the remediation of design debt by assessing the density

and diversity of certain symptoms for design quality.

Architectural debt

Architectural debt happens due to sub-optimal architectural design decisions and immature

architectural elements, which impact the quality of a software system negatively (Terese Besker,

Martini, and Bosch 2018). Independent studies by (Holvitie, Leppänen, and Hyrynsalmi 2014) and

(Ernst et al. 2015) show that architectural debt is one of the most common occurring types of technical

debt.

Researchers explored types of items, which could incur architectural debt. (Martini and Bosch 2015)

identified 5 categories of architectural debt items based on an empirical study. Moreover, they

determined their significant impact on the maintenance of the system. In another study, (Soares de

Toledo et al. 2019) investigated different architectural technical debt issues, which occur within a

D1.1.1 Public state of the art document

 12

microservice architecture. In addition, they analysed their negative impact (i.e. interest) and possible

solutions (i.e. principal).

Several approaches identify architectural debt items by assessing system quality aspects. For example,

(Cai et al. 2019) proposed a model and method to identify architectural roots, which are main causes

for maintainability issues. The method depends on capturing bug-prone files as a sign of critical

architectural problems. Several approaches identify architectural technical debt through capturing

architectural smells. For example, Fontana et al. (Fontana et al. 2016) developed an approach to

detect architectural smells based on structural dependencies in source code. (Xiao et al. 2016)

proposed an approach to identify architectural technical debt through capturing patterns of history

changes and commits in a source code repository. (Li, Liang, and Avgeriou 2015) proposed a process

to capture architectural technical debt during architectural design. The benefit of the approach is to

prevent or track ATD before implementation. (Martini and Bosch 2016) proposed a method to decide

on refactoring an architectural technical debt. The method supports identifying factors involved in the

growth of technical debt interest. The results of the method provide indicators for stakeholders to

decide on technical debt refactoring.

Visualisation of technical debt

The visualisation of technical debt has not been thoroughly studied. There are only a few related works

for tools, which display technical debt to users. One way of visualising technical debt is using industrial

reverse engineering tools. For example, (von Zitzewitz 2019) experimented with Sonagraph to

compare a software architecture with current architecture, which is captured from source code.

Sonagraph visualizes components of a software system, their relationships, and displays architectural

deviations. (Tornhill 2018) used Codescene to visualise parts of source code, which require refactoring.

The tool presents candidate elements as intersected circles. In addition, researchers proposed

approaches to visualise technical debt. (Liu et al. 2018) proposed an Eclipse plugin to detect and

display sections of source code, which are identified as self-admitted technical debt. (Eliasson et al.

2015) proposed an approach to visualise architectural technical debt and its interest in an automotive

domain. The visualisation uses colours to distinguish between components with positive and negative

impact on the system quality. DebtFlag (Holvitie and Leppänen 2013) is an Eclipse plugin and web

application tool to manage and visualise technical debt in source code. The plugin colours technical

debt code instances, while the web application model and colour classes and methods, which have

technical debt.

Open areas for research

Measuring the quality of software and particularly its software architecture in a DevOps environment

has been rarely investigated. Based on the above state of the art, we find the following shortcomings

of current works that require further research:

a. Lack of sufficient metrics and tools to measure the quality of software architecture in a DevOps

environment.

b. Lack of tracing architectural decisions to the architectural technical debt they incur.

c. Lack of tools to capture, measure and visualize architectural technical debt in a DevOps

development environment.

 D1.1.1 Public state of the art document

 13

2.2. State-of-the-art of Visualizations in International SaaS-business

To enter the international SaaS (Software-as-a-Service) business it is crucial to understand the users

and how they use the system. Development teams need to identify where the bottlenecks in the

system are and find out whether the end users really know how to use the system. In addition, we

need to recognize the differences between user groups: Do admins, privileged users and others get

their job done with ease. Are there differences in usage patterns in different countries?

Gartner consultancy included software usage analytics under name “Customer Journey Analytics” in

its hype cycle graph in 2018 [GARTNER]. Gartner defined the addition as “the detailed tracking and

analysis of users” interactions within a software application.

One of the main goals with usage analytics is to better understand which features are adopted and

which are ignored by the end users. Using this information helps the team to guide the development

efforts where the most value is. In addition, user analytics can help to identify problems in the UI or

UX. Also, a typical use case is to help improve the conversion rate from non-paying users to paying

ones.

Gartner also predicted that by 2021, 75% of the software providers will rely on insights from

embedded software usage analytics to inform product management decisions.

One of the most common approaches to implement simple usage analytics is to use Google Analytics

[GOOGLE]. Another approach is to record data to create a heat map on top of the views in the

software. From the heatmap, developers and designers can analyze in which areas users click the most

or spend time. Typically, you can also get an idea if users scroll up and down. However, the downside

of a heat map is that usually you analyze only a single view with it. You need to combine data from

multiple sources to analyze the hot paths through the views of the software.

Figure 1: Example of very simple heat map implemented with vue-heatmap.js (Vue-Heatmap, 2019)

2.3. State-of-the-art of Visualizations in Teaching

A systematic literature review on software visualization showed, that the most studied topics of

software visualization are software structure, evolution and behavior (Mattila et al., 2016). Similarly,

in the context of education, there are a variety of approaches and tools to visualize programming

structures, such as Jeliot (Cisar et al. 2011), Jype (Helminen, 2009), Javavis (Oechsle et al., 2002) and

AnyviewC (Wu, 2009), that are used in introductory programming courses. A survey on program

visualizations in education has been conducted by Sorva et al. (2013).

Mattila et al. discovered only few studies in visualizing software processes. The same trend can be

seen in utilizing visualizations in software engineering education concerning software processes or

project management.

A very common way to teach project management is to use simulators, which allow students to

practice schedule management and resource allocation, and may include gaming elements, such as

D1.1.1 Public state of the art document

 14

the project scheduling game by Vanhoucke et al. (2009). Simulators usually include some visualizations

of the project progress or other data given by the students. The most basic ones only use common

diagrams of key data, as with AMEISE (Bollin et al., 2011; 2015). The most common visualizations used

as part of project management simulators are Gantt charts showing the project activities Vanhoucke

et al. (2009). Other works have used Gantt charts alongside other visualizations. Deblaere et al. (2011)

have create RESCON – an educational tool for illustrating scheduling and project management

concepts, where they have included project duration curves and resource profiles in addition to Gantt

charts (Figure 2). Salas-Morera et al. (2013), who have created PpcProject to teach project

management, also include visualizations on resource allocations in addition to Gantt charts (Figure 3).

Scheduling and resource allocation are also key elements in a simulator developed by Collofello

(2000), where schedule pressure is visualized with a speedometer.

While these approaches show how Gantt charts can be utilized in teaching software processes and

particularly scheduling in relation to project management, none of them use live or real data. Gantt

charts are used to visualize data in simulators, where the data was either given by students or

extracted from a predefined model given by an instructor.

Figure 2: RESCON Gantt charts and resource profiles (Deblaere et al., 2011)

 D1.1.1 Public state of the art document

 15

Figure 3: PpcProject Gantt chart and resource visualization (Morera et al., 2013)

Figure 4: Sprint burndown chart (Igaki et al., 2014)

D1.1.1 Public state of the art document

 16

A common way to visualize progress is to use burndown charts. Igaki et al. (2014) have created a ticket-

driven method to teach Scrum processes, and utilize sprint burndown charts that are specialized for

their ticket-centered approach to visualize project status (see Figure 4). De Souza et al. (2015) have

used simple burndown charts to show progress in each sprint in a capstone project course. Woodward

et al. (2013) have similarly used burndown charts to help students track their progress, though they

are not limited to teaching software process or projects.

Figure 5: A second-level diamod (Espinosa-Curiel et al., 2010)

There are some approaches using specialized visualizations. Espinosa-Curiel et al. (2010) had the need

to teach a very specific software process reference. Their audience was mainly companies, but the

approach was teaching/learning oriented with a pedagogical approach. They adopted and created

dimods – specialized diagrams based on mindmaps, role activity diagrams, rich picture technique and

IDEF diagrams. Dimods of various levels of detail are used to portray and teach a textbook process,

not to track how the process is advancing – example diamods of second and third level are given in

Figure 5 and Figure 6, respectively. Their goal is to help understand the goals, activities, roles, inputs

and outputs of the processes and sub-processes within the process model.

Matthies et al. (2016) used ScrumLint to check for process violations on a software project course

using Scrum. ScrumLint enables comparing teams and there progress, and provides. e.g., radar graphs

where teams’ performance in metrics is visualized (see Figure 6), along with simpler line charts.

Matthies et al. only used the tool post-hoc as a way to supplement their survey and tutor-based

evaluations of students’ performance, but discuss how the tool could be helpful already during the

course in showing teams how they are performing.

 D1.1.1 Public state of the art document

 17

Figure 6: A third-level diamod (Espinosa-Curiel et al., 2010)

To summarize, using visualizations in teaching software processes or project management has so far

been scarce. Gantt charts are used quite commonly in project management simulators, but not with

live data. There have been some attempts at using burndown charts to track students’ progress, but

results are limited. One study used ScrumLint, which provides various charts and graphs, to check for

process violations, but only utilized the tool in a post-hoc manner.

There are no approaches yet that would be truly comparable with the goals of VISDOM. No studies

could be found where visualizations would have been used in the context of teaching software

engineering processes or project management using real data from various tools and combining that

data with informative visualizations. Further, existing studies have mainly used visualizations to

illustrate one particular aspect, such as the duration of the projects or the progress, while

visualizations in VISDOM can potentially be used to teach more complex issues related to agile

software processes, actualization of sprints, and so on.

D1.1.1 Public state of the art document

 18

Figure 7: Radar chart provided by ScrumLint (Matthies et al., 2016).

 D1.1.1 Public state of the art document

 19

3. STATE-OF-THE-ART ON THE DEVOPS & SUPPORTING TOOLS

As mentioned before, VISDOM project proposes novel visualizations to improve DevOps-based

software development and project management in other industries with similar methodologies.

By definition, DevOps is a software development approach that encourages collaboration between

software development and operations with the purpose of accelerating the delivery of software

changes to production and ensuring resilient operation of the system in production (Penners & Dyck,

2015).

In DevOps the goal is to have minimum or preferably no manual intervention in management of the

deployment pipeline, as shown in Figure 8. Therefore, once new software changes have been made

and committed by software developers, they are automatically tested, integrated to create a new

build when all test have successfully passed. The new build created by continuous integration server

is automatically deployed to subsequent environments for additional tests, such as acceptance and

performance prior to deployment in production. Such a way of working is increasingly becoming

assimilated in software development companies (Puppet, 2017; Kratzke & Quint, 2017). Particularly

in the development of cloud application where there is availability of vast tool-chain support for

building the deployment pipelines that the teams take into use when adopting DevOps (Cito et all,

2015; Mäkinen et all, 2016). Despite the wide selection of tools presently available for DevOps, a

number of challenges are still hindering companies from implementing DevOps and achieving full

automation in deployment pipelines, particularly for large teams (Lwakatare, 2017). Some of these

challenges include: insufficient test automation, limited automation of the network, lack of cross-

discipline collaboration to help build the deployment pipelines and high learning curve for new tools

(Lwakatare, 2017; Laukkanen, 2017; Bartusevics, 2017; Puppet, 2017).

Figure 8: Continuous deployment pipeline

This tool- and automation-centric nature of DevOps creates huge possibilities for visualizations and

dashboards. Continuous monitoring of software across the different environments, including

production, becomes an important activity that is not just done by operations but also the developers

of software project. Continuous monitoring of the software by developers serves various purposes,

such as identifying software failures both at runtime and during post-mortems, identifying

performance problems, capacity planning and user reactions to new software features. As such, it is

quite common to find different monitoring dashboards in development teams’ working environment

when DevOps approach is adopted. However, for software developers to efficiently do said

monitoring, several challenges need to be solved, including isolation of different monitoring tools,

limitations in monitoring tools (especially when microservice architecture is used), as well as limited

usage of post-deployment data as feedback given to different stakeholders of software project. There

D1.1.1 Public state of the art document

 20

are initial results on what kind of customer data can be used as feedback at different phases of the

software development process (Sauvola, 2015).

Tools and automation are part and parcel of DevOps and DataOps is no different. Figure below

provides example of tools and environments used in DataOps to provide value for the customer/end

user.

Figure 9: Example of tools used in DataOps Value Pipeline1

As a result, and as mentioned in the Introduction, one of the challenges to overcome is there will be

data coming from different sources that the system needs to combine. Visualizations and other

analyses cannot use data directly from individual tools. If data formats were standardized, it would be

much easier to perform analyses from various data sources.

If all the tools used a standardized data format, the whole data utilization process — not only the

analysis — could be based on the common data. However, common data format is not a reality at the

moment and since the set of used tools are expanding from software engineering domain to other

areas like business management and customer case. Thus, we cannot assume integrated or even

interoperable data store in the near future either, and we propose the use of advanced data collection

management methods to support creating common views from the multiple data sources.

Open Services for Lifecycle Collaboration (OSLC) is an emerging standard tool for interoperability. It

has been widely used for tool integration in public funded research projects, and plugins are available

for several tools. OASIS OSLC proposes the application of web principles to software interconnection.

These specifications allow to conform independent software and product lifecycle tools to integrate

the data and workflows in support of end-to-end lifecycle processes. However, the use of OSLC is not

an industrial practice yet, and has not been used for data collection in a manner similar to the VISDOM

approach. Further in this chapter the applicability of OSLC is covered in more detail.

1 Source: http://dataopsmanifesto.org/index.html

 D1.1.1 Public state of the art document

 21

3.1. DevOps Supporting Tools

There is a wide variety of tools used in DevOps, for example XebiaLabs lists 120 tool2 sand the list is

far from complete.

Software tools used in the DevOps pipeline produce log or job result data typically in JSON or XML

format, although some, for example build tools, often produce plain text logs. Some of the tools have

built-in visualization capabilities.

Data models are typically tool specific, unit testing frameworks being an exception as the xUnit-format

is widely adopted.

Key findings:

• Data models are tool specific, except in Unit Testing area

• JSON, XML and plain text formats

• Data rarely contain metadata or context information

• Data model/format specifications not always available

A Continuous Delivery (CD) pipeline comprises multiple stages where each stage uses one or more

specialized tools meaning that a typical pipeline uses dozens of tools. Figure 10 depicts an example of

a logical CD pipeline.

Figure 10: CD logical pipeline example, source dzone.com

Automation tools that orchestrate the CD pipeline or parts of it can collect the data from the pipeline

and can produce reports and visualizations based on the data. These tools can also provide the

collected data via a REST API or data export functionality. The typical data representation relies on

JSON or XML data formats or they have a REST API available with a data format depending on the tool

and usage. Similar to other tools used in DevOps, the data model itself appears to be tool specific and

tailored for the tool specific use. For example, the lack of metadata becomes an issue if data from

different sources is combined. Furthermore, the data is only partial and access to the full data requires

either external plugins or other means to access the data.

Data Models Used

● Linked Data

Linked data as defined by W3C is a set of best practices, specifications and technologies for publishing

structured data in Web3.

2 https://xebialabs.com/periodic-table-of-devops-tools/
3 https://www.w3.org/standards/semanticweb/data#specifications

D1.1.1 Public state of the art document

 22

Linked Data’s data model is based on the Resource Description Framework (RDF), which is a

framework for describing resources. RDF itself is an Entity-Relation model based on subject-predicate-

object triplets describing entities and their relations.

● OData

OData (Open Data Protocol) [OD] is an OASIS standard that defines a set of technologies and best

practices for REST APIs.

An OData data model is defined using Common Schema Definition Language (CSDL). Some DevOps

tools such as Microsoft Azure DevOps use OData for exposing CD pipeline artefacts.

The main difference between OData and W3C Linked Data approaches is that the OData does not have

mechanism for linking data from different sources.

● JSON schema

A JSON schema [JS], currently an IETF draft, is a specification for defining the structure of JSON data.

It provides a mechanism to describe contents and validation rules for JSON documents in human and

machine-readable format.

Combining Data from Various Sources

While data models are typically tool specific, there are initial studies on how to create a unified model

that would enable combining and particularly visualizing data from different tools, such as issue

management systems, version control systems, and usage monitoring platforms, with one

comprehensive data model. Mattila et al. (2015a) describe combining events from aforementioned

tools under one general term - Software Engineering Event. Key elements of a Software Engineering

Event are Event type, Feature and Sate. In an empirical study, data was collected data from Jira,

Mercurial and Splunk. Using this unified model, a visualization was created where the authors were

able to show the development progress and usage information for individual features alongside

information of the status of the whole project.

The data model has been further developed (Mattila et al. 2015b), most notably by replacing the

concept of “Feature” with “Artifact”, which allows using the datamodel on an even wider scope. A

proof-of-concept tool has been created based on the revised model, showing successful mapping of

data from GitHub, Jira, test logs and usage via a REST API, and providing a timeline visualization based

on various data. APIs for collecting issue management data are described in detail in Hylli et al. (2015).

A similar approach to unifying software development data for visualizations has also been presented

by Benomar et al. (2015), whose motivation is to understand the time dimension of software

execution. However, their approach lacks the vision of combining data from various sources.

OSLC

Open Services for Lifecycle Collaboration (OSLC), an OASIS open project4, is a community defining a

set of specifications that enable interoperability and integration of software development tools. OSLC

is based on W3C Linked Data principles and technologies and uses the Linked Data Platform (LDP)

client–server RESTful architecture.

OSLC specifications are organized in core and domain specifications.

4 https://www.odata.org/

 D1.1.1 Public state of the art document

 23

• OSLC Core Specification

OSLC core specifications define the common capabilities, patterns and protocols of OSLC clients and

servers used across the domains.

• OSLC Domain Specifications

OSCL domain specifications cover the needs for a specific domain and define the required services and

RDF resources. Domain specifications are scenario-driven meaning that they specify only minimal set

of properties required for specified scenarios, but they may be extended as needed to cover new

usage scenarios. Table 1 lists the available domain specifications and their intended use.

Table 1: OSLC Domain Specifications5

Specification Description

Architecture Management Defines the OSLC services and vocabulary for the
Architecture Management domain.

Asset Management Defines the OSLC services and vocabulary for the
Asset Management domain.

Automation Defines the OSLC services and vocabulary for the
domain that supports automation of sequences of
actions on OSLC resources.

Change Management Defines the OSLC services and vocabulary for the
Change Management domain.

Configuration Management Defines the OSLC services and vocabulary for
managing versions and configurations of linked data
resources from multiple domains

Performance Management Defines the OSLC services and vocabulary for the
Performance Monitoring domain.

Project Management (PROMOCODE) Defines OSLC services and vocabulary for exchanging
project management information across
organizational boundaries.

Quality Management Defines the OSLC services and vocabulary for the
Quality Management domain.

Requirements Management Defines the OSLC services and vocabulary for the
Requirements Management domain.

Tracked Resource Set Allows servers to expose a set of resources whose
state can be tracked by clients.

Each domain specification defines a data model for domain specific use cases. They are based on RDF

and consist of vocabularies describing resource types and properties and resource shapes which

define required representation and constraints.

Tool support of OSLC

OSLC standard assumes that the tool support by their data in OSLC format.

Several proprietary and open source tools used in the CD pipeline have some level of OSLC support

via plugins or adapters.

5 https://open-services.net/specifications/

https://open-services.net/specifications/

D1.1.1 Public state of the art document

 24

The Eclipse Lyo project6 provides a Java SDK for creating OSLC compliant tools. The project also

provides a modelling tool that can be used to model RDF resources.

Suitability of OSLC for VISDOM

OSLC has been designed for tool integration use cases and does not cover data collection or the

visualization use cases needed in VISDOM project. In addition, visualizations in Business Intelligence

systems are typically based on separate data storage. However, existing domain specifications or their

extensions could be used for some CD pipeline artefacts but for some artefacts new domain

specifications are needed. The amount of required modifications and extensions depends on data

required in use cases.

TOSCA

OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) “enables the

interoperable description of application and infrastructure cloud services, the relationships between

parts of the service, and the operational behavior of these services (e.g., deploy, patch, shutdown)--

independent of the supplier creating the service, and any particular cloud provider or hosting

technology. TOSCA will also make it possible for higher-level operational behavior to be associated

with cloud infrastructure management”7.

Since cloud operation and architecture are important part of DevOps development the data

interoperability standards of that field are relevant to VISDOM, too.

6 https://projects.eclipse.org/projects/technology.lyo
7 https://www.oasis-open.org/committees/tosca/faq.php

https://www.oasis-open.org/committees/tosca/faq.php

 D1.1.1 Public state of the art document

 25

4. COMPETENCE ANALYSIS ON SOFTWARE ANALYTICS AND

VISUALIZATION

Time to market is key in today’s technology-driven society. If a product enters the market too late, a

competitor will eat its market share. This is especially true for software because technology and thus

new opportunities evolve quickly in this field.

One possible downside of developing software under time pressure is that insufficient effort is put

into making sure the quality of the software is sufficient. This might result in field defects and possible

recalls of the product.

Fortunately, there are tools available in the market that monitor the quality of software during

development. This helps development teams to adjust their software in time before release.

In this chapter we will focus on visualization techniques that are used by the state-of-the-art tools for

monitoring software quality.

There is a big amount of commercial and academic or community-oriented software analytics tools

that are available on the market. This report includes the result of analysing some of these tools.

For most tools, there is a summary giving concrete details about:

• Functionalities: Main functionality.

• Monitoring: Kind of monitored data.

• Data sources: Concrete data source tools from the data is gathered.

• Pricing: Commercial when you need to pay and Community when is an Open Source Software

solution

4.1. Software Analytics based on Commercial Approaches

Commercial approaches provide software analytics solutions that monitors concrete quality aspects

through interactive dashboards. The monitored quality aspects are mostly related with the data

produced during the software development process (e.g. monitoring metrics related to static code

analysis), and some of them aggregates these metrics in more abstract quality aspects, e.g.,

SonarCloud aggregates metrics into security and reliability indicators, among others.

The main functionality of these tools is the monitoring and visualization of indicators related to

concrete software development quality aspects, e.g., code quality, DevOps flow, risk, and security. All

of them provide to the user a graphical interface to visualise the evaluation of these indicators, i.e.

interactive dashboards. The indicators evaluation can be complemented with some information that

can help decision-makers to take concrete actions, e.g. list of open issues with priority.

Table 2. Commercial Approaches Comparison

 Bitergia Datadog Kiuwan New Relic SonarQube Splunk TaskTop

Monitoring OSS

projects

DevOps DeveOps

(Risk/Sec

urity)

DevOps Software

Product

IT/Security/Io

T/Bussiness

DevOps

(Flow)

Functionality

 Monitor

 Visualization

D1.1.1 Public state of the art document

 26

 Discussions

 Alerts

 Action plan

 Simulation

 Prediction

 Integration

visualization

Data Sources

 CI8

 Code Review

 Communication

Channels

 Downloads

 Documentation

 Events

 Infrastructure

 Logs

 SaaS/Cloud

 Source Code

 Traces

 Tickets/issues

Pricing9 C/OSS C/Free C C C/OSS C/Free C

Some of these tools also provides complementary features. Kiuwan provides the functionality of

simulating how the indicators would be affected depending on concrete metrics or effort. Splunk

provides prediction applying some forecasting algorithms to visualise future values. Tasktop includes

views for visualising the DevOps tools integration, i.e. how and which data is shared among tools used

in DevOps processes.

Table 2 summarises the analysed aspects for each tool.

8 CI: Continous Integration
9 C: Commertial. OSS: Open Source Software version, Free: Free version, no OSS

 D1.1.1 Public state of the art document

 27

4.1.1. Bitergia

Bitergia10 provides a dashboard for monitoring Open Source Software (OSS) projects (see Figure 11).

The monitored aspects are related to the community behind the project. In the sense of development,

the aspects are similar to aspects that can be monitored in a non-OSS development team, e.g.,

development performance, complemented with some specific indicators to analyse the community

maturity, e.g., size. Some of these indicators can help decision-makers to decide adopting or not a

concrete OSS project.

Figure 11. Bitergia Dashboard

Summary:

• Functionalities: OSS analysis

• Monitoring: activity, performance, diversity, size, and demography.

• Data sources: source code (e.g., git), tickets/issues (e.g. Jira), code review (e.g., Gerrit),

continous integration (e.g., Jenkings), mailing lists/forums, chat, downloads, wiki, meetings,

and others.

• Pricing: community and commercial versions

4.1.2. Datadog

Datadog11 aggregates metrics and events across the full DevOps stack. It allows to customise

dashboards to include concrete charts (see Figure 12).

10 https://bitergia.com/
11 https://www.datadoghq.com/

https://bitergia.com/
https://www.datadoghq.com/

D1.1.1 Public state of the art document

 28

Figure 12. Datadog Dashboard

Summary:

• Functionality: monitoring and visualization, team discussion, performance alerts

• Monitoring: DevOps stack (servers, clouds, metrics, apps, and team).

• Data sources: more than 350 integrations12, e.g., SaaS and cloud providers, automation tools,

monitoring and instrumentation, and source control and bug tracking.

• Pricing: commercial (from $1.27 to $31 per month depending on the package). Infrastructure

monitoring offers a free package option.

12 https://www.datadoghq.com/product/integrations/#all

https://www.datadoghq.com/product/integrations/#all

 D1.1.1 Public state of the art document

 29

4.1.3. Kiuwan

Kiuwan13 provides security solutions for DevOps processes (risk and security rating). It has been

developed by the Spanish company Optimyth. Kiuwan is rather new in the market and offers a full

Software as a Service (SaaS) solution for measuring code quality. Their primary focus is to check the

security of software but the platform has also static code analysis capabilities, called Code Analysis.

It provides a dashboard analysing security in the context to secure code and architecture. It analyses

code vulnerabilities and also provides some advices related to good practices. The analysis provides

results at development time. Figure 13 shows the vulnerabilities dashboard (left) and details (right).

Figure 13. Kiuwan Dashboards

Kiuwan also provides simulation capabilities, in the context of adding resources or rating indicators

(see Figure 14).

Figure 14. Kiuwan simulation feature

Summary:

• Functionalities: code analysis, what-if analysis, action plans suggestions (concrete tasks), and

vulnerability propagation paths. It also includes some extra features, e.g., product comparison

13 https://www.kiuwan.com/

https://www.kiuwan.com/

D1.1.1 Public state of the art document

 30

• Monitoring: risk and security rating

• Data sources: souce code

• Pricing: Commercial ($599 to $2550 and on request)

4.1.4. New Relic

New Relic14 is a software analytics platform to observe software quality including metric visualization,

tracing data from services, and combining log data with application and system performance data to

correlate the log data with the infrastructure events. (see Figure 15).

Figure 15. New Relic Dashboard

Summary:

• Functionalities: software data analysis, customizable dashboards, querying the data

• Monitoring: sofware product and infrastructure

• Data sources: APM events (e.g., transaction, span), browser events (e.g. page action,

ajaxRequest), infrastructure events (e.g. operating system events like CPU and memory,

amazon AWS EC2 attributes), mobile (e.g, mobile crash, mobile request) , and Synthetics (e.g,

syntheticCheck)

• Pricing: Commercial

4.1.5. SonarQube

The SonarQube15 tooling is the world’s leading software quality dashboard by far. SonarQube is based

on the ISO/IEC 25010 standard (see Figure 16).

14 https://newrelic.com/platform
15 https://www.sonarsource.com/

https://newrelic.com/platform
https://www.sonarsource.com/

 D1.1.1 Public state of the art document

 31

The basic license of SonarQube is free (open source) to use but more and more plugins are becoming

commercial. SonarQube supports about 20 programming languages. It is used in all market segments

by all kinds of stakeholders, especially software project teams, because of its ease of use and ease of

configuration.

SonarQube15 provides continuous inspection on the source code, providing mechanisms to configure

what they name “quality gates”. Quality gates allow the user to define a criterion to evaluate the

analysis results in the context of passed or failed.

SonarQube analysis is based on the SQALE method (Letouzey and Ilkiewicz 2012), assessing the

following concrete quality aspects: reliability, security, maintainability, coverage and duplications. As

part of their products, SonarQube offers SonarCloud, a SonarQube version analysing OSS projects

available in GitHub, Bitbucket and Azure DevOps.

Figure 17 shows a SonarCloud dashboard including the values for the different quality aspects with

the corresponding rating (from A to D).

Figure 16: SonarQube Dashboard

D1.1.1 Public state of the art document

 32

Figure 17. SonarCloud Dashboard

The information included in the dashboard is complemented with some graphical visualizations (see

Figure 18) and links to the code that can be improved (Figure 19).

Figure 18. SonarCloud charts

 D1.1.1 Public state of the art document

 33

Figure 19. SonarCloud code improvement suggestion

Summary:

• Functionalities: source code analysis and action plan suggestion (concrete tasks)

• Monitoring: reliability, application security, and technical debt

• Data sources: source Code (e.g, Git) for source code analysis (20+ languages) and continous

integration tools (e.g, Jenkins)

• Pricing: community and commercial (from $6.000 to $15.000 per year and on request)

4.1.6. Splunk

Splunk16 collects, analyses and correlates data generated by technology infrastructure, security

systems, and business applications. Splunk solutions provides solutions for IT operations (including

monitoring performance of infrastructure and applications), Security (security risk management), IoT,

and business analytics. Splunk allows to drill down from high-level dashboards to concrete elements

(e.g., tasks, log files) analysed.

Figure 20 shows a Splunk dashboard providing a complete view of the organization’s systems, devices,

and interactions (executive operations view). It also has business flows visualisations (Figure 21).

16 https://www.splunk.com/

https://www.splunk.com/

D1.1.1 Public state of the art document

 34

Figure 20. Splunk Dashboard

Figure 21. Splunk business processes

Splunk also provides prediction for the next several time steps, using several forecasting algorithms,

producing some visual charts (see Figure 22).

 D1.1.1 Public state of the art document

 35

Figure 22. Splunk prediction

Summary:

• Functionality: monitoring and visualisation, alerts, prediction capabilities (machine learning).

• Monitoring: IT (infrastructure, application), security (e.g., priority issues, security related

incidents), IoT, and business.

• Data sources: No specified

• Pricing: Free (Splunk free) and Commercial ($173 per month for Splunk enterprise, another

options price on request)

4.1.7. Tasktop

Tasktop17 offers a turnkey solution to implement the Flow Framework, it is designed for business

users. Connect the delivery tools and operation tools to automate information flow.

Figure 23. Tasktop Dashboard

Tasktop includes visualization of the integrated tools, including the data flows among them (see Figure

24).

17 https://www.tasktop.com/

https://www.tasktop.com/

D1.1.1 Public state of the art document

 36

Figure 24. Tasktop integrations visualization

Summary:

• Functionality: flow metrics monitoring and visualization, and value stream visualisation

(integrations landscape)

• Monitoring: flow metrics

• Data sources18: common tools integration (e.g., Azure DevOps), supported lifecycle tools (e.g.,

github issues), and DevOps tools (e.g., ca technologies, Jenkings)

• Pricing: commercial (price on request)

4.1.8. CAST Software

CAST Software19 is a French company that provides a high end solution to monitor software quality

according to the ISO/IEC 25010 standard and beyond. CAST’s flagship is the Application Intelligence

Platform (AIP). It consists of various high-end dashboards for different roles and aspects in a company.

The Health Dashboard (see picture below) for instance aims to help management to monitor the

quality of their comp any’s application landscape.

18 https://www.tasktop.com/integrations
19 CAST Software company. See https://www.castsoftware.com/.

https://www.tasktop.com/integrations

 D1.1.1 Public state of the art document

 37

The visualization techniques used by CAST are tables, heat maps, bar charts, and trend graphs.

Summary:

• Functionality: Fine-grained analysis engine that reverse engineers architecture, databases,

frameworks, and transactions.

• Monitoring: individual SW components & interactions between the components

• Data sources20: Function Points (transactions) & Quality, Security and Sizing.

• Pricing: commercial

4.1.9. NDepend

NDepend is a plug-in in Microsoft’s Visual Studio21. NDepend is available for all Visual Studio

programming languages. It measures technical debt by using the SQALE methodology. However,

technical debt parameters are configurable based on the actual circumstances of a software system.

20 https://doc.castsoftware.com/display/DOC83/Covered+Technologies
21 NDepend tooling. See https:/www.ndepend.com/.

Figure 25: CAST SW Dashboard

https://doc.castsoftware.com/display/DOC83/Covered+Technologies

D1.1.1 Public state of the art document

 38

NDepend uses very simple visualization techniques, i.e. just displaying numbers.

4.1.10. Teamscale

The German company CQSE has developed the code quality dashboard Teamscale22. The Teamscale

dashboard shows all kinds of software code, documentation and architecture metrics. The metrics can

be calculated in a CI/CD environment or within the editor of a software developer.

22 TeamScale dashboard. See https://www.cqse.eu/en/products/teamscale/landing/.

Figure 26: NDepend Dashboard

 D1.1.1 Public state of the art document

 39

Figure 27: Teamscale Dashboard

The visualization techniques used by TeamScale are trend graphs, donut charts, heat maps and bar

charts.

4.1.11. TiCS Framework

The TiCS framework23 is a code quality dashboard to measure the TIOBE Quality Indicator (TQI), which

is based on the ISO/IEC 25010 standard and contains technical debt metrics. TiCS has been developed

by the Dutch company TIOBE Software. The dashboard is similar to SonarQube, SQuORE and

Teamscale by showing trends, treemaps and drill downs to code level.

23 TiCS dashboard. See https://www.tiobe.com/.

D1.1.1 Public state of the art document

 40

Figure 28: TiCS Framework Dashboard

The TiCS framework uses trend graphs, heat maps, labels, bar charts and scattered plots as

visualization techniques.

Based on this analysis, we can conclude that market leaders in the software quality dashboard scene

are all using straightforward techniques for displaying software quality. The techniques used are: bar

charts, trend graphs, donut graphs, radar graphs, heat maps, pie charts, plain figures and labels.

There are newer experiments with newer techniques such as 3D heat maps, sun burst charts and

complex node-link diagrams, but these are not yet adopted by the market leaders.

4.1.12. Grafana

Grafana24 is an open source metric analytics and monitoring suite built to visualize a large amount of

time-series from various databases. Grafana makes metrics visualization more accessible for DevOps

operations, business analysts and product managers, having a commercial version called Grafana

Enterprise.

Furthermore, Grafana enables unified monitoring for DevOps to compare performance data gathered

by various management tools in one single fast view. As such, all relevant data across the organization

are consolidated, making it possible to identify bottlenecks and predict problems early.

24 Grafana platform https://grafana.com/

 D1.1.1 Public state of the art document

 41

Figure 29: Grafana Dashboard

4.2. Software Analytics Community-oriented Approaches

Community-oriented approaches provide generic software analytics solutions that can be customised

to monitor several quality aspects. All the solutions are structured in a way that they have specific

software components to gather data, which can be customised by the adopter to be adapted to the

organization tools.

The main functionality of these tools is monitoring indicators providing to the user an interface to

visualise the evaluation of these indicators. All of the approaches, except CodeFeerds, provide a

graphical interface for the indicators’ visualization, i.e. a dashboard. Concretely, they provide

mechanisms to create customizable interactive dashboards. The Q-Rapids tool provides the possibility

of creating custom dashboards (using Kibana), but the main dashboard provides fixed visualizations,

using the same kind of charts for all the monitored indicators. In this case, the tool needs to be

customised defining how the concrete indicators are computed instead of how they are visualised.

Q-Rapids, complementing the dashboards visualising indicators, provides prediction and simulation of

these indicators. The user can visualise the predicted values and set-up concrete scenarios in order to

evaluate the impact on the indicators (e.g., setting up a concrete value for some metrics). The Q-

Rapids dashboard has been developed to support decision-makers in the context of quality

requirements (QR) management, therefore it provides the concrete functionality of receiving alerts,

when indicators have low values, and suggesting quality requirements to address these alerts.

Table 3 summarises the analysed aspects for each tool.

Table 3. Community Approaches Details

 CodeFeedr GrimoireLab MEASURE Q-Rapids

Monitoring OSS Projects Development

Functionality

 Monitor

 Visualization

 Querying

 Correlations

 Discussions

 Alerts

 Action plan

 Simulation

 Prediction

D1.1.1 Public state of the art document

 42

 Integration
visualization

Data Sources

 CI

 Code Review

 Communication
Channels

 Downloads

 Documentation

 Events

 Infrastructure

 Logs

 SaaS/Cloud

 Source Code

 Traces

 Tickets/issues

Pricing OSS OSS OSS OSS

4.2.1. CodeFeedr

CodeFeedr25 is a platform to ingest and process software analytics data, providing a query engine

integrating data. This platform is produced by software analytics lab, as part of the software

engineering research group from Delft University of Technology (The Netherlands).

The aim of the project is unifying data for software analytics under a single query language and apply

new techniques for aggregation and summarisation of these data. Figure 30 shows the CodeFeedr

vision.

The code is available in GitHub (https://github.com/codefeedr/codefeedr).

The information for this tool is scarce so not all the fields in Table 2 have been filled.

Figure 30. Codefeedr solution

25 http://codefeedr.org/

https://github.com/codefeedr/codefeedr
http://codefeedr.org/

 D1.1.1 Public state of the art document

 43

4.2.2. GrimoireLab

The aim of GrimoireLab26 is to provide an open source platform for automatic and incremental data

gathering from almost any tool (data source) related with contributing to Open Source development

(source code management, issue tracking systems, forums, etc). GrimoireLab is one of CHAOSS27

Software founding projects. CHAOSS is a Linux Foundation project focused on creating analytics and

metrics to help define community health.

Besides data gathering and analysis, it also provides automatic data enrichment, merging duplicated

identities, adding additional information about contributor’s affiliation, calculation delays,

geographical data, etc. Data visualization tools allow also filtering by time range, project, repository,

contributor, etc. Some commercial dashboards and services are built using GrimoireLab platform, for

example the Bitergia analytics platform (see Section 4.1.1).

Summary:

• Functionalities: data gathering, data enrichment (e.g., merging duplicated identities, adding

additional information), and data visualization.

• Monitoring: OSS projects

• Data sources: Askbot site, Bugzilla, Confluence, Discourse site, Gerrit, Git, GitHub, HyperKitty

archiver, Jenkins, JIRA, MBox files, MediaWiki site, Meetup group, NNTP news group,

Phabricator site, Pipermail archiver, Redmine, RSS feed server, Slack channels, StackExchange

sites, Supybot log files, Telegram

• Pricing: community

• OSS Repository: https://github.com/grimoirelab

4.2.3. MEASURE

MEASURE28 is an ITEA project involving twelve partners from four countries that aims to implement a

set of tools for automated and continuous measurement. The Measure Platform allows you to collect,

combine, visualize, analyse and share your metrics.

Figure 31. MEASURE Platform Dashboard

Summary:

26 https://chaoss.github.io/grimoirelab/
27 https://chaoss.community/software/
28 http://measure-platform.org/

https://github.com/grimoirelab
https://chaoss.github.io/grimoirelab/
https://chaoss.community/software/
http://measure-platform.org/

D1.1.1 Public state of the art document

 44

• Functionalities: metrics monitoring and visualization, metrics aggregation, and metrics

analysis (correlations, metrics suggestion, clustering, metrics prediction).

• Monitoring: software engineering related measures.

• Data sources: A set of measures29 for Github, Modelio, Jenkins, Mantis, Openproject, SVN,

SonarQube

• Pricing: Community

• OSS Repository: https://github.com/ITEA3-Measure/MeasurePlatform

4.2.4. Q-Rapids

The Q-Rapids30 tool provides a data-driven approach to monitor, analyse quality in the context of rapid

software development. It is produced by Q-Rapids project, a European Union’s H2020 research &

innovation funded project involving seven partners from five countries. This tool is aimed at being

improved during the VISDOM project by satisfying different necessities defined by Experis IT. For more

information check Section 5.2.

Summary:

• Functionalities: quality-related indicators monitoring and visualization, customised raw data

visualizations, prediction, simulation (in the context of quality-related indicators and quality

requirements), quality alerts, and quality requirements suggestion.

• Monitoring: custom product and process indicators. The current version includes source code

analysis (e.g., complexity), code quality (e.g. sonarqube analysis), continous integration (e.g.,

tests), process performance (e.g., development velocity).

• Data sources: set of data connectors31 for issues management systems (Jira, Mantis,

Redmine), project management (OpenProject), source code (SVN, Gitlab, GitHub), continous

integration tools (Jenkings). That can be extended adding new connectors as Apache Kafka

connectors.

• Pricing: Community

• OSS repository: https://github.com/q-rapids/q-rapids

The analysis of the commercial approaches reveals that the main functionality of these tools is

monitoring indicators related to concrete software development quality aspects, e.g., code quality,

DevOps flow, risk, and security. All of them provide the user a graphical interface to visualise the

evaluation of these indicators, i.e. interactive dashboard. This information can be complemented with

some information that can help decision-makers to take concrete actions, e.g. list of open issues with

priority. Some of them also provide complementary features, like prediction, simulation, and DevOps

tools integration visualization. Some of the tools have an Open Source Software version (Bitergia and

SonarQube), combining commercial and community-oriented models, and some offer a free option

including some specific functionality (Datadog and Splunk).

The analysis of the community-oriented approaches reveals that these approaches provide similar

functionality to the commercial approaches. The main difference is that the community-oriented

approaches provides more customisation at level of data gathering, the data gathering and analysis is

29 https://github.com/ITEA3-Measure/Measures
30 https://www.q-rapids.eu/
31 https://github.com/q-rapids/qrapids-connect

https://github.com/ITEA3-Measure/MeasurePlatform
https://github.com/q-rapids/q-rapids
https://github.com/ITEA3-Measure/Measures
https://www.q-rapids.eu/
https://github.com/q-rapids/qrapids-connect

 D1.1.1 Public state of the art document

 45

not designed to monitor concrete quality aspects. All of them are available in GitHub, a popular Open

Source Software repository.

Finally, analysing the relevant tools presented in this section and mapping according to the categories

of DevOps pipes (see Figure 32), we can observe that none of these tools offers the same coverage

that VISDOM seeks.

Figure 32:Analysed tools by DevOps pipeline categorization

D1.1.1 Public state of the art document

 46

5. VISDOM STATE OF PRACTICE

VISDOM partners companies either use or develop dashboards in their internal development and have

identified the need for moving forward from simple and single-purpose radiators to advanced

visualization and thus joined in this project.

This chapter describes the state of practice embodied in VISDOM, in other words, it presents each of

the tools that VISDOM partners currently use or are developing to commercialize.

5.1. State of Practice at OCE

In this section we focus on the visualisation of quality of cyber-physical systems in the operations phase

(i.e. the machines are used by real customers).

For such cyber-physical systems high level quality is usually reported at the system level. Software

quality is then a sub aspect.

System level quality indications are obtained by monitoring the machines used by customers. The

software of these machines logs the machine status and usage and in particular also errors that occur.

Machine status can also be logged at a very fine-grained level (for example, the status of individual

sensors).

These aspects are automatically transferred on a regular basis to the back office of the manufacturer

where they are analysed and presented in the form of lists, graphs and dashboards for particular

stakeholders (marketing, service, manufacturing, development, etc.). A typical example of such a

dashboard, which focusses on printer usage, is shown below.

Figure 33 Dashboad focused on print usage

 D1.1.1 Public state of the art document

 47

At this level errors are reported as MRE (machine recoverable error) and ORE (operator recoverable

error). A consolidated measure is given by MPBE (mean prints between error) number. Error

occurrences are typically reported in bar graphs and tables.

Figure 34: Example of an error occurrence graph

A small subset of these errors (recognizable from their codes) is caused by software (indicating for

example software error or software failure). Detailed error reports are listed in tables, with rows for

each error occurrence. Excel is often used to summarize them, as shown below.

Figure 35: Example of an error occurrence table

5.2. State of Practice at EXPERIS / UPC

As mentioned in Section 4.2, Q-Rapids tool provides a data-driven approach to monitor, analyse

quality in the context of rapid software development. It was produced by a European Union’s H2020

research & innovation funded project.

Figure 36 shows some of the visualizations provided by the tool using several visualization styles

(gauges, radar charts, textual, network).

D1.1.1 Public state of the art document

 48

Figure 36. QaSD visualizations (graphical & textual)

The Q-Rapids tool includes the following features, accessible through QaSD (Quality-aware Strategic

Dashboard):

• Quality-related indicators assessment and visualization.

• Customised raw data visualizations.

• Prediction.

• Simulation (in the context of quality-related indicators and quality requirements).

• Quality alerts notification.

• Quality Requirements (QR) suggestion.

Quality-related assessment is based on a custom quality model, defining a 3-level model that should

be customized by the adopter organization. This quality model characterises key strategic indicators

(strategic indicators) as an aggregation of product and/or process factors, and these factors as an

aggregation of concrete metrics. QaSD includes several views to visualise the quality model elements

assessment allowing the navigation from strategic indicators to metrics (see Figure 34). The user can

visualize current assessment (Figure 37, gauge and radar charts) and historical data (Figure 34, linear

chart) in graphical and textual way.

Figure 37. QaSD navigation schema

The Q-Rapids tool includes the possibility of creating customised dashboards (using Kibana) with

actionable information, for example the critical issues to be solved (see Figure 38). These dashboards

are accessible from QaSD.

 D1.1.1 Public state of the art document

 49

Figure 38. Q-Rapids Raw Data Dashboard

For prediction, QaSD integrates a set of forecasting techniques used to predict strategic indicators,

factors and metrics (Figure 39).

Figure 39. QaSD prediction view

Simulation feature allows the decision-maker to set-up concrete values for metrics and factors and

analyse how these values would affect to the strategic indicators (Figure 40).

D1.1.1 Public state of the art document

 50

Figure 40. QaSD simulation view

Q-Rapids tool produces quality-related alerts when quality model elements have low values, Figure 41

shows how these alerts are visualised in QaSD (Figure 41, top). For addressing these alerts, QaSD

suggest QRs (Figure 41¡Error! No se encuentra el origen de la referencia., bottom. QaSD also provides

the option to simulate the impact of adding the suggested QR on the strategic indicators (Figure

42¡Error! No se encuentra el origen de la referencia.).

Figure 41. QaSDquality alert and QR suggestion

 D1.1.1 Public state of the art document

 51

Figure 42. Q-Rapids QR simulation

5.3. State of Practice at QENTINEL

Qentinel has developed its own visualization tools based on the work done in Tampere university of

Technology and Internal research. Some of the work was also done as part of the N4S-program by

DIMECC in Finland.

The basis for the development of these tools has been to create a higher level dashboard, which gives

you an overview to your whole software development process and integrates into the best of breed

tools for different facets of the DevOps pipeline.

The data backend is based on the homogenized software engineering data model (Mattila et al., 2015)

and enables us to collect data from all the sources. This data is then viewable at one source and data

combining is possible. The software can be seen in Figure 43.

D1.1.1 Public state of the art document

 52

Figure 43: Qentinel Quality Intelligence for DevOps Dashboard

The dashboard combines a tree based grouping of different metrics for different parts of the software

pipeline. These trees group similar metrics which relate to same values under one node in the DevOps

causal loop diagram on the right. Every metric is indexed to the same index values, which is a value

between 0 and 200. The indexes are then propagated through the tree models to the top level nodes.

This will give you an index value for example. your code quality. The causal loop diagram on the right

then displays inferred correlations between the different nodes and visualizes bottlenecks in

development, which are visualized by color.

5.4. State of Practice at TAU

Research background

In the previous projects TAU has developed visualizations for various software projects, including

those applying DevOps practices (Mattila et al., 2015a; Mattila et al., 2015b; Mattila et al. 2017). The

visualizations have used data from issue tracking, version management, and usage. The common data

model for these visualizations has been defined and data collectors for various tools have been

implemented.

However, there are still several reasons for future research and development:

• Only a few industrial cases have been implemented with the tool so far. We need to collect

more experience and evidence about the applicability of the system in real context.

• Most of the visualizations have been based on timelines into which we have mapped various

types of information. Although, the timeline notation has proven to be useful, we want to

explore new types of visualizations sketched is the FPP document.

• Our data models are currently specific to our visualizations and not yet tested with large

number of data sources and visualization. In VISDOM, and especially in WP2, the data models

will be developed for a wider set of data sources and use cases. In addition, we investigate

opportunities to be more compatible with industry standards.

 D1.1.1 Public state of the art document

 53

• The current architecture is similar to ETL process of BI system: the data is transferred and

converted from the tools with a separate operation. Update of the information requires a

manual operation by the user. In VISDOM project we will investigate more real-time

approaches.

Visualization in teaching

In addition to normal office graphics to visualize numeric data we have used our teaching Gitlab to

track and visualize student progress. For instance, we have used this data to see if students have

started their projects in time, or if the work flow is split unevenly in group works. We have used both

excel to produce our own visualizations and use the one provided by Gitlab as in the following:

Figure 44: Visualizations for teaching produced by TAU.

In another case we have asked students to use Agilefant32 for project management and from that

produces the following types of visualizations:

32 https://www.agilefant.com

D1.1.1 Public state of the art document

 54

Figure 45: Visualizations produced by Agilefant

As can be seen from above we have just used some simple and separated visualizations. In the

teaching use case of VISDOM we will develop more holistic dashboards.

5.5. State of Practice at INVENCO

Invenco’s experiences regarding visualisation of software and data related processes originate mostly

from three sources: 1) customer cases (projects or consultancy) 2) implemented visualisation features

in own products and 3) visualisation of own development related processes. When it comes to

visualisation of in-house development processes, there is a recent experience in fetching data e.g.

from Trello into InControl platform database, and the first experimentations visualising this data are

currently being carried out.

In addition, new experience has been acquired with DataOps-oriented visualisations a. More

information regarding this experience and case is explained con be find in blog the following blog-

posting (in Finnish), main idea being though, that BI-environments and their operations can be divided

in four areas: 1) Monitoring, 2) Service operations, 3) Documentation automation and 4) Resource

capacity planning. In order to support all these areas, the BI Monitoring Tool is being developed.

https://www.invenco.fi/invencolta-uusi-ratkaisu-microsoft-business-intelligence-ymparistojen-valvontaan-bi-monitoring-tool/
https://www.invenco.fi/invencolta-uusi-ratkaisu-microsoft-business-intelligence-ymparistojen-valvontaan-bi-monitoring-tool/

 D1.1.1 Public state of the art document

 55

Figure 46: Example from the monitoring tool UI, showing e.g. some crucial SQL Server related information.

This tool has also reporting and drill-down capabilities, in order to get fast into bottom of the whatever

went wrong with the BI environment.

Figure 47: Example Power BI report from the certain BI environment status with drill-down capabilities

BI Monitoring Tool exemplifies the data intensive development teams’ need for a similar tool support

as more traditional development tool have provided for SW developers quite some time already. What

these tools are still lacking is e.g. consolidated and user-friendly role-based visualisation for the

process and environments together, and that is one of the themes Invenco is looking forward to focus

our industrial research efforts in VISDOM.

D1.1.1 Public state of the art document

 56

5.6. State of Practice at VINCIT

In SaaS systems it is crucial to understand your users. You need to know their needs and how they

interact with the system. Google Analytics or other commercial alternatives such as MixPanel can be

used to create funnels that show how users interact with the feature. If the feature consists of multiple

steps, funnel shows how many percent of the users make it to the next step. This is important for

analysing, for example, conversion rate from free users to paying ones. Which are the obstacles in the

way of purchase?

As a State of Practice in LaaS MixPanel is used to create simple funnels. For example, if a user orders

a service from LaaS, he or she needs to select who is going to provide the service. In the figure below,

there is a visualization of different funnels related to selecting service provider. There is not much data

shown in the figure as screenshots are taken from the staging environment to protect the real user

data.

Figure 49 : Example of a LaaS MixPanel (b)

Figure 48: Example of a LaaS MixPanel (a)

 D1.1.1 Public state of the art document

 57

In addition, to follow the data about conversion in various funnels, the team monitors various data

points: How many unique users have sent feedback within a day after ordering a leadership service

from LaaS, how many unique moods have been tracked using companion application, which devices

have been used to access different features in companion application. Current visualizations of this

companion app data are shown in Figure 50.

Figure 50:Visualization of LaaS companion app data

D1.1.1 Public state of the art document

 58

6. CONCLUSIONS

Throughout this document, we have analysed the state of the art of the main factors on which VISDOM

wants to provide value by providing a solution that goes beyond what exists in the market, which are

the visualization applied to the DevOps environment. Following this analysis, it can be concluded that

most of the solutions that currently exist look at independent aspects, without being able to provide

information on the impact of each of the development categories into which a DevOps development

can be divided. No solution covers the range of analysis to which VISDOM strives. In addition, some of

the tools studied do not provide any visualization mechanism, or if they do, they are usually of complex

interpretation or oriented to only one type of user.

The state of the practice provided to VISDOM by the project partners was also assessed, revealing the

powerful knowledge and background contained in this project.

Finally, this document not only shows us which are the main techniques and technologies linked to

the project, but also configures a tool to understand which the novelties are proposed by VISDOM and

its potential impact on the sector.

 D1.1.1 Public state of the art document

 59

REFERENCES

Avgeriou, Paris, Neil A Ernst, Robert L Nord, and Philippe Kruchten. 2016. “Technical Debt: Broadening

Perspectives Report on the Seventh Workshop on Managing Technical Debt (MTD 2015).” SIGSOFT

Softw. Eng. Notes 41 (2): 38–41. https://doi.org/10.1145/2894784.2894800.

Bartusevics, A. (2017). Automation of Continuous Services: What Companies of Latvia Says about It?.

Procedia Computer Science, 104, 81-88.

Besker, T, A Martini, and J Bosch. 2017. “The Pricey Bill of Technical Debt: When and by Whom Will It

Be Paid?” In 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME), 13–

23. https://doi.org/10.1109/ICSME.2017.42.

Besker, Terese, Antonio Martini, and Jan Bosch. 2018. “Managing Architectural Technical Debt: A

Unified Model and Systematic Literature Review.” Journal of Systems and Software 135: 1–16.

https://doi.org/https://doi.org/10.1016/j.jss.2017.09.025.

Biase, M di, A Rastogi, M Bruntink, and A van Deursen. 2019. “The Delta Maintainability Model:

Measuring Maintainability of Fine-Grained Code Changes.” In 2019 IEEE/ACM International

Conference on Technical Debt (TechDebt), 113–22. https://doi.org/10.1109/TechDebt.2019.00030.

Bollin, A., Hochmüller, E. and Szabó, C. "Teaching Software Project Management by Simulation:

Training Team Leaders for Real World Projects," 2015 IEEE 28th Conference on Software Engineering

Education and Training, Florence, 2015, pp. 7-9.

Bollin, A., Hochmüller, E., and Mittermeir, R. T. "Teaching software project management using

simulations," 2011 24th IEEE-CS Conference on Software Engineering Education and Training

(CSEE&T), Honolulu, HI, 2011, pp. 81-90.

Cai, Y, L Xiao, R Kazman, R Mo, and Q Feng. 2019. “Design Rule Spaces: A New Model for Representing

and Analyzing Software Architecture.” IEEE Transactions on Software Engineering 45 (7): 657–82.

https://doi.org/10.1109/TSE.2018.2797899.

Chidamber, S R, and C F Kemerer. 1994. “A Metrics Suite for Object Oriented Design.” IEEE

Transactions on Software Engineering 20 (6): 476–93. https://doi.org/10.1109/32.295895.

Cito, J., Leitner, P., Fritz, T., & Gall, H. C. (2015, August). The making of cloud applications: An empirical

study on software development for the cloud. In Proceedings of the 2015 10th Joint Meeting on

Foundations of Software Engineering (pp. 393-403). ACM.

Collofello, J. S.. "University/industry collaboration in developing a simulation-based software project

management training course," in IEEE Transactions on Education, vol. 43, no. 4, pp. 389-393, Nov.

2000.

d. S. Maldonado, E, E Shihab, and N Tsantalis. 2017. “Using Natural Language Processing to

Automatically Detect Self-Admitted Technical Debt.” IEEE Transactions on Software Engineering 43

(11): 1044–62. https://doi.org/10.1109/TSE.2017.2654244.

de Souza, R. T., Zorzo, S. D., and da Silva, D. A. "Evaluating capstone project through flexible and

collaborative use of Scrum framework," 2015 IEEE Frontiers in Education Conference (FIE), El Paso, TX,

2015, pp. 1-7.

D1.1.1 Public state of the art document

 60

Deblaere, F. , Demeulemeester, E. and Herroelen, W. (2011), RESCON: Educational project scheduling

software. Comput. Appl. Eng. Educ., 19: 327-336. doi:10.1002/cae.20314

Eliasson, U, A Martini, R Kaufmann, and S Odeh. 2015. “Identifying and Visualizing Architectural Debt

and Its Efficiency Interest in the Automotive Domain: A Case Study.” In 2015 IEEE 7th International

Workshop on Managing Technical Debt (MTD), 33–40. https://doi.org/10.1109/MTD.2015.7332622.

Eposhi, A, W Oizumi, A Garcia, L Sousa, R Oliveira, and A Oliveira. 2019. “Removal of Design Problems

through Refactorings: Are We Looking at the Right Symptoms?” In 2019 IEEE/ACM 27th International

Conference on Program Comprehension (ICPC), 148–53. https://doi.org/10.1109/ICPC.2019.00032.

Ernst, Neil A, Stephany Bellomo, Ipek Ozkaya, Robert L Nord, and Ian Gorton. 2015. “Measure It?

Manage It? Ignore It? Software Practitioners and Technical Debt.” In Proceedings of the 2015 10th

Joint Meeting on Foundations of Software Engineering, 50–60. ESEC/FSE 2015. New York, NY, USA:

ACM. https://doi.org/10.1145/2786805.2786848.

Espinosa-Curiel I.E., Rodríguez-Jacobo J., Fernández-Zepeda J.A. (2010) Graphical Technique to

Support the Teaching/Learning Process of Software Process Reference Models. In: Riel A., O’Connor

R., Tichkiewitch S., Messnarz R. (eds) Systems, Software and Services Process Improvement. EuroSPI

2010. Communications in Computer and Information Science, vol 99. Springer, Berlin, Heidelberg

Fontana, F A, I Pigazzini, R Roveda, and M Zanoni. 2016. “Automatic Detection of Instability

Architectural Smells.” In 2016 IEEE International Conference on Software Maintenance and Evolution

(ICSME), 433–37. https://doi.org/10.1109/ICSME.2016.33.

Helminen, J. 2009. Jype -- An Education-Oriented Integrated Program Visualization, Visual Debugging,

and Programming Exercise Tool for Python, M.Sc. thesis, Helsinki University of Technology.

Holvitie, J, and V Leppänen. 2013. “DebtFlag: Technical Debt Management with a Development

Environment Integrated Tool.” In 2013 4th International Workshop on Managing Technical Debt

(MTD), 20–27. https://doi.org/10.1109/MTD.2013.6608674.

Holvitie, J, V Leppänen, and S Hyrynsalmi. 2014. “Technical Debt and the Effect of Agile Software

Development Practices on It - An Industry Practitioner Survey.” In 2014 Sixth International Workshop

on Managing Technical Debt, 35–42. https://doi.org/10.1109/MTD.2014.8.

Igaki, H., Fukuyasu, N., Saiki, S., Matsumoto, S., and Kusumoto, S.. 2014. Quantitative assessment

with using ticket driven development for teaching scrum framework. In Companion Proceedings of

the 36th International Conference on Software Engineering (ICSE Companion 2014). ACM, New York,

NY, USA, 372-381. DOI=http://dx.doi.org/10.1145/2591062.2591162

J. Letouzey and M. Ilkiewicz, "Managing Technical Debt with the SQALE Method," in IEEE Software,

vol. 29, no. 6, pp. 44-51, Nov.-Dec. 2012. DOI: 10.1109/MS.2012.129.

Kratzke, N., & Quint, P. C. (2017). Understanding cloud-native applications after 10 years of cloud

computing-A systematic mapping study. Journal of Systems and Software, 126, 1-16.

Laukkanen, E. (2017). Adoption problems of modern release engineering practices. Aalto University

publication series DOCTORAL DISSERTATIONS, 220/2017,http://urn.fi/URN:ISBN:978-952-60-7714-7

Lerina, A, and L Nardi. 2019. “Investigating on the Impact of Software Clones on Technical Debt.” In

2019 IEEE/ACM International Conference on Technical Debt (TechDebt), 108–12.

https://doi.org/10.1109/TechDebt.2019.00029.

 D1.1.1 Public state of the art document

 61

Li, Z, P Liang, and P Avgeriou. 2015. “Architectural Technical Debt Identification Based on Architecture

Decisions and Change Scenarios.” In 2015 12th Working IEEE/IFIP Conference on Software

Architecture, 65–74. https://doi.org/10.1109/WICSA.2015.19.

Liu, Z, Q Huang, X Xia, E Shihab, D Lo, and S Li. 2018. “SATD Detector: A Text-Mining-Based Self-

Admitted Technical Debt Detection Tool.” In 2018 IEEE/ACM 40th International Conference on

Software Engineering: Companion (ICSE-Companion), 9–12.

Lwakatare, L E. (2017) DevOps adoption and implementation in software development practice:

concept, practices, benefits and challenges (doctoral dissertation). University of Oulu, Finland.

Mäkinen, S., Leppänen, M., Kilamo, T., Mattila, A. L., Laukkanen, E., Pagels, M., & Männistö, T. (2016).

Improving the delivery cycle: A multiple-case study of the toolchains in Finnish software intensive

enterprises. Information and Software Technology, 80, 175-194.

Maravić Cisar, S.; Pinter, R.; Radosav, .P., Cisar, P.: Effectiveness of Program Visualization in Learning

Java: a Case Study with Jeliot 3. International Journal of Computers Communications & Control, [S.l.],

v. 6, n. 4, p. 668-680, dec. 2011.

Martini, A, and J Bosch. 2015. “The Danger of Architectural Technical Debt: Contagious Debt and

Vicious Circles.” In 2015 12th Working IEEE/IFIP Conference on Software Architecture, 1–10.

https://doi.org/10.1109/WICSA.2015.31.

Martini, A, and J Bosch. 2016. “An Empirically Developed Method to Aid Decisions on Architectural

Technical Debt Refactoring: AnaConDebt.” In 2016 IEEE/ACM 38th International Conference on

Software Engineering Companion (ICSE-C), 31–40.

Matthies, B., Kowark, T., Richly, K., Uflacker, M. and Plattner, H. "How Surveys, Tutors and Software

Help to Assess Scrum Adoption in a Classroom Software Engineering Project," 2016 IEEE/ACM 38th

International Conference on Software Engineering Companion (ICSE-C), Austin, TX, 2016, pp. 313-322.

Mattila, A-L, Ihantola, P, Kilamo, T, Luoto, A, Nurminen, M & Väätäjä, H 2016, Software visualization

today - Systematic literature review. inAcademicMindtrek 2016 - Proceedings of the 20th International

Academic Mindtrek Conference.ACM, pp. 262-271, Mindtrek Conference, 1/01/00.

https://doi.org/10.1145/2994310.2994327

McCabe, T J. 1976. “A Complexity Measure.” IEEE Trans. Softw. Eng. 2 (4): 308–20.

https://doi.org/10.1109/TSE.1976.233837.

Mo, R, Y Cai, R Kazman, L Xiao, and Q Feng. 2016. “Decoupling Level: A New Metric for Architectural

Maintenance Complexity.” In 2016 IEEE/ACM 38th International Conference on Software Engineering

(ICSE), 499–510. https://doi.org/10.1145/2884781.2884825.

Mori, A, G Vale, M Viggiato, J Oliveira, E Figueiredo, E Cirilo, P Jamshidi, and C Kastner. 2018.

“Evaluating Domain-Specific Metric Thresholds: An Empirical Study.” In 2018 IEEE/ACM International

Conference on Technical Debt (TechDebt), 41–50.

Oechsle, R., and Schmitt, T. Javavis: Automatic program visualization with object and sequence

diagrams using the java debug interface(jdi). In Stephan Diehl, editor, Software Visualization, State-

of-the-art survey, pages 176{190. Springer, 2002.

Otto Hylli, Anna-Liisa Mattila and Kari Systä, Collecting Issue Management Data for Analysis with a

Unified Model and API Descriptions, 14th Symposium on Programming Languages and Software Tools,

D1.1.1 Public state of the art document

 62

October 9-10, 2015, Tampere, Finland. Published in CEUR Workshop Proceedings, Vol-1524, ISSN

1613-0073, pages 251–265

Penners R & Dyck A (2015) Release Engineering vs. DevOps-An Approach to Define Both Terms. Full-

scale Software Engineering 49–54

Plösch, R, J Bräuer, M Saft, and C Körner. 2018. “Design Debt Prioritization: A Design Best Practice-

Based Approach.” In 2018 IEEE/ACM International Conference on Technical Debt (TechDebt), 95–104.

Potdar, A, and E Shihab. 2014. “An Exploratory Study on Self-Admitted Technical Debt.” In 2014 IEEE

International Conference on Software Maintenance and Evolution, 91–100.

https://doi.org/10.1109/ICSME.2014.31.

Puppet. 2017 State of DevOps Report. URL: https://puppet.com/resources/whitepaper/state-of-

devops-report

R. P. L. Buse and T. Zimmermann, "Information needs for software development analytics", 2012 34th

International Conference on Software Engineering (ICSE), Zurich, 2012, pp. 987-996. DOI:

10.1109/ICSE.2012.6227122

Salas-Morera, L., Arauzo-Azofra, A., García-Hernández, L., Palomo-Romero, J. M., Hervás-Martínez, C..

PpcProject: An educational tool for software project management, Computers & Education, Volume

69, 2013,Pages 181-188,

Sauvola, T., Lwakatare, L. E., Karvonen, T., Kuvaja, P., Olsson, H. H., Bosch, J., & Oivo, M. (2015).

Towards customer-centric software development: a multiple-case study. In Software Engineering and

Advanced Applications (SEAA), 2015 41st Euromicro Conference on (pp. 9-17). IEEE.

Soares de Toledo, S, A Martini, A Przybyszewska, and D I K Sjøberg. 2019. “Architectural Technical Debt

in Microservices: A Case Study in a Large Company.” In 2019 IEEE/ACM International Conference on

Technical Debt (TechDebt), 78–87. https://doi.org/10.1109/TechDebt.2019.00026.

Sorva, J., Karavirta, K., and Malmi, L... A Review of Generic Program Visualization Systems for

Introductory Programming Education. Trans. Comput. Educ. 13, 4, Article 15 (November 2013), 64

pages. DOI=http://dx.doi.org/10.1145/2490822

Ståhl, D, A Martini, and T Mårtensson. 2019. “Big Bangs and Small Pops: On Critical Cyclomatic

Complexity and Developer Integration Behavior.” In 2019 IEEE/ACM 41st International Conference on

Software Engineering: Software Engineering in Practice (ICSE-SEIP), 81–90.

https://doi.org/10.1109/ICSE-SEIP.2019.00017.

Tahir, Amjed, and Stephen G MacDonell. 2012. “A Systematic Mapping Study on Dynamic Metrics and

Software Quality.” In Proceedings of the 2012 IEEE International Conference on Software Maintenance

(ICSM), 326–35. ICSM ’12. Washington, DC, USA: IEEE Computer Society.

https://doi.org/10.1109/ICSM.2012.6405289.

Tornhill, A. 2018. “Prioritize Technical Debt in Large-Scale Systems Using CodeScene.” In 2018

IEEE/ACM International Conference on Technical Debt (TechDebt), 59–60.

Vanhoucke, M., Vereecke, A., and Gemmel, P.. The project scheduling game (PSG): Simulating

time/cost trade-offs in projects, Proj Manage J 36 (2005), 51–59.

Wiederhold, G., Mediators in the architecture of future information systems. Computer, 1992, 25(3),

s. 38-49.

 D1.1.1 Public state of the art document

 63

Wiederhold, G., Mediators, Concepts and Practice. Information Reuse and Integration in Academia

and Industry, 2017, s. 1-27. Springer.

Woodward, C. J., Cain, A., Pace, S., Jones, A. and Kupper, J. F. "Helping students track learning progress

using burn down charts," Proceedings of 2013 IEEE International Conference on Teaching, Assessment

and Learning for Engineering (TALE), Bali, 2013, pp. 104-109.

Wu, W., Cao, Y., Chen, B., Su, Q., and Li, K. "AnyviewC: A Visual Practice Platform for Data Structures

Course," 2009 WRI World Congress on Computer Science and Information Engineering, Los Angeles,

CA, 2009, pp. 493-497.

Xiao, L, Y Cai, R Kazman, R Mo, and Q Feng. 2016. “Identifying and Quantifying Architectural Debt.” In

2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE), 488–98.

https://doi.org/10.1145/2884781.2884822.

Zampetti, F, A Serebrenik, and M Di Penta. 2018. “Was Self-Admitted Technical Debt Removal a Real

Removal? An In-Depth Perspective.” In 2018 IEEE/ACM 15th International Conference on Mining

Software Repositories (MSR), 526–36.

Zampetti, F, C Noiseux, G Antoniol, F Khomh, and M D Penta. 2017. “Recommending When Design

Technical Debt Should Be Self-Admitted.” In 2017 IEEE International Conference on Software

Maintenance and Evolution (ICSME), 216–26. https://doi.org/10.1109/ICSME.2017.44.

Zitzewitz, A von. 2019. “Mitigating Technical and Architectural Debt with Sonargraph.” In 2019

IEEE/ACM International Conference on Technical Debt (TechDebt), 66–67.

https://doi.org/10.1109/TechDebt.2019.00022.

D1.1.1 Public state of the art document

 64

APPENDIX A:

This appendix aims at providing an overview of all the different tools and mechanisms that will be

used to collect all different data within this project.

Tool Data Format Mechanism

Jenkins

TBD/depends on
pipeline /

JSON, XML REST API, wrappers
e.g. JenkinsAPI

 data related to
testing status, like
unit test errors, line
coverage per unit test
and duration of unit
test execution.

JetBrains TeamCity

TBD/depends on
pipeline

XML, JSON REST API

CircleCI TBD/depends on
pipeline

JSON REST API

Travis TO BE CHECKED, NO
ACCESS TO API SPEC

JSON REST API

BuildBot TBD/depends on
pipeline

JSON REST API

Collaboration

Tool Data Format Mechanism

JIRA TBD XML, HTML, CSV REST API, data export

 data related to issues
like time of creation,
estimated time and
issue duration

Redmine Similar to JIRA

Clubhouse TBD JSON REST API

Trello TBD JSON REST API

Version control

Tool Data Format Mechanism

Git/GitHub Commits etc JSON REST API

Git/BitBucket Commits etc JSON REST API

Git/GitLab Commits etc JSON REST API

SVN Commits etc

MANTIS data concerning
releases like total on-
time releases per
time frame or total
features released

https://jenkinsapi.readthedocs.io/en/latest/
https://www.jetbrains.com/help/teamcity/rest-api.html
https://circleci.com/docs/api/
https://docs.travis-ci.com/user/developer/#api-v3
https://docs.atlassian.com/software/jira/docs/api/REST/8.4.2/?_ga=2.173950117.702053672.1570200170-290641600.1565010697
https://developers.trello.com/reference#introduction
https://developer.github.com/v3/
https://developer.atlassian.com/server/bitbucket/reference/rest-api/

 D1.1.1 Public state of the art document

 65

CI/CD as a Service

Tool Data Format Mechanism

AWS To be checked

Google Cloud Build

Azure DevOps See [Azure] OData OData REST API

GitLab CI/CD

https://docs.microsoft.com/en-us/azure/devops/report/extend-analytics/data-model-analytics-service?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/report/extend-analytics/?view=azure-devops

