
(ITEA 3 – 17003)

PANORAMA
Boosting Design Efficiency for Heterogeneous3 Systems

Deliverable: D6.1
Overview of Existing Development Processes

Work Package: 6
Design Flow and Traceability

Task: T6.1
Distributed Collaborative Engineering Development Processes

Document Type: Deliverable
Document Version: Final
Document Preparation Date: Feburary 28, 2020

Classification: Public
Contract Start Date: 2019-04-01
Duration: 2022-03-31

Authors

Salome Maro University of Gothenburg

José Côrte-Real Critical Software

Karsten Albers Inchron GmbH

Björn Koopmann OFFIS

Jan Steffen Becker OFFIS

David Schmelter Fraunhofer IEM

Deepak Vedha Raj Sudhakar Inchron GmbH

Maria Bonner Siemens AG

Olexiy Kupriyanov Siemens AG

Jan-Philipp Steghöfer University of Gothenburg

Magnus Cruz Critical Software

Marc Zeller Siemens AG

ii

Contents

Authors ii

Summary vii

1 Introduction 1
1.1 Scope and Objectives . 1
1.2 Outline . 1

2 Methodology 3
2.1 Use Case Collection . 3
2.2 Workshop on Requirements for Collaborative Development 3
2.3 Focus Group on State of Practice of Collaborative Development 5
2.4 Alignment of ISO 26262 with ARAMiS II Generic Process 5

3 State-of-the-Art of Collaborative Development Processes 8
3.1 Software Development Standard Process 8

3.1.1 PANORAMA Context . 9
3.2 Safety-critical Systems Development Process 10
3.3 Collaborative Work in Tool Platforms . 10

3.3.1 Document-centric Collaboration . 11
3.3.2 Artifact-centric Collaboration . 11

3.4 Distributed Dependable Systems Development 12
3.4.1 Collaboration Scenario: Requirement-driven Design 12
3.4.2 Collaboration Scenario: Components-of-the-Shelf 13
3.4.3 Collaboration Scenario: System-of-systems Integration 13
3.4.4 Challenges . 13

3.5 ARAMiS II Generic Process . 14
3.5.1 User and System Requirements Engineering 15
3.5.2 System Architecture . 15
3.5.3 Software Development . 16
3.5.4 Hardware Development . 16
3.5.5 Mechanics Development . 16
3.5.6 Verification and Validation . 16
3.5.7 Importance for PANORAMA . 17

3.6 Collaboration Traceability Workflow . 17

4 State-of-Practice of Collaborative Development Processes 21
4.1 Collaboration Workflow . 21

iii

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

4.2 Artifacts Exchange . 22
4.3 Infrastructure . 22
4.4 Traceability . 23
4.5 Security and Intellectual Property Management 23

5 Requirements of Future Collaborative Development Processes 24
5.1 Requirements from ISO 26262 . 24

5.1.1 Overview on the Safety Lifecycle 24
5.1.2 Automotive Safety Integrity Levels 25
5.1.3 Work Products and Documentation 26
5.1.4 Requirements Structure . 26
5.1.5 Verification & Validation . 27
5.1.6 Conclusion . 27

5.2 Collaboration Requirements . 28
5.2.1 Understandability . 28
5.2.2 Information Exchange . 29
5.2.3 Integration into Design Processes 30
5.2.4 Living Models . 30
5.2.5 Compliance to Standards . 31

6 Gap Analysis between Requirements for Collaborative Systems Engineering,
State-of-the-Art and State-of-Practice 32
6.1 Alignment of ISO 26262 with ARAMiS II Generic Process 32
6.2 Gaps Between Practitioner Requirements and State of the Art/State of

Practice . 34
6.2.1 Understanding . 34
6.2.2 Information Exchange . 36
6.2.3 Intellectual Property Protection . 37
6.2.4 Common Knowledge . 39
6.2.5 Alignment of Development Process 39
6.2.6 Integration of Received Information 41
6.2.7 Brownfield Integration . 42
6.2.8 Living Models . 43
6.2.9 Standard-compliant Design Process 44
6.2.10 Development of Standard-compliant Systems 44

7 Summary and Conclusion 45

iv

List of Figures

2.1 Main Use Case Template . 4
2.2 Additional Information for Collaborative Design Process 5
2.3 Requirements Elicitation Workshop Stockholm: Overview 6
2.4 Requirements Elicitation Workshop Stockholm: Agenda 6

3.1 Critical Software – Software Development Generic Life Cycle 8
3.2 Safety-critical Systems Development Life Cycle [TMSP16] 10
3.3 DEIS Collaboration Scenario 1 . 13
3.4 DEIS Collaboration Scenario 2 . 14
3.5 DEIS Collaboration Scenario 3 . 14
3.6 ARAMiS II Generic Process . 15
3.7 ARAMiS II Generic Software Development Process 16
3.8 ARAMiS II Generic Hardware Development Process 17
3.9 Key Features of the Polarion Platform . 18

5.1 ISO 26262 Safety Activities . 25

6.1 Alignment of ISO 26262 with ARAMiS II Generic Process 33

v

List of Tables

3.1 Overview of the Identified Design Steps 11

6.1 Gaps between requirements for understanding and state of the art/practice 34
6.2 Gaps between requirements for information exchange and state of the

art/practice . 36
6.3 Gaps between requirements for intellectual property protection and state

of the art/practice . 37
6.4 Gaps between requirements for common knowledge and state of the

art/practice . 39
6.5 Gaps between requirements for alignment of development process and state

of the art/practice . 39
6.6 Gaps between requirements for integration of received information and

state of the art/practice . 41
6.7 Gaps between requirements for brownfield integration and state of the

art/practice . 42
6.8 Gaps between requirements for living models and state of the art/practice 43
6.9 Gaps between requirements for standard-compliant design process and

state of the art/practice . 44
6.10 Gaps between requirements for development of standard-compliant systems

and state of the art/practice . 44

vi

Summary

Collaborative systems engineering processes allow different partners that work together to
develop a complex product to synchronise their work and exchange artifacts. While many
attempts have been made to describe such processes in theory, practical considerations
such as incompatible data formats or complex tool chains impose difficulties. At the same
time, the engineering is embedded in a complex legal and regulatory environment.

In this deliverable, we describe the state of the art for collaborative systems engineering
processes as well as the state of practice at the companies involved in the PANORAMA
project. We also report on a requirements elicitation effort conducted with the involved
companies to better understand what the concrete needs for a truly collaborative systems
engineering process are. Based on this, we analyse the gaps between the requirements
and the state of the practice.
Our work shows that existing processes from DEIS and ARAMIS II address many of

the requirements, but there is room for extensions that can be tackled in PANORAMA,
in particular w.r.t. tool support for large scale systems, intellectual property protection,
integration of information, and living models.

vii

1 Introduction

In large systems engineering projects, thousands of engineers work together to create
the end product such as a vehicle or an airplane. This kind of systems development is
termed collaborative system engineering, which involves collaboration, communication
and coordination between the different individuals, teams and organisations involved in
the development to create high quality products [FRMM18].
As system engineering projects grow larger and involve various teams and organisa-

tions, adhoc collaborative practices are insufficient and companies have to think about
collaboration and plan for it before hand. Yet, there needs to be a balance between
formal collaboration and informal collaboration as the later facilitates shorter development
cycles [HGK+08]. In distributed environments where the teams are located in different
geographical areas, collaboration is crucial but also challenging both due to technical
reasons such as tools and non-technical reasons such as, communication and cultural
differences [AP10]. Since collaboration happens on different levels such as during project
planning, artifacts development and verification and validation activities, organizations
need to make sure that the engineers and managers have support for collaboration both
in terms of the processes and work-flows in the organizations as well as infrastructure.

1.1 Scope and Objectives

Understanding what and when collaboration activities occur in the systems engineering
development process is a first step towards providing process and tool support for such
activities. Since the partners of the PANORAMA project work in a highly collaborative
environment, we aim to understand how they currently work in order to identify im-
provement points. The majority of the project partners work in regulated environments
where certain standards such as safety and security are relevant. Therefore, while we
report on general collaborative systems engineering, this document also focuses on specific
aspects such as safety and security and their implication on collaborative development.
Therefore this deliverable aims to describe the current state of the art in collaborative
software development, how the project partners are currently practising collaborative
software development, the challenges they face and the requirements that companies have
to improve the state of practice of distributed collaborative development.

1.2 Outline

The remainder of this report is structured as follows. chapter 2 describes how we obtained
the data and results reported in this deliverable. chapter 3 describes the state of the art

1

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

of distributed collaborative systems development which is derived from predecessors of
the PANORAMA project such as DEIS, AMALTHEA4Public and ARAMIS II. chapter 4
describes how the current companies are working in terms of collaborative development
while chapter 5 describes their requirements. chapter 6 gives an overview of the gap that
exists between the state of the art and the state of practice. The document ends with
chapter 7 which gives some conclusions and plans for future work.

2

2 Methodology

This section describes the methodology we applied to collect and analyze the data in this
report. Four main activities which are use case collection, a workshop on requirements
elicitation, a focus group on state-of-practice, and a gap analysis that aligns the other
activities are described.

2.1 Use Case Collection

The first activity was to collect data on different use cases where collaboration plays
a role in systems development. The purpose of this activity was to understand where
collaboration is used, which stakeholders, artifacts, tools, and design steps are involved
and which purpose these use cases served. We also wanted to capture the multiple points
of information exchange between various organizations. In this context, our main goals
were thus to:

• identify who collaborates with whom and at which design step of the development
process the collaboration happens, and

• identify the information exchanged between the organizations and the infrastructure
used during the collaboration process.

For this purpose, we created a use case template, which is shown in Figure 2.1. It
was distributed among all PANORAMA project partners to identify the collaborative
development processes that are already in place and also to identify the prospective
collaborative development processes for the future.
We also created a list (Figure 2.2) to identify the other aspects of the collaborative

development processes between various stakeholders. The list is used as an additional
input for an interview session conducted among a target group consisting of SAAB,
Siemens, Bosch, and INCHRON. The goal of the interview is to elicit the state of practice
for collaborative design processes among the target group. Below we summarize the
essential collaboration aspects between the different collaboration partners based on the
inputs collected from the focus group interview and use-case templates.

2.2 Workshop on Requirements for Collaborative
Development

To understand the different collaborative requirements the partners have, we conducted
an interactive workshop with 10 participants/9 companies from the PANORAMA project.

3

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

Brief description of the collaboration

Ex: Supplier receives a timing analysis report from the Tool provider

Usecase ID: Title of the Collaboration Usecase

• ID XX

• ID YY

Related
Use cases

Describe the infrastructure used to exchange information
Ex: Websites, source code repository, bug tracking database, wikis, mailing lists and newsgroups

Describe the design step at which you collaborate
Ex: Concept Development, Requirements, Implementation,
Testing, Maintenance etc.

Brief description of the expected outcomes
Ex: Detailed report consisting of deadline violations, response time distribution,
CPU load distribution, end-to-end latencies of event chains

Mention the stakeholders and their roles respectively
Ex: OEM, Suppliers, Sales, Developer, Tester, System Engineer,
Architect

Brief description of the general scope of the collaboration use case
Ex: Building advance driver assistance functions

Describe the artifacts exchanged between stakeholders

Ex: Trace, Analysis Report, Models, Requirements, Testcases,
Optimization Objectives etc.

Description Artifacts Exchanged

Scope

Expected Goals Stakeholders Involved

Design Step

Infrastructure

Figure 2.1: Main Use Case Template

During the workshop, participants where divided into 2 groups each with five people.
The participants were asked to brainstorm on, organize, and prioritize different ideas on
collaborative systems development (cf. figures 2.3 and 2.4). The aim was to come up
with as many ideas as possible for how collaboration can be improved.

Ideas Generation: 6-3-5 [Roh69] is a collaborative creativity technique for generating
many ideas in a short amount of time. The participants develop/extend three ideas
per round on a sticky note. Each round typically takes 3-5 minutes.

Ideas Rating: Magic Estimation is typically used in scrum to get a quick overview about
the size of a backlog. We adapted Magic Estimation to rate the generated ideas
collaboratively: each participant can increase or lower the priority of a generated
idea by moving the appropriate sticky note up or down on a whiteboard silently.
After some time, the list of prioritized ideas will stabilize. If certain ideas are
moved a lot, those are discussed after the silent phase in order to achieve a common
agreement on its priority.

Ideas Organization: Magic Clustering is based on Magic Estimation: Each participant
can regroup a generated idea by moving the appropriate sticky note to another
group or creating a new group on a whiteboard silently. After some time, the
generated groups will stabilize. If certain ideas are moved a lot between groups,
those are discussed after the silent phase in order to achieve a common agreement
on its group belonging.

The data collected in this workshop was later analyzed to identify concrete requirements
for collaboration. The results are presented in section 5.2.

4

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

Use case ID Title of the Collaboration Use case
Preconditions Conditions that must be true or activities that must be completed prior to executing the use case

Ex: Requirement analysis must be completed before starting with implementation

Flow Describe who exchanges what, alternative flows and exceptions

Postconditions Describe the state of the system at the conclusion of the use case. Postconditions may include conditions for both successful
and unsuccessful execution of the use case.

Traceability Describe the process, tools, technique to ensure the traceabilty of the artifacts exchanged at this design step

Modeling Framework Describe the modelling framework used at this design step
Ex: SysML, MARTE, EAST-ADL, AADL, MATLAB

Intellectual Property
Management

Describe how intellectual property is managed during the collaboration

Viewpoints Describe the architectural viewpoints of the systems covered by the modeling framework/exchanged artifacts Ex: Logical,
Development, Process, Physical View

Guidelines Describe list of guidelines or safety compliances standards that are met at this design step
Ex: Automotive SPICE and CMMI, MISRA, ISO26262, Code generator guidelines.

Data Formats Describe the list of proprietary or open source data exchange formats used to execute the use case
Ex: XML, Amalthea Models, EMF models, Proprietary Models

Tools Describe the list of tools used at this design step to fulfil the usecase

KPI (Key Performance Indicator) Describe the list of KPI to quantify the performance of the list of actions performed by the relevant stakeholders

Requirements Describe any non-functional or special requirements for the system as the use case is executed
Ex: Timing, Safety, Reliability, Security etc.,

Figure 2.2: Additional Information for Collaborative Design Process

2.3 Focus Group on State of Practice of Collaborative
Development

We conducted a focus group with five companies with different roles in the collaboration
process i.e, one OEM, two suppliers and two tool vendors. Our aim was to understand
how collaborative systems development happens in practice and from the perspectives of
the different companies.
Before the focus group, we prepared a list of questions which were reviewed by the

researchers in the work package. The questions explored how the companies currently
collaborate in terms of process, artifacts, tools, traceability, safety and security. The focus
group followed the interview guide in a semi-structured manner, where the researchers
asked questions and the companies answered in a round robin way. The focus group
was done online and recorded. Additionally, researchers took extensive notes. The notes
were later analyzed by two researchers to identify and describe the state of practice with
respect to collaborative software engineering. The results of this workshop are reported
in chapter 4.

2.4 Alignment of ISO 26262 with ARAMiS II Generic
Process

This section shortly describes the motivation and methodology behind the gap analysis of
the AMALTHEA meta-model and the ARAMiS II generic process, as implemented in
the ARAMiS II project tool flows [ARA19d], against the requirements from ISO 26262

5

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

Ideas
Organization

Ideas
Generation

Ideas
Rating

promising

unpromising

PANORAMA
tomorrow?

model
exchange

hardware
assessment

deployment
alternatives

A
C

B

F E
D

A
C

B

F E
D

A

C

F

E

D

B

Figure 2.3: Requirements Elicitation Workshop Stockholm: Overview

Recap Todays
Use Cases

Agenda Items Item Description

Ideas
Organization

Ideas
Generation

Ideas Rating

Ideas Topic
Alignment

1

2

3

4

5

W
hi

ch
 c

ol
la

bo
ra

tiv
e

op
po

rtu
ni

tie
s

w
ill

PA
N

O
R

AM
A

ad
dr

es
s

to
m

or
ro

w
?

 Todays PANORAMA Use Cases elicited by INCHRON

 Method „Magic Clustering“

 Method „6-3-5“

 Method „Magic Estimation“

 Open discussion in small groups

20 min

50 min

45 min

10 min

10 min

Figure 2.4: Requirements Elicitation Workshop Stockholm: Agenda

[ISO11d] in section 6.1. The project results have been chosen as a reference for the
gap analysis because (1) they are a combination of relevant aspects of state-of-practice
development processes and relevant safety standards from automotive and aerospace
industry and (2) the toolchains developed in ARAMiS II use the AMALTHEA meta-
model as a central exchange format along the whole development process. It is also
visible from preliminary investigations (see chapter 4) that AMALTHEA indeed is an
emerging exchange format within distributed development processes. As a consequence
of (1) and (2), the ARAMiS II project results give a good picture that shows how far the
AMALTHEA meta-model can support the implementation of safety standards such as
ISO 26262.
Since the ARAMiS II generic process cross-cuts development processes from different

domains and the focus was on multi-core specific challenges in software development, one
cannot expect that the ARAMiS II project results cover all phases of the ISO 26262 safety
lifecycle. Therefore, in a first step the clauses of ISO 26262 have been identified that are
related to development activities implemented as part of the project. The ARAMiS II

6

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

generic process defines input and output artifacts for all these activities. As also ISO 26262
defines input and output artifacts for every clause, the work products from ISO 26262
have been matched to artifacts from the generic process. The description of work products
and design steps implemented in ARAMiS II is based on deliverable E2.2 [ARA19b]. In
ARAMiS II, also a small dictionary of architecture concepts has been defined that helps
matching the artifacts. Based on the mapping for the output artifacts that are results
of an activity or clause, respectively, a 1–n mapping from activities to clauses could be
defined. The mapping has been confirmed by also matching the input artifacts of the
activities and clauses.
In a second step, work products from ISO 26262 have been identified that are result

of a matching clause, but do not have a counter part among the artifacts from the
generic process. For the other work products – those that have a corresponding generic
process artifact – parts of the AMALTHEA meta-model can be identified that are used to
represent those artifacts in the ARAMiS II tool chains. The results were extracted from
the ARAMiS II project deliverables E2.3 [ARA19c], E2.4 [ARA19d], E3.3 [ARA19e], as
well as E5.5 [ARA19f], and widely match earlier results from the AMALTHEA4public
project [TMSP16]. As a final step of the gap analysis, the used parts of the AMALTHEA
meta-model have been evaluated with respect to the requirements of ISO 26262 on the
work products.

7

3 State-of-the-Art of Collaborative
Development Processes

In this section, we provide an overview of the state of the art for collaborative develop-
ment processes. Thus, we summarise how these processes have been described in the
scientific literature and in other projects. After providing a general high-level view of
software development processes in section 3.1 and extending it to safety-critical systems
in section 3.2, we report on the processes developed in DEIS in section 3.4 and ARAMIS
II in section 3.5. Finally, we also introduce the general workflow supported by Siemens
Polarion in section 3.6.

3.1 Software Development Standard Process

In practice, every development process is adaptable, depending on the system context.
However, the process generally follows the life cycle of Figure 3.1, which can cover most
software development projects on heterogeneous systems:

System Engineering consists in the initial specification of the system/software to be
developed including the features list, architectural design (high-level design) and – if
applicable - first user interaction solution previews (form and behaviour).

• Kick-off Meeting (KOM) is the formalization of the beginning of the project.
This usually has as input the initial version of the Technical Specification contains
a high-level definition of the features / functions, main components, which may
include User Interfaces (Mock-ups), and high-level solution and design of the system
to be developed.

Figure 3.1: Critical Software – Software Development Generic Life Cycle

8

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

Requirements Engineering consists in the specification of the software to be developed
including the software requirements, architectural design (high-level design) and user
interaction solution previews (form and behaviour).

• The software requirements engineering phase is completed by the Preliminary
Design Review (PDR). The inputs to this milestone are: the Software Require-
ments Specification, system architecture, the preliminary interface control document
and Solution Previews (e.g. Mock-ups, lo-fi and/or hi-fi Prototypes), all part of the
Technical Specification.

Design Engineering produces the detailed design and source code in parallel allows the
design to be generated from source code using reengineering tools. Producing the unit
testing in parallel with the coding allows the errors to be identified and corrected earlier.

• The results of this phase are the input to the Critical Design Review (CDR),
which signals the end of the design phase. The state of the software project after
critical design review is called Defined State.

Validation verifies the end-to-end functionality of the system in satisfying all require-
ments and specifications (mainly system testing), including system usability verifications.

• The validation phase includes a Qualification Review (QR). The state of the
software project after qualification review is called qualified state.

Acceptance demonstrates that the system meets your requirements in the operating en-
vironment through testing conducted under the supervision of an independent acceptance
testing team and follows the procedures specified in the Acceptance Test Plan.

• The acceptance phase includes an Acceptance Review (AR). The state of the
software project after acceptance review is called the accepted state.

Operations and Maintenance process is activated when the software product undergoes
any modification to code or associated documentation as a result of correcting an error, a
problem or implementing an improvement or adaptation.

3.1.1 PANORAMA Context

The PANORAMA project aims to provide modeling tools that will support mainly the
design engineering phase and the validation phase. For instance, we aim to support
modeling of safety related models such as Faults Tree Analysis (FTAs) models and Failure
Modes and Effects Analysis (FMEA) models. We also aim to facilitate the use of analysis
results from the different analysis tools for improvement of the models. Since various
modeling languages are used in the different steps, in the PANORAMA project aims to
extend the AMALTHEA model so that it can be integrated with the various commonly
used modeling tools to allow for smoother collaborative work.

9

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

Concepts of
Operation

Requirements
& Architecture

Detailed Design

Implementation

Integration,
Testing &
Validation

System
Verification &

Validation

Operation &
Maintenance

Safety-related
Design Steps

DS 1

DS 2

DS 3

DS 4

DS 5

DS 6

DS 7

DS 8

DS 9

DS 10

DS 11

DS A

DS B

DS D

DS F

DS E

DS C

Functional
Design Steps

Identification of Hardware Assumptions

DS 0

Figure 3.2: Safety-critical Systems Development Life Cycle [TMSP16]

3.2 Safety-critical Systems Development Process

In section 3.1 we have described a generic process for software development. In this
section, we describe a typical development design flow for safety critical systems that
includes both hardware and software [TMSP16]. This process describes the functional
steps as well as safety-related steps required to design a whole system. This design flow
is a result from the project AMALTHEA4Public, and is compatible with the ISO 26262
standard. It is depicted in Figure 3.2. Step DS 0 to DS 11 are functional design steps
while steps DS A to DS F are safety related design steps. A summary of these design
steps is given in Table 3.1. Additionally, more details on how this fits into collaborative
systems engineering process are given in section 5.1

3.3 Collaborative Work in Tool Platforms

The development of heterogeneous embedded systems involves coming together of different
organizations with expertise in different domains. Realizing such systems requires con-
crete collaboration between specific groups of different organizations. Hence for efficient
collaboration between different organizations, interoperable tool support is necessary.
Essential aspects of collaborative work in tool platforms may include data management,
information management, data privacy, data security, and tool usability [CrE19].

Emails are one of the most commonly used communication tools to share information
among organizations. However, emails may not be well suited for specific tasks such
as working on a draft that involves the input of multiple parties. Essential information
such as comments, context information, and managing of documents are challenging to
track and can get mixed up in a long chain of email history. Version control systems
(VCS) improve the document editing process, as every partner has a view of current
state and complete version history, including tags for special versions. The VCS such as

10

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

Table 3.1: Overview of the Identified Design Steps

Functional Design Steps

DS 1: System Requirements Engineering DS 7: Variant Configuration
DS 2: System Architecture Design DS 8: Implementation
DS 3: Software Requirements Engineering DS 9: Validation and Testing
DS 4: Derivation of Product Variants DS 10: System Integration
DS 5: Definition of Software Architecture DS 11: Handover
DS 6: Behaviour Modelling

Safety-related Design Steps

DS A: Derivation of the Functional Safety
Concept

DS B: System Safety Requirements Engi-
neering

DS C: Software Safety Requirements Engi-
neering

DS D: Verification of Software Safety Re-
quirements

DS E: Safety Validation DS F: Functional Safety Assessment

GIT [Git19], SVN [Apa19] also offers integrated diff tool that highlights the differences
between different versions. The VCS also provides the possibility to resolve conflicts
before a new version is created. Although VCS offers a better solution to manage data;
however, context information such as task sharing among partners needs to be tracked
using a separate tool such as kanban board.

3.3.1 Document-centric Collaboration

Document-centric collaboration tools keep track of the collaboration metadata in addition
to the document. Comments (metadata) created are highlighted in the document and are
visible to everybody. Hence the problem of missing context information is addressed by
keeping track of the metadata. Cloud collaboration tools share the data in a public cloud.
Therefore, documents can be shared with external organizations by taking appropriate
security measures. The editing possibilities of the documents are supported by desktop
and web applications. The web services offered by cloud collaboration tools enable
interoperability with other web services using public APIs. Real-time collaboration tools
are a special type of cloud collaboration solution that allows multiple users to work
together at the same time. Ad hoc discussions can be started with the help of integrated
chat and video conferencing capabilities. Hence, real-time collaboration tools enable
all collaborators to see the changes made by each other instantaneously and offer the
possibility to react immediately or later.

3.3.2 Artifact-centric Collaboration

Collaborative development between different organizations not only involves sharing of
documents but also involves sharing of other artifacts such as models. The artifact-centric

11

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

collaboration process facilitates the exchange of well-defined artifacts between partner
organizations. Essential aspects of artifact-centric collaboration tools are described as
follows [CrE19]:

• Supports synchronization of the artifact data such that all collaborators can see the
updated version as soon as possible.

• Avoids introducing new bugs to the artifacts during the process of editing to ensure
the safety of the artifact exchanged.

• Enables automatic notifications of artifact changes to all the partners involved.

• Enables ad-hoc communication between different partners.

• Supports version management of artifacts.

• Enable legacy support for importing and exporting artifacts

3.4 Distributed Dependable Systems Development

The following collaboration scenarios were specified as part of the H2020 research project
DEIS1. In industrial practice, the development of complex, safety-critical systems is
scattered across different partners (e.g., OEM, Tier-1 suppliers). This is the case for
instance in automotive, avionics, or railway domain. Thereby, the suppliers need to take
over an increasing share of the risk from the OEM. Moreover, the OEMs builds their
safety case based on the information provided by the suppliers.
A high amount of alignment activities is required for ubiquitous feature development

and several iterations are needed to align the interdependent function development.
Moreover, lots of assumptions and constraints for development of elements-out-of-context
are made by the suppliers. Hence, interdependent functions are avoided as much as
possible, therefore innovative functionalities are hampered. All partners involved in the
development process interchange safety- but also reliability-related information. Thereby,
all involved participants along the supply chain use different methodologies and tools for
engineering functionalities. Today, the information is exchanged using documents.

3.4.1 Collaboration Scenario: Requirement-driven Design

The OEM provides the safety requirements which must be taken into account by the
suppliers. The individual component suppliers can base their assumptions on the ex-
changed information and update the context their sub-system/component. The suppliers
themselves provide safety information (e.g., about the conducted safety analyses as well
as their safety concept) in addition to the component/sub-system they deliver to the
OEM (see Figure 3.3). This information is exchanged with other suppliers and the OEM
(during the integration stages of the development life-cycle). Based on this the OEM is
able to generate a safety case for the target product.

1http://deis-project.eu/

12

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

OEM

Exchange safety-relevant
system information

(e.g. hazards, safety requirements, etc.)

create
information

Exchange safety-relevant
component information

(e.g. safety analysis results, etc.)

read
information

Supplier 1

Supplier 2

Supplier n

create / read
information

create / read
information

create / read
information

read
information

read
information

read
information

...

Figure 3.3: DEIS Collaboration Scenario 1

3.4.2 Collaboration Scenario: Components-of-the-Shelf

The OEM builds its system based on pre-existing components of the suppliers. Thereby,
the OEM does not provide safety requirements to the suppliers. However, the suppliers
need to deliver safety information to the OEM in addition to the component/sub-system
(see Figure 3.4). Based on this information the OEM builds its safety case for the overall
system.

3.4.3 Collaboration Scenario: System-of-systems Integration

The OEM provides all necessary dependability information related to a product/system
which must be integrated into a (pre-existing) system-of-system (see Figure 3.5). Hence,
the system-of-system operator can create an safety case for its system-of-system.

3.4.4 Challenges

Seamless interchange of safety information enables the creation of safety cases and/or the
assurance of correct integration for systems/products. Moreover, the safety requirements
provided by the OEM helps the supplier to develop a dependable sub-system/component.
Since safety-related information are currently exchanged in a document-based way, it is
too much effort for the involved parties to read and understand the information and to
enter the data into the own custom tool chains. A machine-readable format is required
to formalize the information and to automate the exchange. Moreover, since different
methodologies and tools are used by the partners along the supply chain for the various
engineering activities, a tool-independent exchange format is required.

13

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

OEM

Create system safety case

Exchange safety-relevant
component information

(e.g. safety analysis results, etc.)

read
information

Supplier 1

Supplier 2

Supplier n

create
information

create
information

create
information

...

Figure 3.4: DEIS Collaboration Scenario 2

OEM

read
information

Exchange system safety information
(e.g. safety analysis results, safety case, etc.)

create
information System of System

Operator

read
information

create
information

Exchange system-of-system safety information
(e.g. safety case, etc.)

Figure 3.5: DEIS Collaboration Scenario 3

3.5 ARAMiS II Generic Process

Within the ARAMiS II project [ARA19a], a common and generic design process that
covers a variety of structured development processes used in industrial practice of multiple
domains such as automotive, avionics, and industrial automation has been defined. It
includes comprehensive expertise and know-how from manufacturers (e.g., Audi, Bosch,
Continental, Denso, Airbus, Diehl, Liebherr, Siemens, Wika), research institutes (e.g.,
DLR, OFFIS, Fraunhofer, KIT, fortiss), and tool providers (e.g., Timing Architects,
Vector, AbsInt, Symtavision, Silexica).

While the focus is on the development of multicore systems, it is based on the commonly
used V-model as a state-of-the-art process model. In addition, the generic design process
is aligned with a variety of international standards such as Functional Safety for Road
Vehicles (ISO 26262), Software Considerations in Airborne Systems and Equipment Certi-
fication (DO-178C), Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-related Systems (IEC 61508), Systems and Software Engineering – System Life

14

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

Figure 3.6: ARAMiS II Generic Process [KS19]

Cycle Process (ISO 15288), and Systems and Software Engineering – Software Life Cycle
(ISO 12207).

The description of the generic design process consists of tasks/activities and correspond-
ing work products. The individual parts are defined in terms of the Software Process
Engineering Metamodel (SPEM). The basic process is divided into five key activities,
which are depicted in Figure 3.6 and will be examined more closely in the following
sections. Work products are those that have been identified to be relevant among all
industrial project partners.

3.5.1 User and System Requirements Engineering

As a first step, user and customer needs are collected in the User and System Requirements
Engineering (REQ) activity. Moreover, the problems to be solved are formulated as
a set of requirements. Subsequently, these requirements are transformed into system
requirements that have to be fulfilled by the system under development.

Inputs Customer Needs

Outputs System Definition and Interfaces, System Requirements and Constraints

3.5.2 System Architecture

Based on these first results, the analysis of the system requirements is carried out in
the System Architecture (SYS) activity. Following the design of the system architecture,
which identifies the system elements and their relationship as well as the mapping between

15

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

Figure 3.7: ARAMiS II Generic Software Development Process [KS19]

requirements and elements, it is decided which elements are realized by hardware, software,
and/or mechanics.

Inputs System Definition and Interfaces, System Requirements and Constraints

Outputs System Architecture, Software Architecture Requirements and Constraints

3.5.3 Software Development

The Software Development (SW) activity comprises the whole software development
process, which is summarized in Figure 3.7. Besides the analysis of the system architecture
and the development of the software architecture in the Software Architecture (SWA)
activity, this step also includes all Software Design (SWD) and Software Implementation
(SWI) activities.

3.5.4 Hardware Development

In analogy to the SW activity, the Hardware Development (HW) covers the whole hardware
development process, which is illustrated in Figure 3.8. It is subdivided into the Hardware
Architecture (HWA), Hardware Design (HWD), and Hardware Implementation (HWI)
activities.

3.5.5 Mechanics Development

The last step to be mentioned is the Mechanics Development (MEC) activity.

3.5.6 Verification and Validation

As indicated in Figures 3.7 and 3.8, the corresponding verification and validation steps are
performed along the individual tasks. Besides the elicitation of relevant process phases a

16

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

Figure 3.8: ARAMiS II Generic Hardware Development Process [KS19]

common structured terminology has been defined.

3.5.7 Importance for PANORAMA

In the context of PANORAMA, the generic design process will be used as a tool to
structure the requirement elicitation process and to align the design process with all
standards mentioned above. It is important to note that the process does not cover
all aspects of the development process. Just to name a few examples from ISO 26262,
missing things are the planning of safety activities such as validation plans (clause 4-6),
integration and testing plans and specifications (clause 4-8) as well as verification plans
and specifications (clauses 6-6, 6-9, 6-10, 6-11).

3.6 Collaboration Traceability Workflow

This section describes how the Polarion platform [Sieb] allows to find an effective way to
organize the collaborative process across different teams and to manage multiple projects
along the development process stages depending on the project specifics [Sie16a].

Web-based Collaboration The Polarion platform is the browser-based front-end. Thanks
to the always-up-to-date online environment with live dashboards as well as access-
controlled threaded commenting the tool is designed to eliminate emails and meetings in
order to keep all the information on specification, change requests, design decisions and
etc. in one system. One centralized repository at the core of all activities serves the single
source of truth. The centralized nature of information exchange enables development
teams sitting in different locations to effectively convey ideas, much faster than the use of
email, instant messaging and teleconference.

17

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

Figure 3.9: Key Features of the Polarion Platform

Team Collaboration Stakeholders can collaborate and communicate on various levels.
For discussions and collaboration at higher levels, Polarion features a built-in wiki with
default wiki spaces and documents for the repository and each project. This provides a
highly flexible communication medium accessible to everyone with access rights to the
repository, project or document.

More granular collaboration and communication takes place in comments on individual
work items. Discussions on multiple threads can occur among project team members.
Comment visibility can be optionally controlled and limited; for example, some comments
may be visible only to managers.

Interchange between OEMs and Suppliers Domain experts who want to stay in their
familiar environments can do so and still be tied into the centralized repository. The
Polarion software’s native integration with MATLAB R©, for example, enables customers
to include Simulink Model-Based Design workflows as an integral part of their application
lifecycle. Bidirectional traceability facilitates navigation from Simulink model elements
to associated Polarion work items and vice versa. Versioning aids collaborative design,
opening up the assets for easy re-use and variant management across an entire automotive
portfolio.

Another native integration that is popular among automotive customers is the round-
trip for Requirements Interchange Format (RIF/ReqIF) through which traceability across
multiple documents or tools is maintained. The Object Management Group’s (OMG’s)

18

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

standard for requirements exchange, a widely used Extensible Markup Language (XML)
file format and workflow to support lossless exchange between partners, brings OEMs
and their suppliers together around the globe.

Sharing and Reviewing Documents/Work Products Polarion also enables data mod-
ification, including approval of requirements via Word documents. Using the Polarion
unique Round-trip for Word capability, documents containing managed artifacts can be
exported to a Word document, which can then be shared with and reviewed by people
who don’t have access to Polarion. After changes (the type of which can be optionally
restricted during export), the Word document can be re-imported to Polarion, where the
changes it contains are incorporated into the online document, and the document history
is updated.

Development Workflow Polarion allows to establish a workflow among diverse groups
within and outside the organization working together. A customized solution can be
established in the beginning, or a template for most common methodologies, as for
example, V-Model, Agile Software Project, can be chosen and configured to map to
specific business scenarios.

Traceability Comprehensive traceability allows developers to refer back to the software
requirements that underlie their assigned tasks, and to reach out to the respective authors
when they have questions. The same applies to the testers that verify whether the
requirements have been met. All activities and decisions are automatically tracked, with
collaboration history available to reveal how decisions were made every step along the
way. Formal approval processes with compliant e-signatures complete the information
exchange.

ISO 26262/IEC 61508 Qualification by TÜV NORD Siemens PLM Software is the
first ALM vendor to receive ISO 26262/IEC 61508 qualification by TÜV NORD for the
Polarion suite of products. The qualification at the highest Automotive Safety Integrity
Level (ASIL-D) as defined in ISO 26262 is based on evidence that Polarion’s software
development processes can be reliably implemented and replicated. Due to the nature of
the qualification, any software and hardware systems developed using Polarion’s processes
is also deemed to meet the functional safety requirements of ISO 26262, in turn radically
reducing compliance efforts.

Future Goal within PANORAMA Project As it was mentioned, the Polarion platform
allows to organize a workflow and to customize the traceability links according to a specific
methodology by defining an extension[Siea]. Such an extension would allow Polarion
customers to arrange a collaboration process in a faster and in a more effective way.
It is planned that an extension established within the PANORAMA Project covers a
collaborative workflow for timing analysis compliant with PANORAMA model (support
timing requirements and constraints using compatible information models).

19

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

A future PANORAMA extension would involve template specification, which is basically
definition of semantics of the basic Polarion elements. As for example, work item plays
a role of a basic element and can be related to anything you want to track in the
project [Sie16b]. Regularly, a work item turns into requirements, activities, change
request and test cases. The relationship between working items can be customized as
well. Continuing this way, the Polarion platform gives a lot of opportunities to customize
a working flow. Additionally, it is planned to integrate with architecture modeling
tools, such as Mentor Capital Systems and Mentor Capital Software Designer, where
bidirectional traceability across requirements/tests/risks/etc. and modeling elements is
already implemented.

20

4 State-of-Practice of Collaborative
Development Processes

In this chapter, we present the combined results of the data collected with the use case
templates and with the focus group (cf. chapter 2).

4.1 Collaboration Workflow

Typical collaboration relationships are between OEMs and suppliers as well as suppliers
of different tiers. Tool providers collaborate with customers on all levels of the supply
chain. If collaboration takes place within a supply chain, e.g., for a vehicle or an aircraft,
there are different approaches to managing the contracts. Either the OEM sub-contracts
development to a Tier-1 supplier, which in turn sub-contracts to Tier-2 suppliers, etc. or
the OEM coordinates the collaboration with appropriate contracts all the way down the
supply chain. While this depends on the type of project, in practice, it also depends on
the existing relationship between the partners. The current relationship also determines
the level of formality of the contract, which can range from a loose general agreement to
a full-fledged formal contract between partners.

In most cases, the collaboration between the partners is ongoing throughout the entire
development process with differing intensity. Collaboration is most intense when the
project ramps up, and the specifications are created and discussed, and the contracts are
defined. Later, collaboration is most intense whenever changes occur. Such changes, e.g.,
in the specification, may require conflict resolution on both the technical and contractual
level and can even require a renegotiation of the contract. Many collaborations also
showcase higher intensity when the solution is tested. During “normal” development,
interactions are usually restricted to clarifications. At the early stages of collaboration the
partners meet more often in a face to face meeting and conduct workshops to facilitate
the collaboration process. As the collaboration matures over time, video and audio
conferencing tools are used to track the progress.
How the partners interact is specified in different ways and with varying levels of

formality. In some cases, interactions are defined in the contract, in particular in case of
interactions that have an impact on the contract itself. Contracts also include deliverables,
schedules, and sometimes artifact formats. The latter can also be specified in separate
documents or can even be left in the form of an informal agreement between the involved
engineers. In the case of regulated environments, activities, and artifacts that require
collaboration, need to be introduced due to standards such as ISO 26262 or DO-178B which
both require constructing safety cases that include components delivered by suppliers.

21

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

Contracts can also be accompanied by more detailed operationalizations of the general
terms in project planning documents or even wikis that describe the process.
Roles that are typically involved in managing the collaborative effort are project

managers and team leaders, technical managers, and business development managers.
Depending on the project, engineers often have direct interaction with each other. In
some cases, a dedicated engineer is co-located with the collaboration partners or directly
responsible for handling a specific customer. In terms of the workflow, the processes of
the partners can differ, but there are usually synchronization points. These are defined in
terms of stages, gates, or milestones during the contracting or project planning phase.
A full synchronization, e.g., in terms of sprint lengths, joint reviews, etc., can also take
place but is usually restricted to agile projects.

4.2 Artifacts Exchange

Some of the most common collaboration goals in the context of the panorama project
involve efficient design space exploration of the system to make early design decisions.
Collaboration partners exchange a variety of artifacts to achieve their collaboration goals.
Most notably, they exchange requirements documents. They often include natural lan-
guage requirements and are formatted as spreadsheets or are simple text files. In later
stages, models are exchanged, e.g., to be able to simulate the behavior of a component.
Such simulation models are, e.g., in MATLAB/Simulink, EAST-ADL, Amalthea, or
dSpace format. Suppliers can also provide base software, i.e., software that has not
been customized for the specific usage scenario to the OEM for preliminary testing and
exploration. Tool developers also receive process descriptions from their customers used
to customize the tools. In turn, they deliver step-by-step instructions on how to integrate
the new tooling into the process. It is also not uncommon for a customer to share
analysis results or raw data for analysis with the provider of an analysis tool to simplify
the development of a new feature. Very often, such information is also delivered in a
spreadsheet. The analysis results and the reports generated from the tools also play an
essential role in the certification process of OEM’s.

4.3 Infrastructure

Depending on the existing relationship and the sensitivity of the information, exchange
of the artifacts can occur on physical storage media, via email, a shared folder, or a
shared repository. Suppliers, in particular, need to set up an infrastructure to process
these artifacts. In the case of large suppliers with a steady relationship with OEMs and
sub-suppliers, toolchains can be developed specifically to deal with the individually agreed
on exchange formats. Tools like IBM Rational DOORS, Enterprise Architect, Kanban,
or Siemens Polarion allow a range of import formats. However, sometimes the exchange
formats are proprietary and need to be converted. If such exchanges occur repeatedly, the
partners invest in developing specialized tools for this purpose. Otherwise, the conversion

22

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

is done manually.

4.4 Traceability

In order to achieve consistency, in particular, when updates occur, unique identifiers
are often associated with the different elements contained in the exchanged artifacts.
It allows identifying, e.g., a requirement even in a different version of the requirement
specification, and provides the ability to create traceability links that survive an update
of the documents. For many projects, especially safety-critical projects, traceability links
are also part of the exchanged artifacts and not delivered as separate artifacts. The form
of these links ranges from simple ID tags, e.g., a requirement ID in the code comments to
hyperlinks that can be navigated for cases where tools like Siemens Polarion are used
by both partners. The main use of the traceability links is for certification purposes;
however, sometimes the links are used to inspect if every requirement has been met
during the delivery of components and to discover the causes of defects when defects are
detected. Configuration management tools can also help in tracking different versions
and identifying and resolving conflicts.

4.5 Security and Intellectual Property Management

In terms of information security, it is not uncommon that sensitive information needs to
be redacted from an artifact before it is exchanged. This can include information about
the function of a model, the actual functionality and algorithmic details, performance
parameters, data accuracy, and sensor rates. The most common reasons for this are the
need to protect intellectual property and regulation, in particular in the defense sector.
These needs are usually captured in the initial contract and assured throughout by, e.g.,
creating different models of the same component with different level of detail, hiding
information by replacing identifiers with placeholders, imposing strict access control on
sensitive information, or encrypting information when exchanging it via insecure channels.
In some cases, it is also possible to exchange binaries instead of source code or create
special “opaque” models that cannot be introspected.
Although in many cases information protection is defined on an ad-hoc basis, there

is a growing need for companies to embrace new regulations and certifications that
aim to harmonize how security risks are handled in an organization. ISO/IEC 27001
is an information security standard that defines well established requirements for an
organization to implement an Information Security Management System (ISMS), that
serves as a central authority to all matters related to information security, regardless
if the information is contained in IT systems or hard-copy documents. This standard
places information security as a top level management concern, provides tools to measure
and mitigate security related risks, and creates a common ground to enable accredited
certification bodies to audit an organization’s ISMS and grant them a proof of certification.

23

5 Requirements of Future Collaborative
Development Processes

We collected requirements from two different sources: ISO 26262, the safety standard
used for vehicles, and an ideation workshop we conducted with the project members.
The requirements from ISO 26262 on the process, the models, and the validation and
verification tools are described in section 5.1. The requirements provided by the project
partners are listed as user stories in section 5.2.

5.1 Requirements from ISO 26262

The international standard ISO 26262 [ISO11d] defines a safety lifecycle for automotive
applications, i.e., a process to be performed during development of safety-critical automo-
tive applications. Besides the safety lifecycle, ISO 26262 defines requirements on activities
supporting the development process, such as change and configuration management, and
documentation.

5.1.1 Overview on the Safety Lifecycle

The safety lifecycle defined in ISO 26262 is a classical V-process. It starts with a hazard
and risk analysis (HARA) of the system being developed. For each identified hazard,
a set of top-level safety requirements (safety goals) are defined for the system. During
the development phase (left side of the V), the system is decomposed into hardware and
software elements. The process is requirements-driven, so safety requirements for each
element are derived from the safety goals. ISO 26262 covers both hardware and software
development; on the hardware part, an important goal is to ensure that the system can
cope with random hardware faults. For this, ISO 26262 defines target values for so-called
hardware architectural metrics [ISO11a] that need to be evaluated during development.

ISO 26262 defines a set of safety activities to be carried out before and during the
development of the system. They are sketched in Figure 5.1. At begin of the process, a
safety plan is created. In each development phase, analysis and verification activities are
planned as part of the safety plan. During the design phase, correct decomposition of
components and requirements is verified, and during the integration and testing phase
verification ensures correct and complete implementation of the safety requirements. After
integration, the safety validation provides evidence that the complete system meets the
safety goals. So-called confirmation reviews ensure the correct and complete execution
of the analysis and verification activities. During the safety lifecycle, the results of the
activities are used to form the safety case, i.e., to provide an argument that the system

24

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

HW/SW development

System development

Concept
phase

• Safety process planning
• Safety assessment
• Safety audit

• Hazard analysis and risk
assessment

• Validation planning
• Safety validation

• Integration/test planning
• Integration
• Testing

• Verification
planning

• Verification

• Architecture
design

• Requirements
specification

• Safety analyses

Safety case

Safety plan

Confirmation
review

Confirmation
review

Confirmation
review

Confirmation
review

Confirmation
review

Confirmation
review

Figure 5.1: ISO 26262 Safety Activities

meets the safety goals [BRH+13]. In the safety assessment and safety audit at the end
of the safety lifecycle, all the activities are evaluated and a judgment is made whether
safety of the system has been achieved.

5.1.2 Automotive Safety Integrity Levels

In the ISO 26262 safety lifecycle, architecture elements (e.g., software components and
hardware parts) and safety requirements are equipped with an Automotive Safety Integrity
Level (ASIL). The ASIL ranges from A to D, with A the lowest and D the highest level. A
special value QM is assigned to elements that are not safety critical and therefore outside
the scope of ISO 26262. The higher the ASIL, the more stringent are the requirements
of ISO 26262 on development of the element. For the safety goals, the assigned ASIL
depends on the probability and severity of possible accidents in case of the hazards that
are prevented by that safety goal.

In general, new architecture elements and requirements inherit the ASIL of their parent,
i.e., the safety goal they belong to. However, ISO 26262 allows to decompose components
into components with lower ASIL, provided they are sufficiently independent and together
implement some kind of redundancy (i.e., the parent component fails only if multiple of the
children fail). This is named ASIL tailoring in ISO 26262 [ISO11c; WC12]. In case ASIL
tailoring is applied, the ASIL of sub-components must sum up to the ASIL of the parent.
Decomposed components and their safety requirements have extended ASIL assignments
in the form X (Y) (with X,Y ∈ {QM,A,B,C,D}) where X is the components reduced
ASIL and Y the initial ASIL of the safety goal where the components have been derived
from. The inherited ASIL is the same among all levels of the design. A component with
ASIL X (Y) may thus be decomposed into two components with ASIL X1 (Y) and X2 (Y)
such that f(X1) + f(X2) ≥ f(X) with f = {QM 7→ 0, A 7→ 1, B 7→ 2, C 7→ 3, D 7→ 4}
[FVG19]. The reference to the initial ASIL is important because some properties of

25

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

the components (for example hardware architectural metrics) are not subject to ASIL
tailoring and still be evaluated according to the ASIL of the safety goal.

5.1.3 Work Products and Documentation

ISO 26262 defines a large set of about 100 work products that are the result of the
activities required by ISO 26262. They can roughly be categorized as follows:

1. Work products describing the system design, which are

• Requirements, including safety requirements and safety goals

• System architecture (models)

2. Plans for safety activities, including verification plans and the safety plan itself

3. Work products regarding analysis, verification, and validation activities

• Specifications for V&V activities, e.g., test vectors and tool configurations

• Analysis results

• Reports

4. The safety case

5. The product being developed (code, software, manuals, . . .)

6. Work products concerning the process, e.g., change requests

All work products must be documented. ISO 26262 defines requirements on documen-
tation of work products. The layout and medium of work products and documentation
is not fixed, as long as the information required by ISO 26262 is contained in a clear,
structured and comprehensive way. Each document needs at least a title, an ID, an author
and approver, a change history, and a status [ISO11b].

5.1.4 Requirements Structure

ISO 26262, Part 8 [ISO11b] requires that safety requirements are hierarchically structured
according to the design phases (i.e., safety goals at the top, and safety requirements for
software units and hardware parts at the bottom). Within each level, the requirements
shall be grouped according to the elements of the architecture they belong to. ISO 26262
recommends to use a requirements management tool. Requirements must be traceable

• to the next upper level requirements they are derived from

• the derived requirements on the next lower level

• verification activities for the requirements

Furthermore, each requirement must have the following attributes [ISO11b]

26

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

• a unique ID that is stable during the development process

• a status

• an ASIL

The range of the status attribute is not defined by ISO 26262.

5.1.5 Verification & Validation

V & V activities are an important part of the ISO 26262 safety livecycle. The V&V
activities need to be planned beforehand, including specification of inputs (e.g., test data),
configurations, and pass/fail criteria. The V&V results need to be documented with a
reference to the specification and verified work products (e.g., requirements), and clear
statements about the outcome of the activities, including follow-up actions [ISO11b].
Both the V&V plans and the V&V reports are the basis for the safety assessment at the
end of the safety lifecycle.

5.1.6 Conclusion

ISO 26262 defines a safety lifecycle that shall be performed as part of the development
process of automotive HW/SW systems. It imposes the following requirements:

• Requirements on the development process:

– Use of a requirements management tool

– Support for formal methods

– Configuration and change management of all work products according to
development standards

– Planning of development activities before their execution, including V&V
activities

– Documentation of all work products and development activities, including
planning of development and V&V

• Requirements on models:

– Unique IDs for all elements; IDs shall be stable during the development process

– ASIL attributes of the form X (Y) (with X,Y ∈ {QM,A,B,C,D}) for archi-
tecture elements and requirements

– Traceability

∗ among requirements (refinement links)

∗ between requirements and architecture

∗ between requirements and V&V artifacts

– Support for formal requirements

27

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

– Specification of test data and configuration for V&V tools

• Requirements on V&V tools:

– Repeatable tests and analyses

– test/analysis reports with traceability to

∗ elements that have been verified

∗ other inputs

∗ tool configuration

– Clear pass/fail results

5.2 Collaboration Requirements

This section summarizes the results of the Collaboration Workshop in Stockholm (cf.
section 2.2). The goal of the workshop was to understand the partners’ requirements on
future collaborative processes.

5.2.1 Understandability

As an engineer in a model-based, collaborative development environment, I want to . . .

C-1.1 . . . understand the models I am working with even if they are large
and complex.

C-1.2 . . . work on clear abstraction levels making sure I do not get over-
whelmed by too much information.

C-1.3 . . . have tools to navigate large and complex models efficiently.
C-1.4 . . . have reports on analysis results in order to understand complex

simulations easily.
C-1.5 . . . be able to compare analysis results easily in order to make in-

formed design decisions.
C-1.6 . . . have a versioning system for the created models to be able to

follow their history.
C-1.7 . . . have a versioning system to be able to create a safety case.
C-1.8 . . . have traceability between requirements, models, and other arti-

facts to be able to understand design decisions.
C-1.9 . . . have traceability between models and other artifacts to be able

to create a safety case.
C-1.10 . . . document design decisions as part of the model.
C-1.11 . . . have a common glossary in a collaborative development project

to avoid misconceptions with other team members.

28

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

5.2.2 Information Exchange

As an engineer in a model-based, collaborative development environment, I want to . . .

C-2.1 . . . exchange requirements (functional, timing, safety, security, . . .)
to create a common understanding of the system under development
and to identify the problems to be solved.

C-2.2 . . . exchange system, software, and hardware architectures to stream-
line collaborative development.

C-2.3 . . . exchange safety-related information (e.g., hazards, risks) to be
able to create a safety case.

C-2.4 . . . exchange interface specifications to facilitate collaborative system
development.

C-2.5 . . . exchange analysis results in order to reveal problems and make
informed collaborative design decisions.

C-2.6 . . . have a standardized exchange data format to enable a tool-
independent exchange.

C-2.7 . . . have a machine readable exchange data format to ease import
and export procedures.

C-2.8 . . . maintain exchanged information under version control.

C-2.9 . . . have partial or full shared access storage to facilitate exchange.

Intellectual Property Protection

C-2.10 . . . extract interface specifications of existing models as accurate as
possible in order to enable an efficient protection of the intellectual
property contained in the underlying functional models.

C-2.11 . . . automatically remove components or information previously
marked as confidential.

C-2.12 . . . define certain views and abstraction levels that can be removed
or hided in later development phases.

Common Knowledge

C-2.13 . . . define specific areas of non-competition to enable an open ex-
change of common knowledge.

29

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

5.2.3 Integration into Design Processes

As an engineer in a model-based, collaborative development environment, I want to . . .

Alignment of Development Processes

C-3.1 . . . work in an environment with aligned development processes be-
tween the partners involved.

C-3.2 . . . work in an environment with clearly defined team roles.
C-3.3 . . . rely on best practices for selected development phases.
C-3.4 . . . conserve design decisions to ease the integration of work products.
C-3.5 . . . have regular meetings with representatives from all incorporated

teams to exchange information about tasks or problems.

Integration of Received Information

C-3.6 . . . work in standardized tool environments to ease the integration of
exchanged information and to reduce the overall integration effort.

C-3.7 . . .make use of simple and clear connections between requirement
engineering and implementation tools in order to keep the overview.

C-3.8 . . . provide dedicated information (e.g., built-in documentation, stan-
dard interfaces) to help others integrate my work results.

C-3.9 . . . receive dedicated information (e.g., built-in documentation, stan-
dard interfaces) to help me integrate the work results of others.

C-3.10 . . . use simple mechanisms for importing and exporting existing data
and legacy models to ensure a seamless and smooth introduction.

Brownfield Integration

C-3.12 . . . reuse existing models to save effort and reduce error proneness.
C-3.13 . . . be aware of all relevant licenses and legal information to avoid

problems in later design and implementation phases.

5.2.4 Living Models

As an engineer in a model-based, collaborative development environment, I want to . . .

C-4.1 . . .make use of a change impact analysis in order to be able to
estimate the effects of individual changes.

C-4.2 . . . integrate analysis results into models to keep the overview.

30

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

C-4.3 . . . use the analysis results to further develop and improve the model
in order to increase its quality in a more focused way.

C-4.4 . . . receive automatic updates at specified time points in case of
changes that affect system components that I am responsible for.

5.2.5 Compliance to Standards

As an engineer in a model-based, collaborative development environment, I want to . . .

Standard-compliant Design Processes

C-5.1 . . . follow a standard-compliant design process.

Development of Standard-compliant Systems

C-5.2 . . . develop standard-compliant systems.

31

6 Gap Analysis between Requirements
for Collaborative Systems Engineering,
State-of-the-Art and State-of-Practice

After having described the state of the art and the state of practice in collaborative
requirements engineering as well as the requirements practitioners have on such processes,
we now proceed to analyse which gaps exist between these aspects. In section 6.1, we first
outline the open issues in the ARAMIS II process w.r.t. the development of safety-critical
systems according to ISO 26262. In section 6.2, we then tabulate the gaps based on the
requirements we collected and a comparison with what we have described in Chapters 3
and 4.

6.1 Alignment of ISO 26262 with ARAMiS II Generic
Process

As already described in section 5.1, the ISO 26262 standard specifies concrete requirements
for both the activities to be performed and the work products to be provided. In Figure 6.1,
an overview on the alignment of the safety process with the ARAMiS II generic process
is given. These are the results of the gap analysis outlined in section 2.4. As described in
section 2.4, because of the ARAMiS II methodology, the matching clauses are somehow
supported by the AMALTHEA meta-model (except for the hazard analysis).
In addition, the ISO 26262 parts and clauses are highlighted that are covered by the

design process developed in the AMALTHEA4public project [AMA17] and therein are
also supported by the AMALTHEA meta-model, as presented in [TMSP16]. Taking
into account the limitations described in section 2.4, it becomes clear that the two
design processes relate to similar ISO 26262 parts, but that they complement each other
well due to their focuses on different clauses. As figure 6.1 shows, both processes use
the AMALTHEA meta-model largely in the same parts of the safety process, which
are mainly system and software development. This also matches the results from the
survey performed within the PANORAMA project presented in chapter 4, where the
AMALTHEA meta-model is used in the concept and software development phases.

The use of AMALTHEA in the state-of-practice (chapter 4) seems to be quite limited to
exchange of timing specifications and software architectures, whereas it has been used in
AMALTHEA4public and ARAMiS II in a broader context. In AMALTHEA4public and
ARAMiS II, AMALTHEA has been used also for specification of functional architecture,
as well as some safety requirements [TMSP16; ARA19f]. In the context of the above gap
analysis against ISO 26262, a closer look has been taken to the AMALTHEA elements and

32

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

Figure 6.1: Alignment of ISO 26262 with ARAMiS II Generic Process

extensions used for specifying safety requirements. Comparing them to the requirements
from ISO 26262 regarding layout and management of requirements shows that they lack
a unique ID, ASIL and status information. It seems more appropriate to use a dedicated
requirements management tool for managing safety requirements and linking them against
AMALTHEA, instead of specifying them directly within the model. Using requirements
management software is recommended by ISO 26262 and state of practice.

As a conclusion, evaluating state-of-the-art and state-of-practice development processes
in context of ISO 26262 matches the surveys performed in PANORAMA (see chapter 4
and section 5.2) so far. It confirms the role of AMALTHEA as an exchange format
within distributed development, but on the other hand highlights the need of tools that
provide traceability between AMALTHEA and related design artifacts such as safety
requirements.

33

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

6.2 Gaps Between Practitioner Requirements and State of
the Art/State of Practice

In the following sub-sections, we present the analysis of the gap between the requirements
collected from practitioners as listed in section 5.2 and the state of the art and state of
the practice as discussed in chapter 3 and chapter 4. We follow the same structure that
we used to group the requirements.

6.2.1 Understanding

Table 6.1: Gaps between requirements for understanding and state of the art/practice

Requirement State of the Art/Practice Gap

C-1.1 . . . understand
the models I am
working with even if
they are large and
complex.

To understand large models, abstractions
of the models are created. Due to missing
tool support, this is done mostly manually.
This has of course the increased risk to have
inconsistencies in the abstract views.

• Tool support to create
abstract views on large
models automatically

• Methodological and tool
support to refine models

C-1.2 . . . work on
clear abstraction
levels making sure I
do not get
over-whelmed by too
much information.

see C-1.1 see C-1.1

C-1.3 . . . have tools
to navigate large and
complex models
efficiently.

In current practice, tool support for navigat-
ing large models is very limited. Therefore,
graphical representation of the information
represented by the models (e.g. diagrams or
tables) are exported as pictures and stored
in documents

• Tool support to created
different views on large-
scale models

• Possibilities to work col-
laboratively on models
and to merge and diff in-
formation

C-1.4 . . . have
reports on analysis
results in order to
understand complex
simulations easily.

In currently industrial practice analysis re-
sults are stored in documents which are cre-
ated manually.

Enable automated report
generation based on the
provided models

C-1.5 . . . be able to
compare analysis
results easily in order
to make informed
design decisions.

Since analysis results are stored in docu-
ments, today the comparison of different
analysis results must be performed mentally
by experts which then make decisions.

• Store analysis results in
form of a model

• Provide tool support to
link analysis results to
requirements and check
if the requirements are
fulfilled

• Capture design decisions
explicitly in the model
itself

34

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

Requirement State of the Art/Practice Gap

C-1.6 . . . have a
versioning system for
the created models
to be able to follow
their history.

Current versioning systems used are Git and
SVN which all work on text level.
When models are shared between different
companies there are cases where one repos-
itory is used to store the models and both
OEMs and suppliers have access to the repos-
itory. However, in many cases, the same
model is maintained in different repositories
due to access reasons.

• There is a need for
version control systems
that support model ver-
sioning

• Processes and workflows
are needed to support
management of models
in different repositories

C-1.7 . . . have a
versioning system to
be able to create a
safety case.

In current practice, safety cases are created
in form of documents (e.g. in MS word) and
reference other specification and report doc-
uments. All of these documents are stored in
document management systems (e.g. SAP).

• Create and maintain
safety cases in form of
models

• Provide fine-granular
links to models which
represent the system

C-1.8 . . . have
traceability between
requirements,
models, and other
artifacts to be able
to understand design
decisions.

Most common form of traceability using
unique IDs as tags within the artifacts. In
some traceability products, tools are used
that allow links to be represented as hyper-
links that can be navigated.

• Missing traceability be-
tween artifacts of differ-
ent types e.g., require-
ments and design

• Lack of useful traceabil-
ity visualisation. E.g.,
visualisation of relation-
ships between faults,
failures and system ele-
ments.

C-1.9 . . . have
traceability between
models and other
artifacts to be able
to create a safety
case.

Excel sheets are used to manage relation-
ships between safety requirements and safety
engineering processes (i.e FMEA, FTA)

• Create models to rep-
resent safety aspects of
the system to allow for
safety analysis

• Export models with
fault propagation
links between software
components

C-1.10 . . . document
design decisions as
part of the model.

Design decisions are taken implicitly by ex-
perts and are rarely documented

Capture design decisions
explicitly in the model
itself

C-1.11 . . . have a
common glossary in
a collaborative
development project
to avoid
misconceptions with
other team members.

Each team has its own set of terminology
and therefore a common glossary does not
exist

Support adding faults
and/or failures, using a
pre-defined glossary
according to the type of
amalthea element we are
tracing with (i.e. specific
glossary for software
faults)

35

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

6.2.2 Information Exchange

Table 6.2: Gaps between requirements for information exchange and state of the art/practice

Requirement State of the Art/Practice Gap

C-2.1 . . . exchange
requirements
(functional, timing,
safety, security, ...)
to create a common
understanding of the
system under
development and to
identify the problems
to be solved.

Both functional and non-function safety re-
quirements are exchanged in standard for-
mats such as XML, documents, spreadsheets.
Requirement management tools such as po-
larion helps in tracking and traceability of
requirements.

• Validation check if re-
quirements meet specific
standards (ISO26262)

• Porting of existing re-
quirements and deriving
work products specific
to a ISO standard

• Integrating safety re-
quirements to the exist-
ing standard Amalthea
exchange format (ASIL
indicators etc)

C-2.2 . . . exchange
system, software,
and hardware
architectures to
streamline
collaborative
development.

Amalthea model is used as standard ex-
change format to exchange system, soft-
ware and hardware architectures in some
collaborations (Tier 1 and Tier2, Tier 1 and
OEM’s). Proprietary formats supported
by tool providers also capture system in-
formation and are also exchanged between
partners. In some cases model transforma-
tions are performed to support the import
of standard exchange formats in the propri-
etary tools. In some cases tools support
direct import of standard formats.

C-2.3 . . . exchange
safety-related
information (e.g.,
hazards, risks) to be
able to create a
safety case.

Safety related information (hazards, require-
ments, results) are exchanged in the form of
documents.

• Creation of correct
safety cases for the
overall system (af-
ter integration of
sub-components)

• Machine-readable for-
mat is required to
formalize the safety
information and to
automate the exchange
the process

C-2.4 . . . exchange
interface
specifications to
facilitate
collaborative system
development.

Standards such as AUTOSAR describe inter-
faces between different software components
with a exchange format (arxml). This for-
mat is exchanged between OEM’s, Tier1 and
Tier2 suppliers.

36

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

Requirement State of the Art/Practice Gap

C-2.5 . . . exchange
analysis results in
order to reveal
problems and make
informed
collaborative design
decisions.

Requirement violations and analysis results
are exchanged in the form of standard
HTML files.

Capture analysis results
in the model which is used
as basis to perform the
analysis

C-2.6 . . . have a
standardized
exchange data
format to enable a
tool-independent
exchange.

At various stages of system design and devel-
opment different tool models are exchanged
(e.g.,: MATLAB/ Simulink, SysML). Tool-
independent exchange of models often not
working correctly.

C-2.7 . . . have a
machine readable
exchange data
format to ease
import and export
procedures.

Tool providers offer several such import and
export features to support different formats
(contradicting to C-2.6). Requirement looks
more generic.

C-2.8 . . .maintain
exchanged
information under
version control.

Requirements, models are version controlled
(SVN, GIT)

Analysis results
corresponding to each
model are not version
controlled.

C-2.9 . . . have
partial or full shared
access storage to
facilitate exchange.

Confluence, Shared GIT repository are used
to facilitate exchange

6.2.3 Intellectual Property Protection

Table 6.3: Gaps between requirements for intellectual property protection and state of the art/prac-
tice

Requirement State of the Art/Practice Gap

C-2.19 . . . extract
interface
specifications of
existing models as
accurately as
possible in order to
enable an efficient
protection of the
intellectual property
contained in the
underlying
functional models.

“In terms of information security, it is not
uncommon that sensitive information needs
to be redacted from an artifact before it is
exchanged. This can include information
about the function of a model, the ac-
tual functionality and algorithmic de-
tails, performance parameters, data accu-
racy, and sensor rates.” (cf. chapter 4)

Requirement C-2.19 falls
into the category of
information hiding. The
state of practice of
accurate interface
specification extraction
was not mentioned
explicitly though. From
PANORAMA perspective,
accurate interface
extraction based on open
source tools is not yet
available.

37

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

Requirement State of the Art/Practice Gap

C-2.11
. . . automatically
remove components
or information
previously marked as
confidential.

“[Information security] needs are usually cap-
tured in the initial contract and assured
throughout by, e.g., creating different mod-
els of the same component with different
level of detail, hiding information by replac-
ing identifiers with placeholders, imposing
strict access control on sensitive information,
or encrypting information when exchanging
it via insecure channels. In some cases, it is
also possible to exchange binaries instead of
source code or create special ‘opaque’ models
that cannot be introspected.” (cf. chapter 4)

From the elicited data it
is unclear whether
information hiding is done
automatically in practice.
From PANORAMA
perspective, automatic
information hiding based
on open source tools is
not yet available.

C-2.12 . . . define
certain views and
abstraction levels
that can be removed
or hidden in later
development phases.

“In terms of information security, it is not
uncommon that sensitive information
needs to be redacted from an artifact
before it is exchanged. [. . .] These needs
are usually captured in the initial contract
and assured throughout by, e.g., creating
different models of the same component
with different level of detail, hiding informa-
tion by replacing identifiers with placehold-
ers, imposing strict access control on sensi-
tive information, or encrypting information
when exchanging it via insecure channels.”
(cf. chapter 4)

The state of practice
elicitation shows that
information hiding is
actively used in order to
protect sensitive
information in models
already. From
PANORAMA perspective,
dedicated abstraction
levels or views to protect
sensitive information are
not yet available.

38

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

6.2.4 Common Knowledge

Table 6.4: Gaps between requirements for common knowledge and state of the art/practice

Requirement State of the Art/Practice Gap

C-2.13 . . . define
specific areas of
non-competition to
enable an open
exchange of common
knowledge.

The type of artifacts exchanged be-
tween different partners encompasses bi-
directional model exchange in Amalthea for-
mat (cf. chapter 4).
“If collaboration takes place within a supply
chain, e.g., for a vehicle or an aircraft, there
are different approaches to managing the
contracts. Either the OEM sub-contracts
development to a Tier-1 supplier, which in
turn sub-contracts to Tier-2 suppliers, etc.,
or the OEM coordinates the collaboration
with appropriate contracts all the way down
the supply chain. While this depends on the
type of the project, in practice it also de-
pends on the existing relationship between
the partners. The existing relationship also
determines the level of formality of the con-
tract which can range from a loose general
agreement to a full-fledged formal contract
between partners.” (cf. chapter 4)

Although open formats
are used to exchange
information, the state of
practice of Common
Knowledge definition was
not mentioned explicitly
in the elicitated state of
practice. The focus group
results indicate a mostly
bilateral information
exchange that is
constrained by the
contracts between
partners. We conclude
that the definition of
Common Knowledge in
context of PANORAMA
models is an open task.

6.2.5 Alignment of Development Process

Table 6.5: Gaps between requirements for alignment of development process and state of the
art/practice

Requirement State of the Art/Practice Gap

C-3.1 . . . work in an
environment with
aligned development
processes between
the partners
involved.

Different partners in a development process
(usually suppliers and OEMs) do have de-
fined roles, defined by the contractual obliga-
tion and often build on a long-standing rela-
tionship. Interaction between the partners is
common during development with differing
degrees of intensity, in particular for mature
partnerships. Synchronization between the
processes happens (cf. C-3.3), but processes
are usually not aligned in terms of sprint
length, etc. (cf. chapter 4).

None.

39

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

Requirement State of the Art/Practice Gap

C-3.2 . . . work in an
environment with
clearly defined team
roles.

The roles in a collaborative work environ-
ment are usually clearly defined:
“Roles that are typically involved in manag-
ing the collaborative effort are project man-
agers and team leaders, technical managers,
and business development managers. De-
pending on the project, engineers often have
direct interaction with each other. In some
cases, a dedicated engineer is co-located
with the collaboration partners or directly
responsible for handling a specific customer.”
(cf. chapter 4)

None.

C-3.3 . . . rely on
best practices for
selected development
phases.

Existing best practices are synchronisation
points between the partners that help to
align the processes and guidelines about
when to increase and decrease collaboration
intensity. The way artifacts are exchanged
is also standardised to a degree (cf. C-2.X).

C-3.4 . . . conserve
design decisions to
ease the integration
of work products.

It is not clear to which degree this is done
at this point. In principle, such information
can be recorded and exchanged based on an
agreement between the parties (cf. C-3.8).

C-3.5 . . . have
regular meetings
with representatives
from all incorporated
teams to exchange
information about
tasks or problems.

This already seems to happen to a degree,
in particular when conflicts arise or difficult
technical issues need to be resolved.

40

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

6.2.6 Integration of Received Information

Table 6.6: Gaps between requirements for integration of received information and state of the
art/practice

Requirement State of the Art/Practice Gap

C-3.6 . . . work in
standardized tool
environments to ease
the integration of
exchanged
information and to
reduce the overall
integration effort.

Toolsets are tailored towards the specific
tasks and often to the specific customer (cf.
C-3.10). Individual tools are connected by
"glue tools", often command-line tools, that
convert formats and copy files to the correct
positions. This makes the tool chains hard
to set up and the development process error
prone.

A standardized tool
environment requires:
• tools flexible enough to

support different
concrete projects;

• standardised exchange
formats for the most
common artifacts

• extensibility to address
customer-specific
requests.

APP4MC strives to
support these
requirements at least for
the purposes of timing
modelling and analysis.
Other tools such as
Siemens Polarion have
similar aims.

C-3.7 . . .make use
of simple and clear
connections between
requirement
engineering and
implementation tools
in order to keep the
overview.

The common way to establish connections
between artifacts in different lifecycle phases
is the use of identifiers. These identifiers can
be mined to create requirements traceabil-
ity matrices and other artifacts necessary
for validation and certification and can be
navigated if tool support exists. There is no
explicit trace model and little support for
change impact analysis or other activities.
Traceability is not a part of the developers’
daily work since trace links are not easily
accessible.

The state of the practice
does not yet allow to use
trace information for
program comprehension
or to maintain an
overview of the system.
Work within Panorama on
traceability management
addresses this gap.

C-3.8 . . . provide
dedicated
information (e.g.,
built-in
documentation,
standard interfaces)
to help others
integrate my work
results.

At this point, which information is ex-
changed depends on the agreement between
the involved parties. Each party can decide
to publish this information and an agree-
ment should be made about the format in
which it is published.

Models should provide
possibilities to capture the
information on which the
involved parties agree to
exchange. If this are
specific information only
relevant for a dedicated
information exchange a
standardized (see C-2.6)
must be extensible to
represent the specific
information.

41

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

Requirement State of the Art/Practice Gap

C-3.9 . . . receive
dedicated
information (e.g.,
built-in
documentation,
standard interfaces)
to help me integrate
the work results of
others.

See C-3.8. See C-3.8.

C-3.10 . . . use
simple mechanisms
for importing and
exporting existing
data and legacy
models to ensure a
seamless and smooth
introduction.

In practice, many companies build spe-
cialised toolsets to process the data they
get from their customers. The format of
the exchanged data is not standardised and
depends on who is involved in the process.
While most tools offer some common ex-
change formats (e.g., ReqIF, EMF UML),
they are not routinely used for data ex-
change, partially because they are not able
to support the full semantics and partially
because customers cannot provide the data
in these formats. (cf. chapter 4)

There is no overarching
standard for data
exchange. Attempts like
OSLC have not ultimately
led to an improvement of
the situation and the
exchange of data in
proprietary formats is still
widespread. The
Amalthea meta-model
might be used as a defacto
standard for some relevant
information in the
development process, but
this overall problem is not
in the scope of Panorama.

6.2.7 Brownfield Integration

Table 6.7: Gaps between requirements for brownfield integration and state of the art/practice

Requirement State of the Art/Practice Gap

C-3.12 . . . reuse
existing models to
save effort and
reduce error
proneness.

Today, reuse of models is not always possible
due to limited tool support and clone-and-
own approaches a primarily used.

• Tools must support the
storing of model ele-
ments in a repository

• Reuse concepts must be
explicitly defined and
implemented in the tool
(e.g. black-box vs.
white-box)

C-3.13 ...be aware of
all relevant licenses
and legal
information to avoid
problems in later
design and
implementation
phases.

42

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

6.2.8 Living Models

Table 6.8: Gaps between requirements for living models and state of the art/practice

Requirement State of the Art/Practice Gap

C-4.1 . . .make use
of a change impact
analysis in order to
be able to estimate
the effects of
individual changes.

Traceability links are mostly maintained
using unique IDs of the different artifacts.
This makes impact analysis hard since arti-
facts have to be investigated manually (cf.
C-3.7).

•
Integration/aggregation
of the traceability links
so that they can be used
for impact analysis

• Flexible visualisation of
traceability links in or-
der to facilitate trace-
ability links

C-4.2 . . . integrate
analysis results into
models to keep the
overview.

Analysis results are a separate report that
need to be analysed in order to identify what
needs to be improved in the model

Tools that integrate
analysis results into the
model

C-4.3 . . . use the
analysis results to
further develop and
improve the model
in order to increase
its quality in a more
focused way.

Analysis results are a separate report that
need to be analysed in order to identify what
needs to be improved in the model

• There is a need to
link analysis results to
quality attributes that
can be improved in the
model

• There is a need to
develop tool support
that provide recommen-
dations on what can be
improved in the model
based on current analy-
sis results

C-4.4 . . . receive
automatic updates at
specified time points
in case of changes
that affect system
components that I
am responsible for.

• Changes need to be identified manually
when requirements change. For changes
that have an impact on the monetary
value of the contract, more formal dis-
cussions are needed before changes can be
made.

• In cases where simulation models are used,
the models can be used to explore how
the requirements changes will affect the
current model

• Tools like Polarion support change man-
agement and send notifications to stake-
holders when artifacts change

While there are tools that
support change
management and provide
notification mechanisms,
it is rare that a common
tool is used throughout
the company or between
the different companies
that need to collaborate.
Mechanisms to support
change management that
go beyond a specific tool
are therefore required.

43

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

6.2.9 Standard-compliant Design Process

Table 6.9: Gaps between requirements for standard-compliant design process and state of the
art/practice

Requirement State of the Art/Practice Gap

C-5.1 . . . follow a
standard-compliant
design process.

There is no standard collaborative design
process in place at the moment. The process
is defined and adapted by the suppliers for
each customer. The process therefore ranges
from agile and iterative to plan driven pro-
cesses like waterfall and in some cases hybrid
processes are used.

The need to adapt a
process for each customer
can be problematic for the
supplier, since they
cannot follow one process.
A suggested solution is to
have a standard process
in-house and have a way
to synch this standard
process with each supplier.
However, the feasibility of
this needs to be
investigated.

6.2.10 Development of Standard-compliant Systems

Table 6.10: Gaps between requirements for development of standard-compliant systems and state
of the art/practice

Requirement State of the Art/Practice Gap

C-5.2 . . . develop
standard-compliant
systems.

All safety critical products need to adhere
to safety standards. The automotive part-
ners follow ISO 26262 while the aviation
partners follow DO 178B. This means that
for such systems, extra artifacts e.g., extra
documentation or traceability need to be
defined. This also affects the process that
needs to be followed since it has to comply
to the safety standards. More effort is put
towards verification and validation.

More tool support is
required by practitioners
to help them define safety
assurance cases and
perform safety analysis.
Practitioners need the
ability to formally model
safety requirements (c.f
C-2.3) in order to
automate safety analysis.

44

7 Summary and Conclusion

Our analysis shows that a number of gaps persist between the requirements practitioners
express for collaborative systems engineering processes and what the state of the art and
the state of practice has to offer. However, the state of the art describes a number of
approaches to address such gaps. What remains are mostly practical issues that revolve
around incompatible tool chains and a lack of exchange formats. In situations in which
partners exchange and update information frequently, the seamless exchange of data and
integration into the development, visualisation, and test environments is crucial.
At the same time, such free exchange of information also introduces new problems in

terms of privacy and security of data, protection of intellectual properties, and licensing.
Furthermore, the need to collaboratively define and maintain safety cases means that
partners need to apply rigour and need to be able to track changes. Updated information
from partners also needs to be integrated into the traceability models to show that all
requirements are tested and to enable change impact analysis.
The solutions that PANORAMA can provide in this space are three-fold:

Exchange format: PANORAMA is going to provide the Amalthea model, an exchange
format that might become the defacto standard for exchange of timing information
for heterogeneous embedded systems. While this is only one of several aspects that
requires an exchange format, the project focus lies here. By providing transforma-
tions from and to the Amalthea model, it will also be possible to derive data from
other languages, such as AUTOSAR and EAST-ADL and to interface with a variety
of other tools.

Process definition: A combination of process knowledge from Amalthea4public, DEIS,
and ARAMIS II will provide the foundation for the project going forward. In
particular, the existing use cases, the process descriptions, and tools such as the
Open Dependability Exchange meta-model [DEI19] will be reused and refined for
the purposes of PANORAMA.

Security: PANORAMA will deliver new results in terms of protecting private data and
specific intellectual properties in collaborative development processes. A first step
will be a methodology for the analysis of data privacy threats in such settings.

Safety: Another project focus is the collaborative, model-driven creation and maintenance
of safety cases. For this purpose, first steps are being made to identify the models
required and which analysis steps need to be executed in the context of a generic
process definition for collaborative systems engineering.

45

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

Traceability: In terms of traceability, we will deliver results for decision support to create
and maintain traceability links. We will tailor this particularly to situations in
which traced artifacts are replaced during development and the existing trace links
to these artifacts need to be reestablished.

The main contribution of this deliverable, the gap analysis, will guide the development
of these solutions. We also consider it as an initial analysis which will be completed and
extended as the project progresses.

46

Bibliography

[AMA17] AMALTHEA4public Project Consortium, AMALTHEA4public. An Open
Platform Project for Embedded Multicore Systems, http://www.amalthea-
project.org/, 2017.

[AP10] A. Avritzer and D. J. Paulish, “A comparison of commonly used processes
for multi-site software development,” in Collaborative Software Engineering,
Springer, 2010, pp. 285–302.

[Apa19] Apache Software Foundation, Subversion, https://subversion.apache.
org/, 2019.

[ARA19a] ARAMiS II Project Consortium, ARAMiS II. Development processes. Tools.
Plattforms, https://www.aramis2.com/, 2019.

[ARA19b] ——, “Generic multicore development process,” Achievement E2.2, 2019,
not yet published.

[ARA19c] ——, “Platform architecture characterization and mitigation / technical
architecture models,” Achievement E2.3, 2019, not yet published.

[ARA19d] ——, “Tool interoperability specification and methodology,” Achievement
E2.4, 2019, not yet published.

[ARA19e] ——, “Partitioning of software components,” Achievement E3.3, 2019, not
yet published.

[ARA19f] ——, “Avionics demonstrator II,” Achievement E5.5, 2019, not yet published.

[BRH+13] J. Birch, R. Rivett, I. Habli, B. Bradshaw, J. Botham, D. Higham, P. Jesty,
H. Monkhouse, and R. Palin, “Safety cases and their role in iso 26262
functional safety assessment,” in International Conference on Computer
Safety, Reliability, and Security, Springer, 2013, pp. 154–165.

[CrE19] CrESt (Collaborative Embedded Systems), Concepts of CrESt Tools and
Interoperability Framework, https://crest.in.tum.de/index.html, 2019.

[DEI19] DEIS Project Consortium, “Digital dependability identities and the open
dependability exchange meta-model,” Deliverable D3.1, 2019. [Online]. Avail-
able: http://www.deis-project.eu/fileadmin/user_upload/DEIS_D3.
1_Specification_of_the_ODE_metamodel_and_documentation_of_the_
fundamental_concept_of_DDI_PU.pdf.

[FRMM18] M. Franzago, D. D. Ruscio, I. Malavolta, and H. Muccini, “Collaborative
model-driven software engineering: A classification framework and a research
map,” IEEE Transactions on Software Engineering, vol. 44, no. 12, pp. 1146–
1175, Dec. 2018, issn: 2326-3881. doi: 10.1109/TSE.2017.2755039.

47

http://www.amalthea-project.org/
http://www.amalthea-project.org/
https://subversion.apache.org/
https://subversion.apache.org/
https://www.aramis2.com/
https://crest.in.tum.de/index.html
http://www.deis-project.eu/fileadmin/user_upload/DEIS_D3.1_Specification_of_the_ODE_metamodel_and_documentation_of_the_fundamental_concept_of_DDI_PU.pdf
http://www.deis-project.eu/fileadmin/user_upload/DEIS_D3.1_Specification_of_the_ODE_metamodel_and_documentation_of_the_fundamental_concept_of_DDI_PU.pdf
http://www.deis-project.eu/fileadmin/user_upload/DEIS_D3.1_Specification_of_the_ODE_metamodel_and_documentation_of_the_fundamental_concept_of_DDI_PU.pdf
https://doi.org/10.1109/TSE.2017.2755039

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

[FVG19] A. Frigerio, B. Vermeulen, and K. Goossens, “Component-level asil decom-
position for automotive architectures,” in 2019 49th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks Workshops
(DSN-W), IEEE, 2019, pp. 62–69.

[Git19] Git Community, Git, https://git-scm.com/, 2019.

[HGK+08] T. Hildenbrand, M. Geisser, T. Kude, D. Bruch, and T. Acker, “Agile
methodologies for distributed collaborative development of enterprise ap-
plications,” in 2008 International Conference on Complex, Intelligent and
Software Intensive Systems, IEEE, 2008, pp. 540–545.

[ISO11a] ISO/IEC 26262-5:2011, “Road vehicles—functional safety—part 5: Prod-
uct development at the hardware level,” International Organization for
Standardization, Standard, 2011.

[ISO11b] ISO/IEC 26262-8:2011, “Road vehicles—functional safety—part 8: Support-
ing processes,” International Organization for Standardization, Standard,
2011.

[ISO11c] ISO/IEC 26262-9:2011, “Road vehicles—functional safety—part 9: Auto-
motive safety integrity level (ASIL)-oriented and safety-oriented analyses,”
International Organization for Standardization, Standard, 2011.

[ISO11d] ISO/IEC 26262:2011, “Road vehicles—functional safety,” International Or-
ganization for Standardization, Standard, 2011.

[KS19] S. Kunz and T. Sandmann, Modellbasierte Multicore-Softwareentwicklung.
Die ARAMiS II Entwicklungsprozesse, https://www.aramis2.org/app/
download/9075850976/04_ARAMiS_II_TP0_2019-09-20_Abschlussveranstaltung_
TP2.pdf, Sep. 2019.

[Roh69] B. Rohrbach, Kreativ nach Regeln – Methode 635, eine neue Technik
zum Lösen von Problemen, Oct. 1969. [Online]. Available: https://en.
wikipedia.org/wiki/6-3-5_Brainwriting.

[Siea] Siemens, Polarion Extensions. [Online]. Available: https://extensions.
polarion.com/?__hstc=2015854.53dfcc7898a1ee5a006c6faebd7303e8.
1570789774181.1570789774181.1570789774181.1&__hssc=2015854.1.
1570789774182&__hsfp=391108424.

[Sieb] ——, Polarion Platform. [Online]. Available: https : / / polarion . plm .
automation.siemens.com/products/overview.

[Sie16a] ——, Accelerating automotive innovation, White Paper, 2016. [Online]. Avail-
able: https://polarion.plm.automation.siemens.com/resources/
download/accelerating-automotive-innovation.

[Sie16b] ——, Automate lifecycle governance and compliance for automotive software
systems, White Paper, 2016. [Online]. Available: https://polarion.plm.
automation.siemens.com/resources/download/automate-lifecycle-
governance-and-compliance-for-automotive-software-systems.

48

https://git-scm.com/
https://www.aramis2.org/app/download/9075850976/04_ARAMiS_II_TP0_2019-09-20_Abschlussveranstaltung_TP2.pdf
https://www.aramis2.org/app/download/9075850976/04_ARAMiS_II_TP0_2019-09-20_Abschlussveranstaltung_TP2.pdf
https://www.aramis2.org/app/download/9075850976/04_ARAMiS_II_TP0_2019-09-20_Abschlussveranstaltung_TP2.pdf
https://en.wikipedia.org/wiki/6-3-5_Brainwriting
https://en.wikipedia.org/wiki/6-3-5_Brainwriting
https://extensions.polarion.com/?__hstc=2015854.53dfcc7898a1ee5a006c6faebd7303e8.1570789774181.1570789774181.1570789774181.1&__hssc=2015854.1.1570789774182&__hsfp=391108424
https://extensions.polarion.com/?__hstc=2015854.53dfcc7898a1ee5a006c6faebd7303e8.1570789774181.1570789774181.1570789774181.1&__hssc=2015854.1.1570789774182&__hsfp=391108424
https://extensions.polarion.com/?__hstc=2015854.53dfcc7898a1ee5a006c6faebd7303e8.1570789774181.1570789774181.1570789774181.1&__hssc=2015854.1.1570789774182&__hsfp=391108424
https://extensions.polarion.com/?__hstc=2015854.53dfcc7898a1ee5a006c6faebd7303e8.1570789774181.1570789774181.1570789774181.1&__hssc=2015854.1.1570789774182&__hsfp=391108424
https://polarion.plm.automation.siemens.com/products/overview
https://polarion.plm.automation.siemens.com/products/overview
https://polarion.plm.automation.siemens.com/resources/download/accelerating-automotive-innovation
https://polarion.plm.automation.siemens.com/resources/download/accelerating-automotive-innovation
https://polarion.plm.automation.siemens.com/resources/download/automate-lifecycle-governance-and-compliance-for-automotive-software-systems
https://polarion.plm.automation.siemens.com/resources/download/automate-lifecycle-governance-and-compliance-for-automotive-software-systems
https://polarion.plm.automation.siemens.com/resources/download/automate-lifecycle-governance-and-compliance-for-automotive-software-systems

D6.1 – Final Existing Development Processes Overview ITEA 3 – 17003

[TMSP16] M. Trei, S. Maro, J.-P. Steghöfer, and T. Peikenkamp, “An ISO 26262
Compliant Design Flow and Tool for Automotive Multicore Systems,” in
International Conference on Product-Focused Software Process Improvement,
Springer, 2016, pp. 163–180.

[WC12] D. D. Ward and S. E. Crozier, “The uses and abuses of asil decomposi-
tion in iso 26262,” in 7th IET International Conference on System Safety,
incorporating the Cyber Security Conference 2012, IET, 2012, pp. 1–6.

49

	Authors
	Summary
	Introduction
	Scope and Objectives
	Outline

	Methodology
	Use Case Collection
	Workshop on Requirements for Collaborative Development
	Focus Group on State of Practice of Collaborative Development
	Alignment of ISO 26262 with ARAMiS II Generic Process

	State-of-the-Art of Collaborative Development Processes
	Software Development Standard Process
	PANORAMA Context

	Safety-critical Systems Development Process
	Collaborative Work in Tool Platforms
	Document-centric Collaboration
	Artifact-centric Collaboration

	Distributed Dependable Systems Development
	Collaboration Scenario: Requirement-driven Design
	Collaboration Scenario: Components-of-the-Shelf
	Collaboration Scenario: System-of-systems Integration
	Challenges

	ARAMiS II Generic Process
	User and System Requirements Engineering
	System Architecture
	Software Development
	Hardware Development
	Mechanics Development
	Verification and Validation
	Importance for PANORAMA

	Collaboration Traceability Workflow

	State-of-Practice of Collaborative Development Processes
	Collaboration Workflow
	Artifacts Exchange
	Infrastructure
	Traceability
	Security and Intellectual Property Management

	Requirements of Future Collaborative Development Processes
	Requirements from ISO 26262
	Overview on the Safety Lifecycle
	Automotive Safety Integrity Levels
	Work Products and Documentation
	Requirements Structure
	Verification & Validation
	Conclusion

	Collaboration Requirements
	Understandability
	Information Exchange
	Integration into Design Processes
	Living Models
	Compliance to Standards

	Gap Analysis between Requirements for Collaborative Systems Engineering, State-of-the-Art and State-of-Practice
	Alignment of ISO 26262 with ARAMiS II Generic Process
	Gaps Between Practitioner Requirements and State of the Art/State of Practice
	Understanding
	Information Exchange
	Intellectual Property Protection
	Common Knowledge
	Alignment of Development Process
	Integration of Received Information
	Brownfield Integration
	Living Models
	Standard-compliant Design Process
	Development of Standard-compliant Systems

	Summary and Conclusion

