I\

T@ I TEAZ3

eXcellence InVariant Testing

Project References

PROJECT ACRONYM
PROJECT TITLE
PROJECT NUMBER

PROJECT START
DATE

PROJECT MANAGER

XIVT

EXCELLENCE IN VARIANT TESTING

17039

NOVEMBER 1, 2018 PROJECT 36
DURATION MONTHS

GUNNAR WIDFORSS, BOMBARDIER TRANSPORTATION, SWEDEN

WEBSITE HTTPS://WWW.XIVT.ORG/
Document References
WORK PACKAGE WP4: TOOL INTEGRATION AND TRACEABILITY
DELIVERABLE D4.2: HIGH LEVEL PLATFORM ARCHITECTURE - REV 2
DELIVERABLE TYPE REPORT (R)
DISSEMINATION PuBLIC DATE

LEVEL

MAPPED TASKS

2020-03-31

T4.1: DEFINE HIGH LEVEL ARCHITECTURE FOR END TO END TEST
ORCHESTRATION PLATFORM

elcellence InVariaan-esting WP4: D4.2

Summary

This report defines the various services and features, which are expected to be supported
by the toolchain. Further, it maps the features to the tools built by various partners, that
offer those services. Next, each tool is defined in detail elaborating on the functionality,
architecture diagram, end points and dependencies, if any. Finally, an attempt is made to
recommend a technology stack that would help the various independent tools to work in
sync and serve as the backbone of the final toolchain.

It is important to note, that the list of tools provided in this report is not complete, and it is
expected that more tools will be contributed in to the XIVT project as the project, and
thereby those tools mature further. However, the available list, shall allow to define the
toolchain baseline.

Next steps would be to build upon the baselining and identify challenges in collaborating
the tools. Those challenges would then provide direction in defining the interaction
guidelines, i.e. the supported end-points by the toolchain. Tools that will come to maturity
at a later stage of the project shall need to respect those guidelines in order to be
successfully integrated with the toolchain. These API definitions and guidelines around
end-points will constitute the part of next deliverable, i.e. D4.3.

elcellence InVariaan-esting WP4: D4.2

Table of Contents

1. The High Level Architecture Direction: MiCroServiCes...........ccccccceoiiiiiiiiiiiiiiinienee. 5
2. Revisiting the XIVT Tool Chain Platform...........ccciiiieeeeeeeeeeeeee 7
3. Breakdown of Functional Areas in the XIVT Platform............cooorii. 8
3.1 XIVT Control Ul - Top Level Diagram...........ceeeeiaiiiiiiiiiiiiieieeeeee e 8
3.2 XIVT Test Optimization - Top Level Diagram...............eceieiiieiiiieeeeeeee e 11
3.3 USE Case Extension: Telecom - Top Level Diagram..............ccccouiiiiieeieiiiiiinnnnnns 11
3.4 USE Case Extension: Railway - Top Level Diagramcccccooiiiiiiiiiiiiiieeenneeen. 12
4. Features and GeneriC SEIVICESccouii i e e e 14
2 01 Yo [T 4o o 1S 14
4.2 Feature DeSCIIPON. e e e e 16
4.3 Mapping of Tools to Features/ServiCes.........ccoouiiiiiiieiiiiieee 18
5. Detailed Tools and Services Definition..............ooooieiiiiiiiiiccccii e 19
5.1 VarSel: Service for Variant Selection................ouuuiiiiiiiii e 19
5.2 Service for Test Case Instantiation...............ooooii 20
5.3 Service for Test Suite Quality ASsessment...........ccuuviiiiiiiiiiiiiieeee 22
5.4 Service for Test Injection and Execution (FBDMutator).............cccvveieeeeeeiiiininnnn, 23
5.5 SEIVICE SEAF QX ettt e e e e et e e e e e nne e e e e e e 26
5.6. Service RCM (NALABS).....cooi ittt et e e e e eea e e 27
5.7 BeVR: Service for requirements-based variability modelling.............ccccceeeeeennn. 28
5.8 Service for generating human-readable test scripts ..., 29
5.9 Service for lloT component identification.................ccccceoiiiiiii e 30
5.10 Service for risk-based test SCOrNG........coovviiiiiiiiii 32
5.11 VARA: Service for requirements similarity-based reuse prediction...................... 33
5.12 IntegrationDistiller: Service for abstract integration test case generation............. 34
5.13 SaFReL: Service for performance test case generationcccceeeveeiiiiinnnnns 35
5.14 ReForm: Service for requirement formalization and test optimization.................. 37
5.15 ifakVBT: Service for test case generation and variant traceability....................... 38
ST S Y I SRR 39
5.17 RELOAD: Service for testload generationcccuviiiiiiiiiii 41
B8 T A R A et e e e e e b e e e e e e na e e e e e e e nnees 42

eXcellence In Variant Testing WP4:D4.2
STt S T [SRR 43
B.20 MODICA ..ottt ettt e et e e e e e e e e e e e e et eeraeaaaaaaeaan 45
5.21 ARD Test Prioritization TOOI.........cooo i 46
B.22 MERAN ...ttt e e e e e e e e e e e et e aaaaaaaaeeeeeaaaannns 48
ST B I S T 1 PSSP 49
B.24 INNSPECL. ... e ——————————— 51
5. 25 DEIAFUZZEN ... e 51
5.26 TV RODOTESIENttt 53
5.27 Otomat (TESIIOYET).....cceeeeeeeeeeeeee et 54
6. Technology Stack Recommendation.............ccooooiiiiiiiiiiiiieee e, 55
6.1 Open-source Framework Suggestions..............ooooiiiiiiiicciccccee e, 55

WP4: D4.2

1. The High Level Architecture Direction:
Microservices

Traditional application design is often called “monolithic” because the whole thing is
developed in one piece. Even if the logic of the application is modular it's deployed as one
group, like a Java application as a JAR file for example. This type of architecture is
convenient because it all happens in one spot, however not practical for a project like
XIVT that has many different partners working on different pieces of the reference tool
chain implementation. As shown in Figure 1, Microservices separates all of the major
parts of this monolith from each other, untangling the codebase and drastically changing
how partners can collaboratively develop and contribute to the reference tool chain. With
microservices, different functions (not literally functions, but functional parts of the tool
chain) are all separate. They communicate with the user interface, each other, and
instances of the database. Each independent service is packaged as an API so it can
interact with the rest of the application elements.

The Microservices Architecture has a number of important benefits. First, it tackles the
problem of complexity. It decomposes what would otherwise be a monstrous monolithic
application into a set of services. While the total amount of functionality is unchanged, the
application has been broken up into manageable chunks or services. Each service has a
well-defined boundary in the form of an RPC- or message-driven API. The Microservices
Architecture enforces a level of modularity that in practice is extremely difficult to achieve
with a monolithic code base. Consequently, individual services are much faster to
develop, and much easier to understand and maintain. Second, this architecture enables
each service to be developed independently by each XIVT partner that is focused on that
service. The XIVT partner is free to choose whatever technologies make sense, provided
that the service abides by the API contract. Third, the Microservices Architecture enables
each microservice to be deployed independently. Partners never need to coordinate the
deployment of changes that are local to their service. These kinds of changes can be
deployed as soon as they have been tested by each partner. Finally, the Microservices
Architecture enables each service to be scaled independently, making it a robust
enterprise grade approach.

elcellence InVariant Testing WP4: D4.2

MONOLITHIC
ARCHITECTURE

—
User Interface
Microservice
Business Logic /

Figure 1. A brief comparison between the monolithic and microservices architectures.

MICROSERVICES ARCHITECTURE

Data Access
Layer

T
]

The current report is the initial work for the XIVT architecture elaboration in a microservice
architecture approach. In the next sections we establish the common conceptual
infrastructure for all the architectural work and traceability and we identified initial

technology requirements from different partners and we extracted high-level interfaces
and deployment requirements.

Vit Te WP4: D4.2

eXcellence InVariant Testing

2. Revisiting the XIVT Tool Chain Platform

The XIVT architecture has its basis in the release mechanism as integrated tool chains,
which implements the proposed methods in a coherent way, and are available as a
platform. The XIVT workbench shown in Figure 2 will allow to specify variant rich systems
on the domain level, build instances, construct test cases and assess test suites in one
place, across various use cases. The architecture of the tools would be such that the core
platform can be easily extensible for any future use cases not explicitly addressed in the
XIVT project.

Work Package 4

Wark Package 2 VWaork Package 3 Use Case Extensions
b e i ity B ety By T i
} 1
MP,(1..n) AP,[1..n) MP,(1..n) AP (1..n}) | | Automotive || Rail !
| | | : | |
MG,(1..n) AG(1.n) MG(1.n) | | AG,(1.n) | | Production || Telecom | !
| | e — |

Common Interface Layer

XIVT Contral LI XIVT Config U Resulis Dashboard

Translation Layer

MG - Module General

AG - Alganthm General

MP - Module Partner Specific
AP - Algorithm Partner Specific
F - Partner Product Extension

Figure 2. XIVT Initial Workbench.

WP4: D4.2

External tools brought as background IPs by the consortium partners will be included by
appropriate import and export-modules and need to support interface definitions of XIVT.

The output of this XIVT architecture will be an ecosystem of services around the proposed
methodology. The following initial types of services based on the XIVT technologies were
set to be implemented:
e Construction of test suites for highly configurable systems, an assessment of test
suites.
Certification support for safety-critical systems,
Security analysis and testing, and
e Incremental enhancement of test suites for regression testing.

3. Breakdown of Functional Areas in the XIVT
Platform

In this live document, we describe the XIVT Framework and its functional parts. The
description is done by following a common pattern. We describe the high-level purpose of
each Ul and services and then we outline the functional interfaces that help to figure out
the main features and possible means for integration. In addition, we briefly detail the
subordinates — the constituent parts of each service in terms of the tools developed.

3.1 XIVT Control Ul - Top Level Diagram

The XIVT framework regroups several interconnected tool sets including tool sets
specifically developed in certain use cases. These tool sets are highly interconnected to
achieve the goal of providing several services to the end user.

This is achieved using the XIVT control Ul outlined in Figure 3 in which different
microservices (e.g., Use Cases, Scheduler) are choreographed. Since there is no central
coordination, each service produces and listens to events and decides if an action should
be taken or not given the end user needs. In this way each service can coordinate their
activities and processes to share information and value to the Control UI.

u WP4: D4.2

o
=
=
=
=
S
=2
=
=
=
=
="
=
=
=
=

XIVT Control Ul

User Info Content
Microservice Ul Extension Microservice

Microservice

Display
Management

Use Cases Scheduler O/p Handling Microservice

Microservice : : i e
Microservice Microservice

Figure 3. XIVT Control Ul Structure.

Given this structural decomposition of the XIVT control Ul, the management and
communication between the end user and services can be viewed as a direct client-to-
microservice communication architecture (shown in Figure 4) in which the end user can
make requests directly to some of the microservices through services within the Docker
host or internal cluster and to implement several cross-cutting concerns in an API
Gateway (i.e., using the XIVT control Ul structure).

In addition, this management and communication architecture is helping the use case and
tool providers to get an understanding of how APIls are being used and how they are
performing. This can be extended by providing real-time analytics reports and identifying
trends in the usage of these microservices, including logs about request and response
activity for further online and offline analysis.

WP4: D4.2

i E
: Identity »
o
|——1 A
Service
Ul Extension
API Content
i > Gateway | .
Y Use Cases >_
Scheduler
0O/ Handling
Display
Management
o =

Figure 4. XIVT Framework APl management and interaction between end users and
service providers.

One of the primary challenges with microservices architecture is allowing services to
discover and interact with each other as well as managing the service discovery. Since the
XIVT framework will support the distributed characteristics of microservices architectures.
Using meta information, such as configuration data, that can be used by each use case,
the work in WP4 will explore several techniques for performing service discovery for
microservices-based architectures.

In the next sections, we are outlining the WP2 and WP3 services that are developed for
test optimization, generation and execution. In this iteration we have focused on
developing, based on our initial tool designs, proof and concepts as well as performing
adaptations to the baseline technologies in order to identify and start solving the
integration issues in this XIVT framework. Hence, in an initial stage most services related
to WP2 and WP3 only implement a small subset of the requirements.

The main use case of integrating different XIVT services is to allow users to manage jobs
to execute different functionalities. For example, a tester can specify test jobs, execute
them and analyze its results and the main information gathered execution are test results,
logs and metrics. The XIVT framework Ul should provide to the user a rich user interface
specifically tailored to ease the management of that kind of information for each service
provided by WP2 and WP3.

10

i<
g

/ 'I'@

ariant Testing

WP4: D4.2

=

eXcellence In

=2

3.2 XIVT Test Optimization - Top Level Diagram

Besides all the features provided by XIVT Ul than can be used by testers in the web
interface, XIVT WP2 provides services that can be managed directly when a test suite is
available. These services are shown in Figure 5 and allow a tester to select and prioritize
tests with ease.

XIVT Test Optimization

Test Case Selection | / | Test Case Prioritization
Service f Service

Change Impact

B Similarity Analysis |8 g
Service

Analysis Service

Figure 5. XIVT Test Optimization Services.

As XIVT test optimization services are the main entry point of XIVT framework features, it
requires all other use case extensions and configurations to work properly. That is, this
component requires all the use case specific components to be available. In the next
section we outline the component that allows the XIVT framework to instrumentalize
already deployed SUTs when services are executed against it.

3.3 USE Case Extension: Telecom - Top Level Diagram

The use case extension for the telecom domain (as shown in Figure 6) is implemented as
an independent process communicated with other components using remote protocols or

11

ellellence InVariant Testing WP4: D4.2

APIs. Specifically, the Android Device Bench is used for providing a bench initiator, an
execution manager and a logger among others.

Use Case Android Device Bench
Extension ADB
Telecom

Initialization : Translation

Bench Initiator y \ XIVT <-> ADB
XIVT Toolbox Translator

Common Infterface
Layer

Execution

Management
Controller

Resulis / Reporis
Logger

Figure 6. XIVT Use Case Extension for Telecom Domain.

This use case extension for the Telecom domain will be used in the XIVT Framework as a
toolbox having a common interface layer that can be used by other use cases.

3.4 USE Case Extension: Railway - Top Level Diagram

In the case of the railway domain, the XIVT common interface toolbox will interact with the
services provided by WP2 and WP3. For example (as shown in Figure 7), a service called
VARA provided by WP2 will interact with the DOORS database and the models provided
in MATLAB Simulink for requirement reuse analysis as well as generating and selecting
test cases.

A remote API in this case is used by external tools (like a Jenkins plugin). In this case, a

service can be executed multiple times and provide results in relation to the railway use
case.

12

-— = ? :@

eXcellence InVariant Testing

WP4: D4.2

XIVT Common
Interface

TAAllkhAay

—N Model

VARA — Matworks

Test
Matworks

HW

AV

L <
Docs and
Reportina

Figure 7. XIVT Use Case Extension for Railway Domain.

13

WP4: D4.2

4.Features and Generic Services

4 .1 Introduction

In order to account for the variability in the different use cases with respect to processes,
existing tools and data formats, the XIVT toolchain is designed as a product line itself. This
product line is also referred to as the tool landscape. By selecting a set of capabilities from
a capability model, a user can configure the tool landscape and thereby derive a concrete
toolchain, tailored to her needs. The tool landscape consists of generic services or
features, that provide certain capabilities. Each such service or feature can then be
implemented by one or more concrete tools or services. The resulting toolchain consists
of only those concrete tools or services which are applicable in any specific use case.

provides Service / Feature
(interfaces)

Capability

implements Tools

(implementations)

select

e h use

T

derived from

Toolchain

(Product)

14

ellellence InVariant Testing WP4: D4.2

[HINT Tool Landscape |

\.\
A N

Capabilities

e ——

e
e
',_,_;- __"—___

| W ariability hranagement | | Test .-’-\.nalysm and Design | | Test E:-cecuhl:un |
- /
\ <

| Vanablllt_l,l-MDdelllng I | Sampllng | | Instantiation | | FeatureE;:se BAnalysis |

#IWT Tool Landscape Legend:
P AN # Mandatory
: > o Optional
s
s ooy A Or Group
=z S \\ B ez Ahstract Feature
| “ariability MEnagement | | Test Analpsiz and De5|gn | Test Executlon I Concrete Feature
————————— Bl [Collapsed

| Fequirements Coverage | | Feature Coverage | | Coc;;Ecuverage |

#IWT Tool Landscape
Artl acts

- =13}
B " r'/ e
| YWariability Management ’ | Test Analyziz and Design | | Test Execution | W —
g]

/..«-’|“‘--ﬂ

-
| Tesl.t’-‘«a'éptahon | | Test Loggmg | | Test Simulation | | Dynamic ?f«lbltlatlon | | Post-execution Arbitration | Functional | | Security

15

elcellence InVariamT-esting WP4: D4.2

4.2 Feature Description

Variability Modelling: The (manual) process of creating a variability model, possibly
assisted by tools, but mainly an intellectual human effort.

Sampling: Process of automatically finding valid configurations from a variability model,
e.g. feature model.

Instantiation (Synonyms: Product Derivation, Realization): Building or selecting an
instance, that is, one particular object from a general description of a class of similar
objects. In testing, building a concrete test case from an abstract one is a form of
instantiation.

Feature Reuse Analysis: Determining features from an existing product line
specification that can be reused for the creation of a product configuration based on given
product requirements.

Test Modelling: The (manual) process of creating a test model, possibly assisted by
tools, but mainly an intellectual human effort.

Test Reuse Analysis: Determining test cases or test procedures from an existing test
suite that can be reused for the creation of a new product-specific test suite based on
given product requirements.

Test Generation: The automated process of automatically creating abstract or concrete
test specifications consisting of test structure, test behavior and test data.

Test Data Generation: Sub-process of Test Generation related to test data.
Test Behavior Generation: Sub-process of Test Generation related to test behavior.

Test Structure Generation: Sub-process of Test Generation related to test structure,
e.g. setup and configuration.

Test Priorization: Assigning priorities to a set of test cases based on some priorization
criterion, resulting in an ordered (or at least sortable) set of test cases.

Test Selection: Selecting test cases from a set of test cases based on some selection
criterion, resulting in a subset of test cases.

Test Execution: Executing a test suite or test case, either in simulation or against the real
testitem.

Test Behavior Simulation: Execution a test suite against a simulated version of the test
item.

Test Adaptation: Translating a logical test cases to executable, technical test cases.

Test Logging: Capturing relevant information during test execution, e.g., stimuli sent to
and responses received from the test item.

16

elcellence InVariaan-esting WP4: D4.2

Mutation Testing: Assessing the fault detection rate of a test suite from the comparison
of results from running the test suite against the original test item as well as variants of the
test item resulting from fault injection (mutants).

Fault Injection: Deliberately introducing known types of faults (i.e. through mutation
operations) into a system.

Coverage Analysis: Determining the degree in to which a test suite covers, i.e. verifies, a
given set of coverage items, e.g., requirements, features or portions of code.

Requirements Coverage Analysis: Determining the degree in to which a test suite
covers a set of requirements.

Feature Coverage Analysis: Determining the degree in to which a test suite covers a set
of feature.

Code Coverage Analysis: Determining the degree in to which a test suite covers a code
base.

Formal Verification: Proving or disproving the correctness of the test specification or test
model with respect to a certain formal specification or property, using formal methods, e.g.
through Model Checking.

17

elcellence InVariant Testing WP4:D4.2
4.3 Mapping of Tools to Features/Services
, Services
Cos ol Il Sl B~ = |
El.5|2|5 2 2808822555 ¢8
. CCAM M= =1 Tl = Ol L o = Sl N S <2 = S
:?-:eady E E‘ *E 3 S 5 & % % g E éﬂ é S ug, g 2 g %
-l B 3 = Sl T[S [l Bl S] g 8 e
+ = In Development e 4‘3 g 8y ?_‘-n 0 E = E = = .g 5 T X g
0 = Planned > T le R |8 (ET I |F g = 2 8 B § 2
2 = Not specified % g e 2/d 5 2" ¢
2c 2 g & B
: 18°:°
& &ils g
o =
© 2
S ¥
VarSel + O+ +
SEAFOX X X x + + 0 0
BeVR + o+ o+ o+
IntegrationDistiller
SaFRel X 0 X
ReForm 0 + +
ifakVBT 0 X X +
0
NALABS (fka. RCM) X+
TV RoboTester 0 +
VARA +
Generation of human-readable test 0 0
scripts
lloT component identification 0o 0 0 0 0
Risk-based test scoring + + | +
Tool for test suite quality assessment 0o 0
MTest + + o+ + o+ + +
RELOAD + * X
FBDMutator + o+ |+ X
TARA 0
DoTA 0 0 0
MODICA X | X X X X | X x ry
MERAN X X
TESTONA X | X X X X X
InnSpect X X
DeltaFuzzer + + | +
ARD Test Priorization Tool o 0 0
Test Case Instantiation
Otomat/Testroyer 0 + + X X X

18

WP4: D4.2

5.Detailed Tools and Services Definition

In this section we provide the initial definition of services provided by different partners by
focusing on the category of service needed, the architecture diagram of the service, the
endpoints as well as dependencies and the technology stack.

5.1 VarSel: Service for Variant Selection

Owner: Expleo

Category:
This tool is part of the tool for variant selection and test case instantiation, therefore of
deliverable D3.3 of T3.2.

Description:

The functionality of the tool comprises the generation of test cases from a variability model
of the SUT. The user first chooses a coverage level. The tool then generates test cases
and chooses variants by means of the methods developed in XIVT, in particular in D3.2.
There is also an algorithm planned to decide how close two variants are and whether and
in which extent retesting is necessary.

Architecture diagram:

Coverage level

Varnant selection and

Variability model Abstract test suite

— test case generation

19

WP4: D4.2

Endpoints:

The program takes the variability model from D3.2 as an input and allows further user
input of (at least) coverage level. The output is a list of abstract test cases that ensures the
requested coverage level.

Dependencies:
Tool for modelling variability, tool for test case instantiation, possibly Ul of platform

Technology Stack: Java, Eclipse RCP, Angular JS

5.2 Service for Test Case Instantiation

Owner: Expleo

Category:
This tool is part of the tool for variant selection and test case instantiation, therefore of
deliverable D3.3 of T3.2.

Description:

The functionality of the tool comprises the instantiation of the abstract test cases from the
tool for variant selection above by means of the methods developed in XIVT, in particular
in D3.2. Possible architectures could be:

- Pre-generate test scripts where variability is incorporated and specialize them per
test case.

- Use (fragments of) formerly generated test scripts to produce test scripts for test
cases of new variants

20

eXcellence In Variant Testing

WP4: D4.2

Architecture diagram 1:

Wariability model

Variable test seript

generation

Genaric test seript Test script Wariantitest caze-
specificatian specific test seript
Abstract test caze

Architecture diagram 2:

Test case [————2

Test script

Test case specific

genaration test script
rmatching l /
Test scripts far
slready instantiated

test cases

Endpoints:

The program takes the abstract test cases generated by the tool for variant selection
above as an input. The output is a test suite of executable test scripts.

21

T WP4: D4.2

eXcellence InVariant Testing

Dependencies:
Tool for modelling variability, tool for variant selection

Technology Stack:
Java, Eclipse RCP

5.3 Service for Test Suite Quality Assessment

Owner: Expleo

Category:
This tool is part of deliverable D3.3 of T3.2.

Description:

The functionality of the tool comprises the assessment of different quality aspects (e.g.
given in IEC/ISO 9126) of the test suite coming out of the tool for variant selection and test
case instantiation. In particular, it evaluates the instantiated test suite with regard to error
detection capability by fault injection into the base model. The below architecture for
injection of system-internal faults could later be expanded to implement security testing
via fault attacks.

Architecture diagram (general):

CQuality aspects

Instantiated test Test suite quality Classification of suite w.r.t.

suite assessment qu ality metrics

22

WP4: D4.2

Architecture diagram (for fault injection):

Executed rests

Product-typical faults
and their distribution

Endpoints:

Fault injected variability

madel

-Tools for wariant
selection and test

cace instantiation.

-Test exscution

Executed test suite

Error detection rate per

fault type

The program takes either the instantiated test suite and a choice of quality aspects, or the
base model and product-typical faults in order to create a fault injected test suite as an
input. The output is an assessment of the quality aspects in terms of the metric assigned

to the aspect.

Dependencies:

Tool for modelling variability, tool for variant selection, tool for test case instantiation

Technology Stack:

Java, Eclipse RCP, Angular JS, possibly Ul of platform

23

elcellence InVariaan-esting WP4: D4.2

5.4 Service for Test Injection and Execution (FBDMutator)

Owner — MDH
Category — WP3

Description — FBDMutator is a software solution intended to be used for automated
testing of Programmable Logic Controllers (PLC) software, found in systems like
airplanes, nuclear power plants, medical devices, trains, space shuttles.

PLC software is all around us. We use them in our daily life without even considering to
what extent their functioning is dependent on software and that they might fail because of
a software. And there is one thing that makes these systems rather unique about them: if
they fail, people may die and the environment may be at harm. However, testing these
systems is a rather difficult and time consuming task. There are many national and
international standards, safety regulation agencies mandating a certain level of testing.
Currently, many companies developing PLC software are manually testing their software
which is a tedious and error prone process.

FBDMutator is rooted in theories of mutation testing, simulation and model checking, and
test execution in simulation.

24

elcellence In Variant Testing WP4: D4.2

Architecture diagram

FBD Use-case Scenarios Test Report
PROGRAM : Basic test generation
Select logic coverage (Step) (T) (I) (O)

:EI‘— Fl—|. Configuration (1) 20s) (0,1,23) (1,0)

Fault detection

Exporting test results Coverage: PC100%

—FB |

A

import usage result

\ 4 A 4
Toolbox User Interface

A
A 4

FBD Import Editor
Y

Translation Plugin Trace Parser
| A

A 4

UPPAAL Server

command N UPPAAL response
Model Checker

Endpoints
FBD Import Editor. This module is used for validating whether the structure of a provided
XML file represents a valid PLCOpenXML file containing an FBD Program.

Output. The function of the interface is to provide a way for the user to communicate with
the tool including: (1) the selection of which FBD program to import and execute tests for,
(2) the selection mutation operators to be used for test execution and evaluation, (3) the
presentation of generated test results, and (4) the determination of correctness of the
result produced for each generated test by comparing the mutated test output with the
expected output from the original program. Additionally, the tool can export the results in a
csv format.

25

T WP4: D4.2

eXcellence InVariant Testing

Dependencies

The UPPAAL Server module is used for external invoking of the UPPAAL model checker.
UPPAAL provides support for formal verification using a client-server architecture,
allowing the toolbox to connect as a client to the model checker and verify properties
against the model.

Technology Stack — Java, JavaCC, UPPAAL

5.5 Service SEAFOX

Owner — MDH

Category — WP3

Description — SEAFOX is the only available combinatorial test suite generation and
selection tool for industrial IEC 61131-3 control software. SEAFOX is open source
software and is available at https://github.com/CharByte/SEAFOX

SEAFOX supports the generation of test suites using pairwise, base choice and random
strategies. For pairwise generation, SEAFOX uses the IPOG algorithm as well as a first
pick tie-breaker. SEAFOX was used in several studies in order to support testing of
industrial programs and fault detection. A tester using SEAFOX can automatically
generate test suites needed for a given industrial IEC program after manually providing
the input parameter range information based on the defined behaviour written in the
specification.

Architecture diagram

Parameter
Range IPOG
Information _ _ ALGORITHM csv
—1 Testing Entity Test Suite -File
Program RANDOM
ALGORITHM

26

WP4: D4.2

Endpoints
FBD Import Editor. This module is used for validating whether the structure of a provided
XML file represents a valid PLCOpenXML file containing an FBD Program.

Output. The function of the interface is to provide a way for the user to communicate with
the tool including: (1) the selection of which FBD program to import and generate tests for,
(2) the selection of the coverage criterion to be used for test generation, (3) the
presentation of generated test inputs, and (4) the determination of correctness of the
result produced for each generated test by comparing the actual test output with the
expected output (as provided manually by the tool user). Additionally, the tool can export
the results in a csv format.

Dependencies
No dependencies

Technology Stack — .NET

5.6. Service RCM (NALABS)

Owner — MDH

Category — WP2

Description — RCM was developed as an effort to create an automatic requirements
complexity measurement tool for industrial systems.

27

T WP4: D4.2

eXcellence InVariant Testing

Architecture diagram

| N — . — 'Y
XLS ary }7 E

Requirements document Output file with requirements
lexi eas

results

Endpoints
Reading Excel documents into the application and parsing the data into a format that is
easy to manipulate within C#.

Output. The tool can export the results in a csv format.

Dependencies

No dependencies

Technology Stack — .NET

5.7 BeVR: Service for requirements-based variability modelling
Owner: QA Consultants

Category: WP3

Description: The purpose of this tool is to enable a human operator to convert
information from project documents into a Product Line Model, which describes a family of
systems in terms of shared features and development history. Creation of a Product Line

Model enables automatic generation of abstract test cases (T3.1) and efficient variant
selection for test optimization (T3.2).

28

elcellence InVariamT-estinu WP4: D4.2

Architecture diagram: The diagram below presents the variability modelling tool in its
usage context. Using project documents as reference, a human user creates a Product
Line Model (PLM) with the tool’s help. This model is encoded as a collection of UML
diagrams. These are then passed to the tool for variant selection, which according to its
own directives use the PLM to instantiate models for individual products and
corresponding abstract test case suites. PLM’s and Product Models are encoded as sets
of UML diagrams, while test suites follow the UML Testing Profile (UTP) notation.

(@ D) @ Q)
Project . Product Abstract
documents preslat il model test case
model (UML) ;
(UML) suite (UTP)
@ C)

"
v O U 4 i)

Variability modelling tool

Product generator Test generator

Tool for variant selection and test case generation

Endpoints: Tool input will be manually provided by the user through a Graphical User
Interface (GUI). As the result of the user’s work, a Product Line Model will be generated, in
the form of a collection of UML diagrams encoded as XML documents.

Dependencies: None, as the tool stands at the beginning of the test case generation
workflow.

Technology Stack: The tool will be based on Papyrus (a modelling tool itself built on top

of the Eclipse IDE), with added UML stereotypes, customized Ul, convenient install
packaging and other optimizations for Product Line Model generation.

5.8 Service for generating human-readable test scripts

Owner: QA Consultants

29

WP4: D4.2

Category: WP3

Description: There are many scenarios where automated generation of test cases can
help optimize time and resources, yet test execution itself must be done manually. For
example, in the automotive domain, testing Advanced Driving Assistance Systems
(ADAS) requires actual vehicles and human drivers for proper evaluation and recovery in
case of failure, but precisely because the expenses of real-world tests cannot be avoided,
optimal test selection is all the more critical. Therefore, a tool that converts abstract test
cases into human-readable scripts will be implemented to bridge the gap between
automated test generation and manual test execution (T3.3).

Architecture diagram: The tool will be composed of a parser that converts test cases to
an internal representation, and a natural language generator that generates human-
readable scripts from that representation. See diagram below for an illustration.

D Gl D

Abstract test case suite ’ Human-readable test

NAAAI > NiAatiivral | AnAiiA~A

Endpoints: The tool will take as input the abstract test cases produced by the tool for
variant selection, encoded as UML Test Profile (UTP) diagrams, and output test scripts
written in human-readable natural language.

Dependencies: Tool for variant selection.

Technology Stack: The tool will be implemented in Java, using the UML2 library to
manipulate the abstract test cases and SimpleNLG for natural language generation.

30

elcellence In\larianﬂ-esting WP4: D4.2

5.9 Service for lloT component identification

Owner: QA Consultants
Category: WP3

Description: Industrial Internet of Things (lloT) “refers to interconnected sensors,
instruments, and other devices networked together with computers' industrial
applications, including manufacturing and energy management. This connectivity allows
for data collection, exchange, and analysis, potentially facilitating improvements in
productivity and efficiency as well as other economic benefits.” 'l [loT systems and
components are of particular concern to cyber-security; therefore, a tool will be developed
to identify lloT components and interfaces in larger systems, allowing other inspection
tools to place extra focus on them (T4.5).

Architecture diagram: The tool will be composed of parser and inference modules. The
parser converts test case suites to an internal representation suitable for automatic
manipulation. The inference module is a Knowledge-Based System (KBS) that relies on
domain-specific knowledge bases for identifying lloT components.

@ D] @ D]

Abstract test case suite | Identified lloT components

NMAAdal Darcar > Knnwiladna_Racad Qiuectam

‘ Knowledae Base

31

WP4: D4.2

Endpoints: The tool will take as input the abstract test cases produced by the tool for
variant selection and a domain-specific knowledge base, and produce as output a list of
identified lloT components.

Dependencies: Tool for variant selection.

Technology Stack: The tool will be implemented in Java, using the UML2 library to
manipulate the abstract test cases and d3web as the basis for the knowledge-based

system.

5.10 Service for risk-based test scoring

Owner: QA Consultants
Category: WP3

Description: Safety and security risks are two critical dimensions for optimal test case
prioritization. Therefore, a tool will be implemented to search test cases for patterns
indicative of such risks, assigning risk scores as pertinent. Such scores can then be used
alongside other metrics (e.g. feature relevancy) to appropriately prioritize test cases, or
exclusively for choosing candidates for fault and attack injection exercises (T3.4). The tool
will be built around a Knowledge-Based System (KBS) modelling common safety /
security vulnerabilities and respective risk assessments, which will require domain-
specific knowledge bases to be collected.

Architecture diagram: The tool will be divided into two modules, responsible for different
steps in the scoring process. First, a parser converts test case suites to an internal
representation, using the lloT component identification tool to flag the presence of such
components. Next, a KBS searches that representation for patterns documented in its
knowledge base, producing test case scores in response.

32

WP4: D4.2

(@ D (@ D

Abstract test case suite | Scored test case suite

NMAAdal Darcar > Knnwiladna_Racad Qiuectam

lloT ‘

component Knowledae Base

Endpoints: The tool will take as input the abstract test cases produced by the tool for
variant selection and a domain-specific knowledge base, and produce as output safety
and risk scores for each test case.

Dependencies: Tool for variant selection, tool for lloT component identification.

Technology Stack: The tool will be implemented in Java, using the UML2 library to
manipulate the abstract test cases and d3web as the basis for the knowledge-based

system.

5.11 VARA: Service for requirements similarity-based reuse
prediction

Owner - RISE & MDH

Category — This tool is part of WP2 to address the needs of UC2.

Description —

The tool provides two distinct interfaces to the user. The first interface will take in the
already implemented requirements with links to the reused product line asset’s

33

WP4: D4.2

description. The interface will cluster the requirements based on their semantic similarity
while preserving the reuse links. The output of this interface would be a Boolean
representing success or failure. The second interface takes in a list of key-value pairs. The
keys would be IDs and the values will text of the requirements that need to be
implemented. The interface will produce a map of the size of input with the requirements
IDs on indexes linked with a list of IDs of the product line assets that can be reused to
implement the requirement.

Architecture diagram —

<<irains:=

inpui—

Cluster Manager

‘ Pre-processor ‘ ‘ Vectorizer ‘

produces

<<predict>> /

Clusters
input—
: —output
Vectorizer Cluster Manager

Endpoints — Both interfaces ‘train’ and ‘predict’ works with JSON input and produces
JSON as output. The reason VARA uses train interface is to make it applicable in different
domains.

Dependencies — None

Technology Stack — Python

5.12 IntegrationDistiller: Service for abstract integration test case
generation

Owner — RISE
Category — This tool is part of WP2 to address the needs of UC3-1.
Description —

34

To

ariant Testing

i WP4: D4.2

=] |||s
= .||:

gl

IntegrationDistiller utilizes .NET compiler APlIs to statically analyze the source code and
extract statistical information and integration tree from it. The tool generates integration
paths as abstract test cases by traversing the tree paths. In addition, other useful stats like
number of unused variables, number of uncalled methods and number of dependent
components on a component is also extracted and presented to the user.
IntergrationDistller also allows the instrumentation of integration-critical points for timing
properties analysis.

Architecture diagram —

IntegrationDistiller JSON file with
Abstract Tests and
Stats

‘ Static Analyzer H Instrumenter H Test and Stats ‘

Viusal Studio Project

Generator
Instrumented Visual
Studio Project

<

Endpoints — Get Visual Studio Projects as input and produce a JSON file and an
Instrumented version of the Visual Studio Project

Dependencies — None

Technology Stack — C#, .NET

5.13 SaFRel.: Service for performance test case generation

Owner — RISE
Category — This tool is part of WP2.

Description —

SaFRelL is a self-adaptive fuzzy reinforcement learning-based performance testing
framework which makes the tester agent able to learn the optimal policy for generating
test cases resulting in performance breaking point without access to model or source
code. Finding the performance breaking point of the software under test (SUT), at which
the system becomes unresponsive or the performance requirement gets violated, is the
intended testing objective in the tool. The current performance testing prototype
generates the platform-based test cases by changing the resource availability.

35

elcellence In Variant Testing WP4: D4.2

It assumes two learning phases, i.e., initial and transfer learning. First, it learns the
optimal policy through the initial learning and then reuses the learnt policy (acquired
knowledge) for further SUTs with performance sensitivity similar to already observed
ones. It still keeps the learning running in the long-term.

The current prototype uses a performance prediction module to estimate the effects of the
applied actions. It gets the initial resource utilization and nominal response time of the
system, which have been measured in an isolated, contention free execution
environment, and the performance sensitivity indicators as inputs.

This framework could be executed on a virtual machine containing the SUT, and it would
be augmented by an actuator doing the resource scaling within the VM. In this case, it will

be able to use the (resource) monitoring tools (services) like Percepio Tracealyzer to
receive the status data.

Architecture diagram —

Initial resource utilizations and
nominal response time in an
isolated, contention free execution
environment |

— Actions |
J Performance
\ Requirement
Actuator [Reward Compi } ‘
‘CPU Utilization k- = = @
ftw » 3. Resource S =1
So are 1} 2 Utilization a g 2
M tilizati : 3 Changes w
Under emory utilization _ g g g (o 11n) g g,
Test 8 Predicted (] g
=2 @
Disk Utilization 3 Response = 3
: 2 Time =1 1
Response Time % 5'
. l =
F
| Strategy
Rule Base
Performance Sensitifity (CPU, Mem, Disk ’ A}!aplallon
— \ /
Smart Tester Agent
Input Data

Endpoints — Gets the performance data of the SUT and generates the stress test cases
Dependencies — None

Technology Stack — Java

36

T WP4: D4.2

eXcellence InVariant Testing

5.14 ReForm: Service for requirement formalization and test
optimization

Owner: ifak

Category:

This tool is part of the test object- and feature- based optimization, therefore of T2.3 in
WP2, and uses the results of WP3 in regard to variant modeling. It addresses the needs of
the use cases UC1 (Automotive, Expleo) and UC3-2 (Industrial Production, FFT).

Description:

This tool will investigate in analysis of textual requirements with knowledge based
techniques including natural language processing and machine learning to determine a
general risk assessment for variant rich systems. It produces risk based metrics and use
case dependent metrics for the purpose of test optimization. Additionally, it will parse the
requirements which are written in natural language in order to extract the relevant
information and create requirement models.

Architecture diagram:

formalization and
assessment

[Requirement

Endpoints:
Input: « a list of informal/semiformal requirements in natural language
Output: + a list of risk and use case metrics (table of values/percentages)

* requirement models in IRDL (lIfak Requirements Description Language)
Dependencies:

list of requirements (from use-case providers), tool for test generation and variant
traceability (second tool from ifak), possibly Ul of platform

37

eXcellence In Variant T-estinu WP4: D4.2

Technology Stack:
Python, C++, NLP tools, Machine Learning tools

5.15 ifakVBT: Service for test case generation and variant
traceability

Owner: ifak

Category:

This tool is part of the test object- and feature- based optimization, therefore of T2.3 in
WP2, and uses the results of WP3 in regard to variant modeling. It addresses the needs of
the use cases UC1 (Automotive, Expleo) and UC3-2 (Industrial Production, FFT).

Description:
This tool will generate test cases from the requirement models and produce a linkage
between the test cases and the corresponding variants of a specific model.

Architecture diagram:

Test generation and

variant traceability

Endpoints:
Input: * requirement models in IRDL (Ifak Requirements Description Language)
Output: * generated abstract test cases (XML)

« a table/matrix of traceability of test cases to variants
Dependencies:

Tool for requirement formalization and test optimization (first tool from ifak), possibly Ul of
platform

38

elcellence InVariaan-esting WP4: D4.2

Technology Stack:
Python, C++, test generation tools

5.16 MTest

Owner: MES
Category: WP3

Description: MES Test Manager® (MTest) is a test management tool that facilitates 1SO
26262-compliant, requirements-based testing of Simulink®, Embedded Coder®, and
TargetLink® models. MTest automates all test activities for unit and integration testing in
terms of functional testing and regression testing. Furthermore, MTest supports all
simulation types from model-in-the-loop to processor-in-the-loop simulation so as to
support back-to-back testing as well.

MTest guarantees software quality assurance and compliance with standards such as
the automotive industry’s ISO 26262. In addition, it supports the ISTQB® methodology
and techniques. MTest is the first choice for requirements-based testing as it simplifies
development, improves quality, and ensures software safety.

Within the XIVT project we develop a test case generator from formalized MARS
requirements. Aditionally we inverstigate whether Software Variance can be captured in
MARS requirements. Interfaces to the XIVT tool architecture will be provided

39

= =@ WP4: D4.2

Architecture diagram:

Formal Requirements

(.mars file)

— — MATLAB
Test Cases
Enitiule) SIMULINK/Embedded
— Coder/ Target Link Model
Ay
VAR V4
TEST COVERAGE & TEST REPORT HTML
SEQUENCES TRACEABILITY i

—
TEST STIMULI TEST RESULTS —
METRICS

Simulink® / Stateflow®
} } } |}| TEST RESULTS (.xml file)
Code

aN Simulation e e
U T~ — L---~
e - e
ASSESSMENT FUNCTIONS | === [. 8 } e
— s | | N EE
Endpoints:
Inputs:
Matlab Simulink, Embedded Coder or Target Link Model
MARS Requirements
MTCD Testcases
Outputs:
XML/HTML Report
Dependencies:

MATLAB SIMULINK 2011 or higher
Target Link 3.4 or higherfor testing Target Link Models
Java 8 or higher

Technology Stack:
Matlab, Java/Xtend, XText, Maven

40

elcellence InVariaan-esting WP4: D4.2

5.17 RELOAD: Service for test load generation

Owner: RISE
Category :This tool is part of WP2.

Description:

RELOAD is an intelligent reinforcement learning-driven load generation tool which
generates efficient test load and executes it through a load runner such as Apache JMeter
on SUT.

RELOAD learns the optimal policy to generate an efficient test workload which meets
testing objective, e.g. reaching an intended error rate, without access to underlying model
or source code of SUT. The intelligent tester agent can reuse the learned policy in
subsequent potential testing activities such as testing of similar SUTs (software variants)
and similar testing scenarios on SUT such as regression load testing.

The learning-based load testing can reach the testing objective with lower cost in terms of
workload size (number of users), i.e. smaller workload, compared to a typical load testing
process. In summary, generating an efficient test workload meeting intended testing
objective, meanwhile, eliminating the dependency on system models and source code are
the main strengths of RELOAD as a model-free RL-driven load generation tool.

41

elcellence In Variant Testing WP4: D4.2

Architecture diagram

Software Under
Test (SUT)

Desli_%'; Jest) APACHE
% - / |Meter”
T &

Intelligent Load Tester <

Actions: Tuning Workload (Transactions, Intensity) ';‘2';3:2‘:::‘:;

) v
ﬁ]c;ueat“eor; /[Reward Computation]‘ \

>)

w Q f .°,

g (Sn) g 88

o S Sm

Error Rate g %) - 5

1 @ o 0T

@ ® =]

. Q 8 52

Response Time = =5 9

SUT S 3 y
\ Strategy Adaptation /

Intelligent Load Tester

Endpoints: simple .jmx files containing involved requests in running each transaction
(operation) of SUT. The jmx files are created by the load runner tool, i.e. Apache Jmeter,
through recording an ordinary usage of SUT.

Dependencies: Apache JMeter

Technology Stack: Java

5.18 TARA

Owner: RISE
Category: Test Reuse

Description: Test reuse Analysis and RecommendAtion (TARA) aims to extend our
requirements-level similarity engine (VARA) for test effort reduction using horizontal test
case reuse. TARA will use the requirements-level similarity among customer
requirements and the models realizing them; to identify existing executable test cases that
can be reused to test a newly derived product. The test cases might not be directly

42

elcellence In Variant Testing WP4: D4.2

executable on newly derived products. Thus we aim to develop a semi-automated
approach for classification of existing test cases into different classes (such as Reusable
as is, Reusable but changes required, and not Reusable).

Architecture diagram:

TARA
' et
Similar
Requirements Parser
W LY A
traces ~ “ output
AU Classifier Reusable Tests
Models and
Tests h 5
-_"_._-- -.f_.' ' ™
Recommender

1-/ ok 4
inpu

Endpoints:

Inputs: Similar Requirements and their Models with Test Harnesses
Processing Steps: Test Classification

Output: Reusable Test Cases

Dependencies: VARA, MATLAB/Simulink

Technology Stack: Python, MATLAB/Simulink

5.19 DoTA

Owner: RISE

Category: Test Priorization, Test Selection, Coverage Analysis

43

= WP4: D4.2

eXcellence InVariant Testing

Description: Delta-oriented Test Analysis (DoTA) implements a delta-aware method for
test case optimization aided by delta analysis and clone detection. The method will aim to
select a subset of executable test cases that provide high coverage to the delta in the
product. The method will work with product line (PL) models, PL tests, product models,
and product tests (if any) to detect the variable parts of the product from its standard
product line and to optimize test cases for high coverage of the variable part of the
product.

Architecture diagram:

DoTA

- ar) -

Froduct Models
B Tt
" B output

= Delta Optimized
[] Static Analysis .
PL Models and Y Test

I " ‘__.' o —

Delta
l Computation
., F
input

[Test Selection |
based on Delta
cherage

Endpoints:

Inputs: PL Models with Tests and Product Models with Tests

Processing Steps: Delta Computation, Test Selection based on Coverage to Delta
Output: Subset of Tests (Optimized for Delta Coverage)

Dependencies: MATLAB/Simulink

Technology Stack: MATLAB/Simulink

44

elcellence In Variant Testing WP4: D4.2

5.20 MODICA

Owner: Expleo
Category:

Description: MODICA is a test generation tool that employs a usage model as a source.
To this model, the test case generation algorithm can be applied that aims to comply with
specified coverage criteria, using the smallest possible number of test steps in the test
cases. Coverage criteria can be given by requirements, the request that (certain) states,
state transitions or paths are covered, or the choice of special test sequences that are
otherwise hard to reach. In MODICA, there is also a variant handling available that allows
to specify test generation strategies for different variants of the usage model.

Architecture diagram:

@MODICA
@ Executable Test Cases
Modelling of f
Usage Models ; ; __[-r
> AR "
. {o}
.-@ . @ Test Case Test Execution -
Definition of Generation } =% 4)‘
Test Objectives
> [V =X ‘ H L

Endpoints:
Input: Requirements can be imported, e.g. from DOORS.
Output: HTML, PDF, export to EXAM, MESSINA....

Dependencies: See endpoints

Technology Stack: Java, Eclipse RCP

45

elcellence InVariaan-esting WP4: D4.2

5.21 ARD Test Prioritization Tool

Owner: ARD
Category: Test Modelling, Test Prioritization, Test Selection and Test Logging

Description: ARD is developing a web-based application for the use of test team
members. Current version has specialized on testing end-user software products and
their variants. It will enable users to define test cases, their priorities and test execution,
and allow them to take the logs of execution steps to provide adaptive data for Decision
Support System module. In the current state, the requirements and user interfaces of this
application have already been defined and the implementation has also been started.

Architecture diagram: The architecture containts Web & DB server(s) for both
application and learning data and containts three logical tiers which are presentation,
logic/business and data. Three-tier architecture is used for production and development
environments by modularizing the user interface, business logic, and data storage layers.
This added and important flexibility will improve overall time-to-market and decrease
development cycle times by giving development teams the ability to replace or upgrade
independent tiers without affecting the other parts of the system. Integration flexibility
advantage of tiered architecture is used for embedding analytics parts of the project.

46

£ IT@
sing

llen

ﬁé

ee ariant Testi

=

gl

WP4: D4.2

Users

8860868888

&)

r Presenlation Tier |

Model Forms & Graph

Results

| Interface Scripts Tools Analysis

m Em & &

[Logic Tier @.Gany—sis_ T
| f

| Data Handllng m MO .
Storage Visualization

I Retrieval Graph

Layout

Caonversion Central Server Interactivity

Data Tier

I
I r Database, Data
¢ Warehouse and
| % " External Data Sources
I s

Endpoints:

Input: Any format can be imported.
Output: Depends of input data

Dependencies: No dependencies

1

Software Technologies

Client-side Programming:

angularls, Javascript, HTML,
ASPX, Css

Server-side Programming:
ASP.Net, .Net Web API

Webservers:
IIS

Databases:
SQL Server

Technology Stack: ASP .NET, .NET WEB API, SQL Server, IIS, angularJS, Javascript ,

HTML, ASPX, Css.

47

i<
g

7/ T®
riant Testing WP4: D4.2

=

eXcellence In

=2

5.22 MERAN

Owner: Expleo

Category: Requirements management

Description: MERAN is an integration tool for requirement management that also
supports variant management. It allows the creation of generic entities of requirements or
test specifiations, in a way that their properties are fragmented in small units. Once a
specific variant is chosen, the requirements or test specifications can be adapted by

choice of parameters or text segments.

Architecture diagram:

MERAN @ RCP

- EEEEEE

e T LLL T L L L

Endpoints: Data models of the corresponding adapters

Dependencies: Adapters to Doors, Test42, Jira, dTCM,...

Technology Stack: Java, Eclipse RCP, different web services for differences adapters

48

=z @
eXcellence In Variant Testing WP4: D4.2

49

WP4: D4.2

5.23 TESTONA

Owner: Expleo
Category: Modelling, Test case generation, Coverage analysis

Description:
Tool for systematic test design in black-box-tests. All standard specification-based test
methods are supported and represented in classification trees.

For the generation of a suite of test cases, there are different modes available that
represent different levels of combinatorial coverage. In addition, it is possible to weight the
classes depending on their frequency or error risk and consequently obtain a prioritization
of test cases. A variability management is built in, allowing the user to specify variants
from the generic model and apply TESTONA-applications specifically to them.

Architecture diagram:

O
o %

— = £<us) .
ﬁ - e generic

code

Functional Requirements Classification Tree Test Cases export

Endpoints:
Input: Interfaces to Autosar, DOORS, Matlab, hpALM...
Output: Testona XML files, Interfaces to Matlab, MESSINA, Excel, Word...

Dependencies: See endpoints

Technology Stack: Java, Eclipse RCP

50

elcellence InVariaan-esting WP4: D4.2

5.24 InnSpect

Owner: Innowave (WinTrust)

Category: Test Execution, Test Adaptation, Test Logging

Description:

InnSpect was developed to address a lack in the testing tools market: one single tool to
automate test cases across different devices and different platforms. There are many
tools in the market but each one is usually focused in one single technology. InnSpect can
start a customer journey using a Web Portal, validate data through API Testing or
Database validation, take actions over a Desktop App and finish the journey validating
data inside a mobile App.

Architecture diagram: Not Available at the moment

Endpoints: Not applicable

Dependencies: Not applicable

Technology Stack: C#

5.25 DeltaFuzzer

Owner: FCUL
Category: This tool belongs to WP3, being part of deliverable D3.4 of T3.4

Description:

51

T @ WP4: D4.2

DeltaFuzzer is a grey box fuzzer based on the AFL fuzzer to detect several classes of
vulnerabilities presented in software constructed in for C/C++. It is the first fuzzer that
implements a Targeted Fuzzer Approach that makes the fuzzer focus on the (novel)
parts that needed to be tested and reuses knowledge acquired in previous testing
campaigns. DeltaFuzzer generates a testcase (randomly or through a mutation strategy
of existing testcases) for running it in the software under test (SUT) and collects various
metrics. Next, it determines if the program suffered a failure, saving thus the test case,
and if the test case is “interesting”, i.e., if it is capable of uncovering new execution paths
and causing a SUT failure, saving it and reusing it to generate another test case.

Architecture diagram:

SUT
source code

Seed inputs ‘

b

Instrumentalization

Interesting test
Cases

SUT source code Run SUT with SUT failure
instrumentalized test case verification

SUT failures

: test cases
Metrics

collection

Metrics and
failures report

Endpoints:

Software developed in C/C++ programming languages to be deployed in product variants
created by use-case partners. Such software can be the whole program or test cases
extracted from the program. The output of the tool is failures and the test cases that
caused the failures.

Dependencies:
AFL tool and the source code of programs developed in C/C++ that will be under test.

52

elcellence InVariaan-esting WP4: D4.2

Technology Stack: LLVM, C, gcc/clang, and python

5.26 TV RoboTester

Owner: Arcelik
Category:Test execution (based on system model)

Description: TV RoboTester is our test automation software developed in house for TV
tests. We are able to create test scenarios on the tool dynamically. The tool has its
own scripting language. Some features available on the tool are:

1. Actions to simulate test environment

1.1. Simulate user interaction on TV (remote control that can be controlled via PC)

1.2. Play recorded tv broadcast on Stream Players

1.3. etc.

2. Test oracle: Decision points to decide if test resultis PASS / FAIL

2.1. Picture capture (LVDS): Live image on TV can be transferred to PC to compare

with the reference image

2.2. Picture capture-windows: Live image on TV can be transferred to PC to
compare with the reference image (only a portion of the fullimage)

2.3. OCR:Image from TV is parsed into text and compared to the reference text

Architecture diagram:

Architectural diagram unavailable.

INPUT: Image list of TV software Ul

OUTPUT: System Model of TV software with necessary user interactions

We will modify our automation software to work on this system model so that when the
model changes our testcases will remain the same.

Endpoints:

Inputs: Test scenarios written manually inside automation software.

+ (After our works within XIVT project) we will use image list of TV software Ul (to create
system model)

Output: Test results.

53

WP4: D4.2

Dependencies: No dependencies

Technology Stack: C# for main automation software. C/C++ for device communication
frameworks

5.27 Otomat (Testroyer)

Owner: Turkcell
Category:

Description: Otomat (Testroyer is new version of otomat with new name and features) is
a test management tool. Test Automation engineers take test cases in various forms such
as Ul, Web Service, BDD and features. Develop required code and store source code in
GIT. After OTOMAT triggers daily runs and report test results, categorize them, measure
coverage,and send notifications to related parties about test results. BDD and Web
Service modules allows users to create their own tests from existing code base manually.
In version 2.0 Testroyer we are also adding test selection and prioritization in to our tool. In
addition to that we are also planning to add Speech To Test module in our BDD module to
our tool.

Architecture Diagram:

i Otomat / Testroyer
Test Scenarios

Regression
Module

Web Service
Module

Development Test Runs
BDD Module

Feature Automation
Module

h 4 A J

s h
Test Cases Dashboard € Metrics and Reports
N 8

Endpoints:
Inputs: Test scenarios with dedicated format for BDD and WS modules, Test scenarios
given with natural language developed into a code for Regression module.

h 4

54

WP4: D4.2

Output: Test results, categorization of failures, coverage reports.
Dependencies: No dependencies

Technology Stack: Java, TestNG, Selenium for test case development. AngulardS for
frontend, Spring Boot for backend. GIT and Jenkins for test case storage and runs. XRAY
for storing user scenarios.

6. Technology Stack Recommendation

As shown in the previous sections, each service can be independently developed.
Nevertheless, for integration purposes we recommend the following initial technology
stack to be used by services developed in WP2 and WP3:

API Gateway - Kong

Service Definition - Java or NodeJS
Front End - AngulardS

Storage - Cassandra or MongoDB

In the end this technology stack is a recommendation for helping developers to integrate
their software services while maintaining compatibility with continuous integration
practices and tools since the XIVT platform embraces a microservice like architecture,
collectively providing facilities for the users to deploy testing services.

6.1 Open-source Framework Suggestions
ModelBus®

On the official website (https://www.modelbus.org), ModelBus® is described as follows:

ModelBus® is a framework for managing complex development processes and
integrating heterogeneous tools. It allows to integrate tools from different vendors serving
different purposes. This integration creates a virtual bus-like tool environment, where data
can be seamlessly exchanged between tools. This avoids the manual export and import of
tool specific data, which is usually accompanied by manually executed data alignment
steps. The data can be linked by establishing traceability. ModelBus® interoperable tool
integration contributes to the collaboration of engineers and developers involved in the
software and system development process. (The virtual bus architecture leverages

55

elcellence InVariaan-esting WP4: D4.2

information exchange between tools and developers.) Thus, it supports tcoordinated
simultaneous work. ModelBus® automation is the key to increase the efficiency in a
software and system development environment. ModelBus® facilitates the automatic and
semi-automatic execution of process steps throughout the complete software
development process.

The key concept of ModelBus® for tool interoperability is the virtual bus-like service-
oriented architecture and the way it processes the data transmitted via this bus.
ModelBus® can work on traditional artifacts like source code or binaries, but its full
potential lies in the handling of models. Tool data can be transmitted via ModelBus® as
well-defined MOF/EMF based models, which enables the full power of model-driven
engineering practices to the ModelBus® data management. This includes the application
of model-transformation techniques, consistency checks and full traceability across
multiple process steps ranging from requirements to code for example.

Due to that approach every piece of information created during the development process
is accessible and usable for the process and its control. Tools connected to ModelBus®
can offer or consume services acting on these data. In that way functionality — provided by
individual tools — becomes available for the whole development process and can be used
in automated process steps.

ModelBus® is applicable in various domains including embedded systems design, IT-
Business, automotive and avionics. The ModelBus® framework makes it possible to
create flexible development solutions adapted to the customer’s needs. New tool
adapters can be built upon request. It shows its full benefit in medium or large
development processes but ModelBus® can be used for small solutions as well. Using
ModelBus® will help to improve performance of the development and test processes by
injecting automation to the highest possible degree. ModelBus® helps to keep the existing
processes and tools unchanged. Therefore it helps to save licensing costs and training of
developers.

The basic set of ModelBus® is open source and free software. Tool adapters,
consultancy, support and maintenance services are available for establishing a
ModelBus® based development scenario fitting to individual needs.

Open Services for Lifecycle Collaboration

On the official website (https://open-services.net), OSLC is described as follows:

The OSLC Core Specification is a Hypermedia API standard currently mainly adopted in
software and systems engineering domains, but with the potential to provide value to any
domain with data integration challenges. The OSLC Core specifications expands on the
W3C LDP capabilities, to define the essential and common technical elements of OSLC

56

WP4: D4.2

domain specifications and offers guidance on common concerns for creating, updating,
retrieving, and linking to lifecycle resources.

OSLC domain-specific specifications define the equivalent of schemas in RDF for
enabling data interoperability. They consist of RDF vocabularies and OSLC resource
shapes. RDF vocabularies are used to describe standardized resource types and
properties. OSLC resource shapes are used to define constraints such as multiplicity
constraints on properties of specific resource types.

Moreover, the following value propositions are stated:

As a tool vendor, you need to ensure that your customers can integrate your product with
other tools in order to extract the most value from your product. While providing a REST
APl is a norm nowadays, a developer has to build an integration layer. As every REST API
is different, it means extra time reading the documentation, extra time developing
plumbing code to perform model transformation, and most importantly, all this needs to be
done on a case basis, leading to point-to-point integrations.

OSLC allows you to provide:

e auniform self-descriptive REST API;

* alinked data model based on standard domains, common in ALM/PLM (RM, QM,
CCM, etc.), that you can tailor to your product;

e exchange data in plain JSON with the clients that are not linked-data ready;

e provide rich Uls from your tool for use in 3rd-party tools for seamless linked data
workflow;

e and many other features that your customers would appreciate.

A number of other products used in ALM/PLM already implement OSLC and your OSLC-
enabled tool can integrate with many of them without extra development effort.

As a tool buyer, you have a unique set of requirements towards your toolchain and for
many reasons (technical, organisational, financial) a single-vendor solution might not be
viable for you. Therefore, one of the most important criteria for procurement of the new
software tools is their TCO including the integration costs. Most of the tools come with
semi-open proprietary APIls that often lack documentation. Those APIs will incur
considerable development costs, often involving highly specialised consultants with a
deep knowledge of the tool in question.

Tools that come with an OSLC-based API will you to integrate them into your toolchain
with less (or none, in many cases) development effort, while performing a deeper
integration, at the workflow level.

OSLC reduces the complexity and risk of increasingly complex software infrastructures,
and improves the value of software across a broader set of internal and external
stakeholders. OSLC-based APl is an experience truly free from a vendor lock-in.

57

elcellence InVariaan-esting WP4: D4.2

As a tool user, you have to switch between a plethora of tools on a daily basis. You often
don't see how their integration is done, but you feel that it's done poorly: updates showing
up in other tools many hours later, integrations getting broken every other tool update, etc.

Well-implemented OSLC integrations mostly remain backwards-compatible even across
major releases. Standardised OSLC APlIs often allow vendors to provide a fully supported
integration with many other OSLC-compliant tools out of the box. Finally, an OSLC
integration can be performed not only at the level of two tool data models, but at the level
of your workflow involving those tools. This is possible through the use of delegated Uls,

which allow you to interact with another OSLC-compatible tool without leaving your
current open tool!

58

