
Project References
PROJECT ACRONYM XIVT
PROJECT TITLE EXCELLENCE INVARIANTTESTING

PROJECTNUMBER 17039
PROJECT STARTDATE NOVEMBER1, 2018 PROJECTDURATION 36

MONTHS
PROJECTMANAGER GUNNARWIDFORSS, BOMBARDIERTRANSPORTATION, SWEDEN

WEBSITE HTTPS://WWW.XIVT.ORG/

Document References
WORK PACKAGE WP4: TOOL INTEGRATIONANDTRACEABILITY

DELIVERABLE D4.2:HIGHLEVELPLATFORMARCHITECTURE - REV2

DELIVERABLE TYPE REPORT (R)

DISSEMINATION
LEVEL

PUBLIC DATE 2020-03-31

MAPPED TASKS T4.1: DEFINE HIGH LEVEL ARCHITECTURE FOR END TO END TEST
ORCHESTRATIONPLATFORM

WP4: D4.2

2

Summary
This report defines the various services and features, which are expected to be supportedby the toolchain. Further, it maps the features to the tools built by various partners, thatoffer those services. Next, each tool is defined in detail elaborating on the functionality,architecture diagram, end points and dependencies, if any. Finally, an attempt is made torecommend a technology stack that would help the various independent tools to work insync and serve as the backbone of the final toolchain.
It is important to note, that the list of tools provided in this report is not complete, and it isexpected that more tools will be contributed in to the XIVT project as the project, andthereby those tools mature further. However, the available list, shall allow to define thetoolchain baseline.
Next steps would be to build upon the baselining and identify challenges in collaboratingthe tools. Those challenges would then provide direction in defining the interactionguidelines, i.e. the supported end-points by the toolchain. Tools that will come to maturityat a later stage of the project shall need to respect those guidelines in order to besuccessfully integrated with the toolchain. These API definitions and guidelines aroundend-points will constitute the part of next deliverable, i.e. D4.3.

WP4: D4.2

3

Table of Contents
1. The High Level Architecture Direction: Microservices..5
2. Revisiting the XIVT Tool Chain Platform...7
3. Breakdown of Functional Areas in the XIVT Platform..8
3.1 XIVT Control UI - Top Level Diagram...8
3.2 XIVT Test Optimization - Top Level Diagram...11
3.3 USE Case Extension: Telecom - Top Level Diagram...11
3.4 USE Case Extension: Railway - Top Level Diagram ...12

4. Features and Generic Services...14
4.1 Introduction...14
4.2 Feature Description...16
4.3 Mapping of Tools to Features/Services...18

5. Detailed Tools and Services Definition..19
5.1 VarSel: Service for Variant Selection...19
5.2 Service for Test Case Instantiation..20
5.3 Service for Test Suite Quality Assessment..22
5.4 Service for Test Injection and Execution (FBDMutator)...23
5.5 Service SEAFOX...26
5.6. Service RCM (NALABS)...27
5.7 BeVR: Service for requirements-based variability modelling.................................28
5.8 Service for generating human-readable test scripts .. 29
5.9 Service for IIoT component identification...30
5.10 Service for risk-based test scoring...32
5.11 VARA: Service for requirements similarity-based reuse prediction......................33
5.12 IntegrationDistiller: Service for abstract integration test case generation.............34
5.13 SaFReL: Service for performance test case generation35
5.14 ReForm: Service for requirement formalization and test optimization..................37
5.15 ifakVBT: Service for test case generation and variant traceability........................38
5.16 MTest..39
5.17 RELOAD: Service for test load generation .. 41
5.18 TARA..42

WP4: D4.2

4

5.19 DoTA...43
5.20 MODICA... 45
5.21 ARD Test Prioritization Tool..46
5.22 MERAN...48
5.23 TESTONA...49
5.24 InnSpect..51
5.25 DeltaFuzzer .. 51
5.26 TV RoboTester..53
5.27 Otomat (Testroyer)..54

6. Technology Stack Recommendation...55
6.1 Open-source Framework Suggestions..55

WP4: D4.2

5

1. The High Level Architecture Direction:Microservices
Traditional application design is often called “monolithic” because the whole thing isdeveloped in one piece. Even if the logic of the application is modular it’s deployed as onegroup, like a Java application as a JAR file for example. This type of architecture isconvenient because it all happens in one spot, however not practical for a project likeXIVT that has many different partners working on different pieces of the reference toolchain implementation. As shown in Figure 1, Microservices separates all of the majorparts of this monolith from each other, untangling the codebase and drastically changinghow partners can collaboratively develop and contribute to the reference tool chain. Withmicroservices, different functions (not literally functions, but functional parts of the toolchain) are all separate. They communicate with the user interface, each other, andinstances of the database. Each independent service is packaged as an API so it caninteract with the rest of the application elements.
The Microservices Architecture has a number of important benefits. First, it tackles theproblem of complexity. It decomposes what would otherwise be a monstrous monolithicapplication into a set of services. While the total amount of functionality is unchanged, theapplication has been broken up into manageable chunks or services. Each service has awell‑defined boundary in the form of an RPC‑ or message‑driven API. The MicroservicesArchitecture enforces a level of modularity that in practice is extremely difficult to achievewith a monolithic code base. Consequently, individual services are much faster todevelop, and much easier to understand and maintain. Second, this architecture enableseach service to be developed independently by each XIVT partner that is focused on thatservice. The XIVT partner is free to choose whatever technologies make sense, providedthat the service abides by the API contract. Third, the Microservices Architecture enableseach microservice to be deployed independently. Partners never need to coordinate thedeployment of changes that are local to their service. These kinds of changes can bedeployed as soon as they have been tested by each partner. Finally, the MicroservicesArchitecture enables each service to be scaled independently, making it a robustenterprise grade approach.

WP4: D4.2

6

Figure 1. A brief comparison between the monolithic and microservices architectures.
The current report is the initial work for the XIVT architecture elaboration in a microservicearchitecture approach. In the next sections we establish the common conceptualinfrastructure for all the architectural work and traceability and we identified initialtechnology requirements from different partners and we extracted high-level interfacesand deployment requirements.

WP4: D4.2

7

2. Revisiting the XIVT Tool Chain Platform
The XIVT architecture has its basis in the release mechanism as integrated tool chains,which implements the proposed methods in a coherent way, and are available as aplatform. The XIVT workbench shown in Figure 2 will allow to specify variant rich systemson the domain level, build instances, construct test cases and assess test suites in oneplace, across various use cases. The architecture of the tools would be such that the coreplatform can be easily extensible for any future use cases not explicitly addressed in theXIVT project.

Figure 2. XIVT Initial Workbench.

WP4: D4.2

8

External tools brought as background IPs by the consortium partners will be included byappropriate import and export-modules and need to support interface definitions of XIVT.
The output of this XIVT architecture will be an ecosystem of services around the proposedmethodology. The following initial types of services based on the XIVT technologies wereset to be implemented:● Construction of test suites for highly configurable systems, an assessment of testsuites.● Certification support for safety-critical systems,● Security analysis and testing, and● Incremental enhancement of test suites for regression testing.

3. Breakdown of Functional Areas in the XIVTPlatform
In this live document, we describe the XIVT Framework and its functional parts. Thedescription is done by following a common pattern. We describe the high-level purpose ofeach UI and services and then we outline the functional interfaces that help to figure outthe main features and possible means for integration. In addition, we briefly detail thesubordinates – the constituent parts of each service in terms of the tools developed.
3.1 XIVT Control UI - Top Level Diagram
The XIVT framework regroups several interconnected tool sets including tool setsspecifically developed in certain use cases. These tool sets are highly interconnected toachieve the goal of providing several services to the end user.
This is achieved using the XIVT control UI outlined in Figure 3 in which differentmicroservices (e.g., Use Cases, Scheduler) are choreographed. Since there is no centralcoordination, each service produces and listens to events and decides if an action shouldbe taken or not given the end user needs. In this way each service can coordinate theiractivities and processes to share information and value to the Control UI.

WP4: D4.2

9

Figure 3. XIVT Control UI Structure.
Given this structural decomposition of the XIVT control UI, the management andcommunication between the end user and services can be viewed as a direct client-to-microservice communication architecture (shown in Figure 4) in which the end user canmake requests directly to some of the microservices through services within the Dockerhost or internal cluster and to implement several cross-cutting concerns in an APIGateway (i.e., using the XIVT control UI structure).
In addition, this management and communication architecture is helping the use case andtool providers to get an understanding of how APIs are being used and how they areperforming. This can be extended by providing real-time analytics reports and identifyingtrends in the usage of these microservices, including logs about request and responseactivity for further online and offline analysis.

WP4: D4.2

10

Figure 4. XIVT Framework API management and interaction between end users andservice providers.
One of the primary challenges with microservices architecture is allowing services todiscover and interact with each other as well as managing the service discovery. Since theXIVT framework will support the distributed characteristics of microservices architectures.Using meta information, such as configuration data, that can be used by each use case,the work in WP4 will explore several techniques for performing service discovery formicroservices-based architectures.
In the next sections, we are outlining the WP2 and WP3 services that are developed fortest optimization, generation and execution. In this iteration we have focused ondeveloping, based on our initial tool designs, proof and concepts as well as performingadaptations to the baseline technologies in order to identify and start solving theintegration issues in this XIVT framework. Hence, in an initial stage most services relatedtoWP2 andWP3 only implement a small subset of the requirements.
The main use case of integrating different XIVT services is to allow users to manage jobsto execute different functionalities. For example, a tester can specify test jobs, executethem and analyze its results and the main information gathered execution are test results,logs and metrics. The XIVT framework UI should provide to the user a rich user interfacespecifically tailored to ease the management of that kind of information for each serviceprovided byWP2 andWP3.

WP4: D4.2

11

3.2 XIVT Test Optimization - Top Level Diagram
Besides all the features provided by XIVT UI than can be used by testers in the webinterface, XIVT WP2 provides services that can be managed directly when a test suite isavailable. These services are shown in Figure 5 and allow a tester to select and prioritizetests with ease.

Figure 5. XIVT Test Optimization Services.
As XIVT test optimization services are the main entry point of XIVT framework features, itrequires all other use case extensions and configurations to work properly. That is, thiscomponent requires all the use case specific components to be available. In the nextsection we outline the component that allows the XIVT framework to instrumentalizealready deployed SUTs when services are executed against it.
3.3 USE Case Extension: Telecom - Top Level Diagram
The use case extension for the telecom domain (as shown in Figure 6) is implemented asan independent process communicated with other components using remote protocols or

WP4: D4.2

12

APIs. Specifically, the Android Device Bench is used for providing a bench initiator, anexecution manager and a logger among others.

Figure 6. XIVT Use Case Extension for TelecomDomain.
This use case extension for the Telecom domain will be used in the XIVT Framework as atoolbox having a common interface layer that can be used by other use cases.

3.4 USE Case Extension: Railway - Top Level Diagram
In the case of the railway domain, the XIVT common interface toolbox will interact with theservices provided by WP2 and WP3. For example (as shown in Figure 7), a service calledVARA provided by WP2 will interact with the DOORS database and the models providedin MATLAB Simulink for requirement reuse analysis as well as generating and selectingtest cases.
A remote API in this case is used by external tools (like a Jenkins plugin). In this case, aservice can be executed multiple times and provide results in relation to the railway usecase.

WP4: D4.2

13

XIVT CommonInterfaceToolbox

VARA ModelMatworks
DOORS

TestMatworks

Docs andReporting

HW

Figure 7. XIVT Use Case Extension for Railway Domain.

WP4: D4.2

14

4.Features and Generic Services
4.1 Introduction
In order to account for the variability in the different use cases with respect to processes,existing tools and data formats, the XIVT toolchain is designed as a product line itself. Thisproduct line is also referred to as the tool landscape. By selecting a set of capabilities froma capability model, a user can configure the tool landscape and thereby derive a concretetoolchain, tailored to her needs. The tool landscape consists of generic services orfeatures, that provide certain capabilities. Each such service or feature can then beimplemented by one or more concrete tools or services. The resulting toolchain consistsof only those concrete tools or services which are applicable in any specific use case.

WP4: D4.2

15

WP4: D4.2

16

4.2 Feature Description
Variability Modelling: The (manual) process of creating a variability model, possiblyassisted by tools, but mainly an intellectual human effort.
Sampling: Process of automatically finding valid configurations from a variability model,e.g. feature model.
Instantiation (Synonyms: Product Derivation, Realization): Building or selecting aninstance, that is, one particular object from a general description of a class of similarobjects. In testing, building a concrete test case from an abstract one is a form ofinstantiation.
Feature Reuse Analysis: Determining features from an existing product linespecification that can be reused for the creation of a product configuration based on givenproduct requirements.
Test Modelling: The (manual) process of creating a test model, possibly assisted bytools, but mainly an intellectual human effort.
Test Reuse Analysis: Determining test cases or test procedures from an existing testsuite that can be reused for the creation of a new product-specific test suite based ongiven product requirements.
Test Generation: The automated process of automatically creating abstract or concretetest specifications consisting of test structure, test behavior and test data.
Test Data Generation: Sub-process of Test Generation related to test data.
Test Behavior Generation: Sub-process of Test Generation related to test behavior.
Test Structure Generation: Sub-process of Test Generation related to test structure,e.g. setup and configuration.
Test Priorization: Assigning priorities to a set of test cases based on some priorizationcriterion, resulting in an ordered (or at least sortable) set of test cases.
Test Selection: Selecting test cases from a set of test cases based on some selectioncriterion, resulting in a subset of test cases.
Test Execution: Executing a test suite or test case, either in simulation or against the realtest item.
Test Behavior Simulation: Execution a test suite against a simulated version of the testitem.
Test Adaptation: Translating a logical test cases to executable, technical test cases.
Test Logging: Capturing relevant information during test execution, e.g., stimuli sent toand responses received from the test item.

WP4: D4.2

17

Mutation Testing: Assessing the fault detection rate of a test suite from the comparisonof results from running the test suite against the original test item as well as variants of thetest item resulting from fault injection (mutants).
Fault Injection: Deliberately introducing known types of faults (i.e. through mutationoperations) into a system.
Coverage Analysis: Determining the degree in to which a test suite covers, i.e. verifies, agiven set of coverage items, e.g., requirements, features or portions of code.
Requirements Coverage Analysis: Determining the degree in to which a test suitecovers a set of requirements.
Feature Coverage Analysis: Determining the degree in to which a test suite covers a setof feature.
Code Coverage Analysis: Determining the degree in to which a test suite covers a codebase.
Formal Verification: Proving or disproving the correctness of the test specification or testmodel with respect to a certain formal specification or property, using formal methods, e.g.through Model Checking.

WP4: D4.2

18

4.3 Mapping of Tools to Features/Services

WP4: D4.2

19

5.Detailed Tools and Services Definition
In this section we provide the initial definition of services provided by different partners byfocusing on the category of service needed, the architecture diagram of the service, theendpoints as well as dependencies and the technology stack.
5.1 VarSel: Service for Variant Selection
Owner: Expleo
Category:This tool is part of the tool for variant selection and test case instantiation, therefore ofdeliverable D3.3 of T3.2.
Description:The functionality of the tool comprises the generation of test cases from a variability modelof the SUT. The user first chooses a coverage level. The tool then generates test casesand chooses variants by means of the methods developed in XIVT, in particular in D3.2.There is also an algorithm planned to decide how close two variants are and whether andin which extent retesting is necessary.
Architecture diagram:

WP4: D4.2

20

Endpoints:The program takes the variability model from D3.2 as an input and allows further userinput of (at least) coverage level. The output is a list of abstract test cases that ensures therequested coverage level.
Dependencies:Tool for modelling variability, tool for test case instantiation, possibly UI of platform
Technology Stack: Java, Eclipse RCP, Angular JS

5.2 Service for Test Case Instantiation
Owner: Expleo
Category:This tool is part of the tool for variant selection and test case instantiation, therefore ofdeliverable D3.3 of T3.2.
Description:The functionality of the tool comprises the instantiation of the abstract test cases from thetool for variant selection above by means of the methods developed in XIVT, in particularin D3.2. Possible architectures could be:- Pre-generate test scripts where variability is incorporated and specialize them pertest case.- Use (fragments of) formerly generated test scripts to produce test scripts for testcases of new variants

WP4: D4.2

21

Architecture diagram 1:

Architecture diagram 2:

Endpoints:The program takes the abstract test cases generated by the tool for variant selectionabove as an input. The output is a test suite of executable test scripts.

WP4: D4.2

22

Dependencies:Tool for modelling variability, tool for variant selection
Technology Stack:Java, Eclipse RCP

5.3 Service for Test Suite Quality Assessment
Owner: Expleo
Category:This tool is part of deliverable D3.3 of T3.2.
Description:The functionality of the tool comprises the assessment of different quality aspects (e.g.given in IEC/ISO 9126) of the test suite coming out of the tool for variant selection and testcase instantiation. In particular, it evaluates the instantiated test suite with regard to errordetection capability by fault injection into the base model. The below architecture forinjection of system-internal faults could later be expanded to implement security testingvia fault attacks.
Architecture diagram (general):

WP4: D4.2

23

Architecture diagram (for fault injection):

Endpoints:The program takes either the instantiated test suite and a choice of quality aspects, or thebase model and product-typical faults in order to create a fault injected test suite as aninput. The output is an assessment of the quality aspects in terms of the metric assignedto the aspect.
Dependencies:Tool for modelling variability, tool for variant selection, tool for test case instantiation
Technology Stack:Java, Eclipse RCP, Angular JS, possibly UI of platform

WP4: D4.2

24

5.4 Service for Test Injection and Execution (FBDMutator)
Owner – MDH
Category –WP3
Description – FBDMutator is a software solution intended to be used for automatedtesting of Programmable Logic Controllers (PLC) software, found in systems likeairplanes, nuclear power plants, medical devices, trains, space shuttles.
PLC software is all around us. We use them in our daily life without even considering towhat extent their functioning is dependent on software and that they might fail because ofa software. And there is one thing that makes these systems rather unique about them: ifthey fail, people may die and the environment may be at harm. However, testing thesesystems is a rather difficult and time consuming task. There are many national andinternational standards, safety regulation agencies mandating a certain level of testing.Currently, many companies developing PLC software are manually testing their softwarewhich is a tedious and error prone process.
FBDMutator is rooted in theories of mutation testing, simulation and model checking, andtest execution in simulation.

WP4: D4.2

25

Architecture diagram

EndpointsFBD Import Editor. This module is used for validating whether the structure of a providedXML file represents a valid PLCOpenXML file containing an FBD Program.
Output. The function of the interface is to provide a way for the user to communicate withthe tool including: (1) the selection of which FBD program to import and execute tests for,(2) the selection mutation operators to be used for test execution and evaluation, (3) thepresentation of generated test results, and (4) the determination of correctness of theresult produced for each generated test by comparing the mutated test output with theexpected output from the original program. Additionally, the tool can export the results in acsv format.

WP4: D4.2

26

Dependencies
The UPPAAL Server module is used for external invoking of the UPPAAL model checker.UPPAAL provides support for formal verification using a client-server architecture,allowing the toolbox to connect as a client to the model checker and verify propertiesagainst the model.
Technology Stack – Java, JavaCC, UPPAAL

5.5 Service SEAFOX
Owner – MDHCategory –WP3Description – SEAFOX is the only available combinatorial test suite generation andselection tool for industrial IEC 61131-3 control software. SEAFOX is open sourcesoftware and is available at https://github.com/CharByte/SEAFOX
SEAFOX supports the generation of test suites using pairwise, base choice and randomstrategies. For pairwise generation, SEAFOX uses the IPOG algorithm as well as a firstpick tie-breaker. SEAFOX was used in several studies in order to support testing ofindustrial programs and fault detection. A tester using SEAFOX can automaticallygenerate test suites needed for a given industrial IEC program after manually providingthe input parameter range information based on the defined behaviour written in thespecification.
Architecture diagram

WP4: D4.2

27

EndpointsFBD Import Editor. This module is used for validating whether the structure of a providedXML file represents a valid PLCOpenXML file containing an FBD Program.
Output. The function of the interface is to provide a way for the user to communicate withthe tool including: (1) the selection of which FBD program to import and generate tests for,(2) the selection of the coverage criterion to be used for test generation, (3) thepresentation of generated test inputs, and (4) the determination of correctness of theresult produced for each generated test by comparing the actual test output with theexpected output (as provided manually by the tool user). Additionally, the tool can exportthe results in a csv format.
Dependencies
No dependencies
Technology Stack – .NET

5.6. Service RCM (NALABS)
Owner – MDHCategory –WP2Description – RCM was developed as an effort to create an automatic requirementscomplexity measurement tool for industrial systems.

WP4: D4.2

28

Architecture diagram

EndpointsReading Excel documents into the application and parsing the data into a format that iseasy to manipulate within C#.
Output. The tool can export the results in a csv format.
Dependencies
No dependencies
Technology Stack – .NET
5.7 BeVR: Service for requirements-based variability modelling
Owner:QAConsultants
Category:WP3
Description: The purpose of this tool is to enable a human operator to convertinformation from project documents into a Product Line Model, which describes a family ofsystems in terms of shared features and development history. Creation of a Product LineModel enables automatic generation of abstract test cases (T3.1) and efficient variantselection for test optimization (T3.2).

WP4: D4.2

29

Architecture diagram: The diagram below presents the variability modelling tool in itsusage context. Using project documents as reference, a human user creates a ProductLine Model (PLM) with the tool’s help. This model is encoded as a collection of UMLdiagrams. These are then passed to the tool for variant selection, which according to itsown directives use the PLM to instantiate models for individual products andcorresponding abstract test case suites. PLM’s and Product Models are encoded as setsof UML diagrams, while test suites follow the UML Testing Profile (UTP) notation.

Endpoints: Tool input will be manually provided by the user through a Graphical UserInterface (GUI). As the result of the user’s work, a Product Line Model will be generated, inthe form of a collection of UML diagrams encoded as XML documents.
Dependencies: None, as the tool stands at the beginning of the test case generationworkflow.
Technology Stack: The tool will be based on Papyrus (a modelling tool itself built on topof the Eclipse IDE), with added UML stereotypes, customized UI, convenient installpackaging and other optimizations for Product Line Model generation.

5.8 Service for generating human-readable test scripts
Owner:QAConsultants

WP4: D4.2

30

Category:WP3
Description: There are many scenarios where automated generation of test cases canhelp optimize time and resources, yet test execution itself must be done manually. Forexample, in the automotive domain, testing Advanced Driving Assistance Systems(ADAS) requires actual vehicles and human drivers for proper evaluation and recovery incase of failure, but precisely because the expenses of real-world tests cannot be avoided,optimal test selection is all the more critical. Therefore, a tool that converts abstract testcases into human-readable scripts will be implemented to bridge the gap betweenautomated test generation and manual test execution (T3.3).
Architecture diagram: The tool will be composed of a parser that converts test cases toan internal representation, and a natural language generator that generates human-readable scripts from that representation. See diagram below for an illustration.

Abstract test case suite(UTP)

ModelParser Natural LanguageGenerator

Human-readable testscript

Endpoints: The tool will take as input the abstract test cases produced by the tool forvariant selection, encoded as UML Test Profile (UTP) diagrams, and output test scriptswritten in human-readable natural language.
Dependencies: Tool for variant selection.
Technology Stack: The tool will be implemented in Java, using the UML2 library tomanipulate the abstract test cases and SimpleNLG for natural language generation.

WP4: D4.2

31

5.9 Service for IIoT component identification
Owner:QAConsultants
Category:WP3
Description: Industrial Internet of Things (IIoT) “refers to interconnected sensors,instruments, and other devices networked together with computers' industrialapplications, including manufacturing and energy management. This connectivity allowsfor data collection, exchange, and analysis, potentially facilitating improvements inproductivity and efficiency as well as other economic benefits.” [^] IIoT systems andcomponents are of particular concern to cyber-security; therefore, a tool will be developedto identify IIoT components and interfaces in larger systems, allowing other inspectiontools to place extra focus on them (T4.5).
Architecture diagram: The tool will be composed of parser and inference modules. Theparser converts test case suites to an internal representation suitable for automaticmanipulation. The inference module is a Knowledge-Based System (KBS) that relies ondomain-specific knowledge bases for identifying IIoT components.

Abstract test case suite(UTP)

Model Parser Knowledge-Based System(KBS)

Identified IIoT components

Knowledge Base

WP4: D4.2

32

Endpoints: The tool will take as input the abstract test cases produced by the tool forvariant selection and a domain-specific knowledge base, and produce as output a list ofidentified IIoT components.
Dependencies: Tool for variant selection.
Technology Stack: The tool will be implemented in Java, using the UML2 library tomanipulate the abstract test cases and d3web as the basis for the knowledge-basedsystem.
5.10 Service for risk-based test scoring
Owner:QAConsultants
Category:WP3
Description: Safety and security risks are two critical dimensions for optimal test caseprioritization. Therefore, a tool will be implemented to search test cases for patternsindicative of such risks, assigning risk scores as pertinent. Such scores can then be usedalongside other metrics (e.g. feature relevancy) to appropriately prioritize test cases, orexclusively for choosing candidates for fault and attack injection exercises (T3.4). The toolwill be built around a Knowledge-Based System (KBS) modelling common safety /security vulnerabilities and respective risk assessments, which will require domain-specific knowledge bases to be collected.
Architecture diagram: The tool will be divided into two modules, responsible for differentsteps in the scoring process. First, a parser converts test case suites to an internalrepresentation, using the IIoT component identification tool to flag the presence of suchcomponents. Next, a KBS searches that representation for patterns documented in itsknowledge base, producing test case scores in response.

WP4: D4.2

33

Abstract test case suite(UTP)

Model Parser Knowledge-Based System(KBS)

Scored test case suite

Knowledge BaseIIoTcomponentidentification
Endpoints: The tool will take as input the abstract test cases produced by the tool forvariant selection and a domain-specific knowledge base, and produce as output safetyand risk scores for each test case.
Dependencies: Tool for variant selection, tool for IIoT component identification.
Technology Stack: The tool will be implemented in Java, using the UML2 library tomanipulate the abstract test cases and d3web as the basis for the knowledge-basedsystem.

5.11 VARA: Service for requirements similarity-based reuseprediction
Owner – RISE &MDHCategory – This tool is part of WP2 to address the needs of UC2.Description –The tool provides two distinct interfaces to the user. The first interface will take in thealready implemented requirements with links to the reused product line asset’s

WP4: D4.2

34

description. The interface will cluster the requirements based on their semantic similaritywhile preserving the reuse links. The output of this interface would be a Booleanrepresenting success or failure. The second interface takes in a list of key-value pairs. Thekeys would be IDs and the values will text of the requirements that need to beimplemented. The interface will produce a map of the size of input with the requirementsIDs on indexes linked with a list of IDs of the product line assets that can be reused toimplement the requirement.Architecture diagram –

Endpoints – Both interfaces ‘train’ and ‘predict’ works with JSON input and producesJSON as output. The reason VARA uses train interface is to make it applicable in differentdomains.Dependencies – NoneTechnology Stack – Python

5.12 IntegrationDistiller: Service for abstract integration test casegeneration
Owner – RISECategory – This tool is part of WP2 to address the needs of UC3-1.Description –

WP4: D4.2

35

IntegrationDistiller utilizes .NET compiler APIs to statically analyze the source code andextract statistical information and integration tree from it. The tool generates integrationpaths as abstract test cases by traversing the tree paths. In addition, other useful stats likenumber of unused variables, number of uncalled methods and number of dependentcomponents on a component is also extracted and presented to the user.IntergrationDistller also allows the instrumentation of integration-critical points for timingproperties analysis.Architecture diagram –

Endpoints – Get Visual Studio Projects as input and produce a JSON file and anInstrumented version of the Visual Studio ProjectDependencies – NoneTechnology Stack – C# , .NET

5.13 SaFReL: Service for performance test case generation
Owner – RISECategory – This tool is part of WP2.
Description –SaFReL is a self-adaptive fuzzy reinforcement learning-based performance testingframework which makes the tester agent able to learn the optimal policy for generatingtest cases resulting in performance breaking point without access to model or sourcecode. Finding the performance breaking point of the software under test (SUT), at whichthe system becomes unresponsive or the performance requirement gets violated, is theintended testing objective in the tool. The current performance testing prototypegenerates the platform-based test cases by changing the resource availability.

WP4: D4.2

36

It assumes two learning phases, i.e., initial and transfer learning. First, it learns theoptimal policy through the initial learning and then reuses the learnt policy (acquiredknowledge) for further SUTs with performance sensitivity similar to already observedones. It still keeps the learning running in the long-term.
The current prototype uses a performance prediction module to estimate the effects of theapplied actions. It gets the initial resource utilization and nominal response time of thesystem, which have been measured in an isolated, contention free executionenvironment, and the performance sensitivity indicators as inputs.
This framework could be executed on a virtual machine containing the SUT, and it wouldbe augmented by an actuator doing the resource scaling within the VM. In this case, it willbe able to use the (resource) monitoring tools (services) like Percepio Tracealyzer toreceive the status data.
Architecture diagram –

Endpoints – Gets the performance data of the SUT and generates the stress test casesDependencies – NoneTechnology Stack – Java

WP4: D4.2

37

5.14 ReForm: Service for requirement formalization and testoptimization
Owner: ifak
Category:This tool is part of the test object- and feature- based optimization, therefore of T2.3 inWP2, and uses the results of WP3 in regard to variant modeling. It addresses the needs ofthe use cases UC1 (Automotive, Expleo) and UC3-2 (Industrial Production, FFT).
Description:This tool will investigate in analysis of textual requirements with knowledge basedtechniques including natural language processing and machine learning to determine ageneral risk assessment for variant rich systems. It produces risk based metrics and usecase dependent metrics for the purpose of test optimization. Additionally, it will parse therequirements which are written in natural language in order to extract the relevantinformation and create requirement models.
Architecture diagram:

Endpoints:Input: • a list of informal/semiformal requirements in natural languageOutput: • a list of risk and use case metrics (table of values/percentages)• requirement models in IRDL (Ifak Requirements Description Language)
Dependencies:list of requirements (from use-case providers), tool for test generation and varianttraceability (second tool from ifak), possibly UI of platform

WP4: D4.2

38

Technology Stack:Python, C++, NLP tools, Machine Learning tools

5.15 ifakVBT: Service for test case generation and varianttraceability
Owner: ifak
Category:This tool is part of the test object- and feature- based optimization, therefore of T2.3 inWP2, and uses the results of WP3 in regard to variant modeling. It addresses the needs ofthe use cases UC1 (Automotive, Expleo) and UC3-2 (Industrial Production, FFT).

Description:This tool will generate test cases from the requirement models and produce a linkagebetween the test cases and the corresponding variants of a specific model.
Architecture diagram:

Endpoints:Input: • requirement models in IRDL (Ifak Requirements Description Language)Output: • generated abstract test cases (XML)• a table/matrix of traceability of test cases to variants
Dependencies:Tool for requirement formalization and test optimization (first tool from ifak), possibly UI ofplatform

WP4: D4.2

39

Technology Stack:Python, C++, test generation tools

5.16 MTest
Owner:MES
Category:WP3
Description: MES Test Manager® (MTest) is a test management tool that facilitates ISO26262-compliant, requirements-based testing of Simulink®, Embedded Coder®, andTargetLink® models. MTest automates all test activities for unit and integration testing interms of functional testing and regression testing. Furthermore, MTest supports allsimulation types from model-in-the-loop to processor-in-the-loop simulation so as tosupport back-to-back testing as well.
MTest guarantees software quality assurance and compliance with standards such asthe automotive industry’s ISO 26262. In addition, it supports the ISTQB® methodologyand techniques. MTest is the first choice for requirements-based testing as it simplifiesdevelopment, improves quality, and ensures software safety.
Within the XIVT project we develop a test case generator from formalized MARSrequirements. Aditionally we inverstigate whether Software Variance can be captured inMARS requirements. Interfaces to the XIVT tool architecture will be provided

WP4: D4.2

40

Architecture diagram:

Endpoints:Inputs:Matlab Simulink, Embedded Coder or Target Link ModelMARS RequirementsMTCD TestcasesOutputs:XML/HTML Report
Dependencies:MATLAB SIMULINK 2011 or higherTarget Link 3.4 or higherfor testing Target Link ModelsJava 8 or higher
Technology Stack:Matlab, Java/Xtend, XText, Maven

WP4: D4.2

41

5.17 RELOAD: Service for test load generation
Owner:RISECategory :This tool is part of WP2.

Description:RELOAD is an intelligent reinforcement learning-driven load generation tool whichgenerates efficient test load and executes it through a load runner such as Apache JMeteron SUT.
RELOAD learns the optimal policy to generate an efficient test workload which meetstesting objective, e.g. reaching an intended error rate, without access to underlying modelor source code of SUT. The intelligent tester agent can reuse the learned policy insubsequent potential testing activities such as testing of similar SUTs (software variants)and similar testing scenarios on SUT such as regression load testing.
The learning-based load testing can reach the testing objective with lower cost in terms ofworkload size (number of users), i.e. smaller workload, compared to a typical load testingprocess. In summary, generating an efficient test workload meeting intended testingobjective, meanwhile, eliminating the dependency on systemmodels and source code arethe main strengths of RELOAD as amodel-free RL-driven load generation tool.

WP4: D4.2

42

Architecture diagram

Endpoints: simple .jmx files containing involved requests in running each transaction(operation) of SUT. The jmx files are created by the load runner tool, i.e. Apache Jmeter,through recording an ordinary usage of SUT.Dependencies: Apache JMeterTechnology Stack: Java

5.18 TARA
Owner:RISE
Category: Test Reuse
Description: Test reuse Analysis and RecommendAtion (TARA) aims to extend ourrequirements-level similarity engine (VARA) for test effort reduction using horizontal testcase reuse. TARA will use the requirements-level similarity among customerrequirements and the models realizing them; to identify existing executable test cases thatcan be reused to test a newly derived product. The test cases might not be directly

WP4: D4.2

43

executable on newly derived products. Thus we aim to develop a semi-automatedapproach for classification of existing test cases into different classes (such as Reusableas is, Reusable but changes required, and not Reusable).
Architecture diagram:

Endpoints:Inputs: Similar Requirements and their Models with Test HarnessesProcessing Steps: Test ClassificationOutput: Reusable Test Cases
Dependencies: VARA, MATLAB/Simulink

Technology Stack: Python, MATLAB/Simulink
5.19 DoTA
Owner:RISE
Category: Test Priorization, Test Selection, Coverage Analysis

WP4: D4.2

44

Description: Delta-oriented Test Analysis (DoTA) implements a delta-aware method fortest case optimization aided by delta analysis and clone detection. The method will aim toselect a subset of executable test cases that provide high coverage to the delta in theproduct. The method will work with product line (PL) models, PL tests, product models,and product tests (if any) to detect the variable parts of the product from its standardproduct line and to optimize test cases for high coverage of the variable part of theproduct.
Architecture diagram:

Endpoints:Inputs: PL Models with Tests and Product Models with TestsProcessing Steps: Delta Computation, Test Selection based on Coverage to DeltaOutput: Subset of Tests (Optimized for Delta Coverage)
Dependencies:MATLAB/Simulink
Technology Stack:MATLAB/Simulink

WP4: D4.2

45

5.20 MODICA
Owner: Expleo
Category:
Description: MODICA is a test generation tool that employs a usage model as a source.To this model, the test case generation algorithm can be applied that aims to comply withspecified coverage criteria, using the smallest possible number of test steps in the testcases. Coverage criteria can be given by requirements, the request that (certain) states,state transitions or paths are covered, or the choice of special test sequences that areotherwise hard to reach. In MODICA, there is also a variant handling available that allowsto specify test generation strategies for different variants of the usage model.
Architecture diagram:

Endpoints:Input: Requirements can be imported, e.g. from DOORS.Output: HTML, PDF, export to EXAM, MESSINA...
Dependencies: See endpoints

Technology Stack: Java, Eclipse RCP

WP4: D4.2

46

5.21 ARD Test Prioritization Tool
Owner: ARD
Category: Test Modelling, Test Prioritization, Test Selection and Test Logging
Description: ARD is developing a web-based application for the use of test teammembers. Current version has specialized on testing end-user software products andtheir variants. It will enable users to define test cases, their priorities and test execution,and allow them to take the logs of execution steps to provide adaptive data for DecisionSupport System module. In the current state, the requirements and user interfaces of thisapplication have already been defined and the implementation has also been started.
Architecture diagram: The architecture containts Web & DB server(s) for bothapplication and learning data and containts three logical tiers which are presentation,logic/business and data. Three-tier architecture is used for production and developmentenvironments by modularizing the user interface, business logic, and data storage layers.This added and important flexibility will improve overall time-to-market and decreasedevelopment cycle times by giving development teams the ability to replace or upgradeindependent tiers without affecting the other parts of the system. Integration flexibilityadvantage of tiered architecture is used for embedding analytics parts of the project.

WP4: D4.2

47

Endpoints:
Input: Any format can be imported.Output: Depends of input data
Dependencies: No dependencies

Technology Stack: ASP .NET, .NET WEB API, SQL Server, IIS, angularJS, Javascript ,HTML, ASPX, Css.

WP4: D4.2

48

5.22 MERAN
Owner: Expleo
Category:Requirements management
Description: MERAN is an integration tool for requirement management that alsosupports variant management. It allows the creation of generic entities of requirements ortest specifiations, in a way that their properties are fragmented in small units. Once aspecific variant is chosen, the requirements or test specifications can be adapted bychoice of parameters or text segments.
Architecture diagram:

Endpoints:Data models of the corresponding adapters

Dependencies: Adapters to Doors, Test42, Jira, dTCM,...

Technology Stack: Java, Eclipse RCP, different web services for differences adapters

WP4: D4.2

49

WP4: D4.2

50

5.23 TESTONA
Owner: Expleo
Category:Modelling, Test case generation, Coverage analysis
Description:Tool for systematic test design in black-box-tests. All standard specification-based testmethods are supported and represented in classification trees.For the generation of a suite of test cases, there are different modes available thatrepresent different levels of combinatorial coverage. In addition, it is possible to weight theclasses depending on their frequency or error risk and consequently obtain a prioritizationof test cases. A variability management is built in, allowing the user to specify variantsfrom the generic model and apply TESTONA-applications specifically to them.

Architecture diagram:

Endpoints:Input: Interfaces to Autosar, DOORS, Matlab, hpALM...Output: Testona XML files, Interfaces to Matlab, MESSINA, Excel, Word...

Dependencies: See endpoints

Technology Stack: Java, Eclipse RCP

WP4: D4.2

51

5.24 InnSpect
Owner: Innowave (WinTrust)
Category: Test Execution, Test Adaptation, Test Logging
Description:InnSpect was developed to address a lack in the testing tools market: one single tool toautomate test cases across different devices and different platforms. There are manytools in the market but each one is usually focused in one single technology. InnSpect canstart a customer journey using a Web Portal, validate data through API Testing orDatabase validation, take actions over a Desktop App and finish the journey validatingdata inside a mobile App.
Architecture diagram:Not Available at the moment
Endpoints:Not applicable

Dependencies:Not applicable

Technology Stack:C#

5.25 DeltaFuzzer
Owner: FCUL
Category: This tool belongs toWP3, being part of deliverable D3.4 of T3.4
Description:

WP4: D4.2

52

DeltaFuzzer is a grey box fuzzer based on the AFL fuzzer to detect several classes ofvulnerabilities presented in software constructed in for C/C++. It is the first fuzzer thatimplements a Targeted Fuzzer Approach that makes the fuzzer focus on the (novel)parts that needed to be tested and reuses knowledge acquired in previous testingcampaigns. DeltaFuzzer generates a testcase (randomly or through a mutation strategyof existing testcases) for running it in the software under test (SUT) and collects variousmetrics. Next, it determines if the program suffered a failure, saving thus the test case,and if the test case is “interesting”, i.e., if it is capable of uncovering new execution pathsand causing a SUT failure, saving it and reusing it to generate another test case.
Architecture diagram:

Endpoints:Software developed in C/C++ programming languages to be deployed in product variantscreated by use-case partners. Such software can be the whole program or test casesextracted from the program. The output of the tool is failures and the test cases thatcaused the failures.
Dependencies:AFL tool and the source code of programs developed in C/C++ that will be under test.

WP4: D4.2

53

Technology Stack: LLVM, C, gcc/clang, and python

5.26 TV RoboTester
Owner: Arcelik
Category:Test execution (based on systemmodel)
Description: TV RoboTester is our test automation software developed in house for TVtests. We are able to create test scenarios on the tool dynamically. The tool has itsown scripting language. Some features available on the tool are:1. Actions to simulate test environment1.1. Simulate user interaction on TV (remote control that can be controlled via PC)1.2. Play recorded tv broadcast on Stream Players1.3. etc.2. Test oracle: Decision points to decide if test result is PASS / FAIL2.1. Picture capture (LVDS): Live image on TV can be transferred to PC to comparewith the reference image2.2. Picture capture-windows: Live image on TV can be transferred to PC tocompare with the reference image (only a portion of the full image)2.3. OCR: Image from TV is parsed into text and compared to the reference text
Architecture diagram:Architectural diagram unavailable.INPUT: Image list of TV software UIOUTPUT: SystemModel of TV software with necessary user interactionsWe will modify our automation software to work on this system model so that when themodel changes our testcases will remain the same.
Endpoints:Inputs: Test scenarios written manually inside automation software.+ (After our works within XIVT project) we will use image list of TV software UI (to createsystemmodel)Output: Test results.

WP4: D4.2

54

Dependencies:No dependencies
Technology Stack: C# for main automation software. C/C++ for device communicationframeworks
5.27 Otomat (Testroyer)
Owner: Turkcell
Category:
Description: Otomat (Testroyer is new version of otomat with new name and features) isa test management tool. Test Automation engineers take test cases in various forms suchas UI, Web Service, BDD and features. Develop required code and store source code inGIT. After OTOMAT triggers daily runs and report test results, categorize them, measurecoverage,and send notifications to related parties about test results. BDD and WebService modules allows users to create their own tests from existing code base manually.In version 2.0 Testroyer we are also adding test selection and prioritization in to our tool. Inaddition to that we are also planning to add Speech To Test module in our BDD module toour tool.
Architecture Diagram:

Endpoints:Inputs: Test scenarios with dedicated format for BDD and WS modules, Test scenariosgiven with natural language developed into a code for Regression module.

WP4: D4.2

55

Output: Test results, categorization of failures, coverage reports.
Dependencies:No dependencies
Technology Stack: Java, TestNG, Selenium for test case development. AngularJS forfrontend, Spring Boot for backend. GIT and Jenkins for test case storage and runs. XRAYfor storing user scenarios.
6. Technology Stack Recommendation
As shown in the previous sections, each service can be independently developed.Nevertheless, for integration purposes we recommend the following initial technologystack to be used by services developed inWP2 andWP3:

● API Gateway - Kong● Service Definition - Java or NodeJS● Front End - AngularJS● Storage - Cassandra or MongoDB

In the end this technology stack is a recommendation for helping developers to integratetheir software services while maintaining compatibility with continuous integrationpractices and tools since the XIVT platform embraces a microservice like architecture,collectively providing facilities for the users to deploy testing services.
6.1 Open-source Framework Suggestions
ModelBus®
On the official website (https://www.modelbus.org), ModelBus® is described as follows:
ModelBus® is a framework for managing complex development processes andintegrating heterogeneous tools. It allows to integrate tools from different vendors servingdifferent purposes. This integration creates a virtual bus-like tool environment, where datacan be seamlessly exchanged between tools. This avoids the manual export and import oftool specific data, which is usually accompanied by manually executed data alignmentsteps. The data can be linked by establishing traceability. ModelBus® interoperable toolintegration contributes to the collaboration of engineers and developers involved in thesoftware and system development process. (The virtual bus architecture leverages

WP4: D4.2

56

information exchange between tools and developers.) Thus, it supports tcoordinatedsimultaneous work. ModelBus® automation is the key to increase the efficiency in asoftware and system development environment. ModelBus® facilitates the automatic andsemi-automatic execution of process steps throughout the complete softwaredevelopment process.
The key concept of ModelBus® for tool interoperability is the virtual bus-like service-oriented architecture and the way it processes the data transmitted via this bus.ModelBus® can work on traditional artifacts like source code or binaries, but its fullpotential lies in the handling of models. Tool data can be transmitted via ModelBus® aswell-defined MOF/EMF based models, which enables the full power of model-drivenengineering practices to the ModelBus® data management. This includes the applicationof model-transformation techniques, consistency checks and full traceability acrossmultiple process steps ranging from requirements to code for example.
Due to that approach every piece of information created during the development processis accessible and usable for the process and its control. Tools connected to ModelBus®can offer or consume services acting on these data. In that way functionality – provided byindividual tools – becomes available for the whole development process and can be usedin automated process steps.
ModelBus® is applicable in various domains including embedded systems design, IT-Business, automotive and avionics. The ModelBus® framework makes it possible tocreate flexible development solutions adapted to the customer’s needs. New tooladapters can be built upon request. It shows its full benefit in medium or largedevelopment processes but ModelBus® can be used for small solutions as well. UsingModelBus® will help to improve performance of the development and test processes byinjecting automation to the highest possible degree. ModelBus® helps to keep the existingprocesses and tools unchanged. Therefore it helps to save licensing costs and training ofdevelopers.
The basic set of ModelBus® is open source and free software. Tool adapters,consultancy, support and maintenance services are available for establishing aModelBus® based development scenario fitting to individual needs.
Open Services for Lifecycle Collaboration
On the official website (https://open-services.net), OSLC is described as follows:
The OSLC Core Specification is a Hypermedia API standard currently mainly adopted insoftware and systems engineering domains, but with the potential to provide value to anydomain with data integration challenges. The OSLC Core specifications expands on theW3C LDP capabilities, to define the essential and common technical elements of OSLC

WP4: D4.2

57

domain specifications and offers guidance on common concerns for creating, updating,retrieving, and linking to lifecycle resources.
OSLC domain-specific specifications define the equivalent of schemas in RDF forenabling data interoperability. They consist of RDF vocabularies and OSLC resourceshapes. RDF vocabularies are used to describe standardized resource types andproperties. OSLC resource shapes are used to define constraints such as multiplicityconstraints on properties of specific resource types.
Moreover, the following value propositions are stated:
As a tool vendor, you need to ensure that your customers can integrate your product withother tools in order to extract the most value from your product. While providing a RESTAPI is a norm nowadays, a developer has to build an integration layer. As every REST APIis different, it means extra time reading the documentation, extra time developingplumbing code to perform model transformation, and most importantly, all this needs to bedone on a case basis, leading to point-to-point integrations.
OSLC allows you to provide:

 a uniform self-descriptive REST API; a linked data model based on standard domains, common in ALM/PLM (RM, QM,CCM, etc.), that you can tailor to your product; exchange data in plain JSON with the clients that are not linked-data ready; provide rich UIs from your tool for use in 3rd-party tools for seamless linked dataworkflow; and many other features that your customers would appreciate.
A number of other products used in ALM/PLM already implement OSLC and your OSLC-enabled tool can integrate with many of them without extra development effort.
As a tool buyer, you have a unique set of requirements towards your toolchain and formany reasons (technical, organisational, financial) a single-vendor solution might not beviable for you. Therefore, one of the most important criteria for procurement of the newsoftware tools is their TCO including the integration costs. Most of the tools come withsemi-open proprietary APIs that often lack documentation. Those APIs will incurconsiderable development costs, often involving highly specialised consultants with adeep knowledge of the tool in question.
Tools that come with an OSLC-based API will you to integrate them into your toolchainwith less (or none, in many cases) development effort, while performing a deeperintegration, at the workflow level.
OSLC reduces the complexity and risk of increasingly complex software infrastructures,and improves the value of software across a broader set of internal and externalstakeholders. OSLC-based API is an experience truly free from a vendor lock-in.

WP4: D4.2

58

As a tool user, you have to switch between a plethora of tools on a daily basis. You oftendon't see how their integration is done, but you feel that it's done poorly: updates showingup in other tools many hours later, integrations getting broken every other tool update, etc.
Well-implemented OSLC integrations mostly remain backwards-compatible even acrossmajor releases. Standardised OSLC APIs often allow vendors to provide a fully supportedintegration with many other OSLC-compliant tools out of the box. Finally, an OSLCintegration can be performed not only at the level of two tool data models, but at the levelof your workflow involving those tools. This is possible through the use of delegated UIs,which allow you to interact with another OSLC-compatible tool without leaving yourcurrent open tool!

