

 WP4: D4.3

Project References

P​ROJECT​ A​CRONYM XIVT

P​ROJECT​ T​ITLE E​X​CELLENCE​ I​N​ V​ARIANT​ T​ESTING

P​ROJECT​ N​UMBER 17039

P​ROJECT​ S​TART​ D​ATE N​OVEMBER​ 1, 2018 P​ROJECT
D​URATION

36 ​MONTHS

P​ROJECT​ M​ANAGER G​UNNAR​ W​IDFORSS​, B​OMBARDIER​ T​RANSPORTATION​, S​WEDEN

W​EBSITE HTTPS​://​WWW​.​XIVT​.​ORG​/

Document References

W​ORK​ ​PACKAGE

WP4: T​OOL​ I​NTEGRATION​ ​AND​ T​RACEABILITY

D​ELIVERABLE

D4.3: I​NTER​-​SERVICE​ API​S​, ​FORMAT​ ​DEFINITION

D​ELIVERABLE​ ​TYPE

R​EPORT​ (​R​)

D​ISSEMINATION​ ​LEVEL
P​UBLIC

D​ATE

2020-04-30

1

https://www.xivt.org/
https://www.xivt.org/
https://www.xivt.org/
https://www.xivt.org/
https://www.xivt.org/
https://www.xivt.org/
https://www.xivt.org/
https://www.xivt.org/

 WP4: D4.3

M​APPED​ ​TASKS
T4.2: I​NTERFACE ​DEFINITIONS ​FOR ​INCORPORATING WP2 ​AND WP3
OUTCOMES ​AS ​WELL ​AS ​INTERFACES ​FOR ​PARTNER / ​USE ​CASE ​SPECIFIC
EXTENSIONS

2

 WP4: D4.3

Executive Summary

This report defines the integration approach between the services / features of the XIVT
Variant Testing Toolchain. Based on the High Level Design (D4.2), where tools built by
various partners were decomposed into features / services, in this document we define
the service endpoints to be tool agnostic.

This report starts by defining the toolchain capabilities, some of which are automatically
supported by a tool feature and some others that may require manual triggers (even
though with tool support). Toolchain activities, tool features or tool services could be
seen as synonyms, depending on the terminology used from the abstraction level of the
speech.

A detailed description of those features is in D4.2, in section 4.2, better summarized by
the diagram in section 4.1 of the same document. This document D4.3 uses that
diagram as reference to define an orchestration sequence (see section 1.2 – Toolchain
Activities, page).

The XIVT Toolchain does not require to be used in its entirety per orchestration
sequence outlined. The toolchain will provide the ability for user configuration. By
selecting and configuring the toolchain for various use cases and features of interest,
users can configure the tool for their need.

Each toolchain service is defined with an expected input and output, in an abstract way
to guide service level integration of the toolchain. The objective is to standardize the
protocol required for the services and features to work together. Input collected from the
consortium partners was utilized to standardize the service interface definition, namely
ensure that it has all the information needed for that activity.

The interface definition can be seen in two ways:

3

 WP4: D4.3

● First and primary objective is defining the input and output attributes of those
features to be tool agnostic and have a standard definition - i.e. a contract
between features / service providers (via tools developed) to facilitate integration

● Second, mapping of the input and output attributes to the Technology Stack
suggested in D4.2 (as close as possible), keeping it as generic as possible, so
that it is feasible to integrate future tools in this toolchain provided they support
the interfaces defined.

Some features were supported by multiple tools with varying triggers and responses. In
this document we have standardized the definitions to resolve such conflicts to set the
direction forward. This means APIs to support the defined protocol and/or some
adapters to “translate” the specificities of that tool to the generic interface will be
required in the next stages of the project as we work to integrate the various services
supported by the tools. This document sets the guideline for expected support from
partners to collaborate for the integration activity for D4.4 (Integrated XIVT Toolchain).
Any gaps will be addressed during the implementation of the integration of toolchain
collaboratively to ensure various services / features supported by the tools are able to
cohesively function.

We acknowledge that partners may continue to develop new tools or make changes to
existing tools. What is important however is the services and features supported by the
tools and they support the interface and protocol defined in this document. All currently
available tools were considered in D4.2 and reviewed again in the context of this
deliverable for service / feature completeness and to ensure all services and features
the toolchain must support have been identified. Protocols defined in this document is
the consolidated outcome of that exercise and going forward will be used as the
guideline. The division of a specific tool into different services is per the Architecture
Direction provided by D4.2 (section 1 and section 3.1), where the XIVT Control UI acts
as the facilitator not a central coordinator. This provides flexibility to allow each service
the ability to produce and listen to events and decide if an action should be taken or not
given the end user needs.

The above paragraph recalls the difference between an Orchestration and a
Choreography. The above paragraph directs XIVT toolchain to a Choreography

4

 WP4: D4.3

approach (no central coordination), but before achieving it, it is important to start using
an Orchestration approach (where there is an “orchestrator” managing the overall
service interactions, following a request/response pattern). Chapter 2.1, page , explains
in detail why we suggest an Orchestration approach.

To recap. the contents of this report addresses the following:

Toolchain – explains the main sequence of activities and the activities output being tool
agnostic

Orchestration – explain the importance of an Orchestration approach and the way to
implement such architecture

Services Attributes – details the attributes of the standard protocol, so that the
Orchestrator has only one “language”, being the responsibility of each tool partner to
develop the “translators” to / from their specific services

Tools and Toolchain Mapping – maps each tool to the conceptual activities in the
toolchain

Detailed Tools and Attributes Definition – allows each partner to understand where
its tool can play a role in the toolchain, and as well, other partners understand the
functionality of each tool. This chapter should also describe the adaptors needed by
each tool to dialogue with the Orchestrator

Technology Stack ​– defines the technology stack of the overall integration toolchain

5

 WP4: D4.3

Table of Contents

XIVT Toolchain 8

Introduction 8
Toolchain Activities 11
Toolchain Sequence and Work Packages 16
Toolchain Activities Output 18

Orchestration 21
Description 21

Service Interface Definition 32
High-Level Service Attributes 32
Detailed Service Attributes 34

A01 – Variability Test Case Modelling 35
A02 – Feature Reuse Analysis 35
A03 – Sampling 36
A04 – Instantiation 36
A05 – Test Modelling 37
A06 – Test Reuse Analysis 37
A07 – Test Generation 38
A08 – Test Optimization 39
A09 – Test Adaptation 40
A10 – Test Execution 41
A20 – Mutation Testing 42
A21 – Fault Injection 43

Appendix A: Tools and Toolchain Mapping 46
Introduction 46
Mapping of Tools to Toolchain Activities 46

Appendix B: Detailed Tools and Attributes Definition 48
VarSel: Service for Variant Selection 50
Service for Test Case Adaptation 50
Service for Test Suite Quality Assessment 50

6

 WP4: D4.3

Service for Test Injection and Execution (FBDMutator) 51
Service SEAFOX 52
Service RCM (NALABS) 54
BeVR: Service for requirements-based variability modelling 54
Service for generating human-readable test scripts 54
Service for IIoT component identification 54
Service for risk-based test scoring 55
VARA: Service for requirements similarity-based reuse prediction 55
SaFReL: Service for performance test case generation 57
ReForm: Service for requirement formalization and test optimization 57
ifakVBT: Service for test case generation and variant traceability 58
MTest 59
RELOAD: Service for test load generation 59
TARA 59
DoTA 60
MODICA 61
ARD Test Prioritization Tool 61
MERAN 61
TESTONA 62
InnSpect 62
DeltaFuzzer 64
TV RoboTester 65
Otomat (Testroyer) 66

Appendix C: Technology Stack 67

7

 WP4: D4.3

1 XIVT Toolchain

1.1 Introduction
This chapter recaps the details of the Toolchain concepts so that all partners have a
common understanding and, consequently, can ensure the services and features
supported by the various tools can be integrated into the toolchain.

To normalize terminology, a “tool” represents an entity that encomposses one or more
“features” or “services” required for variant testing. For example, a tool may be called
the “awesome tool” but what’s of interest is what this awesome tool does such as “Test
Generation” and/or “Test Execution” in the context of variant testing. Therefore, moving
forward, reference to integration shall be in the context of services or features.

With that in mind, some important considerations:

● There is one Orchestrator using a standard protocol, which any service must use
in order to be triggered by and to respond to the XIVT Control User Interface

● In addition, each service receives and sends information using a standard
protocol as defined here

Please note that due to conflict among existing triggers and output formats, it is
expected that some tools will require tweaks and updates to APIs and/or need a “driver”
(or adaptor) to convert internal data representation to/from the desired standard protocol
to facilitate toolchain integration.

Each tool must associate each functionality to one elementary service. Each service
implements one Toolchain Activity, as it is represented in the following diagram:

8

 WP4: D4.3

Figure 1.1 – Conceptual association between Tool Services and Toolchain Activities

To recap the High Level Design, there are situations where a single tool supports
implements several activities in sequence, and therefore, the owner of Tool T01 (using
the example above) needs to treat that functionality as three services (called S01, S02
and S03) to implement three independent toolchain activities by supporting appropriate
protocols defined in this document.

If we see this example under the perspective of the toolchain, we have one sequence of
activities managed by an Orchestrator to ensure Activity A, B, C, D and E. The
Orchestrator received information from UI (User Interface) to know which tool is
supposed to be used, and using the example above, we can represent the toolchain as
follows:

Figure 1.2 – Toolchain Activities Sequence and the associated Tool Services

The Orchestrator uses two tools, named T01 and T02 in this example. The first tool
implements Activity A, C and D, while T02 implements Activity B and E. It is this
flexibility that we can see in the following sections of this document and, as well, the
definition of the abstraction concepts to implement that level of flexibility.

9

 WP4: D4.3

With this explanation it will be easy to figure out that “Toolchain Activity”, “Tool Feature”
or “Tool Service” can be seen as synonyms. We will use each terminology depending
on the abstraction level of the speech.

The next section explains the main lifecycle / work stream of the toolchain activities –
activities 01 until 10. There are also two complementary sets of tools, called
“Complementary Tools” and “Analysis Tools”, both under the umbrella of the “Test Suite
Quality Assessment” concept. The “Complementary Tools” set includes Mutation
Testing and Fault Injection concepts, and they are numbered Activities 20 and 21. The
“Analysis Tools” set includes Coverage Analysis and Test Model Checking concepts,
and they are numbered Activities 30 and 31.

10

 WP4: D4.3

1.2 Toolchain Activities

11

 WP4: D4.3

Figure 1.3 – Toolchain Activities Sequence

This sequence of Activities, from A01 until A10, represent the main purpose of the
Toolchain. The name of each activity is associated with the concepts already explained
in D4.2. In this document, we organize those concepts into a logical sequence of
activities as applicable for variant testing and further define details behind each activity.

Although in the diagram above it is explained each activity with a description in the right
side, it is important to highlight some clarifications:

1. Variability Modeling – this activity is mainly an intellectual human effort and it is
supposed to provide, as output, a model description of business variability.
Although it is a human effort activity, it is supposed to be supported by a tool,
namely a tool that reads textual specifications and, with NLP (Natural Language
Processing) provides the desired model description that will be used as input
data for the second activity.

12

 WP4: D4.3

2. Feature Reuse Analysis – this activity uses the model description of A01 to
identify similarities between variants and cluster them.

3. Sampling ​– the output of A02 is used by this activity to identify if they are invalid
variants and remove them from the specification model. For example, if a
configuration option implies that another configuration doesn’t make sense, it is
useless to define a test case with the combination of those two functionalities.
Therefore, we see this activity as the point where we move from a “Variability
Model Description” to a “Product Model Description”.

4. Instantiation ​– this activity uses the “Product Model Description” from A03
where there are generic classes (representing conceptual variants) and
instantiates each class in a specific way, so that we have the source material to
start the Test Modelling.

Activities A02, A03 and A04 comprise one of the technological innovations of
XIVT Project, based on knowledge-based requirements analysis and selection,
extracting features and requirements using machine learning techniques and
map-reduced algorithms, with the associated identification of features and priority
ranking for testing.

5. Test Modelling ​– this activity uses the Product Model Description from A04 to
create a Test Model. The Test Model will derive in a set of Test Conditions,
supported by the modelling data, with possible reusage combinations between
those test conditions (see activity A06), but it is still missing detailed information
for the testing steps of each test case (which is addressed by activity A07).

6. Test Reuse Analysis ​– this activity uses the “Test Model Description” from A05
and identifies similarities and clusters them, so that we have an unique set of
Test Conditions.

7. Test Generation ​– this activity uses the data of A06 to detail each test case into
a test specification. Each test has the description of the preconditions to execute
the test (test structure), the test data needed and the test steps (test behavior)
needed to accomplish the software validation of that test case. We can see this

13

 WP4: D4.3

activity as the aggregation of 3 sub-processes as represented in the above
diagram.

8. Test Optimization ​– with the output of A07, we could imagine that we have all
required information to start test execution. However, it is not the case, since
XIVT project intends to extend the optimization as much as possible. Therefore,
although we have at A02 and A06 some optimization by reusability, here the
optimization is by reducing the test case list. With the detailed information
provided by A07, we can use some parameters to score each test case by
priority (using best practices like Risk Based Testing). With that scoring (activity
A08.a), activity A08.b can discard some test cases with very low priority,
reducing the test case list without increasing the business risk (or with a marginal
and insignificant increase).
NOTE: the concept of Test Optimization could be seen in two different ways
inside XIVT project (see section 1.3 – Toolchain Sequence and Work Packages,
page for details)

9. Test Adaptation ​– with the output of A08, with the detail of each test case
description, we can move from “logical test cases” to “executable test cases”, or
if we want, from “abstract test cases” to “concrete test cases”. This activity A09
can also be seen as a compiler, that translates human readable statements into
executable instructions for an engine to automatically do the testing itself.
This activity is preceding A10 activity if we are under the context of a “compiler”.
If the test execution engine interprets a meta-language in real-time, we can see
A09 and A10 as only one activity for each test step because the translation of
“logical” to “executable” instructions will be done during test execution.

10.Test Execution – this activity can also be seen as the aggregation of 3
sub-processes as represented in the above diagram. One is the execution itself;
another is the simulation of one test item (for example, a hardware component or
a service from a 3​rd party and it is not available yet); and the third one is the
execution logs to store evidences of the test itself for analysis purposes and for
defect management (if the test detects a defect).

14

 WP4: D4.3

Complementary to the above sequence, there is also a “Test Suite Quality
Assessment”, which is used to validate the accuracy of the toolchain itself. The diagram
below explains those activities where we can see:

● Complementary Tools – those activities A20 and A21 complements A10 since it
introduces mutations and fault injection to validate if the toolchain can detect
those mutations, and therefore, provide us the desired level of confidence

● ​Analysis Tools – These activities A30 and A31 allow us to identify if the
toolchain is providing the desired level of coverage, and therefore, provide a
quality metric of the testing effectiveness.

Activity A31 also represents a model checking procedure for selecting applicable test
cases for specific products in the regression test of product lines. The conceptual
approach behind it is the certification of software on the basis of the product family,
which allows to maintain certificates for parts that have been previously validated.

Figure 1.4 – Test Suite Quality Assessment

15

 WP4: D4.3

1.3 Toolchain Sequence and Work Packages
This section is a pertinent one because it maps the conceptual diagrams described in
FPP Annex with the toolchain activities. This is even more important because some
terminology used in FPP Annex uses the same word as it is used in toolchain but under
a different perspective.

Recovering the picture at the end of FPP Annex, section 2.1.1, we have the following
diagram:

Figure 1.5 – XIVT innovation fields in variant testing, across industries

The Variability Modelling concept is represented by Activities A01 to A06, Test
Generation by A07 and Test Optimization by A08. Activities A09 and A10 can be seen
as the materialization of the end result of the Integration Platform.

16

 WP4: D4.3

Using the Work Package view, in special the four technical work packages (WP1, WP2,
WP3, WP4), we can see in the following diagram the names of the WPs:

Figure 1.6 – Work Packages diagram

Starting with WP2, named “Knowledge-Based Test Optimization”, it is important to
clarify that this optimization is over requirements and abstract test cases.

WP2 addresses Challenge 2 and 3, which are:

● CHALLENGE-2: Prioritization and selection of requirements for testing using
knowledge-based techniques

● CHALLENGE-3: Generating abstract test cases using abstract model

In contrast, toolchain activity A08, also named “Test Optimization”, addresses a
concrete Test Case List, supported by Test Procedures where it is explained the Test
Behavior (the output of Activity A07 – Test Generation).

17

 WP4: D4.3

Looking now at WP3, we see the name “Variant Testing”. This WP3 addresses
Challenge 3, 4 and 5:

● CHALLENGE-3: Generating abstract test cases using abstract model

● CHALLENGE-4: Concretizing abstract test cases and assessing them in product

● CHALLENGE-5 Improving software security based on test cases results

As we can see, the “Variability” terminology at Toolchain activities is associated with the
modelling parts (activities A01 to A06) and “Variant Testing” Work Package is more
associated with A07, A08, A20 and A21.

This apparent inconsistency does not create a real problem because all XIVT Project is
about variability and testing. The difference is the level of abstraction of the speech, and
this section was written just to avoid some confusion and turn all concepts clear.

In summary, we have WP2 describing “optimization” followed by WP3 describing
“variant” testing. Toolchain activity describes “variant” modelling followed by
“optimization” at later stages of the activities chain. Of course, at the modelling stage,
trying to reduce the number of test cases is (obviously) an optimization, but at toolchain
this term is addressed under “Test Analysis and Design” scope and not modelling
scope.

1.4 Toolchain Activities Output

Under the same desire to avoid confusion, it is important to use the same terminology
when we are talking about input and output data. The terminology proposed is not a
finished work, since we need to get feedback from all tool partners, and it could make
sense to change a term to a different word to keep more consensus inside XIVT
consortium.

Therefore, this section explains the output of each Toolchain Activity to keep all people
aligned and everyone understands exactly what the objective of each output is. After

18

 WP4: D4.3

this explanation, it will also highlight some incongruencies between the Toolchain
Activities and the mapping and tool classification described at D4.2. As soon as those
incongruencies were solved (at D4.2 or at this D4.3 document), these highlights should
be removed from this document. For easier identification, they are put inside a gray box
because they are collateral information and not the core information of this document.

A​CTIVITY A​CTIVITY​ N​AME O​UTPUT​ ID O​UTPUT​ D​ESCRIPTION

A01 V​ARIABILITY​ M​ODELLING OUT.01 V​ARIABILITY​ M​ODEL​ D​ESCRIPTION

A02 F​EATURE​ R​EUSE​ A​NALYSIS OUT.02
V​ARIABILITY​ M​ODEL​ D​ESCRIPTION
(​WITH​ S​IMILARITY​ C​LUSTERING​)

A03 S​AMPLING OUT.03 P​RODUCT​ M​ODEL​ D​ESCRIPTION
(​WITH​ ​GENERIC​ ​CLASSES​)

A04 I​NSTANTIATION OUT.04
P​RODUCT​ M​ODEL​ D​ESCRIPTION
(​WITH​ ​CLASSES​ ​INSTANTIATED​)

A05 T​EST​ M​ODELLING OUT.05 T​EST​ M​ODEL​ D​ESCRIPTION

A06 T​EST​ R​EUSE​ A​NALYSIS OUT.06
T​EST​ M​ODEL​ / T​EST​ C​ONDITIONS
(​AFTER​ T​EST​ R​EUSE​ A​NALYSIS​)

A07 T​EST​ G​ENERATION OUT.07
T​EST​ B​EHAVIOR​ D​ESCRIPTION​ ​WITH
PRECONDITIONS​ ​AND​ ​TEST​ ​DATA
(L​OGICAL​ T​EST​ C​ASE​ L​IST​)

A08.​A T​EST​ P​RIORITIZATION OUT.08.​A
L​OGICAL​ T​EST​ C​ASE​ L​IST
(​WITH​ ​PRIORITY​ ​SCORE​)

A08.​B T​EST​ S​ELECTION OUT.08.​B L​OGICAL​ T​EST​ C​ASE​ L​IST
(​TEST​ ​SUBSET​)

A09 T​EST​ A​DAPTATION OUT.09
E​XECUTABLE​ T​EST​ C​ASES
(C​ONCRETE​ T​EST​ S​CRIPTS​)

After having the executable test scripts, the tool engine does the job of automatic test
execution (A10) complemented by Mutation Testing (A20) and Fault Injection (A21).

Mutation Testing is outside the toolchain main sequence because it can be seen as
pre-execution or post-execution activity.

19

 WP4: D4.3

If A20 receives a list of test cases and mutation operators, the end results will be a new
test case list generated before starting execution. Another situation is doing fault
injection at SUT (System Under test) and analyzing, after execution, the defects
automatically detected. See diagram below.

Figure 1.7 – Mutation Testing and Fault Injection as complement of main activity sequence

2 Orchestration

2.1 Description

In order to cohesively integrate various services and features to achieve a toolchain, it is
necessary the features and services supported by various tools communicate correctly
and synchronously according to a standard protocol. This will provide the ability to
extend the toolchain in the future with additional tools that provided services and
features beneficial for variant testing.

20

 WP4: D4.3

Tools at the beginning of the project were developed by different partners without
coordination and alignment on internal behaviors and architecture during their
development. Also, those tools were purpose built possibly targeting different domains.
The objective of D4.2 and D4.3 is to decompose the features and services supported by
different tools and standardize on interfaces and protocols so that they can be
cohesively integrated. Please note however, the end user will have the ability to
configure the toolchain as they see fit. This will allow features and services that are
complementary to be leveraged optimally or in case of disparate features and services,
utilize them on a standalone basis if appropriate.

From end to end orchestration perspective, the of services / features can be shown in
the figure below.

21

 WP4: D4.3

22

 WP4: D4.3

Figure 2.1 – Toolchain supported by a pipeline of tools

There are two main approaches in order to create the desired synchronization across all
different services / features that are part of the toolchain. Those approaches are
Orchestration and Choreography.

An Orchestration approach requires one or more software components that are
responsible for synchronizing all different applications during the execution of the
desired process. Let’s use the example illustrated above to understand how an
orchestration approach could be used.

As we can see in the previous diagram, the user wanted to execute all the features
(testing layers) using a specific tool supporting each feature / layer, and by providing the
text requirements and the configuring data to the orchestrator.

The process starts with the user input into the orchestrator. By following the user
configurations, the orchestrator distributes the work as it was required. Starting by the
“Variant Modeling Layer”, the orchestrator selects the appropriate tool that supports a
particular service that the user has chosen for that layer – tool T3 in the diagram above.

Once the execution of the service from the first layer is finished, either a message is
sent to the orchestrator to fetch the output of the service that have just finished its work
(asynchronous case) or the result is sent directly as a response of the strait trigger of
the orchestrator (synchronous case). When the orchestrator receives the response of
the service that was intended to execute at that specific time, that output is directed via
the standard input for the next service and sent to the service / feature of the application
that the user has configured for execution in that next layer. The process repeats until
the end of the chain is reached or until the user has configured so. The following image
provides a visual representation of the orchestration architecture.

23

 WP4: D4.3

Figure 2.2 – Orchestration Architecture

In the case of a Choreography, the different applications synchronize between
themselves without any help of an external application. In a choreography scenario
each application knows what and when to send information to the next layer. Commonly
publisher - subscriber design pattern is used where services publish output to different
topics and services that subscribe to different topics would be monitoring data being
posted to topics of interest and start processing whenever there is new information.

Using again the same example used above, for describing orchestration, we have a
user that wants to execute all layers using different applications on each different layer.
The user provides again the text requirements but this time, configurations are sent
among the text requirements. Once in choreography there is no central set of control
services to synchronize all different components, the different services that must get the
information and which tool supporting the service in that layer should be called next.

24

 WP4: D4.3

Also, each service must support the output as defined in this document so that it can
become input of the next service in the toolchain. In such a case the user simply defines
the starting point. After sending the initial request to the first service in the toolchain,
execution will seamlessly continue till an end state is reached. The image below will
represent visually how a choreography architecture would behave.

Figure 2.3 – Choreography Architecture

Both architectural patterns have their pros and cons. What is really important is to weigh
both pros and cons of both approaches for the specific case which they are going to be
applied to.

25

 WP4: D4.3

Now, that both architectural patterns have been explained, let’s look a little more into
our specific case and try to understand which pattern would fit better into the toolchain.
In our toolchain there are some use cases that we must have in consideration. The use
case mentioned in the start of this chapter is possibly the simplest one, where a user
that wants to use the toolchain chose it from top to bottom with no gaps between lanes.
In such cases, both architectural patterns can be applied with no big concerns.
Orchestration might have better maintainability, once it is easier to modify all toolchain
sequences if one tool changes the connection interface. Choreography on the other
hand, might present better performance once the roundtrips to and from the
orchestrator does not exist.

Also, the orchestration pattern would require the development of an additional
application. However, the choreography pattern would require an extra effort of all
partners to incorporate into their tools the ability of converting payloads for different
applications and a configuration model that would keep the chain active until further
notice from the user.

Those are some of the trade-offs when opting between those two architectures in
generic scenarios, but let’s take a deeper look into more specific requirements.

As an example, imagine a requirement where the user should be able to execute only
specific layers of the toolchain, within certain constraints. The user should not be able to
execute layers in a reverse way, and some of the layers might not be compatible with
executing one after another, because of lack of information from one lane to another.

Those restrictions can be managed by disallowing the user to select them in the
configurations. This freedom provided by the flexibility of the toolchain comes in hand
with an increase of its complexity. As so, the toolchain may be used differently than
what was represented in the first picture (Figure 2.1, page). The user might choose to
execute only a subset of the existing layers, as shown in the following example (layers
with no service support in dark color means a jump from the previous to the next level).
The sequence might jump levels, start in a middle level or end in a middle level.

26

 WP4: D4.3

27

 WP4: D4.3

Figure 2.4 - Toolchain example where some layers are not executed

In this example we can see that the user chooses not to execute some of the existing
layers. Opting for an orchestration architecture allows having an application managing
the flow which simplifies the implementation pattern. This way the orchestrator could
convert the received output to any input payload required by any compatible application
at the layers’ below.

However, in a choreography scenario, applications should have to be able to send the
request for the next tool which might not be linear. In a choreography if an application
jumps a layer, such application must produce the input of the layer it is going to send it
to. If we analyze Figure 2.4 above, we can see that one application might have to
produce n outputs. Those n outputs are not only the inputs of the layer just below but
also from all lower layers to which it is compatible to call to.

As an example, if we look at T9 in the Test Reuse Analysis it should not only produce
the input for T11 and T12 in the Test Behavior Generation layer but also for any other
tool below that layer that is compatible with such a step of the toolchain.

Other approaches might be considered when looking at a choreography architecture. If
the service produces a standard output that fits the next layer input, we could develop
applications that convert those standard outputs to other layers below using default
values. Let’s take the same example. The T9 application in the Test Reuse Analysis
now needs to call the T11 in the Test Structure Generation, instead of calling it directly it
will call an application that belongs to Test Behavior Generation to make the translation
of the output from T9 to the input of T11, 2 layers’ bellow.

This pattern allows us to simplify each independent tool, despite increasing the
workload on standardizing interfaces or adapters per service / layers. If we analyze
carefully, this is the job of the orchestrator in an orchestration architecture. Imagine that
the user now wants to stop the toolchain execution before the last layer, as shown in the
next diagram.

28

 WP4: D4.3

Figure 2.5 – Toolchain example that ends in a middle level

In this scenario the toolchain has to know when the execution should finish. Here, in an
orchestration scenario the implementation makes it pretty easy to stop the sequence
based on management of the orchestrator. Since the orchestrator receives a
configuration parameter to know where it should end, it is easy to implement a decision
point that after the orchestrator calls the last service, it should return the result instead
of calling another service.

However, when we put this use case on a choreography architecture things get a little
bit messier. For the toolchain to stop its execution at a specific point, each service
should know if there is a final node or not. Remember that services only get information
from the system that called them, and thus, the information about which service should
stop the execution has to be shared across multiple services until it reaches the
destination service. This would require the implementation of functionality inside the

29

 WP4: D4.3

different services that would make those services system dependent. Like so, every
service should behave as a node in a graph, knowing exactly to whom it can send the
information and if that will be the last system processing the payload. By looking at this
use case it is fair to say that an orchestration implementation would fit much better than
a choreography pattern.

Now let’s take a look into other possible use cases. The user should also be free to start
the execution of the toolchain where he would most like. As so the following diagram
describes that scenario.

Figure 2.6 – Toolchain example that starts in a middle level

30

 WP4: D4.3

In this situation the UI should know where to send the first request. With some
configuration both architectures can be applied with no big deal. In an orchestration
architecture, the orchestrator should receive as configuration which should be the first
service of the toolchain. On the other hand, in a choreography scenario the UI should
send the request directly to the first service of the stack, and so, the UI should have the
capability of sending the first request to any possible tool.

Now that we have looked in some of the use cases, it can be seen that even though
both patterns have their pros and cons, the orchestration would fit better in the specific
scenario.

The major advantages of such architecture are the maintainability of the overall
toolchain and the decrease of the workload required to implement such a solution.
When looking at maintainability, let’s imagine that a partner wants to add a new service
to the toolchain.

If we have an orchestration, the pointer to that service should be managed only on the
orchestration side, while if we have a choreography pattern, we would have to change
every compatible service and supporting tools to point to the new service / tool. This can
be manageable when there are only a handful of services but if that number starts to
increase it will become harder to manage as well as more error prone.

Regarding the workload, it can be said that in a choreography scenario each partner
would have to support the standard interfaces or develop adaptors for each compatible
service. In the case of layer jumps it should also be developed an application that would
convert the payloads with some default values, so that the output is compatible with the
input of the target service. Even though, in an orchestration architecture most of those
things have also to be implemented, with some techniques we can decrease
significantly the required work as explained in the sections below (event queues can be
utilized).

With the above, interaction among services supported by various tools of the XIVT
Toolchain will follow the Orchestrator design pattern as it is more appropriate for a
project like XIVT that involves multiple partners providing a variety of services / features
via tools.

31

 WP4: D4.3

3 Service Interface Definition

As rationalized in sections 1 and 2, the XIVT Toolchain will be built by integrating a set
of services / features required for variant testing using the orchestrator pattern. This
section outlines standard interface(s) and protocol(s) required to be supported by each
service. Existing inputs and outputs were considered, conflicts were resolved with future
maintenance, extensibility and longer term commercial viability in mind.

Services (also referred to as features as well as layers throughout the document) are
tool agnostic. We have done the exercise, for each service / toolchain activity by asking
and answering the questions: what are the needed input attributes for the (abstracted)
services to produce the desired output and what the output format should be to allow for
integration going forward.

The desired high level inputs/outputs were summarized in section 1.4. In this section,
input from partners were gathered and consolidated in order to come to a standard
interface definition for the core services part of the XIVT Toolchain. We start by outlining
the high level input / output attributes to make it clear to partners why such
standardization is required then elaborate further with details for the various tool chain
services to act as the baseline for integration.

The Orchestrator pattern will use the standard service definition outlined in this section
and it is the “contract” partners need to abide to support integration moving forward.
This will facilitate independent tool development, while accommodating collaboration
across the consortium partners in meeting the XIVT project objective.

3.1 High-Level Service Attributes
As stated above, we first define the input and output attributes supported by the
toolchain services (summarized in the diagram below). The diagram also cross refers to
partner specific tools if one already exists.

32

 WP4: D4.3

33

 WP4: D4.3

3.2 Detailed Service Attributes
This section outlined the standardized service definition in terms of inputs and outputs.
It is important that partners think in terms of services / functionality rather than tools they
are familiar with. This will ensure across the consortium there is alignment and clarity as
to what each layer of the toolchain is tasked with. Therefore a tool from a partner is
likely mapped to multiple services and inputs and outputs are defined in the context of
the services from external trigger and response perspective.

1. Partners have identified which toolchain activities their tool(s) can support

2. Data was collected from partners as to what input and output their services
currently support.

3. Collected data was analyzed to come up with a standard interface definition.

4. Next Steps:

a. Using this standard definition as a guide, work with partners to identify
gaps in terms interfaces that are missing, needs to be updated.

b. Based on the gaps analysis, define a timeline for required changes to be
implemented (partners have the option to do it themselves or can request
help of other partners in the consortium that are specialized in software
integration and product development)

34

 WP4: D4.3

c. At this point, we can start formal integration effort, leading to D4.4
(Integrated XIVT Toolchain)

3.2.1 A01 – Variability Test Case Modelling

Variability Test Case Modelling Service provides support for generating a set of test
cases, mapped to the variants. This service requires the State Machine Model of the
requirements as input and will generate a traceability matrix of test cases per protocol
definition below. Requirements can have additional attributes such as textual
description or images depending on the use case.

Standard Protocol

A​CTIVITY​ /
S​ERVICE I​NPUT​ A​TTRIBUTE I​NPUT​ T​YPE O​UTPUT​ A​TTRIBUTE O​UTPUT​ T​YPE

A01 S​TATE​ M​ACHINE​ M​ODEL JSON T​EST​ C​ASES​ M​ATRIX JSON

3.2.2 A02 – Feature Reuse Analysis

Feature Reuse Analysis Service provides the ability to take a set of new product
requirements and maps those requirements to features previously defined for existing
products/products lines to create the new product configuration required to support the
new set of requirements.

Standard Protocol

A​CTIVITY​ /
S​ERVICE I​NPUT​ A​TTRIBUTE I​NPUT​ T​YPE O​UTPUT​ A​TTRIBUTE O​UTPUT​ T​YPE

A02
T​RAINING​ D​ATA JSON TRAINED​M​ODEL JSON (​AS​ ​PER

5.11, 1 T​RAIN​)

Q​UERY​ D​ATA JSON C​OMPARISON​ ​REPORT
JSON (​AS​ ​PER​ 5.11,
2 Q​UERY​)

35

 WP4: D4.3

3.2.3 A03 – Sampling

Sampling Service provides support for automatically finding valid configurations from a
given variability model (e.g. feature model).

Standard Protocol

A​CTIVITY​ /
S​ERVICE I​NPUT​ A​TTRIBUTE I​NPUT​ T​YPE O​UTPUT​ A​TTRIBUTE O​UTPUT​ T​YPE

A03 V​ARIABILITY​ M​ODEL JSON L​IST​ ​OF​ C​ONFIGURATIONS JSON

3.2.4 A04 – Instantiation

Instantiation Service provides support for generating or selecting an ​instance (one
particular object from a general description of a class of similar objects). Specifically,
generating or selecting a concrete requirement or test case from an abstract form (i.e.
the model) or incase of selection, from a pool of concrete requirements or test cases.

Standard Protocol

A​CTIVITY​ /
S​ERVICE I​NPUT​ A​TTRIBUTE I​NPUT​ T​YPE O​UTPUT​ A​TTRIBUTE O​UTPUT​ T​YPE

A04
V​ARIABILITY​ M​ODEL JSON S​ET​ ​OF​ ​CONCRETE

OBJECTS JSON

S​ET​ ​OF​ ​CONCRETE​ ​OBJECTS JSON S​ELECTED​ ​OBJECT JSON

36

 WP4: D4.3

3.2.5 A05 – Test Modelling

Test Case Modelling Service provides support for generating a model set of test cases.
This service requires the Requirements Model as input and will generate an output set
of test cases per protocol definition below. Requirements can have additional attributes
such as textual description depending on the use case.

Standard Protocol

A​CTIVITY​ /
S​ERVICE I​NPUT​ A​TTRIBUTE I​NPUT​ T​YPE O​UTPUT​ A​TTRIBUTE O​UTPUT​ T​YPE

A05 L​IST​ ​OF​ ​TEXTUAL
REQUIREMENTS JSON L​IST​ ​OF​ T​EST​ C​ASES JSON

3.2.6 A06 – Test Reuse Analysis

Test Reuse Analysis Service will provide a set of existing tests that can be used when
testing similar products or new product features. In order to do so, the service requires a
set of product/variant requirements and all the existing test cases for that specific type
of product/product line/feature. Based on this, a list of reusable test cases would be
identified from the pool of test cases that exist to adequately validate the new
requirements.

Standard Protocol

A​CTIVITY​ /
S​ERVICE I​NPUT​ A​TTRIBUTE I​NPUT​ T​YPE O​UTPUT​ A​TTRIBUTE O​UTPUT​ T​YPE

A06
L​IST​ ​OF​ P​RODUCT
REQUIREMENTS​ ​AND

L​IST​ ​OF​ E​XISTING​ T​EST
C​ASES

JSON L​IST​ ​OF​ R​EUSABLE​ T​EST
C​ASES JSON

37

 WP4: D4.3

3.2.7 A07 – Test Generation

Test Generation Service includes 3 subprocesses: test behaviour generation, test
structure generation and test data generation. Each of the specific sub-process is
explained in its correspondent subsection and can be handled in parallel.

A07-A - Test Behavior Generation

Test Behaviour Generation Service will provide a set of configurable environment
parameters required to emulate the expected behaviour of the testing system for a
particular product / product line / feature of interest. This service requires the product /
product line / feature of interest as an input, along with a list of dependent test system
environment element(s). Based on this, the service will generate a list of configurable
environment parameters applicable for the testbed(s) / test system(s).

Standard Protocol

A​CTIVITY​ /
S​ERVICE I​NPUT​ A​TTRIBUTE I​NPUT​ T​YPE O​UTPUT​ A​TTRIBUTE O​UTPUT​ T​YPE

A07-A

P​RODUCT​ / ​PRODUCT​ ​LINE​ /
FEATURE​ ​OF​ ​INTEREST

JSON
E​NVIRONMENT
CONFIGURATION
PARAMETERS

JSON
T​EST​ ​SYSTEM​ ​DEPENDENCY
MAPPING

A07-B - Test Structure Generation

Test Structure Generation Service generates the pre-condition data required to setup
and manage various test systems that are applicable for a particular product / product
line / feature testing.

38

 WP4: D4.3

Standard Protocol

A​CTIVITY​ /
S​ERVICE I​NPUT​ A​TTRIBUTE I​NPUT​ T​YPE O​UTPUT​ A​TTRIBUTE O​UTPUT​ T​YPE

A07-B

P​RODUCT​ / ​PRODUCT​ ​LINE​ /
FEATURE​ ​OF​ ​INTEREST

JSON A​RRAY​ ​OF​ T​EST
S​TRUCTURE​ O​BJECTS JSON

T​EST​ ​SYSTEM​ ​DEPENDENCY
MAPPING

A07-C Test Data Generation

Test Data Generation Service will provide a set of test data that will be used to test
products or features. Test data means the possible input combination given a specific
product/product line/feature.

Standard Protocol

A​CTIVITY​ /
S​ERVICE I​NPUT​ A​TTRIBUTE I​NPUT​ T​YPE O​UTPUT​ A​TTRIBUTE O​UTPUT​ T​YPE

A07-C

PRODUCT​ / ​PRODUCT​ ​LINE​ /
FEATURE​ ​OF​ ​INTEREST

JSON L​IST​ ​OF​ T​EST​ D​ATA
O​BJECTS JSON MAPPING​ ​OF​ ​PRODUCT​ / ​PRODUCT

/ ​FEATURE​ ​LIST​ ​TO​ ​RELATED
TEST​ ​CASES

3.2.8 A08 – Test Optimization

Test Optimization has two subprocesses: test prioritization and test selection. Each of
the specific sub-process is explained in its correspondent subsection and can be
handled in parallel.

A08-A - Test Prioritization

39

 WP4: D4.3

Test Prioritization Service takes an input set of test cases and assigns priorities per
internal knowledge-based algorithm and provides a prioritized set of test cases as
output.

Standard Protocol

A​CTIVITY​ /
S​ERVICE I​NPUT​ A​TTRIBUTE I​NPUT​ T​YPE O​UTPUT​ A​TTRIBUTE O​UTPUT​ T​YPE

A08-A L​IST​ ​OF​ ​TEST​ ​CASES JSON L​IST​ ​OF​ ​TEST​ ​CASES​ ​WITH
PRIORITY​ ​ASSIGNMENT JSON

A08-B - Test Selection
Test Selection Service takes an input set of prioritized test cases and recommends a
subset of test cases that are adequate to validate a feature / product / product line
requirements per internal knowledge-based algorithm.

Standard Protocol

A​CTIVITY​ /
S​ERVICE I​NPUT​ A​TTRIBUTE I​NPUT​ T​YPE O​UTPUT​ A​TTRIBUTE O​UTPUT​ T​YPE

A08-B

P​RIORITIZED​ L​IST​ ​OF​ ​TEST
CASES

JSON L​IST​ ​OF​ ​RECOMMENDED
TEST​ ​CASES​ (​SUB​-​SET​) JSON F​EATURE​ / ​PRODUCT​ /

PRODUCT​ ​LINE
REQUIREMENTS

S​ELECTION​ ​CRITERIA​ (​OPTIONAL​)

3.2.9 A09 – Test Adaptation

40

 WP4: D4.3

Test Adaptation Service will adapt logical / abstract test cases to system
specific/concrete test cases. All technical test details should be adapted by this service.

Standard Protocol

A​CTIVITY​ /
S​ERVICE I​NPUT​ A​TTRIBUTE I​NPUT​ T​YPE O​UTPUT​ A​TTRIBUTE O​UTPUT​ T​YPE

A09

L​IST​ ​OF​ ​ABSTRACT​ ​TEST
CASES

JSON L​IST​ ​OF​ C​ONCRETE​ T​EST
C​ASES JSON

SYSTEM​ ​UNDER​ ​TEST​ ​PARAMETERS

3.2.10 A10 – Test Execution

Test Execution has three subprocesses: test execution, test behaviour simulation and
test logging. Each of the specific sub-process is explained in its correspondent
subsection and can be handled in parallel.

A10-A - Test Execution
Test Prioritization Service is responsible for executing a set of executable test cases per
input provided and monitoring the status of execution to assert test pass/fail and return
the results as output.

Standard Protocol

A​CTIVITY​ /
S​ERVICE I​NPUT​ A​TTRIBUTE I​NPUT​ T​YPE O​UTPUT​ A​TTRIBUTE O​UTPUT​ T​YPE

A10-A

L​IST​ ​OF​ ​EXECUTABLE​ ​TEST
CASES

JSON A​RRAY​ ​OF​ ​TEST​ ​RESULTS JSON
T​EST​ ​TARGET​ ​SYSTEM
DETAILS

O​PTIONAL​ ​PARAMETERS
(​PRIORITY​, ​SCHEDULE​, ​ETC​)

41

 WP4: D4.3

A10-B - Test Behavior Simulation
Test Behavior Simulation Service is responsible for supporting simulation of testbed
(both software and hardware) to enable Test Execution when subsystems are not
available (physical unavailability, need for stubs in software).

Standard Protocol

A​CTIVITY​ /
S​ERVICE I​NPUT​ A​TTRIBUTE I​NPUT​ T​YPE O​UTPUT​ A​TTRIBUTE O​UTPUT​ T​YPE

A10-B

L​IST​ ​OF​ ​SUBSYSTEMS​ ​TO
SIMULATE

JSON S​UBSYSTEM​ ​OUTPUT JSON

I​NPUT​ ​DATA​ ​FOR​ ​SUBSYSTEM
TO​ ​BE​ ​SIMULATED

A10-C - Test Logging

Test Logging Service is responsible for tracking test execution details and writing to a
repository the execution history, including the execution outcome (pass/fail) to be
persistent.

Standard Protocol

A​CTIVITY​ /
S​ERVICE I​NPUT​ A​TTRIBUTE I​NPUT​ T​YPE O​UTPUT​ A​TTRIBUTE O​UTPUT​ T​YPE

A10-C T​EST​ ​CASE​ ​TRIGGERED​ ​FOR
EXECUTION​ & ​OTHER​ ​DETAILS JSON E​XECUTION​ ​HISTORY​ ​AND

OUTCOME​ (​PASS​/​FAIL​) JSON

3.2.11 A20 – Mutation Testing

Mutation Testing Service provides the ability to automate fault detection. In order to do
so, the service takes the list of test cases to undergo detection and runs it on an original

42

 WP4: D4.3

item and it’s variants. The results produced are detected for faultiness and the details of
the findings are returned as an output.

Standard Protocol

A​CTIVITY​ /
S​ERVICE I​NPUT​ A​TTRIBUTE I​NPUT​ T​YPE O​UTPUT​ A​TTRIBUTE O​UTPUT​ T​YPE

A20

L​IST​ ​OF​ T​EST​ C​ASES

JSON

L​IST​ ​OF​ ​FAULTS​ ​AND
D​ETAILS​ ​OF​ ​FAULTS
DETECTED

JSON

L​IST​ ​OF​ T​EST​ I​TEMS​ ​AND
V​ARIANTS

3.2.12 A21 – Fault Injection

Fault Injection Service will inject algorithmically generated faults into the system once
triggered.

Standard Protocol

A​CTIVITY​ /
S​ERVICE I​NPUT​ A​TTRIBUTE I​NPUT​ T​YPE O​UTPUT​ A​TTRIBUTE O​UTPUT​ T​YPE

A21

F​AULT​ I​NJECTION
ENABLED​/​DISABLED

JSON

S​YSTEM​ ​GENERATED​ ​FAULTS

JSON

F​AULT​ ​INJECTION​ ​DURATION

43

 WP4: D4.3

3.2.13 A30 a, b & c – Coverage Analysis (Requirements / Code / Feature Coverage)

Coverage Analysis Service will allow the user to identify the depth of coverage achieved
by executing a particular test suite. The service runs verification on a predefined set of
coverage items such as requirements, features or portions of code and returns
coverage metrics as output.

Standard Protocol

A​CTIVITY​ /
S​ERVICE I​NPUT​ A​TTRIBUTE I​NPUT​ T​YPE O​UTPUT​ A​TTRIBUTE O​UTPUT​ T​YPE

A30

L​IST​ ​OF​ T​EST​ C​ASES

JSON T​EST​ ​COVERAGE​ ​METRICS JSON
T​YPE​ ​OF​ C​OVERAGE​ ​TO​ ​BE
ANALYZED​ (​REQUIREMENTS​,
CODE​, ​FEATURE​)

R​EQUIREMENTS​ / ​CODE​ /
FEATURE​ ​DETAILS

3.2.14 A31 – Test Specification (informal, natural language)Validation
Test Specification Validation Service will take a set of test specifications specified as
natural language in text format as input and validate it for completion against a
predefined set of semantics. After processing, a validation status per test case will be
provided as output.

Standard Protocol

A​CTIVITY​ /
S​ERVICE I​NPUT​ A​TTRIBUTE I​NPUT​ T​YPE O​UTPUT​ A​TTRIBUTE O​UTPUT​ T​YPE

A31
S​ET​ ​OF​ ​TEST​ ​CASES

JSON
L​IST​ ​OF​ ​TEST​ ​CASES​ ​WITH
VALIDITY​ ​STATUS​ (​VALID​ /
INVALID​)

JSON
S​TANDARD​ T​EST​ C​ASE
S​EMANTICS

44

 WP4: D4.3

3.2.15 A32 – Test Model Validation
Test Model Validation Service will take a Test Model as input and validate it for
completion against a predefined set of attributes related to variability. After processing,
a validation status model element will be provided with validity status.

Standard Protocol

A​CTIVITY​ /
S​ERVICE I​NPUT​ A​TTRIBUTE I​NPUT​ T​YPE O​UTPUT​ A​TTRIBUTE O​UTPUT​ T​YPE

A32
T​EST​ ​MODEL

JSON M​ODEL​ ​ATTRIBUTE
STATUS​ (​VALID​ / ​INVALID​) JSON

M​ANDATORY​ ​ATTRIBUTES

Appendix A: Tools and Toolchain Mapping

3.3 Introduction
This section reshapes the Mapping of Tools to Services designed in D4.2, section 4.3.
This updated version maps to specific toolchain activities and not generic
features/services. Using this new approach, we have also identified some
incongruencies between concepts that this document tries to solve.

For better consolidation and information check, we have put the list of tools in the next
matrix using the same order they are presented in Chapter 5 (being also the same order
they were presented at D4.2, chapter 5).

This tool list is not finished as D4.2 also stated. However, at this D4.3 it became more
evident that XIVT consortium needs to consolidate the information, in special because
there are also some columns (abstract services) where there is no tool service
identified.

Those columns could be addressed by new tools or by existing tools even though there
is no service identified yet. For example, if we use the conceptual explanation in

45

 WP4: D4.3

Chapter 1.1, page , where a tool functionality was divided into three services, we can
guess that this could happen from existing tools to address those empty columns.

3.4 Mapping of Tools to Toolchain Activities
The next page shows the above-mentioned matrix.

46

Figure 4.1 - Mapping of Tools to Toolchain Activities

47

 WP4: D4.3

Appendix B: Detailed Tools and Attributes Definition

Var. Modelling
Sampling
Instantiation
Test Modelling
Test Data Generation (incl. Data Fuzzing)
Test Behavior Generation
Test Structure Generation
Test Prioritization
Test Selection
Test Execution
Test Adaptation
Test Logging
Mutation Testing (incl. Fault Injection)
Coverage Analysis (e.g. Req. / Code / Feature Coverage)
Test Behavior Simulation
Test Specification (informal, natural language)Validation
Test Model Validation
Test Reuse
Feature Reuse

This section explains, for each tool, what are the services (toolchain activities) that
could be supported by it, and as well, the specificities of that tool that need to be
addressed to be inserted into the toolchain and follow the standard protocol.

It is also important that a brief description of the associated tool be provided, so that all
XIVT partners can understand the purpose of the tool. We know that some tools are
industry oriented and could be applied only to specific use cases.

48

 WP4: D4.3

The suggested approach is to use the detailed attributes (see Chapter 3.2, page) and
identify if there are conflicts with that specific tool, so that we can:

● Update the Detailed Attributes because we realize that it is missing some
information

● Create an adaptor so that the specific tool can interact with the Toolchain
Orchestrator (using the standard protocol)

Because this chapter depends from Chapter 3.2, page , it will be filled in after 2020,
April 30​th​ because it is impossible to finish Chapter 3.2 before than date.

49

 WP4: D4.3

3.5 VarSel: Service for Variant Selection

3.6 Service for Test Case Adaptation
This is not a separate service, but an application of BeVR (see 5.7 below).

A​CTIVITY​ /
S​ERVICE I​NPUT​ A​TTRIBUTE I​NPUT​ T​YPE O​UTPUT​ A​TTRIBUTE O​UTPUT​ T​YPE

?

T​EST​ B​ASE​ M​ODEL XMI/UML/UT
P T​EST​ M​ODEL XMI/UML/UTP

T​EST​ V​ARIABILITY​ M​ODEL

T​EST​ R​ESOLUTION​ M​ODEL

The Test Base Model consists of a set of files. The basic file format is ​XML Metadata
Interchange​. In order to understand the semantics, however, knowledge of the ​Unified
Modeling Language​ and ​UML Testing Profile​ is advisable.

The Test Variability Model ...

The Test Resolution Model ...

3.7 Service for Test Suite Quality Assessment

50

https://en.wikipedia.org/wiki/XML_Metadata_Interchange
https://en.wikipedia.org/wiki/XML_Metadata_Interchange
https://www.omg.org/spec/UML
https://www.omg.org/spec/UML
https://www.omg.org/spec/UTP

 WP4: D4.3

3.8 Service for Test Injection and Execution (FBDMutator)
Input

V​ARIABLE T​YPE D​ESCRIPTION

XML ​FILE PLCO​PEN​ XML ​FILE​ (​DETAIL​ ​BELOW​)

T​HE​ PLCO​PEN​ ​LANGUAGE​ ​IS
IMPLEMENTED​ ​AS​ ​AN​ XML ​PROFILE
THAT​ ​PROVIDES​ ​THE​ ​ABILITY​ ​TO​ ​DESCRIBE
FBD ​PROGRAMS​ ​USING​ ​THIS​ ​PROFILE​.
T​HE​ PLCO​PEN​ ​LANGUAGE​ ​PROVIDES
BOTH

STRUCTURAL​ ​AND​ ​GRAPHICAL
INFORMATION​ ​NEEDED​ ​FOR
IMPLEMENTING​ ​THE​ ​ACTUAL
TRANSLATION​.

An example of a PLC OpenXML file:

51

 WP4: D4.3

Output

V​ARIABLE T​YPE D​ESCRIPTION

A ​SET​ ​OF​ XML ​FILES F​OLDER​ ​CONTAINING​ ​A​ ​SET​ ​OF​ PLCO​PEN
XML ​FILES​.

T​HE​ ​TOOL​ ​GENERATES​ XML ​FILES
CORRESPONDING​ ​TO​ ​THE​ ​MUTANTS

CREATED​.

3.9 Service SEAFOX
Input

V​ARIABLE T​YPE D​ESCRIPTION

XML ​FILE PLCO​PEN​ XML ​FILE​ (​DETAIL​ ​BELOW​) T​HE​ PLCO​PEN​ ​LANGUAGE​ ​IS

52

 WP4: D4.3

IMPLEMENTED​ ​AS​ ​AN​ XML ​PROFILE
THAT​ ​PROVIDES​ ​THE​ ​ABILITY​ ​TO​ ​DESCRIBE
FBD ​PROGRAMS​ ​USING​ ​THIS​ ​PROFILE​.
T​HE​ PLCO​PEN​ ​LANGUAGE​ ​PROVIDES
BOTH

STRUCTURAL​ ​AND​ ​GRAPHICAL
INFORMATION​ ​NEEDED​ ​FOR
IMPLEMENTING​ ​THE​ ​ACTUAL
TRANSLATION​.

An example of a PLC OpenXML file:

Output

V​ARIABLE T​YPE D​ESCRIPTION

A CSV ​FILE T​EST​ ​CASES​ ​REPRESENTED​ ​IN​ ​A​ CSV ​FILE
T​HE​ ​TOOL​ ​GENERATES​ ​A​ CSV ​FILE

CORRESPONDING​ ​TO​ ​THE​ ​TEST​ ​CASES

53

 WP4: D4.3

CREATED​.

3.10 Service RCM (NALABS)
Input

V​ARIABLE T​YPE D​ESCRIPTION

R​EQUIREMENTS​ ​WRITTEN​ ​IN​ ​AN​ XLXS
FILE XLXS ​FILE A ​REQUIREMENT​ ​DOCUMENT​ ​CONTAINING

AN​ ID ​AND​ ​A​ ​TEXT​ ​COLUMN​.

Input

V​ARIABLE T​YPE D​ESCRIPTION

R​ESULTS​ ​IN​ ​AN​ XLXS ​FILE XLXS ​FILE
A ​REQUIREMENT​ ​DOCUMENT​ ​CONTAINING
THE​ ​MEASUREMENTS​ ​FOR​ ​EACH
R​EQUIREMENT​ ID.

3.11 BeVR: Service for requirements-based variability modelling

3.12 Service for generating human-readable test scripts

3.13 Service for IIoT component identification

54

 WP4: D4.3

3.14 Service for risk-based test scoring

3.15 VARA: Service for requirements similarity-based reuse
prediction

End Points:
1. Train
Trains a model on natural language requirements and their reuse links to product line
features. Note that the tool is console based and takes these input through terminal.
Input:

V​ARIABLE T​YPE D​ESCRIPTION

TRAIN JSON(​DETAILED​ ​NEXT​) L​IST​ ​OF​ ​CUSTOMER​ ​REQUIREMENTS​ ​AND
THEIR​ ​LINKS​ ​TO​ ​PRODUCT​ ​LINE​ ​FEATURES

‘train’ array JSON:
{
 "cust": ​[
 ​ {
 "ID": "​REQ123​",
 "text": "​string​",
 "link": "​PLF123​"
 ​ }
 ​]​,
 "features":​ [
 ​ {
 "ID": "​PLF123​",
 "text": "​string​"
 ​ }
 ​]}
Output:

V​ARIABLE T​YPE D​ESCRIPTION

MODEL JSON(D​ETAILED​ ​NEXT​) T​RAINED​ ​MODEL
Trained model ‘model’ JSON:
{

55

 WP4: D4.3

 "status": "​string​",
 "model": ​[
 ​{
 "modelName": "​string​",
 "vectorSize": ​300​,
 "accuracy": ​0.0​,
 "path": "​string​"
 ​}
 ​]
2. Query
Queries a trained model on natural language requirements and produces similarity and
reuse report.
Input:

V​ARIABLE T​YPE D​ESCRIPTION

QUERY JSON(​DETAILED​ ​NEXT​) M​ODEL​ ​TO​ ​BE​ ​QUERIED​, ​LIST​ ​OF​ ​CUSTOMER
REQUIREMENTS

The ‘query’ JSON:
{
 "modelName": "​string​",
 "query": ​[
 {
 "ID": "​REQ123​",
 "text": "​string​"
 }
]
}
Output:

V​ARIABLE T​YPE D​ESCRIPTION

COMPARISIONS JSON(​DETAILED​ ​NEXT​) S​IMILARITY​ ​AND​ ​REUSE​ ​REPORT
The ‘comparison’ JSON represent the similarity and reuse report:
{
 "comparisons": ​[
 {
 "ID": "​string​",
 "max_sim": ​0.00​,
 "top_reuse": "​PLF123​",
 "reuse":​[{​"based_on":"​string​", "sim":​0.0​, "reuse_candidate":"​string​"​}]
 ​}
]}

56

 WP4: D4.3

3.16 SaFReL: Service for performance test case generation

3.17 ReForm: Service for requirement formalization and test
optimization

Input

V​ARIABLE T​YPE D​ESCRIPTION

REQUIREMENTS​.​JSON
JSON (​NOT​ ​YET​ ​DEFINED​/​UNDER
DEVELOPMENT​)

L​IST​ ​OF​ ​TEXTUAL​ ​REQUIREMENTS

Output

V​ARIABLE T​YPE D​ESCRIPTION

REQUIREMENTS​_​MODEL​.​JSON JSON (​SEE​ ​EXAMPLE​ ​BELOW​)
R​EQUIREMENT​ ​MODELS​ ​IN​ IRDL (​IFAK

R​EQUIREMENTS​ D​ESCRIPTION
L​ANGUAGE​)

REQUIREMENTS​_​METRICS​.​JSON
JSON (​NOT​ ​YET​ ​DEFINED​/​UNDER

DEVELOPMENT​)
L​IST​ ​OF​ ​RISK​ ​AND​ ​USE​ ​CASE​ ​METRICS
(​TABLE​ ​OF​ ​VALUES​/​PERCENTAGES​)

57

 WP4: D4.3

3.18 ifakVBT: Service for test case generation and variant
traceability

Input
V​ARIABLE T​YPE D​ESCRIPTION

REQUIREMENTS​_​MODEL​.​JSON JSON(​SEE​ ​EXAMPLE​ ​IN​ 5.14)
R​EQUIREMENT​ ​MODELS​ ​IN​ IRDL (​IFAK
R​EQUIREMENTS​ D​ESCRIPTION
L​ANGUAGE​)

Output

V​ARIABLE T​YPE D​ESCRIPTION

STATEMACHINE​.​JSON JSON (​SIMILAR​ ​TO​ ​EXAMPLE​ ​IN​ 5.14)
UML ​STATE​ ​MACHINE​ (​IFAK​ ​INTERNAL

LANGUAGE​)

TESTCASES​.​XML XML (​SEE​ ​EXAMPLE​ ​BELOW​)
L​IST​ ​OF​ ​GENERATED​ ​ABSTRACT​ ​TEST

CASES​ (​IFAK​ ​INTERNAL​ ​LANGUAGE​)

58

 WP4: D4.3

TRACE​.​JSON
JSON (​NOT​ ​YET​ ​DEFINED​/​UNDER

DEVELOPMENT​)
T​RACEABILITY​ ​MATRIX​ ​OF​ ​TEST​ ​CASES​ ​TO

VARIANTS

3.19 MTest

3.20 RELOAD: Service for test load generation

3.21 TARA
End points:

59

 WP4: D4.3

1.​ Test Reuse Analysis
Performs a parsing, classification and recommends existing test cases for reuse.
Input: Single entry from comparsions JSON ARRAY from VARA and Simulink Models

Note that this is a planned tool in XIVT tool-chain and the final end-ponits may differ.

V​ARIABLE T​YPE D​ESCRIPTION

COMPARISION JSON(​DETAILED​ ​NEXT​) S​IMILARITY​ ​AND​ ​REUSE​ ​REPORT

TEST​H​ARNESS S​IMULINK​ M​ODEL S​IMULINK​ ​MODEL​ ​FILE​ ​OF​ ​THE​ ​TARGET
TEST​ ​CASES​ ​FOR​ ​REUSE​ ​ANALYSIS

IMPLEMENTATION​M​ODEL S​IMULINK​ M​ODEL
S​IMULINK​ ​MODEL​ ​FILE​ ​OF​ ​THE
IMPLEMENTATION​ ​OF​ ​SOURCE

REQUIREMENT

The ‘comparison’ JSON represent the similarity and reuse report (in this case only one
entry from the array is used):

{
 "ID": "string",
 "max_sim": 0.00,
 "top_reuse": "PLF123",
 "reuse":[{"based_on":"string", "sim":0.0, "reuse_candidate":"string"}]
}

Output:

3.22 DoTA

1. Delta based test prioritization
Performs test prioritization and selection based on coverage to delta.

V​ARIABLE T​YPE D​ESCRIPTION

60

 WP4: D4.3

S​TANDARD​ M​ODEL S​IMULINK​ M​ODEL S​IMULINK​ ​MODEL​ ​OF​ ​STANDARD​ ​FROM
PRODUCT​ ​LINE

V​ARIANT​ M​ODEL S​IMULINK​ M​ODEL S​IMULINK​ ​MODEL​ ​OF​ ​WITH​ ​MODIFICATIONS

Output:

V​ARIABLE T​YPE D​ESCRIPTION

D​ELTA​ ​TESTS JSON(​DETAILED​ ​NEXT​) D​ELTA​ ​COVERAGE​ ​BASED​ ​SELECTED​ ​TEST
CASES

The ‘deltaCases’ JSON represent the test reuse report:
{
 "selectedTests": ​[
 {
 "testName": "​string​",
 "predicted_coverage": ​0.00
 }
]}

3.23 MODICA

3.24 ARD Test Prioritization Tool

3.25 MERAN

61

 WP4: D4.3

3.26 TESTONA

3.27 InnSpect
End-Points:

1- Schedule Tests

Schedules a list of tests HTTP Post.

Input

V​ARIABLE T​YPE D​ESCRIPTION

SCH JSON(​DETAILED​ ​NEXT​)
L​IST​ ​OF​ ​TESTS​ ​TO​ ​BE​ ​SCHEDULED​ ​WITH
INITIAL​ ​DATETIME​ ​OF​ ​EACH​ ​TEST

sch array JSON description:

Output

V​ARIABLE T​YPE D​ESCRIPTION

S​CHEDULED​ ​TESTS JSON(D​ETAILED​ ​NEXT​) L​IST​ ​OF​ ​SCHEDULED​ ​TESTS
Scheduled tests array JSON description:

62

 WP4: D4.3

63

 WP4: D4.3

3.28 DeltaFuzzer
Input
Variable Type Description

config_file
A makefile containing the
different targets to compile
the target application.

Name of the configuration
file to compile the target
application. It is a makefile
which can contain the target
for executing the DeltaFuzzer

deltafuzzer_cmd Text command line

Command line for executing
the DeltaFuzzer. If the
makefile contains a target
that does this, this input
variable is not needed. This
command lines contain as
arguments the in_directory
and out_directory.

in_directory String

Name of the input directory
containing one or more test
cases (inputs) to start testing
the target application with the
tool. Depending on the goal
of the target application,
these files can be from
different formats (e.g., jpg,
pdf. txt).

Output
Variable Type Description

out_directory String

During the DeltaFuzzer
execution, it generates
dynamically other testcases.
The output is the test cases
that hang and crash the target
application, and coverage
more execution paths of the
application allow. These tests

64

 WP4: D4.3

are stored in directories under
the out_directory specified.

3.29 TV RoboTester
TV RoboTester is the name of our test automation software. We are automating TV
user tests with this tool. The program’s main functionality is to create testcases
manually and execute these testcases. There is a test oracle that decides if a testcase
fails or passes.

During our XIVT effort, we will develop a functionality to use a list of TV OSD images to
create a system model automatically. This may serve as a separate app that can be
used by any partner or 3rd parties.

We will use this app/feature and adapt it to our TV RoboTester software so that our
testcases (within TV RoboTester) will be re-written over this software model. So when
the model changes, we won’t need to change our testcases. That is our goal within
XIVT project.

End-Points:

1- Create System/Variant Model

Creates system/variant model from a list of system images.

Input

V​ARIABLE T​YPE D​ESCRIPTION

OSD ​IMAGES​ ​OF​ ​THE​ TV ​SOFTWARE PNG
L​IST​ ​OF​ OSD (​ON​ ​SCREEN​ ​DISPLAY​)
IMAGES​ ​OF​ ​A​ TV ​SOFTWARE​ ​TO​ ​CREATE​ ​A
SYSTEM​ ​MODEL

Output

V​ARIABLE T​YPE D​ESCRIPTION

S​YSTEM​/V​ARIANT​ M​ODEL JSON S​YSTEM​/V​ARIANT​ M​ODEL

65

 WP4: D4.3

System/Variant Model <sample> JSON description:

3.30 Otomat (Testroyer)

66

 WP4: D4.3

Appendix C: Technology Stack

As shown in the previous sections, each service can be independently developed.
Nevertheless, for integration purposes we recommend the following initial technology
stack to be used by services developed in WP2 and WP3:

● API Gateway - Kong
● Service Definition - Java or NodeJS
● Front End - AngularJS
● Storage - Cassandra or MongoDB

In the end this technology stack is a recommendation for helping developers to integrate
their software services while maintaining compatibility with continuous integration
practices and tools since the XIVT platform embraces a microservice like architecture,
collectively providing facilities for the users to deploy testing services.

67

