

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 1 of 32

IVVES
Industrial-grade Verification and Validation of Evolving Systems
Labelled in ITEA3, a EUREKA cluster, Call 5

ITEA3 Project Number 18022

D3.1 – State of the art of validation methods and
techniques for complex evolving systems

Due date of deliverable: June 30, 2020

Actual date of submission: June 30, 2020

Start date of project: 1 October 2019 Duration: 39 months

Organisation name of lead contractor for this deliverable: F-Secure

Author(s): Matvey Pashkovskiy (F-Secure, FIN), Mahshid Helali Moghadam (RISE, SWE),
Paul Derckx, Mark van Helvoort (Philips, NLD), Almira Pillay (Sogeti, NLD), Olav
Bandmann (Prover, SWE), Tommi Mikkonen (University of Helsinki, FIN), Tanja
Vos (The Open University of The Netherlands, NLD), Juan Leandro Sánchez (SII
CONCATEL/NETCHECK, ESP)

Status: Final

Version number: V1.0

Submission Date: 30-June-2020

Doc reference: IVVES_Deliverable_D3.1_V1.0.docx

Work Pack./ Task: WP3

Description:
(max 5 lines)

Nature:  R=Report, � P=Prototype, � D=Demonstrator, � O=Other
Dissemination
Level:

PU Public X
PP Restricted to other programme participants
RE Restricted to a group specified by the consortium
CO Confidential, only for members of the consortium

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 2 of 32

DOCUMENT HISTORY

Release Date Reason of change Status Distribution

V0.1 04/06/2020 Structure is created Draft All

V0.2 25/06/2020 Added content Draft WP3

V0.3 29/06/2020 List of authors is adjusted Draft Submitted to PMT

V1.0 30/06/2020 Approved by PMT, to be submitted to ITEA3 Final Uploaded to ITEA

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 3 of 32

Table of Contents

Glossary ___ 4

1. Executive Summary __ 5

2. Introduction __ 6

3. State of the art of validation techniques for complex ES __________________________________ 7

3.1 Design ___ 7
3.1.1 Modelling ___ 7
3.1.2 Automatic defect triaging ___ 8

3.2 Development and testing ___ 10
3.2.1 Code anomaly detection ___ 10
3.2.2 Formal verification __ 11
3.2.3 Risk-based testing __ 12
3.2.4 Automatic tests creation ___ 13
3.2.5 Automatic tests selection and prioritization ___ 15
3.2.6 Automatic test suite reduction __ 16
3.2.7 Automatic root cause analysis __ 17
3.2.8 Automatic tests healing ___ 18

3.3 Operation __ 21
3.3.1 Analytics and monitoring __ 21
3.3.2 Real usage-based testing ___ 22

3.4 Summary __ 22

4. Conclusions __ 25

5. References ___ 26

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 4 of 32

Glossary

Abbreviation / acronym Description

AFP Automated Function Points
AI Artificial Intelligence
APHFW Average Percentage of Historical Failure with time Window
BOW Bag-of-Words
CD Continuous Delivery
CI Continuous Integration
DBRNN-A Deep Bidirectional Recurrent Neural Network with Attention
ddmin Minimizing Delta Debugging
DevOps software Development (Dev) and IT Operations (Ops)
DNN Deep Neural Network
E2E End-to-End
ES Evolving System
GUI Graphical User Interface
IDP Inverse Defect Prediction
ILP Inductive Logic Programming
LFR Low Fault Risk
LSTM Long Short-Term Memory
ML Machine learning
MR Metamorphic Relation
NLP Natural Language Processing
PoC Proof of Concept
RL Reinforcement Learning
RBT Risk-based Testing
RNN Recurrent Neural Network
QA Quality Assurance
rSVM Recurrent Support Vector Machine
SLR Systematic Literature Review
SUT Software Under Test
TA Test Automation
TCP Test Case Prioritization
TCS Test Case Selection
TD Temporal-Difference
UBST Usage-Based Statistical Testing
UI User interface

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 5 of 32

1. Executive Summary

This report describes the state of the art of validation methods and techniques for complex Evolving
Systems (ES). It introduces the idea of continuous quality assessment process which spans on entire ES
lifecycle and maps methods, techniques and existing tools helping partners to navigate in the domain and
apply right approach for the right lifecycle stage.

It is visible from the report that the most expensive stage of ES lifecycle is tests maintenance and a lot of
techniques could be applied there thus providing the biggest benefit to companies.
It is important to understand that building the basement for ES development and operation consisting of
CI/CD and data collection pipelines is necessary for applying state of the art methods and techniques and
even classical engineering solutions often can bring more value and be more efficient in terms of
expenses than tools utilizing latest and greatest ML models.

Though a lot of researches have been done in the domain of ES validation and verification it is visible that
not many of those got implemented and made available for industry. We agree that one of the main next
steps should be focused on addressing very specific problem with selecting and implementing of the
approach which will bring the most benefits and cover big market share.

There are three sub-domains that could be considered as main focus areas:

1. Model-based test generation with automatic model building:
o as it can provide companies with high level end-to-end regression testing suites and

requires only basic knowledge and skillset from engineers;
o some tools are already publicly available, but applicability of those tools is unclear;

2. ML-assisted test generation: tester (testing system) is intelligent and learns the optimal policy (way)
to generate the test cases meeting the testing objective:

o as it can provide automated test generation without access to source code or system
model;

o in some cases, it is able to reuse the gained knowledge (learned policy) in further similar
testing situations (transfer learning);

3. Automatic test selection and prioritization as it, when applied, reduces TA infrastructure costs and
feedback time allowing teams work in the most efficient manner.

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 6 of 32

2. Introduction

In order to better understand the holistic picture of current state of the art of validation techniques for
complex ES it is important to map ES lifecycle in two-dimensional space where vertical (Y) axis used to
measure complexity and horizontal (X) lifecycle stage. Figure 1 displays that mapping. Because software
development is iterative process after Operation phase stage Design begins again. It is important
understand that techniques used for high complexity software relies on simpler ones, so “Automatic test
prioritization” almost impossible to implement having no components in use like “CI / CD pipeline”, “Test
results data collection” and “Coverage analysis”. Also, it is obvious from the Figure 1 that most of the
work and techniques in continuous quality assurance process are dedicated to tests maintenance stage.

Figure 1: Continuous quality assurance process stages and components

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 7 of 32

3. State of the art of validation techniques for complex ES

Let’s consider the most advanced techniques of validation and verification of complex ES in more details.
Mostly state of the art techniques and methods are described below, though several state of the practice
techniques with low adoption level are mentioned as well. Methods and techniques are broken down into
the sections accordingly described continuous quality process.

3.1 Design

Work on ES quality starts at the very beginning of the its lifecycle, on design stage.
Design stage consist of planning of new features and improvements. As a state of the practice the
planning involves manual modelling and architecting which sometimes involves building proof-of-concept
(PoC) systems and prioritisation of incoming feedback in form of support cases, surveys, interview
reports. Also, during design phase threat modelling methodologies are used to identify possible security
issues.

As a state of the art more complex techniques and tools are employed.

3.1.1 Modelling

Along with building PoC modelling could be performed during the design stage. Modelling could be
considered as an approach to perform testing before even building the actual software. One of the ways
to perform modelling could be verification of the specification written with TLA+ language.

TLA+ is a formal specification language developed by Leslie Lamport. It is used to design, model,
document, and verify programs, especially concurrent systems and distributed systems. TLA+ has been
described as exhaustively-testable pseudocode, and its use likened to drawing blueprints for software
systems; TLA is an acronym for Temporal Logic of Actions.

For design and documentation, TLA+ fulfils the same purpose as informal technical specifications.
However, TLA+ specifications are written in a formal language of logic and mathematics, and the
precision of specifications written in this language is intended to uncover design flaws before system
implementation is underway.

Since TLA+ specifications are written in a formal language, they are amenable to finite model checking.
The model checker finds all possible system behaviours up to some number of execution steps, and
examines them for violations of desired invariance properties such as safety and liveness. TLA+
specifications use basic set theory to define safety (bad things won't happen) and temporal logic to define
liveness (good things eventually happen).

TLA+ is also used to write machine-checked proofs of correctness both for algorithms and mathematical
theorems. The proofs are written in a declarative, hierarchical style independent of any single theorem
prover backend. Both formal and informal structured mathematical proofs can be written in TLA+; the
language is similar to LaTeX, and tools exist to translate TLA+ specifications to LaTeX documents.

Temporal logic of actions (TLA) and TLA+, PlusCAL languages are used by several companies to identify
problems in ES design.

At Microsoft, a critical bug was discovered in the Xbox 360 memory module during the process of writing
a specification in TLA+.i TLA+ was used to write formal proofs of correctness for Byzantine Paxos and
components of the Pastry distributed hash table.ii

Amazon Web Services has used TLA+ since 2011. TLA+ model checking uncovered bugs in DynamoDB,
S3, EBS, and an internal distributed lock manager; some bugs required state traces of 35 steps. Model

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 8 of 32

checking was also used to verify aggressive optimizations. In addition, TLA+ specifications were found to
hold value as documentation and design aids.iii iv

Microsoft Azure used TLA+ to design Cosmos DB, a globally-distributed database with five different
consistency models.v,vi

3.1.2 Automatic defect triaging

Defect management processes require defects to be classified, scored/prioritized and allocated to the
appropriate development teams. Traditionally still in Defect Review Boards meetings defects are
discussed, assessed and decisions are subsequently taken, a time-consuming activity. Agile ways of
working require this process to be more efficient and almost “continuous”.

The major challenge is that the defect descriptions and associated information often contain a
combination of e.g. free unstructured text, code snippets, and stack trace making the input data highly
noisy.

Automatic defect triaging algorithms can be formulated as a classification problem, which takes the
reported bug information as the input, mapping it to one of the available developers (class labels). Also, it
is possible to do assignment of the severity class and related features.
Manual bug triaging is usually performed using the bug report content, primarily consisting of the
summary and description. While additional sources of input have been explored in the literature such as
developer profiling from GitHubvii and using component informationviii, majority of the research efforts
have focused on leveraging the bug report content for triagingix,x,xi,xii,xiii,xiv,xv. The bug report content
contains noisy text information including code snippets, and stack trace details. Processing such
unstructured and noisy text data is a major challenge in training a classifier.

Natural language processing (NLP) methods like bag-of-words (BOW), bag-of-n-grams, word2vec and
more advanced models employing neural networks are used to build classifiers. It is possible that BOW
model mis-classifies defects because:

1. BOW feature model considers the sentence as a bag-of-words losing the ordering (context) of
words, and

2. the semantic similarity between synonymous words in the sentence are not considered.

Even though a bag-of-n-grams model considers a small context of word ordering, they suffer from high
dimensionality and sparse dataxvi. The semantic similarity between word tokens can be learnt using a
skip-gram based neural network model called word2vecxvii. This model relies on distributional hypothesis
which claims that words that appear in the same context in the sentence share a semantic meaning. Ye
et al.,xviii built a shared word representation using word2vec for word tokens present in code language and
word tokens present in descriptive language. The main disadvantage of word2vec is that it learns a
semantic representation of individual word tokens, however, does not consider a sequence of word
tokens such as a sentence. An extension of word2vec called paragraph vectorxix considers the ordering of
words, but only for a small context. Recently, recurrent neural network (RNN) based deep learning
algorithms have revolutionized the concept of word sequence representation and have shown promising
breakthroughs in many applications such as language modelling and machine translation. Lam et al.xx
used deep neural network (DNN) with rSVM to learn a common representation between source code and
the bug reports and used it for effective bug localization. White et al.,xxi provided a broad perspective on
how deep learning can be used in software repositories to solve some challenging problems. A novel bug
report representation approach is proposed using DBRNN-A: Deep Bidirectional Recurrent Neural
Network with Attention mechanism and with Long Short-Term Memory units (LSTM)xxii. Table 1 presents
a list of closely related works on bug triaging arranged in a chronological order (year 2010 to 2018).

Table 1: Summary of various ML based bug triaging approaches available in literature, explaining
the features and approach used along with its experimental performance.

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 9 of 32

Paper Information
used

Feature
extracted

Approach Dataset Performance

Bhattacharya
et al., 2010viii

title,
description,
keywords,
product,
component,
last developer
activity

tf-idf +
bagof-words

Naive Bayes +
Tossing graph

Eclipse#
306,297

Rank#5
accuracy
77.43%

Mozilla#
549,962

Rank#5
accuracy
77.87%

Tamrawi et
al., 2011xii

title,
description

terms A fuzzy-set
feature for each
word

Eclipse#
69829

Rank#5
accuracy
68.00%

Anvik et. Al.,
2011ix

title,
description

normalized
tf

Naive Bayes,
EM, SVM, C4.5,
nearest
neighbour,
conjunctive rules

Eclipse# 7,233 Rank#3 prec.
60%, recall 3%

Firefox# 7,596 Rank#3 prec.
51%, recall
24%

Xuan et. Al.,
2012xv

title,
description

tf-idf,
developer
prioritization

Naive Bayes,
SVM

Eclipse#
49,762

Rank#5
accuracy
53.10%

Mozilla#
30,609

Rank#5
accuracy
56.98%

Shokripour et
al. 2013xi

title,
description,
detailed
source code
info

weighted
unigram
noun terms

Bug location
prediction +
developer
expertise

JDT-Debug#
85

Rank#5
accuracy
89.41%

Firefox# 80 Rank#5
accuracy
59.76%

Wang et al.,
2014xiii

title,
description

tf Active developer
cache

Eclipse#
17,937

Rank#5
accuracy
84.45%

Mozilla#
69,195

Rank#5
accuracy
55.56%

Xuan et. al.,
2015xiv

title,
description

tf feature selection
with Naive Bayes

Eclipse#
50,000

Rank#5
accuracy
60.40%

Mozilla#
75,000

Rank#5
accuracy
46.46%

Badashian et.
al., 2015vii

title,
description,
keyword,
project
language, tags
from
stackoverflow,
github

Keywords
from bug
and tags

Social expertise
with matched
keywords

20 GitHub
projects, 7144
bug reports

Rank#5
accuracy
89.43%

Jonsson et.
al., 2016x

title,
description

tf-idf Stacked
Generalization of
a classifier
ensemble

Industry#
35,266

Rank#1
accuracy 89%

Senthil Mani
et al.xxiii

title,
description

terms DBRNN-A Google
Chromium#
383,104

Rank#10
accuracy 47%

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 10 of 32

Mozilla Core#
314,388

Rank#10
accuracy 43%

Mozilla
Firefox#
162,307

Rank#10
accuracy 56%

3.2 Development and testing

During the development and/or construction stage the product is built (the code is written) and assembled
in accordance with the requirements specified in the product, process and material specifications and is
deployed and tested within the testing environment. System assessments are conducted in order to
correct deficiencies and adapt the system for continued improvement.

3.2.1 Code anomaly detection

Anomaly detection is the process of identifying unexpected items or events in a structure or software,
where anomalies are defined as events or behaviours which differ from the normxxiv. Unexpected
behaviour of software can lead to numerous risks, one of them being profit loss and loss of customers,
other being safety concerns. It is of high importance to detect software anomalies as early as possible in
order to mitigate these risks, so software testing and peer reviews have become a must in any
development cycle. Even though testing and peer reviews are valuable, they require time and resources,
and this is where code anomaly detection brings value. Developing code is the foundation of any software
or model and finding anomalies at this, most granular stage, can help in early deviation detection and
faster deployment.

Developing code can go wrong for many reasons, the most high-level one being simple misunderstanding
of what is required from the stakeholders. In that sense, even healthy code is erroneous. Therefore, it is
very important to lay the ground and explain what the expected behaviour of source code is and what
would classify as an anomaly. Anomalies can be divided into three typesxxv:

1. Point anomalies, single instances with attributes different than the general population’s norm;
2. Contextual anomalies, which are context specific, and common in time-series data; and
3. Collective anomalies, a set of data instances which can collectively be considered anomalies.

Code anomalies are fragments of code that are not typical within the community or an ecosystem of a
given programming languagexxvi. Erroneous code snippets highlight flaws in language design or indicate
problems in software behaviour. Identifying code anomalies at a scale of a programming language means
that a large corpus of source code needs to be prepared for digestion by a given ML algorithm, which in
turn classifies it. Some approaches to classification by ML arexxvii:

1. Supervised Anomaly Detection, which requires a labelled dataset containing both normal and
anomalous samples to construct a predictive model to classify future data points. The most used
algorithms for this purpose are supervised Neural Networks, Support Vector Machines, K-Nearest
Neighbours Classifier, etc;

2. Unsupervised Anomaly Detection, which requires no training data and has two assumptions
about the data:

a. Only a small percentage of data is anomalous; and
b. Any anomaly is statistically different from the normal samples.

Based on the above assumptions, the data is then clustered using a similarity measure and the data
points which are far off from the cluster are defined as anomalies.
Classifying code as defective can be done on different levels:

1. Change log level, where metrics are extracted from the versioning system and most recent files
are source of anomaliesxxviii;

2. Method level, where methods are the source of anomaliesxxix;
3. Component level, where components are the source of anomalies;

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 11 of 32

4. File level, where files are the source of anomalies. Usually, the bigger the file is, the higher the
probability of anomalies isxxx;

5. Within project, where a classifier is trained on a set of data from a given project and then used to
predict the anomalies in the same project. This level is further divided into inner and cross-version
anomaly detection based on which versions of the project are usedxxv;

6. Cross project, where a classifier is trained on a previous project and predicts the anomalies in a
new onexxv.

Different code anomalies detected by unsupervised learning method, autoencoder model, in Kotlin
programming language arexxvi:

1. Syntax tree anomalies, nontypical and rare code fragments, divided into:
a. Language design anomalies used to improve the design of programming language itself;
b. Compiler anomalies used as performance tests in compiler correctness;
c. Performance anomalies that point to non-optimal code generation and lack of

optimization.
2. Compiler-induced anomalies, where complex bytecode was generated through typical syntax

tree, caused by:
a. Non optimal code generation anomalies used as tests for bytecode generation;
b. Complex functions inlining abnormal code fragments and being called multiple times

when executing code. This can be used to detect and mitigate performance risks.

The summary of methods and tools for code anomaly detection can be found in Table 2.

Table 2: Summary of methods and tools for code anomaly detection

Tool/approach/algorithm Objective Method Reference
GrouMiner tool Detect anomalous

patterns in object
interaction in Java

Graph-based anomaly
detection

xxxi

Mining usage model
approach

Detect abnormal usage
patterns

Graph-based anomaly
detection

xxxii

DIDUCE tool Dynamic code expression
analysis in Java

Dynamic code analysis xxxiii

Feature Envy approach Identify code patterns
indicating architecture
flaws

“Code smells” xxxiv

Supervised learning
algorithms

Classify anomalies Neural Networks,
Support Vector
Machines, K-Nearest
Neighbours Classifier

xxxv, xxxvi, xxxvii,
xxxviii, xxxix, xl

Unsupervised learning
algorithms

Cluster anomalies Autoencoders xxv, xxvi

3.2.2 Formal verification

In general, the term “formal methods” refers to “mathematically rigorous techniques and tools for the
specification, design and verification of software and hardware systems”xli. Formal verification consists of
mathematically proving properties of mathematical models of systems. This definition covers a wide
range of areas and techniques, but in this context, we will focus on model checkingxlii of safety properties
applied to embedded systems.

Model checking is a family of techniques used to verify properties of finite state systems. The systems are
modelled using temporal logic and then the properties are checked to hold over the entire (finite) state

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 12 of 32

space. These techniques have seen a significant boost in performance and usability over the last 15
yearsxliii and are now more broadly used in the industry.

In order to get a wider adoption in the industry, performance is one of the key issues that needs to be
addressed. This area has been a very active field of researchxliv xlv, and more recently, inspired by the
impressive results of ML (deep learning in particular), there has been a growing interest in applying ML to
formal verification. So far, there are some promising resultsxlvi, but this new direction is still in its infancy.

3.2.3 Risk-based testing

The aim of risk-based testing (RBT) approaches is to ensure that appropriate testing activities are
identified and prioritized based on riskxlvii. Furthermore, we may use testing to support risk analysis and
risk analysis to support testing. Fundamentally, the goal of RBT is to reduce the risk of failure to the
business and increase customer satisfaction.

Several RBT approaches were proposed in academia (e.g., xlviii, xlix, l), and industry (e.g., li, lii, liii, liv,
lv). Moreover, the international standard ISO/IEC/IEEE 29119 Software Testinglvi on testing techniques,
processes, and documentation even explicitly considers risks as an integral part of the test planning
process. To a degree, proposed approaches are overlapping and include common elements, but they all
also have their specifics.

Figure 2: RBT taxonomy

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 13 of 32

To create order to the practice of risk-based testing, Felderer and Schieferdeckerlvii proposed a taxonomy
for RBT (see Figure 2). The authors also introduce each item in the taxonomy at a detailed level. For
brevity, the definitions are omitted here, since to a large degree the discussion is not closely related to
IVVES project as such. However, an important observation is that terms “ML” and “AI” are never
mentioned in the paper. Hence, IVVES clearly can introduce new elements to RBT with its application of
ML and AI in many of the identified taxonomy items. Furthermore, as many of the items are such that
considerable amount of data exists in companies, IVVES can also study utilising such data for AI/ML
supported RBT.

A systematic literature review (SLR) by Erdogan et al.lviii has studied RBT by surveying the literature on
the combined use of risk analysis and testing. First, the paper identifies the existing approaches using an
SLR. Then, the authors have classified the approaches and discussed with respect to main goal, context
of use and maturity level of each approach. The authors found 8 categories:

 Approaches addressing the combination of risk analysis and testing at a general level;
 Approaches with main focus on model-based risk estimation;
 Approaches with main focus on test-case generation;
 Approaches with main focus on test-case analysis;
 Approaches based on automatic source code analysis;
 Approaches targeting specific programming paradigms;
 Approaches targeting specific applications;
 Approaches aiming at measurement in the sense that measurement is the main issue.

Here, topics that have been explicitly mentioned by authors and also are interesting from IVVES
perspective include:

 Test prioritization;
 Model-based testing;
 Test case code generation;
 Test case analysis;
 Automatic source code analysis.

To summarize, RBT testing in the large has not yet adopted ML/AI features. To some extend this can be
addressed to the origins of the approach, where risk analysis and testing both are to be taken into
account and many risk analysis approaches are manual in nature. However, it has been shown that
software errors are not randomly distributed in software projects, but that certain parts are more likely to
contain bugs than some other partslix. Therefore, methods to identify parts of software projects that are
prone to errors – as well as parts that are safe from errorslx – are interesting research directions in the
scope of project IVVES. In fact, we believe that there are several low-hanging results that do not need
ML/AI features at all but can be simply solved by a closer connection between development and testing.

3.2.4 Automatic tests creation

The earliest applications of ML to software testing date back to pioneering work of Buddlxi and Weyukerlxii.
During the 1990s and early 2000s, Inductive Logic Programming (ILP) was considered as a model
learning paradigm for model-based test case generationlxiii but it has been unclear what range of
behaviours can be learned by ILP. Recently, alternative modelling and inference approaches have been
considered, such as learning algebraic specificationslxiv and learning decision treeslxv. Not all such
approaches automate the important test oracle step (i.e. test verdict generation), e.g. Briand et al.lxvi
argues to keep the human in the loop. However, when test suites are large (e.g. > 1 million test cases) it
seems clear that automation of the oracle step is also necessary. This is currently being tackled by ML-
based methods such as metamorphic testing.

An emerging approach to inference of computational models using ML in recent years is based on active
automaton learning (aka. regular inference)lxvii. Recently attention has turned to more widely applicable

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 14 of 32

classes of computational models, such as non-deterministic finite automata, timed automata, probabilistic
automata, hybrid automata and generalized automata. This ML approach has been applied to software
engineering problems such as testing, software documentation, reverse engineering and interface
synthesis. In software testing, the approach has been applied to unit testinglxviii, integration testinglxix and
system testinglxx. This ML approach has also been combined with model checking to perform learning-
based testing as well as model-based testing through model inferencelxxi. Another recent approach to
harnessing ML for software testing is given by metamorphic testinglxxii. In this approach, graph kernels
and support vector machines (SVMs) are used to reverse engineer software testing requirements (aka.
metamorphic relations) automatically from code. This represents a significant step towards fully
autonomous requirements-based software testing. Metamorphic testing has even been applied to test
neural networks themselves. Deep neural networks (DNNs) represent one of the most promising topics in
the area of ML. However, the non-explainability in connecting predicted outcomes to learned features
makes the DNN model a black box. Usually there is no oracle for testing DNN performance without
human intervention. One of the promising methods to mitigate this oracle problem is metamorphic testing
by Xielxxiii and Tianlxxiv. Here, metamorphic testing operates by checking the system under test (a DNN)
against a relation (such as an inequality) between different pairs of DNN predicted outputs. Such a
relation is termed a metamorphic relation (MR). The MR specifies how the output would vary, according
to changes made to the input. MRs provide a powerful technique to create domain related test cases
without any human expert support and could provide a viable option in validating deep learning models.

Model-free ML-assisted tests generation

According to the existing studies in the literature, model-driven techniques or the techniques relying on
source code and declarative specifications are common approaches to generate test cases to accomplish
the testing objective. However, drawing a precise and well-detailed model which gives the details of the
system requires a big endeavor, in particular for complex systems. Moreover, other artifacts such as
source code which are also used as underlying tools in many existing techniques, might not be
accessible all the time. Therefore, within the scope of black-box testing, there is room for serving ML
techniques to generate test cases.

Different types of ML including supervised and unsupervised learning algorithms have been used
frequently to tackle different challenges in software testing. In addition to common supervised and
unsupervised ML, reinforcement learning (RL)lxxv is a fundamental category of learning algorithms which
are mainly intended to solve decision-making problems. RL algorithms find the optimal way to make
decisions. RL is a different learning paradigm from the supervised and unsupervised learning, which is
based on interaction with the environment/system of the problem. There is no supervisor at play in RL
and the learning does not occur based on a training data set. Instead, the agent goes through the system
and learns the optimal way of decision making through interaction with the system. Basically, at each step
of the interaction, the agent observes (senses) the system, takes a possible action to reach the intended
objective and receives a reward signal from the environment showing the effectiveness of the applied
action to accomplish the intended objective of the agent (See Figure 3 in which the system/environment
that the agent interacts with is software under test).

Figure 3. Reinforcement learning cycle between agent (tester) and system (SUT)

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 15 of 32

Regarding the potential of RL and the issues of common solution techniques, RL techniques in particular
model-free RLs could play an interesting role in addressing the challenges of test case generation.
Model-free RLs are a subset of RL algorithms which can learn the optimal way to solve a problem (i.e., to
accomplish an objective) from the interaction with the system without need to access or build a model of
the system. These RL algorithms are not intended to explicitly build or learn a model of the system to
understand how it works. The purpose of these algorithms is learning the optimal behaviour, i.e.,
understanding how to behave to achieve as much reward as possible through multiple experiences of
interaction with the system. Monte Carlo learning and Temporal-Difference (TD) learning including Q-
learning algorithms are well-known model-free RL algorithmslxxv.

With respect to the potential of model-free RL to address the related challenges in testing, it is proposed
that if the optimal policy (way) for accomplishing the intended objective in the testing could be learned by
the tester system instead, then the intended task could be possible without need to access source code
or system models. Moreover, once the optimal policy is learned, the learned policy could be reused in
further similar testing situationslxxvi, lxxvii.

The capability of knowledge formation during the learning, storing the gained knowledge and reusing the
knowledge in further similar testing situations are the important features in using RL-assisted approaches
that could lead to efficiency improvement in comparison to other common approaches such as the ones
based on ordinary search techniqueslxxviii.

RL algorithms have been applied to address the testing challenges such as test case generation,
particularly in performance testing domain. For example, using RL together with symbolic execution to
find the worst-case execution path within a SUT inlxxix, a feedback-driven learning technique which
extracts some rules from the execution traces to find the performance bottlenecks, i.e., the method calls
which their execution highly affects the performancelxxx, using RL to find a sequence of input values
resulting in performance degradationlxxxi, and using RL to build a smart performance testing framework
which mainly generates the platform-based test conditionslxxxii, lxxvi, lxxvii.

3.2.5 Automatic tests selection and prioritization

Test case selection and prioritization automation is fundamental for CI. The objective is to shift the
responsibility for testing from human testers and developers to enhanced, ML-enabled tools. This would
enable, eventually, that validation techniques and bug-checking are done without user intervention.
Complex ES are deriving in test suites to exponentially grow, and the time spent for validation is
impacting the CI pipeline.

Test case selection (TCS) and test case prioritization (TCP) ML-enabled techniques are growing rapidly,
and there are promising studies and research activities that have been taken into account during the
analysis of the state of the art. In fact, some publications have remarked that ML-based TCP surpasses
the traditional coverage-based approaches.

The goal of TCS is to provide a subset of the test suite to test a modified model. In parallel, TCP focuses
on re-ordering the test in the suite. The tests that in theory are more likely to find a fault or bug are fired
firstly. When the potential fault prediction is similar in two candidate tests, other variables (as the fastest,
the less performance-demanding…) are taken into account. However, the prioritization criteria can’t be
easily defined in ML-powered ES.

ML-based TCP and TCS techniques

Regarding the application of ML-based approaches, Busjaeger and Xielxxxiii provided a solution that
integrates multiple existing techniques. For this, they used a systematic framework of ML to rank. They
applied multiple heuristic techniques: test coverage of modified code, textual similarity between tests and
changes, test-failure or fault history and test age. The evaluation on a large dataset indicated that it
outperformed previous approaches. Some key outcomes were identified when evaluating the results:

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 16 of 32

They recall achieved, when selecting 3% of the top tests from the prioritized test suite was close to 75%.
As future work, the inclusion of new features for the evaluation where outlined. The approach is focused
in real domains and take into account challenges of industrial environments.

Test suite reductions applied to an actual live system, with realistic setup, were also done by Beszédes et
al.,lxxxiv providing a suite reduction of 51% with over 75% of recall on average. This was much more
improved by adding a prioritization step, reaching a reduction over 90% in further tests. The most
important tools used in the toolchain for the live version were: Procedure level coverage measurement,
Identification of changes made to the source code and Coverage database and database update.

An exhaustive summary is provided by Mulkahainen M.,lxxxv where the ML-based techniques remarked
where: RandomForest, RandomForest (U), LogReg and XGBoost. When compared with heuristics
methods, his study states that ML techniques gradually increase the performance, reaching in some
cases better results and that Unlimited RandomForest was the most effective incremental learning-based
test case selection. Regarding TCP, five techniques were remarked: RandomForest, MLP, XGBoost,
Naïve Bayes and LogReg. The conclusion of the analysis of these techniques, when compared with
traditional ones, is that the incremental learning techniques outperformed traditional statement coverage-
based prioritization techniques in fault detection rates, when a failing test is assumed to reveal one
unique fault.

Reinforcement Learning-based TCS and TCP

Regarding the application of RL to test case prioritization, there are some key concepts to be taken into
account. A novel reward function proposed by Wu, Zhaolin, et al.,lxxxvi provides a reference for test case
prioritization to save computing resources in CI based on RL. In this case, a novel reward function is
proposed, by using partial historical information of test cases effectively for fast feedback and cost
reduction. The approach is focusing in reduce the huge cost in terms of time and resource availability
related to the linear growth observed in both, code committing rate and test suite scales, due to higher
complexity and the need of shorter CI cycles. Wu, Zhaolin, et al.lxxxvi defined the Average Percentage of
Historical Failure with time Window (APHFW), as a novel reinforcement learning reward function, that
utilizes a time window to filter recent historical information to calculate reward value.

Spieker et al.lxxxvii have successfully applied also RL together with a multi-layered perceptron to predict
failing test cases based on test history. They presented RETECS, a novel lightweight method for test
case prioritization and selection in CI. RETECS is an adaptive approach, that learns indicators for failing
test cases during its runtime by analysing test cases, test results, its own actions and its defects. The
evaluation of RETECS in three industrial use cases suggested that a much more effective strategy,
compared with basic deterministic prioritization methods could be achieved after an initial learning phase.

3.2.6 Automatic test suite reduction

One of the approaches to timewise optimization of feedback loop from TA pipeline is reduction of the size
of the test suite. In order to maintain the suite quality test coverage is an important metric to track while
the reduction. It is possible to decrease number of tests in the suite and keep the coverage on the same
level if overlapping tests exist. To mitigate risks while further tests reduction more advanced techniques
employing code analysis and defect predictions could be used.

To support development teams in this activity, defect prediction has been developed and studied
extensively in the last decadeslxxxviii, lxxxix, xc. Defect prediction identifies code regions that are likely to
contain a fault and should therefore be testedxci, xcii.

Another view on defect prediction is inverse defect prediction (IDP)xciii. The idea behind IDP is to identify
code artifacts (e.g., methods) that are so trivial that they contain hardly any faults and thus can be
deferred or ignored in testing. Like traditional defect prediction, IDP also uses a set of metrics that
characterize artifacts, applies transformations to pre-process metrics, and uses a ML classifier to build a
prediction model. The difference rather lies in the predicted classes. While defect prediction classifies an

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 17 of 32

artifact either as buggy or non-buggy, IDP identifies methods that exhibit a low fault risk (LFR) with high
certainty and does not make an assumption about the remaining methods, for which the fault risk is at
least medium or cannot be reliably determined. As a consequence, the objective of the prediction also
differs. Defect prediction aims to achieve a high recall, such that as many faults as possible can be
detected, and a high precision, such that only few false positives occur. In contrast, IDP aims to achieve
high precision to ensure that low-fault-risk methods contain indeed hardly any faults, but it does not
necessarily seek to predict all non-faulty methods. Still, IDP needs to achieve a certain recall such that a
reasonable reduction potential arises when treating LFR methods with a lower priority in QA activities.

The results of our empirical studyxciii show that only very few low-fault-risk methods actually contain a
fault, and thus, they indicate that IDP can successfully identify methods that are not fault-prone. On
average, 31.7% of the methods matched by the strict classifier contain only 6.0% of all faults, resulting in
a considerable fault-density reduction for the matched methods. Results show that the IDP approach can
be used to identify methods that are, due to the “triviality” of their code, less likely to contain any faults.
Hence, these methods require less focus during quality-assurance activities. Depending on the criticality
of the system and the risk one is willing to take, the development of tests for these methods can be
deferred or even omitted in case of insufficient available test resources.

3.2.7 Automatic root cause analysis

TA pipeline fails requires developers to start investigation to identify root cause. One of the main stages
during investigation is debugging of the failed test case and code under the test. Debugging falls into
three phases: reproducing a failure, finding the root cause of the failure, and correcting the error such that
the failure no longer occurs. While failure reproduction and correction are important issues, it is the
second phase, finding the root cause, which is the most significant. Early studies have shown that finding
the root cause accounts for 95% of the whole debugging effortxciv.

There are two reasons why tests can fail:

 External - application environment or infrastructure problems;
 Internal - errors in the code of the application and tests.

External issues

There are number of solutions on the market offering fails root cause analysis focused on application
environment problems, for example: NewRelicxcv, StackSlatexcvi, Dynatracexcvii. In order to perform that
kind of analysis installing sensors on different levels of the infrastructure is required. The sensors then
collect different metrics, combine and analyse them presenting the overall picture of systems state. This
approach also allows to avoid alert storms deluging developers with cascades of individual alerts.

Internal issues

Speaking of internal problems, it is possible to split it into two levels: unit tests and UI tests level which is
sometimes called end-to-end (E2E) tests level.

Unit tests level

One of the approaches to identify root cause on unit test level in the code is delta debugging— an
automated debugging method that relies on systematic testing to prove and isolate failure causes—
circumstances such as the program input, changes to the program code, or executed statements.
Basically, delta debugging sets up subsets of the original circumstances, and tests these configurations
whether the failure still occurs. Eventually, delta debugging returns a subset of circumstances where
every single circumstance is relevant for producing the failure.

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 18 of 32

Delta debugging automates the most time-consuming debugging issue: determining the relevant problem
circumstances. Relevant circumstances include the program input, changes to the program code, or
executed statements. All that is required is an automated test.

Delta debugging comes at a price: Although the minimizing delta debugging algorithm (ddmin) algorithm
guarantees 1-minimality, the worst-case quadratic complexity is a severe penalty for real-world
programs— especially considering program runs with billions of executed statementsxcviii,xcix.

GUI/E2E tests level

E2E tests, which include interaction with GUI, relies on usage of controls like buttons, input fields and
others. ES GUIs, especially Web GUIs, are subjects for frequent changes and thus tests should be
always kept aligned with recent changes. It is not always the case. That is why number of solutions
appear on the market helping developers and quality assurance engineers in root cause analysis:
AppliToolsc, Functionize Visual Testingci

3.2.8 Automatic tests healing

Two categories of test failings could be identified: random failings and failings caused by errors in the
environment or in the code.

Flaky tests

Tests which could fail or pass from one test run to another for the same configuration are called “flaky”
tests. Such behaviour could be harmful to developers because test failures do not always indicate bugs in
the code. Our test suite should act like a bug detector. Non-determinism can plague any kind of test, but
it’s particularly prone to affect tests with a broad scope, such as acceptance, functional/UI tests. Some
common reasons a test could be flaky:

 Concurrency;
 Caching;
 Tests setup — Cleanup state;
 Dynamic UI contents;
 Infrastructure or 3rd party systems issues.

In order to identify those tests basic statistical methods could be applied. Also, supervised classification
ML models could be used. After the identification of those kind of tests they should be subjected for
refactoring, while, in a mean time, separate routine could be introduced to rerun failed flaky tests and
save developers time on investigation of those cases.

Failing tests

It was already highlighted in the “Automatic root cause analysis” that two levels could be considered
independently while speaking of failed tests: unit tests and GUI/E2E tests level.

Unit tests level

The cost of debugging and maintaining software has continued to rise, even while hardware and many
software costs fall. In 2006, one Mozilla developer noted, “everyday, almost 300 bugs appear [...] far too
much for only the Mozilla programmers to handle”cii. The situation has hardly improved in the intervening
years, as bugzilla.mozilla.org indicates similar rates of bugs reported in 2013. A 2013 study estimated the
global cost of debugging at $312 billion, with software developers spending half their time debuggingciii.
Since there are not enough developer resources to repair all of these defects before deployment, it is well
known that programs ship with both known and unknown bugsciv.

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 19 of 32

In response to this problem, many companies offer bug bounties that pay outside developers for
candidate repairs to their open source code. Well-known companies such as Mozilla ($3,000/bug)cv,
Google ($500/bug)cvi, and Microsoft ($10,000/bug)cvii, offer significant rewards for security fixes, reaching
thousands of dollars and engaging in bidding warscviii. While many bug bounties simply ask for defect
reports, other companies, such as Microsoft, reward defensive ideas and patches as well (up to
$50,000/fix)cix.

The abundance and success of these programs suggests that the need for repairs is so pressing that
some companies must consider outside, untrusted sources, even though such reports must be manually
reviewed, most are rejected, and most accepted repairs are for low-priority bugscx. A technique for
automatically generating patches, even if those patches require human evaluation before deployment,
could fit well into this paradigm, with potential to greatly reduce the development time and costs of
software debugging.

The importance of defects in software engineering practice is reflected in software engineering research.
Since 2009, when automated program repair was demonstrated on real-world problems (PACHIKAcxi,
ClearViewcxii, GenProgcxiii), interest in the field has grown steadily, with multiple novel techniques
proposed (e.g., Debroy and Wongcxiv, AutoFix-Ecxv, ARMORcxvi, cxvii, AFixcxviii, AEcxix, Coker and Hafizcxx,
PARcxxi, SemFixcxxii, TrpAutoRepaircxxiii, Monperruscxxiv, Gopinath et al.cxxv, MintHintcxxvi, etc.). Some of
these methods produce multiple candidate repairs, and then validate them using test cases, such as by
using stochastic search or methods based on search-based software engineeringcxxvii (e.g., GenProg,
PAR, AutoFix-E, ClearView, Debroy and Wong, TrpAutoRepair). Others use techniques such as
synthesis or constraint solving to produce smaller numbers of patches that are correct by construction
(e.g., Gopinath et al., AFix, etc.) relative to inferred or human-provided contracts or specifications.

Several recent studies have established the potential of these techniques to reduce costs and improve
software quality, while raising new questions about the acceptability of automatically generated patches
to humans. See, for example, the systematic study of GenProg, which measured cost in actual dollarscxxviii
and related studies that assess the acceptability of automatically generated patchescxxi, cxxix.

An attempt was made to build a general benchmark for assessing the quality automatically generated
patches and two datasets were presented, MANYBUGS and INTROCLASS, consisting between them of
1,183 defects in 15 C programs. Each dataset is designed to support the comparative evaluation of
automatic repair algorithms asking a variety of experimental questions. The datasets have empirically
defined guarantees of reproducibility and benchmark quality, and each study object is categorized to
facilitate qualitative evaluation and comparisons by category of bug or program. Baseline experimental
results were presented in the Table 3 and 4 on both datasets for three existing repair methods, GenProg,
AE, and TrpAutoRepair, to reduce the burden on researchers who adopt these datasets for their own
comparative evaluationscxxx. The average number of test suite executions in runs leading to a repair is
presented as “fitness evaluations” in the figures. This measurement serves as a compute- and scenario-
independent measure of efficiency, which is typically dominated by test suite execution time.

Table 3: MANYBUGS: Baseline results of running GenProg v2.2, TrpAutoRepair, and AE v3.0 on
the 185 defects of the MANYBUGS benchmark. For each of the repair techniques, we report the
number of defects repaired per program; the average time to repair in minutes (GenProg and

TrpAutoRepair were run on 10 seeds per scenario, with each run provided a 12-hour timeout; AE
is run once per scenario, with a 60-hour timeout); and the number of fitness evaluations to a

repair, which serves as a compute- and scenario-independent measure of repair time (typically
dominated by test suite execution time and thus varies by test suite size). Complete results,

including individual log files for each defect, are available for download with the dataset.

Progra
m

GenProg TrpAutoRepair AE
Defects
repaire
d

Time
(min)

Fitness
evals

Defects
repaire
d

Time
(min)

Fitness
evals

Defects
repaire
d

Time
(min)

Fitness
evals

fbc 1/3 133 79.0 0/3 - - 1/3 7 1.7
gmp 1/2 13 7.2 1/2 18 2.4 1/2 739 63.3

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 20 of 32

gzip 1/5 240 130.7 1/5 107 56.7 2/5 84 1432.0
libtiff 17/24 27 20.8 17/24 16 2.9 17/24 24 3.0
lighttp
d

5/9 79 44.1 4/9 33 14.9 4/9 22 11.2

php 54/104 181 5.2 56/104 180 1.1 53/104 441 1.1
python 2/15 110 12.9 2/15 144 1.4 3/15 529 7.6
valgrin
d

4/15 193 24.0 4/15 133 1.5 0/15 - -

wiresh
ark

5/8 140 14.3 5/8 44 2.6 5/8 574 66.5

Table 4: INTROCLASS: Baseline results of running GenProg v2.2, TrpAutoRepair, and AE v3.0 on
the 845 white-box-based defects, and 778 white-boxbased defects of the INTROCLASS

benchmark. For each of the repair techniques, we report the number of defects repaired per
program; the average time to repair in second (all three techniques were given timeouts); and the
number of fitness evaluations needed to produce a repair. Complete results, including individual

log files for each defect, are available for download with the dataset.

Progra
m

GenProg TrpAutoRepair AE
Defects
repaire
d

Time
(min)

Fitness
evals

Defects
repaire
d

Time
(min)

Fitness
evals

Defects
repaire
d

Time
(min)

Fitness
evals

White-box-based defects
checks
um

3/49 343 132 1/49 10 5 1/49 4 1

digits 99/172 191 102 46/172 32 13 50/172 11 3
grade 3/224 152 160 2/224 26 23 2/224 25 25
median 63/152 107 114 26/152 19 25 16/152 4 2
smalle
st

118/11
8

23 23 118/11
8

15 11 92/118 4 2

syllabl
es

6/130 284 157 9/130 36 56 5/130 9 6

Black-box-based defects
checks
um

8/29 517 307 0/29 - - 0/29 - -

digits 30/91 162 77 19/91 24 15 17/91 6 6
grade 2/226 141 156 2/226 30 27 2/226 24 25
median 108/16

8
44 59 93/168 20 20 58/168 4 1

smalle
st

120/15
5

102 86 119/15
5

24 21 71/155 5 4

syllabl
es

19/109 96 117 14/109 39 54 11/109 3 2

Also, a collection of reproducible bugs and a supporting infrastructure with the goal of advancing software
engineering research was createdcxxxi together with data and scripts that extend the ManyBugs version
beta-2.1 and Defects4J version 1.1.0 benchmarks to enable the evaluation of automated program repair's
applicability to defects, For example, these data enable evaluating if automated repair techniques are
able to produce patches for defects considered hard or important by developerscxxxii.

GUI/E2E tests level

For E2E tests, which include interaction with GUI automatic healing often converges to identification of
the right element for interaction or assessment (visibility, text checking etc). For that purposes smart
runners exists. One of the examples of that smart runner service is Functionize. It is declaredcxxxiii that
Functionize platform has abilities to:

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 21 of 32

 Identify changes in the test execution comparing to previous test runs;
 Suggest a solution to fix the failing test;
 Automatically validate the suggestion.

3.3 Operation

At this point, the development cycle is almost finished. The application is done and being used in the
field. The Operation phase is still important, though. In this phase, users discover bugs that weren’t found
during testing. These errors need to be resolved, which can spawn new development cycles.

In addition to bug fixes, models like Iterative development plan additional features in future releases. For
each new release, a new Development Cycle can be launched.

3.3.1 Analytics and monitoring

The state of the industry today requires fast deployment cycles and continuous testing for a company to
keep up. This means that time to market needs to be optimized without damaging the quality of software
or model, as users expect the software to be updated and enhanced quicklycxxxiv.

To optimize the deployment cycle, it is necessary to test in a smart and planned way. Analytics and
monitoring can help with that, giving insight into the process. It has been recorded that using project-level
analytics has improved productivity by 28%cxxxv, by offering solution to the problem of determining how to
reduce the scope of effort, making development smarter and more efficient. This is done by doing
analysis through the entire development cycle, starting from database structure and ending in user
experience. The points of analysis are defined through use of Function Pointscxxxvi, units of measure that
express business functionality provided to the user by an information system. In order to quantify
business functionality, user requirements are considered, to be concrete, the output of a system,
inquiries, inputs, internal files and external interfaces. These requirements are then assigned a specific
number of function points. An automated approach to assigning these points has been standardized
through Automated Function Points (AFPs) ISO Standards, which include, among others: FiSMAcxxxvii,
IFPUGcxxxviii, Nesmacxxxix. These standards are mostly user oriented and none of them include algorithmic
complexity. FiSMA has tried to combat this by using engineering function points (operators and Booleans
are counted) and weighted micro function points (newer model that adjusts function points based on
complexitycxl).

Analytics insights are presented inside the company or project through monitoring dashboards. It is
important to align all analysis results in an efficient and understandable way. Microsoft Power BIcxli can be
utilized for this, creating dashboards with heat maps, bar plots and similar. Some examples of possible
dashboards used in projects are:

 Productivity analysis dashboard can be visualised using AFPs measuring the size and effort in
maintaining software through story points (estimation of story points in agile way of work can give
insight into the effort put into software maintenancecxlii, lines of code or functional size (software
metric used to measure the effort needed to maintain software by counting the number of lines in
source code or looking at the functional size of it), code review defects, code coverage and many
more;

 Structural quality dashboard can also be visualised using AFPs, to measure the impact of
DevOps transformation practices. Metrics used are defect ratio, dollar spend, cycle release time,
build count, and other. Analysing structural quality is independent of programming language used
and focuses on integration of building blocks and overall structural integrity of software in each
project;

 User analytics dashboard, constructed by collecting user feedback when handling software, can
be very useful in driving focus and effort.

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 22 of 32

These dashboards can help higher management gain an overview into efforts put in the development
cycle, the quality of software that has been developed and user feedback.

3.3.2 Real usage-based testing

Real usage of software can be regarded as a form of usage-based testing, at least under certain
conditions. In the clearest case, if defects are detected by clients, some information about them is
reported to software vendors, and integrated fixes may be created and delivered to all the clients to avert
such defects. The situation is less clear when analytics and monitoring discussed above are used to
detect possible errors. However, if errors are found only after deploying the software to end users, there
in any case needs to be updates, which can be annoying and costly for the end users.

However, it is also possible to mimic the behaviour of end users. This technique is commonly referred to
as usage-based statistical testing (UBST)cxliii. UBST is considered means to cost-effectively improve the
quality of software delivered into systems integration was a driving criterion for the program. UBST
provides the capability to increase the number of test cases executed on the software and to focus the
testing on expected usage scenarioscxliv. The techniques provide quantitative methods for measuring and
reporting testing progress, and support managing the testing process. Hence such data can also be
applied in the scope of IVVES.

In the technical sense, in UBST, the testing environment resembles the actual operational environment
for the software in the field. Furthermore, the overall testing sequence is similar to real-life usage
scenarios, sequences, and templates of actual software usage by the target clients. As the huge quantity
of clients and diverse usage templates cannot be captured in an implementation set of test cases,
statistical sampling is required. Obviously, there is a link to monitoring and analysis capabilities, as they
provide important input for designing for UBST. This has inspired researchers and practitioners to use the
approach in the context of web applications in particular (e.g. cxlv, cxlvi), where tracing user actions is
often easier than when dealing with installable software. However, also synthetic data can be used to
support the approachcxlvii.

Usage-based statistical testing is commonly appropriate to the final phase of software testing. It can be
also used as a part of acceptance testing right before product release, in which case stopping testing is of
equal worth to the product release. While less common, it is also possible to apply UBST to integration
and system testing, if data and knowledge of actual client usage situations is available. This can support
reaching effectual reliability goals before product release.

3.4 Summary

A concise summary of methods and techniques in different phases of the continuous quality assurance
process are presented in Table 5. Where:

 Test level are:
o Req. – requirements;
o Unit – unit tests;
o Int. – integration tests;
o E2E – end-to-end tests.

 States are:
o P – state of the practice;
o A – state of the art.

 Adoption levels:
o Low – technique or approach is developed during research project and no or only very few

companies using it;
o Medium – software implementing the method is available and used by some companies;
o High – different tools implementing the same approach is available for different technology

stacks and widely used by companies. De facto being the state of the practice.

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 23 of 32

Table 5: Stages, techniques and tools summary

Technique Tests
level

State Adoption
level

Tools (if available)

Design

New features

Modelling

Threat Modelling Req.

P High - STRIDE

- P.A.S.T.A.

- Trike

- VAST

TLA Req. A Low - TLA toolbox

Improvements

Automatic bugs
triaging

Req.,
E2E

A Medium - CERT Triage tool / Exploitable

Development and Testing

Development

Static code analysis Unit P High - SonarQube

- Language specific IDEs, linters and analysis
tools

Code anomaly
detection

Unit A Low - REPD

Formal Verification Req. P Medium - Uppaal

- PRISM

- Rebeca (Afra)

Risk-based testing Unit,
Int.,
E2E

P Medium

Tests creation

Automatic tests creation

Fuzzing Int.,
E2E

A Medium - LibFuzzer etc

- American Fuzzy Loop

- AddressSanitizer, ThreadSanitizer,
MemorySanitizer

- OssFuzz

Metamorphic
testing

Unit,
Int.,
E2E

A Low

Search-based
testing

Unit,
Int.,
E2E

A Medium - EvoSuite

- Randoop

- Microsoft IntelliTest

- DiffBlue Cover

Model-based
testing

E2E A Medium - Test Modeller

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 24 of 32

- APOGEN with Crawljax

- ALEX

ML-based testing
(model free
reinforcement
learning)

Unit,

E2E

A Low - RELOAD

- SaFReL

Tests maintenance

Automatic test
selection and
prioritization

Unit,
Int.,
E2E

A Low - TestArchiver and ChangeEngine by SALabs

Automatic root
cause analysis

Unit,
Int.,
E2E

A Low - Functionize platform

- Delta debugging tools

Automatic test suite
reduction

Unit,
Int.,
E2E

A Low

Automatic healing Unit,
Int.,
E2E

A Low - Functionize platform

Operation

Analytics and
monitoring

E2E P High - AWS CloudWatch

- New Relic

- Kibana

- Google Analytics

- Matomo

Real usage-based
testing

E2E,
Int.

A Low

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 25 of 32

4. Conclusions

This report presents the state of the art of validation methods and techniques for complex ES. The main
contributions are:

 A mapping of the validation methods and techniques with the continuous quality assurance process
 A concise summary of methods and techniques in different phases of the continuous quality

process
 A classification of validation methods and tools by test and adoption levels

The main conclusions are:

 The huge gap between academic researches and industry state of the practice and art exists;
 Often academic research results:

o has limited application;
o requires strong expert knowledge, skills and considerable effort to be applied in the

industry.
 Companies developing mission critical systems can afford applying expensive state of the art

techniques for their validation and verification.

The findings of this report suggest applying research results to produce tools that could be applied with
reasonable effort by avoiding too expensive for implementation and maintenance methods and limiting
the scope of addressed problem.

Three sub-domains could be considered as main focus areas for the project next steps:

1. Model-based test generation with automatic model building:
o as it can provide companies with high level end-to-end regression testing suites and

requires only basic knowledge and skillset from engineers
o some tools are already publicly available, but applicability of those tools is unclear;

2. ML-assisted test generation: tester (testing system) is intelligent and learns the optimal policy (way)
to generate the test cases meeting the testing objective:

o as it can provide automated test generation without access to source code or system model
o in some cases, it is able to reuse the gained knowledge (learned policy) in further similar

testing situations (transfer learning);
3. Automatic test selection and prioritization as it, when applied, reduces TA infrastructure costs and

feedback time allowing teams work in the most efficient manner.

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 26 of 32

5. References

i Leslie Lamport. Thinking for Programmers (Technical talk). San Francisco: Microsoft.
ii Cousineau, Denis; Doligez, Damien; Lamport, Leslie; Merz, Stephan; Ricketts, Daniel; Vanzetto,
Hernán. TLA+ Proofs (PDF). FM 2012: Formal Methods. Lecture Notes in Computer Science. 7436.
Springer Berlin Heidelberg. pp. 147–154. doi:10.1007/978-3-642-32759-9_14. ISBN 978-3-642-32758-2.
iii Newcombe, Chris; Rath, Tim; Zhang, Fan; Munteanu, Bogdan; Brooker, Marc; Deardeuff, Michael (29
September 2014). "Use of Formal Methods at Amazon Web Services" (PDF). Amazon.
iv Chris, Newcombe (2014). Why Amazon Chose TLA+. Lecture Notes in Computer Science. 8477.
Springer Berlin Heidelberg. pp. 25–39. doi:10.1007/978-3-662-43652-3_3. ISBN 978-3-662-43651-6.
v Lardinois, Frederic. "With Cosmos DB, Microsoft wants to build one database to rule them all".
TechCrunch.
vi Leslie Lamport. Foundations of Azure Cosmos DB with Dr. Leslie Lamport (Recording of interview).
Microsoft Azure.
vii Ali Sajedi Badashian, Abram Hindle, and Eleni Stroulia. Crowdsourced bug triaging. In International
Conference on Software Maintenance and Evolution, pages 506–510. IEEE, 2015.
viii Pamela Bhattacharya and Iulian Neamtiu. Fine-grained incremental learning and multi-feature tossing
graphs to improve bug triaging. In International Conference on Software Maintenance, pages 1–10, 2010.
ix John Anvik and Gail C Murphy. Reducing the effort of bug report triage: Recommenders for development-
oriented decisions. ACM Transactions on Software Engineering and Methodology, 20(3):10, 2011.
x Leif Jonsson, Markus Borg, David Broman, Kristian Sandahl, Sigrid Eldh, and Per Runeson. Automated
bug assignment: Ensemble-based machine learning in large scale industrial contexts. Empirical Software
Engineering, 21(4):1533–1578, 2016.
xi Ramin Shokripour, John Anvik, Zarinah M Kasirun, and Sima Zamani. Why so complicated? simple term
filtering and weighting for location-based bug report assignment recommendation. In Working Conference
on Mining Software Repositories, pages 2–11, 2013.
xii Ahmed Tamrawi, Tung Thanh Nguyen, Jafar Al-Kofahi, and Tien N Nguyen. Fuzzy set-based automatic
bug triaging: Nier track. In International Conference on Software Engineering, pages 884–887, 2011.
xiii Song Wang, Wen Zhang, and Qing Wang. Fixercache: unsupervised caching active developers for
diverse bug triage. In ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, page 25, 2014.
xiv Jifeng Xuan, He Jiang, Yan Hu, Zhilei Ren, Weiqin Zou, Zhongxuan Luo, and Xindong Wu. Towards
effective bug triage with software data reduction techniques. IEEE Transactions on Knowledge and Data
Engineering, 27(1):264–280, 2015.
xv Jifeng Xuan, He Jiang, Zhilei Ren, and Weiqin Zou. Developer prioritization in bug repositories. In
International Conference on Software Engineering, pages 25–35, 2012.
xvi Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu. On the naturalness of
software. In International Conference on Software Engineering, pages 837–847, 2012.
xvii Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.
xviii Xin Ye, Hui Shen, Xiao Ma, Razvan Bunescu, and Chang Liu. From word embeddings to document
similarities for improved information retrieval in software engineering. In International Conference on
Software Engineering, pages 404–415, 2016.
xix Quoc V Le and Tomas Mikolov. Distributed representations of sentences and documents. In International
Conference on Machine Learning, volume 14, pages 1188–1196, 2014.
xx A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. Combining deep learning with information
retrieval to localize buggy files for bug reports (n). In International Conference on Automated Software
Engineering, pages 476–481, 2015.
xxi M. White, C. Vendome, M. Linares-Vasquez, and D. Poshyvanyk. Toward deep learning software
repositories. In Working Conference on Mining Software Repositories, pages 334–345, 2015.
xxii Vu Pham, Théodore Bluche, Christopher Kermorvant, and Jérôme Louradour. Dropout improves
recurrent neural networks for handwriting recognition. In International Conference on Frontiers in
Handwriting Recognition, pages 285–290, 2014.

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 27 of 32

xxiii Senthil Mani, Anush Sankaran, Rahul Aralikatte. DeepTriage: Exploring the Effectiveness of Deep

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 28 of 32

Learning for Bug Triaging. The ACM India Joint International Conference on. Data Science & Management
of Data. CoDS-COMAD '19, 2019
xxiv Susan Li, Anomaly Detection for Dummies, 2019, https://towardsdatascience.com/anomaly-detection-
for-dummies-15f148e559c1
xxv Afric, Petar & Sikic, Lucija & Kurdija, Adrian & Silic, Marin. (2020). REPD: Source Code Defect Prediction
as Anomaly Detection. Journal of Systems and Software. 10.1016/j.jss.2020.110641.
xxvi Timofey Bryksin, Victor Petukhov, Ilya Alexin, Stanislav Prikhodko, Alexey Shpilman, Vladimir
Kovalenko, and Nikita Povarov. 2020. Using Large-Scale Anomaly Detection on Code to Improve Kotlin
Compiler. In17thInternational Conference on Mining Software Repositories (MSR ’20), October5–6, 2020,
Seoul, Republic of Korea. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3379597.338744
xxvii Alind Gupta, Machine Learning for Anomaly Detection, https://www.geeksforgeeks.org/machine-
learning-for-anomaly-detection/
xxviii D’Ambros, M., Lanza, M. & Robbes, R. Evaluating defect prediction approaches: a benchmark and an
extensive comparison. Empir Software Eng 17, 531–577 (2012). https://doi.org/10.1007/s10664-011-9173-
9
xxix E. Giger, M. D'Ambros, M. Pinzger and H. C. Gall, "Method-level bug prediction," Proceedings of the
2012 ACM-IEEE International Symposium on Empirical Software Engineering and Measurement, Lund,
2012, pp. 171-180, doi: 10.1145/2372251.2372285.
xxx M. Yan, Y. Fang, D. Lo, X. Xia and X. Zhang, "File-Level Defect Prediction: Unsupervised vs. Supervised
Models," 2017 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM), Toronto, ON, 2017, pp. 344-353, doi: 10.1109/ESEM.2017.48.
xxxi Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar M. Al-Kofahi, andTien N. Nguyen. 2009.
Graph-based Mining of Multiple Object Usage Patterns. In Proceedings of the 7th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering (Amsterdam, The Netherlands) (ESEC/FSE ’09). ACM, New York, NY, USA, 383–
392. https://doi.org/10.1145/1595696.1595767
xxxii Andrzej Wasylkowski, Andreas Zeller, and Christian Lindig. 2007. Detecting Object Usage Anomalies.
In Proceedings of the 6th Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engineering (Dubrovnik, Croatia) (ESEC-FSE ’07).
ACM, New York, NY, USA, 35–44. https://doi.org/10.1145/1287624.1287632
xxxiii Sudheendra Hangal and Monica S. Lam. 2002. Tracking Down Software Bugs Using Automatic
Anomaly Detection. In Proceedings of the 24th International Conference on Software Engineering (Orlando,
Florida) (ICSE ’02). ACM, New York, NY, USA, 291–301. https://doi.org/10.1145/581339.581377
xxxiv Willian N. Oizumi, Alessandro F. Garcia, Thelma E. Colanzi, Manuele Ferreira, and Arndt V. Staa. 2015.
On the relationship of code-anomaly agglomerations and architectural problems. Journal of Software
Engineering Research and Development 3, 1 (10 Jul 2015), 11. https://doi.org/10.1186/s40411-015-0025-
y
xxxv A. E. Hassan, “Predicting faults using the complexity of code changes,” in 2009 IEEE 31st International
Conference on Software Engineering, May 2009, pp. 78–88.
xxxvi T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting fault incidence using software change
history,” IEEE Transactions on Software Engineering, vol. 26, no. 7, pp. 653–661, July 2000.
xxxvii T. Jiang, L. Tan, and S. Kim, “Personalized defect prediction,” in 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE), Nov 2013, pp. 279–289.
xxxviii T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A systematic literature review on fault
prediction performance in software engineering,” IEEE Transactions on Software Engineering, vol. 38, no.
6, pp. 1276–1304, Nov 2012.
xxxix T. M. Khoshgoftaar and N. Seliya, “Software quality classification modelling using the sprint decision
tree algorithm,” in 14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI
2002). Proceedings., Nov 2002, pp. 365–374.
xl T. M. Khoshgoftaar, X. Yuan, and E. B. Allen, “Balancing misclassification rates in classification-tree
models of software quality,” Empirical Software Engineering, vol. 5, no. 4, pp. 313–330, Dec 2000. [Online].
Available: https://doi.org/10.1023/A:1009896203228
xli NASA Langley "Formal Methods". url: http://shemesh.larc.nasa.gov/fm/fm-what.html
xlii C. Baier and J.-P. Katoen. "Principles of Model Checking" (Representation and Mind Series). The MIT
Press, 2008.
xliii Beyer D., Lemberger T. (2017) "Software Verification: Testing vs. Model Checking". In: Strichman O.,
Tzoref-Brill R. (eds) Hardware and Software: Verification and Testing. HVC 2017. Lecture Notes in
Computer Science, vol 10629. Springer, Cham

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 29 of 32

xliv Cordeiro, Lucas & Filho, Eddie & Bessa, Iury. (2019). "A Survey on Automated Symbolic Verification
and its Application for Synthesizing Cyber-Physical Systems". IET Cyber-Physical Systems: Theory &
Applications. 10.1049/iet-cps.2018.5006.
xlv Marwa Hachicha, Riadh Ben Halima, Ahmed Hadj Kacem, "Formal Verification approaches of Self-
adaptive Systems: A Survey", Procedia Computer Science, Volume 159, 2019, Pages 1853-1862, ISSN
1877-0509, https://doi.org/10.1016/j.procs.2019.09.357.
xlvi Amrani, Moussa, Levi Lucio and Adrien Bibal. “ML + FV = ♡? A Survey on the Application of Machine
Learning to Formal Verification.” ArXiv abs/1806.03600 (2018)
xlvii Alam, M. M., & Khan, A. I. (2013). Risk-based testing techniques: a perspective study. International
Journal of Computer Applications, 65(1).
xlviii Bai, X., Kenett, R.S., Yu, W.: Risk assessment and adaptive group testing of semantic web services.
Int. J. Softw. Eng. Knowl. Eng. 22(05), 595–620 (2012)
xlix Casado, R., Tuya, J., Younas, M.: Testing long-lived web services transactions using a risk-based
approach. In: 10th international conference on quality software. pp. 337–340. IEEE (2010)
l Felderer, M., Haisjackl, C., Breu, R., Motz, J.: Integrating manual and automatic risk assessment for risk-
based testing, pp. 159–180. Software quality. Process automation in software, development (2012)
li Amland, S.: Risk-based testing: Risk analysis fundamentals and metrics for software testing including a
financial application case study. J. Syst. Softw. 53(3), 287–295 (2000)
lii Bach, J.: Heuristic risk-based testing. Softw. Test. Qual. Eng. Mag. 11, 99 (1999)
liii Redmill, F.: Exploring risk-based testing and its implications. Softw. Test. Verif. Reliab. 14(1), 3–15 (2004)
liv Rosenberg, L., Stapko, R., Gallo, A.: Risk-based object oriented testing. Proceedings of 13th international
software/internet quality week-QW 2 (2000)
lv van Veenendaal, E.: Practical risk-based testing—The PRISMA Approach. UTN Publishers (2012)
lvi ISO: ISO/IEC/IEEE 29119 Software Testing. http://www.softwaretestingstandard.org/ (2013). Accessed
16 June 2020.
lvii Felderer, M., & Schieferdecker, I. (2014). A taxonomy of risk-based testing. International Journal on
Software Tools for Technology Transfer, Vol. 16, pages 559–568 (2014)
lviii Erdogan, G., Li, Y., Runde, R. K., Seehusen, F., & Stolen, K. (2014). Approaches for the combined use
of risk analysis and testing: a systematic literature review. International Journal on Software Tools for
Technology Transfer, 16(5), 627-642.
lix Concas, G., Marchesi, M., Murgia, A., Tonelli, R., & Turnu, I. (2011). On the distribution of bugs in the
eclipse system. IEEE Transactions on Software Engineering, 37(6), 872-877.
lx Niedermayr, R., Röhm, T., & Wagner, S. (2019). Too trivial to test? An inverse view on defect prediction
to identify methods with low fault risk. PeerJ Computer Science, 5, e187.
lxi T. A. Budd, D. Angluin: Two notions of correctness and their relation to testing. Acta Informatica 18(1),
pp. 31–45, 1982.
lxii E. J. Weyuker: Assessing test data adequacy through program inference. ACM Transactions on
Programming Languages and Systems (TOPLAS) 5(4), pp. 641–655, 1983.
lxiii King RD, Whelan KE, Jones FM, Reiser PG, Bryant CH, Muggleton SH, Kell DB, Oliver SG: Functional
genomic hypothesis generation and experimentation by a robot scientist. Nature 427(6971): pp. 247–252,
2004.
lxiv J. Henkel, A. Diwan: Discovering algebraic specifications from java classes. In: European Conference
on Object-Oriented Programming, Springer, pp. 431–456, 2003. 
lxv P. Papadopoulos, N. Walkinshaw: Black-box test generation from inferred models. In: Proceedings of
the Fourth International Work- shop on Realizing Artificial Intelligence Synergies in Software Engineering,
IEEE Press, pp. 19–24, 2015
lxvi L. C. Briand, Y. Labiche, Z. Bawar, N. T. Spido: Using machine learning to refine category-partition test
specifications and test suites. Information and Software Technology 51(11): pp. 1551–1564, 2009.
lxvii A. Bennaceur, K. Meinke: Machine Learning for Software Analysis: Models, Methods, and Applications,
pp 3-49 in: Machine Learning for Dynamic Software Analysis, Lecture Notes in Computer Science 11026,
Springer 2018.
lxviii H. Khosrowjerdi, K. Meinke, A. Rasmusson: Learning-Based Testing for Safety Critical Automotive
Applications, pp 197-211 in: Lecture Notes in Computer Science, 10437, Springer, 2017.
lxix R. Groz, K. Li, A. Petrenko: Integration testing of communicating systems with unknown components,
Annales des Telecommunications, 70, (3-4), pp. 107-125, 2015.
lxx K. Meinke: Learning-Based Testing of Cyber-Physical Systems-of-Systems: A Platooning Study, Lecture
Notes in Computer Science, 10497, pp 135-151, Springer, 2017.

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 30 of 32

lxxi A. Bainczyk, A. Schieweck, B. Steffen, F. Howar: Model-Based Testing Without Models: The TodoMVC
Case Study, Lecture Notes in Computer Science, 10500, pp. 125-144, Springer, 2017
lxxii U. Kanewala, J. M Bieman, A. Ben-Hur: Predicting metamorphic relations for testing scientific software:
a machine learning approach using graph kernels. In: Software testing, verification and reliability 26.3, pp.
245–269, 2016.
lxxiii X. Xie et al.: Testing and validating machine learning classifiers by metamorphic testing. In: Journal of
Systems and Software 84.4, pp. 544–558, 2011
lxxiv Y. Tian et al.: DeepTest: Automated testing of deep-neural- network-driven autonomous cars. In: arXiv
preprint arXiv:1708.08559, 2017.
lxxv Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
lxxvi M. H. Moghadam, “Machine learning-assisted performance testing,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2019, pp. 1187–1189.
lxxvii M. H. Moghadam, M. Saadatmand, M. Borg, M. Bohlin, and B. Lisper, “Poster: Performance testing
driven by reinforcement learning,” in Proceedings of the 2020 IEEE International Conference on Software
Testing, Verification and Validation (ICST), 2020.
lxxviii M. Helali Moghadam, “Machine Learning-Assisted Performance Assurance” (Licentiate dissertation).
Mälardalen University, Västerås. 2020 Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-
47501
lxxix Koo, C. Saumya, M. Kulkarni, and S. Bagchi, “Pyse: Automatic worst-case test generation by
reinforcement learning,” in2019 12th IEEE Conference on Software Testing, Validation and Verification
(ICST). IEEE, 2019, pp. 136–147.
lxxx M. Grechanik, C. Fu, and Q. Xie, “Automatically finding performance problems with feedback-directed
learning software testing,” in2012 34thInternational Conference on Software Engineering (ICSE). IEEE,
2012, pp. 156–166.
lxxxi T. Ahmad, A. Ashraf, D. Truscan, and I. Porres, “Exploratory performance testing using reinforcement
learning,” in2019 45th Euromicro Conference on Software Engineering and Advanced Applications (SEAA).
IEEE, 2019, pp. 156–163.
lxxxii M. H. Moghadam, M. Saadatmand, M. Borg, M. Bohlin, and B. Lisper, “Machine learning to guide
performance testing: An autonomous test framework,” in2019 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW). IEEE, 2019, pp. 164–167.
lxxxiii B. Busjaeger, T. Xie, Learning for test prioritization: An industrial case study, in: Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, New York,
NY, USA, 2016, ACM, FSE 2016, Seattle, WA, USA, pp. 975–980.
lxxxiv BESZÉDES, Árpád, et al. Code coverage-based regression test selection and prioritization in WebKit.
En 2012 28th IEEE international conference on software maintenance (ICSM). IEEE, 2012. p. 46-55.
lxxxv MULKAHAINEN, Markus. Test case selection and prioritization in continuous integration environment.
2019.
lxxxvi WU, Zhaolin, et al. A Time Window based Reinforcement Learning Reward for Test Case Prioritization
in Continuous Integration. En Proceedings of the 11th Asia-Pacific Symposium on Internetware. 2019. p.
1-6.
lxxxvii Helge Spieker, Arnaud Gotlieb, Dusica Marijan, Morten Mossige. Reinforcement learning for automatic
test case prioritization and selection in continuous integration. ISSTA 2017: Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis, July 2017 Pages 12–22
https://doi.org/10.1145/3092703.3092709
lxxxviii Hall, T., Beecham, S., Bowes, D., Gray, D., and Counsell, S. (2012). A systematic literature review on
fault prediction performance in software engineering. IEEE Transactions on Software Engineering (TSE),
38(6):1276–1304.
lxxxix D’Ambros, M., Lanza, M., and Robbes, R. (2012). Evaluating defect prediction approaches: A
benchmark and an extensive comparison. Empirical Software Engineering, 17(4-5):531–577.
xc Catal, C. (2011). Software fault prediction: A literature review and current trends. Expert Systems with
Applications, 38(4):4626–4636.
xci Menzies, T., Greenwald, J., and Frank, A. (2007). Data mining static code attributes to learn defect
predictors. IEEE Transactions on Software Engineering (TSE), 33(1):2–13.
xcii Weyuker, E. J. and Ostrand, T. J. (2008). What can fault prediction do for you? In Proc. 2nd International
683 Conference on Tests and Proofs (TAP’08), pages 1–10. Springer.
xciii Rainer Niedermayr, Tobias Röhm, Stefan Wagner. Too Trivial To Test? An Inverse View on Defect
Prediction to Identify Methods with Low Fault Risk. PeerJ Computer Science 5:e187, 2019

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 31 of 32

xciv G. J. Myers. The Art of Software Testing. John Wiley & Sons, Inc., New York, 1979.
xcv (2020, Jun.) [Online]. Available: https://newrelic.com/products/application-monitoring
xcvi (2020, Jun.) [Online]. Available: https://www.stackstate.com/product/root-cause-analysis/
xcvii (2020, Jun.) [Online]. Available: https://www.dynatrace.com/platform/root-cause-analysis/
xcviii Holger Cleve, Andreas Zeller. Finding Failure Causes through Automated Testing. Proc. Fourth
International Workshop on Automated Debugging, Munich, Germany, 28-30 August 2000.
xcix Alessandro Orso, Shrinivas Joshi, Martin Burger, Andreas Zeller. Isolating relevant component
interactions with JINSI. WODA '06: Proceedings of the 2006 international workshop on Dynamic systems
analysis, May 2006 Pages 3–10 https://doi.org/10.1145/1138912.1138915
c (2020, Jun.) [Online]. Available: https://applitools.com/root-cause-analysis/
ci (2020, Jun.) [Online]. Available: https://www.functionize.com/visual-testing/
cii J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in Proc. Int. Conf. Softw. Eng., 2006, pp.
361–370.
ciii T. Britton, L. Jeng, G. Carver, P. Cheak, and T. Katzenellenbogen, “Reversible debugging software,”
Judge Bus. School, Univ. Cambridge, Cambridge, U.K., Tech. Rep., 2013.
civ B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable statistical bug isolation,” in Proc.
ACM SIGPLAN Conf. Program. Language Des. Implementation, 2005, pp. 15–26.
cv (2014, Feb.) [Online]. Available: http://www.mozilla.org/security/bug-bounty.html
cvi (2014, Feb.) [Online]. Available: http://blog.chromium.org/2010/01/encouraging-more-chromium-
security.html
cvii (2014, Feb.) [Online]. Available: http://msdn.microsoft.com/enus/library/dn425036.aspx
cviii C. World. (2014, Feb.) [Online]. Available:
http://www.computerworld.com/s/article/9179538/Google_calls_raises_Mozilla_s_bug_bounty_for_Chrom
e_flaws
cix (2014, Feb.) [Online]. Available: http://msdn.microsoft.com/enus/library/dn425036.aspx
cx (2014, Feb.) [Online]. Available: http://www.daemonology.net/blog/2011-08-26-1265-dollars-of-tarsnap-
bugs.html
cxi V. Dallmeier, A. Zeller, and B. Meyer, “Generating fixes from object behavior anomalies,” in Proc.
IEEE/ACM Int. Conf. Automated Softw. Eng., 2009, pp. 550–554.
cxii J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach, M. Carbin, C. Pacheco, F. Sherwood, S.
Sidiroglou, G. Sullivan, W.-F. Wong, Y. Zibin, M. D. Ernst, and M. Rinard, “Automatically patching errors in
deployed software,” in Proc. ACM Symp. Operating Syst. Principles, Big Sky, MT, USA, Oct. 12–14, 2009,
pp. 87–102.
cxiii W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically finding patches using genetic
programming,” in Proc. Int. Conf. Softw. Eng., 2009, pp. 364–367.
cxiv V. Debroy and W. E. Wong, “Using mutation to automatically suggest fixes for faulty programs,” in Proc.
Int. Conf. Softw. Testing, Verification, Validation, 2010, pp. 65–74.
cxv Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and A. Zeller, “Automated fixing of
programs with contracts,” in Proc. Int. Symp. Softw. Testing Anal., 2010, pp. 61–72.
cxvi A. Carzaniga, A. Gorla, A. Mattavelli, N. Perino, and M. Pezze, “Automatic recovery from runtime
failures,” in Proc. Int. Conf. Softw. Eng., 2013, pp. 782–791.
cxvii A. Carzaniga, A. Gorla, N. Perino, and M. Pezze, “Automatic workarounds for web applications,” in
Proc. Int. Symp. Found. Softw. Eng., 2010, pp. 237–246.
cxviii G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit, “Automated atomicity-violation fixing,” in Proc. 32nd
ACM SIGPLAN Conf. Program. Language Des. Implementation, 2011, pp. 389–400.
cxix W. Weimer, Z. P. Fry, and S. Forrest, “Leveraging program equivalence for adaptive program repair:
Models and first results,” in Proc. IEEE/ACM 28th Int. Conf. Automated Softw. Eng., Nov. 2013, pp. 356–
366.
cxx Z. Coker and M. Hafiz, “Program transformations to fix C integers,” in Proc. Int. Conf. Softw. Eng., 2013,
pp. 792–801.
cxxi D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation learned from human-written patches,”
in Proc. Int. Conf. Softw. Eng., 2013, pp. 802–811.
cxxii H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “SemFix: Program repair via semantic
analysis,” in Proc. Int. Conf. Softw. Eng., 2013, pp. 772–781.
cxxiii Y. Qi, X. Mao, and Y. Lei, “Efficient automated program repair through fault-recorded testing
prioritization,” in Proc. Int. Conf. Softw. Maintenance, Eindhoven, The Netherlands, Sep. 2013, pp. 180–
189.

D3.1 – State of the Art of Validation Methods and Techniques for Complex Evolving Systems 30-June-2020
IVVES_Deliverable_D3.1_V1.0.docx ITEA3 Project n. 18022

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium.

IVVES Public © 2020 IVVES Consortium Page 32 of 32

cxxiv M. Monperrus, “A critical review of ‘Automatic patch generation learned from human-written patches’:
Essay on the problem statement and the evaluation of automatic software repair,” in Proc. Int. Conf. Softw.
Eng., 2014, pp. 234–242.
cxxv D. Gopinath, S. Khurshid, D. Saha, and S. Chandra, “Data-guided repair of selection statements,” in
Proc. 36th Int. Conf. Softw. Eng., 2014, pp. 243–253.
cxxvi S. Kaleeswaran, V. Tulsian, A. Kanade, and A. Orso, “Minthint: Automated synthesis of repair hints,” in
Proc. 36th Int. Conf. Softw. Eng., 2014, pp. 266–276.
cxxvii M. Harman, “The current state and future of search based software engineering,” in Proc. Int. Conf.
Softw. Eng., 2007, pp. 342–357.
cxxviii C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic study of automated program
repair: Fixing 55 out of 105 bugs for $8 each,” in Proc. Int. Conf. Softw. Eng., 2012, pp. 3–13.
cxxix Z. P. Fry, B. Landau, and W. Weimer, “A human study of patch maintainability,” in Proc. Int. Symp.
Softw. Testing. Anal., 2012, pp. 177–187.
cxxx C. Le Goues et al., "The ManyBugs and IntroClass Benchmarks for Automated Repair of C
Programs," in IEEE Transactions on Software Engineering, vol. 41, no. 12, pp. 1236-1256, 1 Dec. 2015,
doi: 10.1109/TSE.2015.2454513.
cxxxi (2020, Jun.) [Online]. Available: https://github.com/rjust/defects4j
cxxxii (2020, Jun.) [Online]. Available: https://github.com/LASER-UMASS/AutomatedRepairApplicabilityData
cxxxiii (2020, Jun.) [Online]. Available: https://www.functionize.com/blog/functionize-root-cause-analysis-self-
heal
cxxxiv Ori Bendet, 6 ways to rightsize your tests with analytics, https://techbeacon.com/app-dev-testing/6-
ways-rightsize-your-tests-analytics
cxxxv B. Snyder and B. Curtis, "Using Analytics to Guide Improvement during an Agile–DevOps
Transformation," in IEEE Software, vol. 35, no. 1, pp. 78-83, January/February 2018, doi:
10.1109/MS.2017.4541032.
cxxxvi A. J. Albrecht, "Measuring Application Development Productivity," Proceedings of the Joint SHARE,
GUIDE, and IBM Application Development Symposium, Monterey, California, October 14–17, IBM
Corporation (1979), pp. 83–92.
cxxxvii ISO/IEC JTC 1/SC 7 Software and systems engineering (2007-02-01). "ISO/IEC 14143". International
Standards Organization. Retrieved 2019-02-26), Mark-II (ISO/IEC 20968:2002 Software engineering – Ml
II Function Point Analysis – Counting Practices Manual.
cxxxviii ISO/IEC 20926:2009 Software and systems engineering – Software measurement – IFPUG functional
size measurement method.
cxxxix ISO/IEC 24570:2018 Software engineering – Nesma functional size measurement method version 2.3
– Definitions and counting guidelines for the application of Function Point Analysis.
cxl Capers Jones (October 2009) "Software Engineering Best Practices": pages 318–320.
cxli (2020, Jun.) [Online]. Available: Microsoft Power Bi Software, https://powerbi.microsoft.com/en-us/
cxlii Dan Radigan, Story points and estimation, https://www.atlassian.com/agile/project-
management/estimation
cxliii Walton, G. H., Poore, J. H., & Trammell, C. J. (1995). Statistical testing of software based on a usage
model. Software: Practice and Experience, 25(1), 97-108.
cxliv Kelly, D. P., & Oshana, R. S. (2000). Improving software quality using statistical testing techniques.
Information and Software Technology, 42(12), 801-807.
cxlv Hao, J., and Mendes, E. (2006, July). Usage-based statistical testing of web applications. In Proceedings
of the 6th international conference on Web engineering (pp. 17-24).
cxlvi Sprenkle, S., Cobb, C., & Pollock, L. (2012, April). Leveraging user-privilege classification to customize
usage-based statistical models of web applications. In 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation (pp. 161-170). IEEE.
cxlvii Soltana, G., Sabetzadeh, M., & Briand, L. C. (2017, October). Synthetic data generation for statistical
testing. In 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE) (pp.
872-882). IEEE.

