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Glossary 

Abbreviation / acronym Description 

AFP Automated Function Points 
AI Artificial Intelligence 
APHFW Average Percentage of Historical Failure with time Window 
BOW Bag-of-Words 
CD Continuous Delivery 
CI Continuous Integration 
DBRNN-A Deep Bidirectional Recurrent Neural Network with Attention 
ddmin Minimizing Delta Debugging 
DevOps software Development (Dev) and IT Operations (Ops) 
DNN Deep Neural Network 
E2E End-to-End 
ES Evolving System 
GUI Graphical User Interface 
IDP Inverse Defect Prediction 
ILP Inductive Logic Programming 
LFR Low Fault Risk 
LSTM Long Short-Term Memory 
ML Machine learning 
MR Metamorphic Relation 
NLP Natural Language Processing 
PoC Proof of Concept 
RL Reinforcement Learning 
RBT Risk-based Testing 
RNN Recurrent Neural Network 
QA Quality Assurance 
rSVM Recurrent Support Vector Machine 
SLR Systematic Literature Review 
SUT Software Under Test 
TA Test Automation 
TCP Test Case Prioritization 
TCS Test Case Selection 
TD Temporal-Difference 
UBST Usage-Based Statistical Testing 
UI User interface 
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1. Executive Summary 

This report describes the state of the art of validation methods and techniques for complex Evolving 
Systems (ES). It introduces the idea of continuous quality assessment process which spans on entire ES 
lifecycle and maps methods, techniques and existing tools helping partners to navigate in the domain and 
apply right approach for the right lifecycle stage. 
 
It is visible from the report that the most expensive stage of ES lifecycle is tests maintenance and a lot of 
techniques could be applied there thus providing the biggest benefit to companies. 
It is important to understand that building the basement for ES development and operation consisting of 
CI/CD and data collection pipelines is necessary for applying state of the art methods and techniques and 
even classical engineering solutions often can bring more value and be more efficient in terms of 
expenses than tools utilizing latest and greatest ML models. 
 
Though a lot of researches have been done in the domain of ES validation and verification it is visible that 
not many of those got implemented and made available for industry. We agree that one of the main next 
steps should be focused on addressing very specific problem with selecting and implementing of the 
approach which will bring the most benefits and cover big market share. 
 
There are three sub-domains that could be considered as main focus areas: 

1. Model-based test generation with automatic model building: 
o as it can provide companies with high level end-to-end regression testing suites and 

requires only basic knowledge and skillset from engineers; 
o some tools are already publicly available, but applicability of those tools is unclear; 

2. ML-assisted test generation: tester (testing system) is intelligent and learns the optimal policy (way) 
to generate the test cases meeting the testing objective: 

o as it can provide automated test generation without access to source code or system 
model; 

o in some cases, it is able to reuse the gained knowledge (learned policy) in further similar 
testing situations (transfer learning); 

3. Automatic test selection and prioritization as it, when applied, reduces TA infrastructure costs and 
feedback time allowing teams work in the most efficient manner. 
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2. Introduction 

In order to better understand the holistic picture of current state of the art of validation techniques for 
complex ES it is important to map ES lifecycle in two-dimensional space where vertical (Y) axis used to 
measure complexity and horizontal (X) lifecycle stage. Figure 1 displays that mapping. Because software 
development is iterative process after Operation phase stage Design begins again. It is important 
understand that techniques used for high complexity software relies on simpler ones, so “Automatic test 
prioritization” almost impossible to implement having no components in use like “CI / CD pipeline”, “Test 
results data collection” and “Coverage analysis”. Also, it is obvious from the Figure 1 that most of the 
work and techniques in continuous quality assurance process are dedicated to tests maintenance stage. 
 

 

Figure 1: Continuous quality assurance process stages and components 
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3. State of the art of validation techniques for complex ES 

Let’s consider the most advanced techniques of validation and verification of complex ES in more details. 
Mostly state of the art techniques and methods are described below, though several state of the practice 
techniques with low adoption level are mentioned as well. Methods and techniques are broken down into 
the sections accordingly described continuous quality process. 

3.1 Design 

Work on ES quality starts at the very beginning of the its lifecycle, on design stage. 
Design stage consist of planning of new features and improvements. As a state of the practice the 
planning involves manual modelling and architecting which sometimes involves building proof-of-concept 
(PoC) systems and prioritisation of incoming feedback in form of support cases, surveys, interview 
reports. Also, during design phase threat modelling methodologies are used to identify possible security 
issues. 
 
As a state of the art more complex techniques and tools are employed. 

3.1.1 Modelling 

Along with building PoC modelling could be performed during the design stage. Modelling could be 
considered as an approach to perform testing before even building the actual software. One of the ways 
to perform modelling could be verification of the specification written with TLA+ language. 
 
TLA+ is a formal specification language developed by Leslie Lamport. It is used to design, model, 
document, and verify programs, especially concurrent systems and distributed systems. TLA+ has been 
described as exhaustively-testable pseudocode, and its use likened to drawing blueprints for software 
systems; TLA is an acronym for Temporal Logic of Actions. 
 
For design and documentation, TLA+ fulfils the same purpose as informal technical specifications. 
However, TLA+ specifications are written in a formal language of logic and mathematics, and the 
precision of specifications written in this language is intended to uncover design flaws before system 
implementation is underway. 
 
Since TLA+ specifications are written in a formal language, they are amenable to finite model checking. 
The model checker finds all possible system behaviours up to some number of execution steps, and 
examines them for violations of desired invariance properties such as safety and liveness. TLA+ 
specifications use basic set theory to define safety (bad things won't happen) and temporal logic to define 
liveness (good things eventually happen). 
 
TLA+ is also used to write machine-checked proofs of correctness both for algorithms and mathematical 
theorems. The proofs are written in a declarative, hierarchical style independent of any single theorem 
prover backend. Both formal and informal structured mathematical proofs can be written in TLA+; the 
language is similar to LaTeX, and tools exist to translate TLA+ specifications to LaTeX documents. 
 
Temporal logic of actions (TLA) and TLA+, PlusCAL languages are used by several companies to identify 
problems in ES design.  
 
At Microsoft, a critical bug was discovered in the Xbox 360 memory module during the process of writing 
a specification in TLA+.i TLA+ was used to write formal proofs of correctness for Byzantine Paxos and 
components of the Pastry distributed hash table.ii 
 
Amazon Web Services has used TLA+ since 2011. TLA+ model checking uncovered bugs in DynamoDB, 
S3, EBS, and an internal distributed lock manager; some bugs required state traces of 35 steps. Model 
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checking was also used to verify aggressive optimizations. In addition, TLA+ specifications were found to 
hold value as documentation and design aids.iii iv 
 
Microsoft Azure used TLA+ to design Cosmos DB, a globally-distributed database with five different 
consistency models.v,vi 

3.1.2 Automatic defect triaging 

Defect management processes require defects to be classified, scored/prioritized and allocated to the 
appropriate development teams. Traditionally still in Defect Review Boards meetings defects are 
discussed, assessed and decisions are subsequently taken, a time-consuming activity. Agile ways of 
working require this process to be more efficient and almost “continuous”. 
 
The major challenge is that the defect descriptions and associated information often contain a 
combination of e.g. free unstructured text, code snippets, and stack trace making the input data highly 
noisy. 
 
Automatic defect triaging algorithms can be formulated as a classification problem, which takes the 
reported bug information as the input, mapping it to one of the available developers (class labels). Also, it 
is possible to do assignment of the severity class and related features.  
Manual bug triaging is usually performed using the bug report content, primarily consisting of the 
summary and description. While additional sources of input have been explored in the literature such as 
developer profiling from GitHubvii and using component informationviii, majority of the research efforts 
have focused on leveraging the bug report content for triagingix,x,xi,xii,xiii,xiv,xv. The bug report content 
contains noisy text information including code snippets, and stack trace details. Processing such 
unstructured and noisy text data is a major challenge in training a classifier. 
 
Natural language processing (NLP) methods like bag-of-words (BOW), bag-of-n-grams, word2vec and 
more advanced models employing neural networks are used to build classifiers. It is possible that BOW 
model mis-classifies defects because: 

1. BOW feature model considers the sentence as a bag-of-words losing the ordering (context) of 
words, and 

2. the semantic similarity between synonymous words in the sentence are not considered. 

 
Even though a bag-of-n-grams model considers a small context of word ordering, they suffer from high 
dimensionality and sparse dataxvi. The semantic similarity between word tokens can be learnt using a 
skip-gram based neural network model called word2vecxvii. This model relies on distributional hypothesis 
which claims that words that appear in the same context in the sentence share a semantic meaning. Ye 
et al.,xviii built a shared word representation using word2vec for word tokens present in code language and 
word tokens present in descriptive language. The main disadvantage of word2vec is that it learns a 
semantic representation of individual word tokens, however, does not consider a sequence of word 
tokens such as a sentence. An extension of word2vec called paragraph vectorxix considers the ordering of 
words, but only for a small context. Recently, recurrent neural network (RNN) based deep learning 
algorithms have revolutionized the concept of word sequence representation and have shown promising 
breakthroughs in many applications such as language modelling and machine translation. Lam et al.xx 
used deep neural network (DNN) with rSVM to learn a common representation between source code and 
the bug reports and used it for effective bug localization. White et al.,xxi provided a broad perspective on 
how deep learning can be used in software repositories to solve some challenging problems. A novel bug 
report representation approach is proposed using DBRNN-A: Deep Bidirectional Recurrent Neural 
Network with Attention mechanism and with Long Short-Term Memory units (LSTM)xxii. Table 1 presents 
a list of closely related works on bug triaging arranged in a chronological order (year 2010 to 2018). 
 

Table 1: Summary of various ML based bug triaging approaches available in literature, explaining 
the features and approach used along with its experimental performance. 
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Paper Information 
used 

Feature 
extracted 

Approach Dataset Performance 

Bhattacharya 
et al., 2010viii 

title, 
description, 
keywords, 
product, 
component, 
last developer 
activity 

tf-idf + 
bagof-words 

Naive Bayes + 
Tossing graph 

Eclipse# 
306,297 

Rank#5 
accuracy 
77.43% 

Mozilla# 
549,962 

Rank#5 
accuracy 
77.87% 

Tamrawi et 
al., 2011xii 

title, 
description 

terms A fuzzy-set 
feature for each 
word 

Eclipse# 
69829 

Rank#5 
accuracy 
68.00% 

Anvik et. Al., 
2011ix 

title, 
description 

normalized 
tf 

Naive Bayes, 
EM, SVM, C4.5, 
nearest 
neighbour, 
conjunctive rules 

Eclipse# 7,233 Rank#3 prec. 
60%, recall 3% 

Firefox# 7,596 Rank#3 prec. 
51%, recall 
24% 

Xuan et. Al., 
2012xv 

title, 
description 

tf-idf, 
developer 
prioritization 

Naive Bayes, 
SVM 

Eclipse# 
49,762 

Rank#5 
accuracy 
53.10% 

Mozilla# 
30,609 

Rank#5 
accuracy 
56.98% 

Shokripour et 
al. 2013xi 

title, 
description, 
detailed 
source code 
info 

weighted 
unigram 
noun terms 

Bug location 
prediction + 
developer 
expertise 

JDT-Debug# 
85 

Rank#5 
accuracy 
89.41% 

Firefox# 80 Rank#5 
accuracy 
59.76% 

Wang et al., 
2014xiii 

title, 
description 

tf Active developer 
cache 

Eclipse# 
17,937 

Rank#5 
accuracy 
84.45% 

Mozilla# 
69,195 

Rank#5 
accuracy 
55.56% 

Xuan et. al., 
2015xiv 

title, 
description 

tf feature selection 
with Naive Bayes 

Eclipse# 
50,000 

Rank#5 
accuracy 
60.40% 

Mozilla# 
75,000 

Rank#5 
accuracy 
46.46% 

Badashian et. 
al., 2015vii 

title, 
description, 
keyword, 
project 
language, tags 
from 
stackoverflow, 
github 

Keywords 
from bug 
and tags 

Social expertise 
with matched 
keywords 

20 GitHub 
projects, 7144 
bug reports 

Rank#5 
accuracy 
89.43% 

Jonsson et. 
al., 2016x 

title, 
description 

tf-idf Stacked 
Generalization of 
a classifier 
ensemble 

Industry# 
35,266 

Rank#1 
accuracy 89% 

Senthil Mani 
et al.xxiii 

title, 
description 

terms DBRNN-A Google 
Chromium# 
383,104 

Rank#10 
accuracy 47% 
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Mozilla Core# 
314,388 

Rank#10 
accuracy 43% 

Mozilla 
Firefox# 
162,307 

Rank#10 
accuracy 56% 

3.2 Development and testing 

During the development and/or construction stage the product is built (the code is written) and assembled 
in accordance with the requirements specified in the product, process and material specifications and is 
deployed and tested within the testing environment. System assessments are conducted in order to 
correct deficiencies and adapt the system for continued improvement. 

3.2.1 Code anomaly detection 

Anomaly detection is the process of identifying unexpected items or events in a structure or software, 
where anomalies are defined as events or behaviours which differ from the normxxiv. Unexpected 
behaviour of software can lead to numerous risks, one of them being profit loss and loss of customers, 
other being safety concerns. It is of high importance to detect software anomalies as early as possible in 
order to mitigate these risks, so software testing and peer reviews have become a must in any 
development cycle. Even though testing and peer reviews are valuable, they require time and resources, 
and this is where code anomaly detection brings value. Developing code is the foundation of any software 
or model and finding anomalies at this, most granular stage, can help in early deviation detection and 
faster deployment. 
 
Developing code can go wrong for many reasons, the most high-level one being simple misunderstanding 
of what is required from the stakeholders. In that sense, even healthy code is erroneous. Therefore, it is 
very important to lay the ground and explain what the expected behaviour of source code is and what 
would classify as an anomaly. Anomalies can be divided into three typesxxv:  

1. Point anomalies, single instances with attributes different than the general population’s norm;  
2. Contextual anomalies, which are context specific, and common in time-series data; and  
3. Collective anomalies, a set of data instances which can collectively be considered anomalies.  

 
Code anomalies are fragments of code that are not typical within the community or an ecosystem of a 
given programming languagexxvi. Erroneous code snippets highlight flaws in language design or indicate 
problems in software behaviour. Identifying code anomalies at a scale of a programming language means 
that a large corpus of source code needs to be prepared for digestion by a given ML algorithm, which in 
turn classifies it. Some approaches to classification by ML arexxvii: 

1. Supervised Anomaly Detection, which requires a labelled dataset containing both normal and 
anomalous samples to construct a predictive model to classify future data points. The most used 
algorithms for this purpose are supervised Neural Networks, Support Vector Machines, K-Nearest 
Neighbours Classifier, etc; 

2. Unsupervised Anomaly Detection, which requires no training data and has two assumptions 
about the data: 

a. Only a small percentage of data is anomalous; and  
b. Any anomaly is statistically different from the normal samples.  

 
Based on the above assumptions, the data is then clustered using a similarity measure and the data 
points which are far off from the cluster are defined as anomalies. 
Classifying code as defective can be done on different levels: 

1. Change log level, where metrics are extracted from the versioning system and most recent files 
are source of anomaliesxxviii; 

2. Method level, where methods are the source of anomaliesxxix; 
3. Component level, where components are the source of anomalies; 
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4. File level, where files are the source of anomalies. Usually, the bigger the file is, the higher the 
probability of anomalies isxxx; 

5. Within project, where a classifier is trained on a set of data from a given project and then used to 
predict the anomalies in the same project. This level is further divided into inner and cross-version 
anomaly detection based on which versions of the project are usedxxv; 

6. Cross project, where a classifier is trained on a previous project and predicts the anomalies in a 
new onexxv. 

 
Different code anomalies detected by unsupervised learning method, autoencoder model, in Kotlin 
programming language arexxvi: 

1. Syntax tree anomalies, nontypical and rare code fragments, divided into: 
a. Language design anomalies used to improve the design of programming language itself; 
b. Compiler anomalies used as performance tests in compiler correctness; 
c. Performance anomalies that point to non-optimal code generation and lack of 

optimization. 
2. Compiler-induced anomalies, where complex bytecode was generated through typical syntax 

tree, caused by: 
a. Non optimal code generation anomalies used as tests for bytecode generation; 
b. Complex functions inlining abnormal code fragments and being called multiple times 

when executing code. This can be used to detect and mitigate performance risks. 
 
The summary of methods and tools for code anomaly detection can be found in Table 2. 
 
 

Table 2: Summary of methods and tools for code anomaly detection 

Tool/approach/algorithm Objective Method Reference 
GrouMiner tool Detect anomalous 

patterns in object 
interaction in Java  

Graph-based anomaly 
detection 

xxxi 

Mining usage model 
approach 

Detect abnormal usage 
patterns 

Graph-based anomaly 
detection 

xxxii 

DIDUCE tool Dynamic code expression 
analysis in Java 

Dynamic code analysis xxxiii 

Feature Envy approach Identify code patterns 
indicating architecture 
flaws 

“Code smells” xxxiv 

Supervised learning 
algorithms 

Classify anomalies Neural Networks, 
Support Vector 
Machines, K-Nearest 
Neighbours Classifier 

xxxv, xxxvi, xxxvii, 
xxxviii, xxxix, xl 
 

Unsupervised learning 
algorithms 

Cluster anomalies Autoencoders xxv, xxvi 
 

3.2.2 Formal verification 

In general, the term “formal methods” refers to “mathematically rigorous techniques and tools for the 
specification, design and verification of software and hardware systems”xli. Formal verification consists of 
mathematically proving properties of mathematical models of systems. This definition covers a wide 
range of areas and techniques, but in this context, we will focus on model checkingxlii of safety properties 
applied to embedded systems. 
 
Model checking is a family of techniques used to verify properties of finite state systems. The systems are 
modelled using temporal logic and then the properties are checked to hold over the entire (finite) state 
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space. These techniques have seen a significant boost in performance and usability over the last 15 
yearsxliii and are now more broadly used in the industry. 
 
In order to get a wider adoption in the industry, performance is one of the key issues that needs to be 
addressed. This area has been a very active field of researchxliv xlv, and more recently, inspired by the 
impressive results of ML (deep learning in particular), there has been a growing interest in applying ML to 
formal verification. So far, there are some promising resultsxlvi, but this new direction is still in its infancy. 

3.2.3 Risk-based testing 

The aim of risk-based testing (RBT) approaches is to ensure that appropriate testing activities are 
identified and prioritized based on riskxlvii.  Furthermore, we may use testing to support risk analysis and 
risk analysis to support testing. Fundamentally, the goal of RBT is to reduce the risk of failure to the 
business and increase customer satisfaction. 
 
Several RBT approaches were proposed in academia (e.g., xlviii, xlix, l), and industry (e.g., li, lii, liii, liv, 
lv). Moreover, the international standard ISO/IEC/IEEE 29119 Software Testinglvi on testing techniques, 
processes, and documentation even explicitly considers risks as an integral part of the test planning 
process. To a degree, proposed approaches are overlapping and include common elements, but they all 
also have their specifics. 
 

 

Figure 2: RBT taxonomy 
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To create order to the practice of risk-based testing, Felderer and Schieferdeckerlvii proposed a taxonomy 
for RBT (see Figure 2). The authors also introduce each item in the taxonomy at a detailed level. For 
brevity, the definitions are omitted here, since to a large degree the discussion is not closely related to 
IVVES project as such. However, an important observation is that terms “ML” and “AI” are never 
mentioned in the paper. Hence, IVVES clearly can introduce new elements to RBT with its application of 
ML and AI in many of the identified taxonomy items. Furthermore, as many of the items are such that 
considerable amount of data exists in companies, IVVES can also study utilising such data for AI/ML 
supported RBT. 
 
A systematic literature review (SLR) by Erdogan et al.lviii has studied RBT by surveying the literature on 
the combined use of risk analysis and testing. First, the paper identifies the existing approaches using an 
SLR. Then, the authors have classified the approaches and discussed with respect to main goal, context 
of use and maturity level of each approach. The authors found 8 categories: 

 Approaches addressing the combination of risk analysis and testing at a general level; 
 Approaches with main focus on model-based risk estimation; 
 Approaches with main focus on test-case generation; 
 Approaches with main focus on test-case analysis; 
 Approaches based on automatic source code analysis; 
 Approaches targeting specific programming paradigms; 
 Approaches targeting specific applications; 
 Approaches aiming at measurement in the sense that measurement is the main issue. 

 
Here, topics that have been explicitly mentioned by authors and also are interesting from IVVES 
perspective include: 

 Test prioritization; 
 Model-based testing; 
 Test case code generation; 
 Test case analysis; 
 Automatic source code analysis. 

 
To summarize, RBT testing in the large has not yet adopted ML/AI features. To some extend this can be 
addressed to the origins of the approach, where risk analysis and testing both are to be taken into 
account and many risk analysis approaches are manual in nature. However, it has been shown that 
software errors are not randomly distributed in software projects, but that certain parts are more likely to 
contain bugs than some other partslix. Therefore, methods to identify parts of software projects that are 
prone to errors – as well as parts that are safe from errorslx – are interesting research directions in the 
scope of project IVVES. In fact, we believe that there are several low-hanging results that do not need 
ML/AI features at all but can be simply solved by a closer connection between development and testing. 

3.2.4 Automatic tests creation 

The earliest applications of ML to software testing date back to pioneering work of Buddlxi and Weyukerlxii. 
During the 1990s and early 2000s, Inductive Logic Programming (ILP) was considered as a model 
learning paradigm for model-based test case generationlxiii but it has been unclear what range of 
behaviours can be learned by ILP. Recently, alternative modelling and inference approaches have been 
considered, such as learning algebraic specificationslxiv and learning decision treeslxv. Not all such 
approaches automate the important test oracle step (i.e. test verdict generation), e.g. Briand et al.lxvi 
argues to keep the human in the loop. However, when test suites are large (e.g. > 1 million test cases) it 
seems clear that automation of the oracle step is also necessary. This is currently being tackled by ML-
based methods such as metamorphic testing.  
 
An emerging approach to inference of computational models using ML in recent years is based on active 
automaton learning (aka. regular inference)lxvii. Recently attention has turned to more widely applicable 
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classes of computational models, such as non-deterministic finite automata, timed automata, probabilistic 
automata, hybrid automata and generalized automata. This ML approach has been applied to software 
engineering problems such as testing, software documentation, reverse engineering and interface 
synthesis. In software testing, the approach has been applied to unit testinglxviii, integration testinglxix and 
system testinglxx. This ML approach has also been combined with model checking to perform learning-
based testing as well as model-based testing through model inferencelxxi. Another recent approach to 
harnessing ML for software testing is given by metamorphic testinglxxii. In this approach, graph kernels 
and support vector machines (SVMs) are used to reverse engineer software testing requirements (aka. 
metamorphic relations) automatically from code. This represents a significant step towards fully 
autonomous requirements-based software testing. Metamorphic testing has even been applied to test 
neural networks themselves. Deep neural networks (DNNs) represent one of the most promising topics in 
the area of ML. However, the non-explainability in connecting predicted outcomes to learned features 
makes the DNN model a black box. Usually there is no oracle for testing DNN performance without 
human intervention. One of the promising methods to mitigate this oracle problem is metamorphic testing 
by Xielxxiii and Tianlxxiv. Here, metamorphic testing operates by checking the system under test (a DNN) 
against a relation (such as an inequality) between different pairs of DNN predicted outputs. Such a 
relation is termed a metamorphic relation (MR). The MR specifies how the output would vary, according 
to changes made to the input. MRs provide a powerful technique to create domain related test cases 
without any human expert support and could provide a viable option in validating deep learning models. 

Model-free ML-assisted tests generation 

According to the existing studies in the literature, model-driven techniques or the techniques relying on 
source code and declarative specifications are common approaches to generate test cases to accomplish 
the testing objective. However, drawing a precise and well-detailed model which gives the details of the 
system requires a big endeavor, in particular for complex systems. Moreover, other artifacts such as 
source code which are also used as underlying tools in many existing techniques, might not be 
accessible all the time. Therefore, within the scope of black-box testing, there is room for serving ML 
techniques to generate test cases. 
 
Different types of ML including supervised and unsupervised learning algorithms have been used 
frequently to tackle different challenges in software testing. In addition to common supervised and 
unsupervised ML, reinforcement learning (RL)lxxv is a fundamental category of learning algorithms which 
are mainly intended to solve decision-making problems. RL algorithms find the optimal way to make 
decisions. RL is a different learning paradigm from the supervised and unsupervised learning, which is 
based on interaction with the environment/system of the problem. There is no supervisor at play in RL 
and the learning does not occur based on a training data set. Instead, the agent goes through the system 
and learns the optimal way of decision making through interaction with the system. Basically, at each step 
of the interaction, the agent observes (senses) the system, takes a possible action to reach the intended 
objective and receives a reward signal from the environment showing the effectiveness of the applied 
action to accomplish the intended objective of the agent (See Figure 3 in which the system/environment 
that the agent interacts with is software under test). 

 

Figure 3. Reinforcement learning cycle between agent (tester) and system (SUT)  
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Regarding the potential of RL and the issues of common solution techniques, RL techniques in particular 
model-free RLs could play an interesting role in addressing the challenges of test case generation. 
Model-free RLs are a subset of RL algorithms which can learn the optimal way to solve a problem (i.e., to 
accomplish an objective) from the interaction with the system without need to access or build a model of 
the system.  These RL algorithms are not intended to explicitly build or learn a model of the system to 
understand how it works. The purpose of these algorithms is learning the optimal behaviour, i.e., 
understanding how to behave to achieve as much reward as possible through multiple experiences of 
interaction with the system. Monte Carlo learning and Temporal-Difference (TD) learning including Q-
learning algorithms are well-known model-free RL algorithmslxxv. 
 
With respect to the potential of model-free RL to address the related challenges in testing, it is proposed 
that if the optimal policy (way) for accomplishing the intended objective in the testing could be learned by 
the tester system instead, then the intended task could be possible without need to access source code 
or system models. Moreover, once the optimal policy is learned, the learned policy could be reused in 
further similar testing situationslxxvi, lxxvii. 
 
The capability of knowledge formation during the learning, storing the gained knowledge and reusing the 
knowledge in further similar testing situations are the important features in using  RL-assisted approaches 
that could lead to efficiency improvement in comparison to other common approaches such as the ones 
based on ordinary search techniqueslxxviii. 
 
RL algorithms have been applied to address the testing challenges such as test case generation, 
particularly in performance testing domain. For example, using RL together with symbolic execution to 
find the worst-case execution path within a SUT inlxxix, a feedback-driven learning technique which 
extracts some rules from the execution traces to find the performance bottlenecks, i.e., the method calls 
which their execution highly affects the performancelxxx, using RL to find a sequence of input values 
resulting in performance degradationlxxxi, and using RL to build a smart performance testing framework 
which mainly generates the platform-based test conditionslxxxii, lxxvi, lxxvii. 

3.2.5 Automatic tests selection and prioritization 

Test case selection and prioritization automation is fundamental for CI. The objective is to shift the 
responsibility for testing from human testers and developers to enhanced, ML-enabled tools. This would 
enable, eventually, that validation techniques and bug-checking are done without user intervention. 
Complex ES are deriving in test suites to exponentially grow, and the time spent for validation is 
impacting the CI pipeline.   
  
Test case selection (TCS) and test case prioritization (TCP) ML-enabled techniques are growing rapidly, 
and there are promising studies and research activities that have been taken into account during the 
analysis of the state of the art. In fact, some publications have remarked that ML-based TCP surpasses 
the traditional coverage-based approaches.  
  
The goal of TCS is to provide a subset of the test suite to test a modified model. In parallel, TCP focuses 
on re-ordering the test in the suite. The tests that in theory are more likely to find a fault or bug are fired 
firstly. When the potential fault prediction is similar in two candidate tests, other variables (as the fastest, 
the less performance-demanding…) are taken into account.  However, the prioritization criteria can’t be 
easily defined in ML-powered ES. 
 

ML-based TCP and TCS techniques 

Regarding the application of ML-based approaches, Busjaeger and Xielxxxiii provided a solution that 
integrates multiple existing techniques. For this, they used a systematic framework of ML to rank. They 
applied multiple heuristic techniques: test coverage of modified code, textual similarity between tests and 
changes, test-failure or fault history and test age. The evaluation on a large dataset indicated that it 
outperformed previous approaches.  Some key outcomes were identified when evaluating the results: 
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They recall achieved, when selecting 3% of the top tests from the prioritized test suite was close to 75%. 
As future work, the inclusion of new features for the evaluation where outlined. The approach is focused 
in real domains and take into account challenges of industrial environments.   
 
Test suite reductions applied to an actual live system, with realistic setup, were also done by Beszédes et 
al.,lxxxiv providing a suite reduction of 51% with over 75% of recall on average. This was much more 
improved by adding a prioritization step, reaching a reduction over 90% in further tests. The most 
important tools used in the toolchain for the live version were: Procedure level coverage measurement, 
Identification of changes made to the source code and Coverage database and database update.  
 
An exhaustive summary is provided by Mulkahainen M.,lxxxv where the ML-based techniques remarked 
where: RandomForest, RandomForest (U), LogReg and XGBoost. When compared with heuristics 
methods, his study states that ML techniques gradually increase the performance, reaching in some 
cases better results and that Unlimited RandomForest was the most effective incremental learning-based 
test case selection. Regarding TCP, five techniques were remarked: RandomForest, MLP, XGBoost, 
Naïve Bayes and LogReg. The conclusion of the analysis of these techniques, when compared with 
traditional ones, is that the incremental learning techniques outperformed traditional statement coverage-
based prioritization techniques in fault detection rates, when a failing test is assumed to reveal one 
unique fault. 
 

Reinforcement Learning-based TCS and TCP 

Regarding the application of RL to test case prioritization, there are some key concepts to be taken into 
account. A novel reward function proposed by Wu, Zhaolin, et al.,lxxxvi provides a reference for test case 
prioritization to save computing resources in CI based on RL. In this case, a novel reward function is 
proposed, by using partial historical information of test cases effectively for fast feedback and cost 
reduction. The approach is focusing in reduce the huge cost in terms of time and resource availability 
related to the linear growth observed in both, code committing rate and test suite scales, due to higher 
complexity and the need of shorter CI cycles. Wu, Zhaolin, et al.lxxxvi defined the Average Percentage of 
Historical Failure with time Window (APHFW), as a novel reinforcement learning reward function, that 
utilizes a time window to filter recent historical information to calculate reward value.  
 
Spieker et al.lxxxvii have successfully applied also RL together with a multi-layered perceptron to predict 
failing test cases based on test history. They presented RETECS, a novel lightweight method for test 
case prioritization and selection in CI. RETECS is an adaptive approach, that learns indicators for failing 
test cases during its runtime by analysing test cases, test results, its own actions and its defects. The 
evaluation of RETECS in three industrial use cases suggested that a much more effective strategy, 
compared with basic deterministic prioritization methods could be achieved after an initial learning phase. 

3.2.6 Automatic test suite reduction 

One of the approaches to timewise optimization of feedback loop from TA pipeline is reduction of the size 
of the test suite. In order to maintain the suite quality test coverage is an important metric to track while 
the reduction. It is possible to decrease number of tests in the suite and keep the coverage on the same 
level if overlapping tests exist. To mitigate risks while further tests reduction more advanced techniques 
employing code analysis and defect predictions could be used. 
 
To support development teams in this activity, defect prediction has been developed and studied 
extensively in the last decadeslxxxviii, lxxxix, xc. Defect prediction identifies code regions that are likely to 
contain a fault and should therefore be testedxci, xcii. 
 
Another view on defect prediction is inverse defect prediction (IDP)xciii. The idea behind IDP is to identify 
code artifacts (e.g., methods) that are so trivial that they contain hardly any faults and thus can be 
deferred or ignored in testing. Like traditional defect prediction, IDP also uses a set of metrics that 
characterize artifacts, applies transformations to pre-process metrics, and uses a ML classifier to build a 
prediction model. The difference rather lies in the predicted classes. While defect prediction classifies an 
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artifact either as buggy or non-buggy, IDP identifies methods that exhibit a low fault risk (LFR) with high 
certainty and does not make an assumption about the remaining methods, for which the fault risk is at 
least medium or cannot be reliably determined. As a consequence, the objective of the prediction also 
differs. Defect prediction aims to achieve a high recall, such that as many faults as possible can be 
detected, and a high precision, such that only few false positives occur. In contrast, IDP aims to achieve 
high precision to ensure that low-fault-risk methods contain indeed hardly any faults, but it does not 
necessarily seek to predict all non-faulty methods. Still, IDP needs to achieve a certain recall such that a 
reasonable reduction potential arises when treating LFR methods with a lower priority in QA activities. 
 
The results of our empirical studyxciii show that only very few low-fault-risk methods actually contain a 
fault, and thus, they indicate that IDP can successfully identify methods that are not fault-prone. On 
average, 31.7% of the methods matched by the strict classifier contain only 6.0% of all faults, resulting in 
a considerable fault-density reduction for the matched methods. Results show that the IDP approach can 
be used to identify methods that are, due to the “triviality” of their code, less likely to contain any faults. 
Hence, these methods require less focus during quality-assurance activities. Depending on the criticality 
of the system and the risk one is willing to take, the development of tests for these methods can be 
deferred or even omitted in case of insufficient available test resources. 

3.2.7 Automatic root cause analysis 

TA pipeline fails requires developers to start investigation to identify root cause. One of the main stages 
during investigation is debugging of the failed test case and code under the test. Debugging falls into 
three phases: reproducing a failure, finding the root cause of the failure, and correcting the error such that 
the failure no longer occurs. While failure reproduction and correction are important issues, it is the 
second phase, finding the root cause, which is the most significant. Early studies have shown that finding 
the root cause accounts for 95% of the whole debugging effortxciv. 
 
There are two reasons why tests can fail: 

 External - application environment or infrastructure problems; 
 Internal - errors in the code of the application and tests. 

 

External issues 

There are number of solutions on the market offering fails root cause analysis focused on application 
environment problems, for example: NewRelicxcv, StackSlatexcvi, Dynatracexcvii. In order to perform that 
kind of analysis installing sensors on different levels of the infrastructure is required. The sensors then 
collect different metrics, combine and analyse them presenting the overall picture of systems state. This 
approach also allows to avoid alert storms deluging developers with cascades of individual alerts. 
 

Internal issues  

Speaking of internal problems, it is possible to split it into two levels: unit tests and UI tests level which is 
sometimes called end-to-end (E2E) tests level. 
 

Unit tests level 

One of the approaches to identify root cause on unit test level in the code is delta debugging— an 
automated debugging method that relies on systematic testing to prove and isolate failure causes—
circumstances such as the program input, changes to the program code, or executed statements. 
Basically, delta debugging sets up subsets of the original circumstances, and tests these configurations 
whether the failure still occurs. Eventually, delta debugging returns a subset of circumstances where 
every single circumstance is relevant for producing the failure. 
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Delta debugging automates the most time-consuming debugging issue: determining the relevant problem 
circumstances. Relevant circumstances include the program input, changes to the program code, or 
executed statements. All that is required is an automated test. 
 
Delta debugging comes at a price: Although the minimizing delta debugging algorithm (ddmin) algorithm 
guarantees 1-minimality, the worst-case quadratic complexity is a severe penalty for real-world 
programs— especially considering program runs with billions of executed statementsxcviii,xcix. 
 

GUI/E2E tests level 

E2E tests, which include interaction with GUI, relies on usage of controls like buttons, input fields and 
others. ES GUIs, especially Web GUIs, are subjects for frequent changes and thus tests should be 
always kept aligned with recent changes. It is not always the case. That is why number of solutions 
appear on the market helping developers and quality assurance engineers in root cause analysis: 
AppliToolsc, Functionize Visual Testingci 

3.2.8 Automatic tests healing 

Two categories of test failings could be identified: random failings and failings caused by errors in the 
environment or in the code. 
 

Flaky tests 

Tests which could fail or pass from one test run to another for the same configuration are called “flaky” 
tests. Such behaviour could be harmful to developers because test failures do not always indicate bugs in 
the code. Our test suite should act like a bug detector. Non-determinism can plague any kind of test, but 
it’s particularly prone to affect tests with a broad scope, such as acceptance, functional/UI tests. Some 
common reasons a test could be flaky: 

 Concurrency; 
 Caching; 
 Tests setup — Cleanup state; 
 Dynamic UI contents; 
 Infrastructure or 3rd party systems issues. 

 
In order to identify those tests basic statistical methods could be applied. Also, supervised classification 
ML models could be used. After the identification of those kind of tests they should be subjected for 
refactoring, while, in a mean time, separate routine could be introduced to rerun failed flaky tests and 
save developers time on investigation of those cases. 
 

Failing tests 

It was already highlighted in the “Automatic root cause analysis” that two levels could be considered 
independently while speaking of failed tests: unit tests and GUI/E2E tests level. 
 

Unit tests level 

The cost of debugging and maintaining software has continued to rise, even while hardware and many 
software costs fall. In 2006, one Mozilla developer noted, “everyday, almost 300 bugs appear [...] far too 
much for only the Mozilla programmers to handle”cii. The situation has hardly improved in the intervening 
years, as bugzilla.mozilla.org indicates similar rates of bugs reported in 2013. A 2013 study estimated the 
global cost of debugging at $312 billion, with software developers spending half their time debuggingciii. 
Since there are not enough developer resources to repair all of these defects before deployment, it is well 
known that programs ship with both known and unknown bugsciv. 
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In response to this problem, many companies offer bug bounties that pay outside developers for 
candidate repairs to their open source code. Well-known companies such as Mozilla ($3,000/bug)cv, 
Google ($500/bug)cvi, and Microsoft ($10,000/bug)cvii, offer significant rewards for security fixes, reaching 
thousands of dollars and engaging in bidding warscviii. While many bug bounties simply ask for defect 
reports, other companies, such as Microsoft, reward defensive ideas and patches as well (up to 
$50,000/fix)cix. 
 
The abundance and success of these programs suggests that the need for repairs is so pressing that 
some companies must consider outside, untrusted sources, even though such reports must be manually 
reviewed, most are rejected, and most accepted repairs are for low-priority bugscx. A technique for 
automatically generating patches, even if those patches require human evaluation before deployment, 
could fit well into this paradigm, with potential to greatly reduce the development time and costs of 
software debugging. 
 
The importance of defects in software engineering practice is reflected in software engineering research. 
Since 2009, when automated program repair was demonstrated on real-world problems (PACHIKAcxi, 
ClearViewcxii, GenProgcxiii), interest in the field has grown steadily, with multiple novel techniques 
proposed (e.g., Debroy and Wongcxiv, AutoFix-Ecxv, ARMORcxvi, cxvii, AFixcxviii, AEcxix, Coker and Hafizcxx, 
PARcxxi, SemFixcxxii, TrpAutoRepaircxxiii, Monperruscxxiv, Gopinath et al.cxxv, MintHintcxxvi, etc.). Some of 
these methods produce multiple candidate repairs, and then validate them using test cases, such as by 
using stochastic search or methods based on search-based software engineeringcxxvii (e.g., GenProg, 
PAR, AutoFix-E, ClearView, Debroy and Wong, TrpAutoRepair). Others use techniques such as 
synthesis or constraint solving to produce smaller numbers of patches that are correct by construction 
(e.g., Gopinath et al., AFix, etc.) relative to inferred or human-provided contracts or specifications. 
 
Several recent studies have established the potential of these techniques to reduce costs and improve 
software quality, while raising new questions about the acceptability of automatically generated patches 
to humans. See, for example, the systematic study of GenProg, which measured cost in actual dollarscxxviii 
and related studies that assess the acceptability of automatically generated patchescxxi, cxxix. 
 
An attempt was made to build a general benchmark for assessing the quality automatically generated 
patches and two datasets were presented, MANYBUGS and INTROCLASS, consisting between them of 
1,183 defects in 15 C programs. Each dataset is designed to support the comparative evaluation of 
automatic repair algorithms asking a variety of experimental questions. The datasets have empirically 
defined guarantees of reproducibility and benchmark quality, and each study object is categorized to 
facilitate qualitative evaluation and comparisons by category of bug or program. Baseline experimental 
results were presented in the Table 3 and 4 on both datasets for three existing repair methods, GenProg, 
AE, and TrpAutoRepair, to reduce the burden on researchers who adopt these datasets for their own 
comparative evaluationscxxx. The average number of test suite executions in runs leading to a repair is 
presented as “fitness evaluations” in the figures. This measurement serves as a compute- and scenario-
independent measure of efficiency, which is typically dominated by test suite execution time. 
 

Table 3: MANYBUGS: Baseline results of running GenProg v2.2, TrpAutoRepair, and AE v3.0 on 
the 185 defects of the MANYBUGS benchmark. For each of the repair techniques, we report the 
number of defects repaired per program; the average time to repair in minutes (GenProg and 

TrpAutoRepair were run on 10 seeds per scenario, with each run provided a 12-hour timeout; AE 
is run once per scenario, with a 60-hour timeout); and the number of fitness evaluations to a 

repair, which serves as a compute- and scenario-independent measure of repair time (typically 
dominated by test suite execution time and thus varies by test suite size). Complete results, 

including individual log files for each defect, are available for download with the dataset. 

Progra
m 

GenProg TrpAutoRepair AE 
Defects 
repaire
d 

Time 
(min) 

Fitness 
evals 

Defects 
repaire
d 

Time 
(min) 

Fitness 
evals 

Defects 
repaire
d 

Time 
(min) 

Fitness 
evals 

fbc 1/3 133 79.0 0/3 - - 1/3 7 1.7 
gmp 1/2 13 7.2 1/2 18 2.4 1/2 739 63.3 
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gzip 1/5 240 130.7 1/5 107 56.7 2/5 84 1432.0 
libtiff 17/24 27 20.8 17/24 16 2.9 17/24 24 3.0 
lighttp
d 

5/9 79 44.1 4/9 33 14.9 4/9 22 11.2 

php 54/104 181 5.2 56/104 180 1.1 53/104 441 1.1 
python 2/15 110 12.9 2/15 144 1.4 3/15 529 7.6 
valgrin
d 

4/15 193 24.0 4/15 133 1.5 0/15 - - 

wiresh
ark 

5/8 140 14.3 5/8 44 2.6 5/8 574 66.5 

 

Table 4: INTROCLASS: Baseline results of running GenProg v2.2, TrpAutoRepair, and AE v3.0 on 
the 845 white-box-based defects, and 778 white-boxbased defects of the INTROCLASS 

benchmark. For each of the repair techniques, we report the number of defects repaired per 
program; the average time to repair in second (all three techniques were given timeouts); and the 
number of fitness evaluations needed to produce a repair. Complete results, including individual 

log files for each defect, are available for download with the dataset. 

Progra
m 

GenProg TrpAutoRepair AE 
Defects 
repaire
d 

Time 
(min) 

Fitness 
evals 

Defects 
repaire
d 

Time 
(min) 

Fitness 
evals 

Defects 
repaire
d 

Time 
(min) 

Fitness 
evals 

White-box-based defects 
checks
um 

3/49 343 132 1/49 10 5 1/49 4 1 

digits 99/172 191 102 46/172 32 13 50/172 11 3 
grade 3/224 152 160 2/224 26 23 2/224 25 25 
median 63/152 107 114 26/152 19 25 16/152 4 2 
smalle
st 

118/11
8 

23 23 118/11
8 

15 11 92/118 4 2 

syllabl
es 

6/130 284 157 9/130 36 56 5/130 9 6 

Black-box-based defects 
checks
um 

8/29 517 307 0/29 - - 0/29 - - 

digits 30/91 162 77 19/91 24 15 17/91 6 6 
grade 2/226 141 156 2/226 30 27 2/226 24 25 
median 108/16

8 
44 59 93/168 20 20 58/168 4 1 

smalle
st 

120/15
5 

102 86 119/15
5 

24 21 71/155 5 4 

syllabl
es 

19/109 96 117 14/109 39 54 11/109 3 2 

 
Also, a collection of reproducible bugs and a supporting infrastructure with the goal of advancing software 
engineering research was createdcxxxi together with data and scripts that extend the ManyBugs version 
beta-2.1 and Defects4J version 1.1.0 benchmarks to enable the evaluation of automated program repair's 
applicability to defects, For example, these data enable evaluating if automated repair techniques are 
able to produce patches for defects considered hard or important by developerscxxxii. 
 

GUI/E2E tests level 

For E2E tests, which include interaction with GUI automatic healing often converges to identification of 
the right element for interaction or assessment (visibility, text checking etc). For that purposes smart 
runners exists. One of the examples of that smart runner service is Functionize. It is declaredcxxxiii that 
Functionize platform has abilities to: 
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 Identify changes in the test execution comparing to previous test runs; 
 Suggest a solution to fix the failing test; 
 Automatically validate the suggestion. 

3.3 Operation 

At this point, the development cycle is almost finished. The application is done and being used in the 
field. The Operation phase is still important, though. In this phase, users discover bugs that weren’t found 
during testing. These errors need to be resolved, which can spawn new development cycles. 
 
In addition to bug fixes, models like Iterative development plan additional features in future releases. For 
each new release, a new Development Cycle can be launched. 

3.3.1 Analytics and monitoring 

The state of the industry today requires fast deployment cycles and continuous testing for a company to 
keep up. This means that time to market needs to be optimized without damaging the quality of software 
or model, as users expect the software to be updated and enhanced quicklycxxxiv. 
 
To optimize the deployment cycle, it is necessary to test in a smart and planned way. Analytics and 
monitoring can help with that, giving insight into the process. It has been recorded that using project-level 
analytics has improved productivity by 28%cxxxv, by offering solution to the problem of determining how to 
reduce the scope of effort, making development smarter and more efficient. This is done by doing 
analysis through the entire development cycle, starting from database structure and ending in user 
experience. The points of analysis are defined through use of Function Pointscxxxvi, units of measure that 
express business functionality provided to the user by an information system. In order to quantify 
business functionality, user requirements are considered, to be concrete, the output of a system, 
inquiries, inputs, internal files and external interfaces. These requirements are then assigned a specific 
number of function points. An automated approach to assigning these points has been standardized 
through Automated Function Points (AFPs) ISO Standards, which include, among others: FiSMAcxxxvii, 
IFPUGcxxxviii, Nesmacxxxix. These standards are mostly user oriented and none of them include algorithmic 
complexity. FiSMA has tried to combat this by using engineering function points (operators and Booleans 
are counted) and weighted micro function points (newer model that adjusts function points based on 
complexitycxl). 
 
Analytics insights are presented inside the company or project through monitoring dashboards. It is 
important to align all analysis results in an efficient and understandable way. Microsoft Power BIcxli can be 
utilized for this, creating dashboards with heat maps, bar plots and similar. Some examples of possible 
dashboards used in projects are: 

 Productivity analysis dashboard can be visualised using AFPs measuring the size and effort in 
maintaining software through story points (estimation of story points in agile way of work can give 
insight into the effort put into software maintenancecxlii, lines of code or functional size (software 
metric used to measure the effort needed to maintain software by counting the number of lines in 
source code or looking at the functional size of it), code review  defects, code coverage and many 
more; 

 Structural quality dashboard can also be visualised using AFPs, to measure the impact of 
DevOps transformation practices. Metrics used are defect ratio, dollar spend, cycle release time, 
build count, and other. Analysing structural quality is independent of programming language used 
and focuses on integration of building blocks and overall structural integrity of software in each 
project; 

 User analytics dashboard, constructed by collecting user feedback when handling software, can 
be very useful in driving focus and effort. 
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These dashboards can help higher management gain an overview into efforts put in the development 
cycle, the quality of software that has been developed and user feedback.  

3.3.2 Real usage-based testing 

Real usage of software can be regarded as a form of usage-based testing, at least under certain 
conditions. In the clearest case, if defects are detected by clients, some information about them is 
reported to software vendors, and integrated fixes may be created and delivered to all the clients to avert 
such defects. The situation is less clear when analytics and monitoring discussed above are used to 
detect possible errors. However, if errors are found only after deploying the software to end users, there 
in any case needs to be updates, which can be annoying and costly for the end users. 
 
However, it is also possible to mimic the behaviour of end users. This technique is commonly referred to 
as usage-based statistical testing (UBST)cxliii. UBST is considered means to cost-effectively improve the 
quality of software delivered into systems integration was a driving criterion for the program. UBST 
provides the capability to increase the number of test cases executed on the software and to focus the 
testing on expected usage scenarioscxliv. The techniques provide quantitative methods for measuring and 
reporting testing progress, and support managing the testing process. Hence such data can also be 
applied in the scope of IVVES. 
 
In the technical sense, in UBST, the testing environment resembles the actual operational environment 
for the software in the field. Furthermore, the overall testing sequence is similar to real-life usage 
scenarios, sequences, and templates of actual software usage by the target clients. As the huge quantity 
of clients and diverse usage templates cannot be captured in an implementation set of test cases, 
statistical sampling is required. Obviously, there is a link to monitoring and analysis capabilities, as they 
provide important input for designing for UBST. This has inspired researchers and practitioners to use the 
approach in the context of web applications in particular (e.g. cxlv, cxlvi), where tracing user actions is 
often easier than when dealing with installable software.  However, also synthetic data can be used to 
support the approachcxlvii. 
 
Usage-based statistical testing is commonly appropriate to the final phase of software testing. It can be 
also used as a part of acceptance testing right before product release, in which case stopping testing is of 
equal worth to the product release. While less common, it is also possible to apply UBST to integration 
and system testing, if data and knowledge of actual client usage situations is available. This can support 
reaching effectual reliability goals before product release. 

3.4 Summary 

A concise summary of methods and techniques in different phases of the continuous quality assurance 
process are presented in Table 5. Where: 

 Test level are: 
o Req. – requirements; 
o Unit – unit tests; 
o Int. – integration tests; 
o E2E – end-to-end tests. 

 States are: 
o P – state of the practice; 
o A – state of the art. 

 Adoption levels: 
o Low – technique or approach is developed during research project and no or only very few 

companies using it; 
o Medium – software implementing the method is available and used by some companies; 
o High – different tools implementing the same approach is available for different technology 

stacks and widely used by companies. De facto being the state of the practice. 
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Table 5: Stages, techniques and tools summary 

Technique Tests 
level 

State Adoption 
level 

Tools (if available) 

Design 

New features 

Modelling 

Threat Modelling Req. 

 

P High - STRIDE 

- P.A.S.T.A. 

- Trike 

- VAST 

TLA Req. A Low - TLA toolbox 

Improvements 

Automatic bugs 
triaging 

Req., 
E2E 

A Medium - CERT Triage tool / Exploitable 

Development and Testing 

Development 

Static code analysis Unit P High - SonarQube 

- Language specific IDEs, linters and analysis 
tools 

Code anomaly 
detection 

Unit A Low - REPD 

Formal Verification Req. P Medium - Uppaal 

- PRISM 

- Rebeca (Afra) 

Risk-based testing Unit, 
Int., 
E2E 

P Medium  

Tests creation 

Automatic tests creation 

Fuzzing Int., 
E2E 

A Medium - LibFuzzer etc 

- American Fuzzy Loop 

- AddressSanitizer, ThreadSanitizer, 
MemorySanitizer 

- OssFuzz 

Metamorphic 
testing 

Unit, 
Int., 
E2E 

A Low  

Search-based 
testing 

Unit, 
Int., 
E2E 

A Medium - EvoSuite 

- Randoop 

- Microsoft IntelliTest 

- DiffBlue Cover 

Model-based 
testing 

E2E A Medium - Test Modeller 
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- APOGEN with Crawljax 

- ALEX 

ML-based testing 
(model free 
reinforcement 
learning) 

Unit, 

E2E 

A Low - RELOAD 

- SaFReL 

Tests maintenance 

Automatic test 
selection and 
prioritization 

Unit, 
Int., 
E2E 

A Low - TestArchiver and ChangeEngine by SALabs 

Automatic root 
cause analysis 

Unit, 
Int., 
E2E 

A Low - Functionize platform 

- Delta debugging tools 

 

Automatic test suite 
reduction 

Unit, 
Int., 
E2E 

A Low  

Automatic healing Unit, 
Int., 
E2E 

A Low - Functionize platform 

 

Operation 

Analytics and 
monitoring 

E2E P High - AWS CloudWatch 

- New Relic 

- Kibana 

- Google Analytics  

- Matomo 

Real usage-based 
testing 

E2E, 
Int. 

A Low  
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4. Conclusions 

This report presents the state of the art of validation methods and techniques for complex ES. The main 
contributions are: 

 A mapping of the validation methods and techniques with the continuous quality assurance process 
 A concise summary of methods and techniques in different phases of the continuous quality 

process 
 A classification of validation methods and tools by test and adoption levels 

 
The main conclusions are: 

 The huge gap between academic researches and industry state of the practice and art exists; 
 Often academic research results: 

o has limited application; 
o requires strong expert knowledge, skills and considerable effort to be applied in the 

industry. 
 Companies developing mission critical systems can afford applying expensive state of the art 

techniques for their validation and verification. 

 
The findings of this report suggest applying research results to produce tools that could be applied with 
reasonable effort by avoiding too expensive for implementation and maintenance methods and limiting 
the scope of addressed problem. 
 
Three sub-domains could be considered as main focus areas for the project next steps: 

1. Model-based test generation with automatic model building: 
o as it can provide companies with high level end-to-end regression testing suites and 

requires only basic knowledge and skillset from engineers 
o some tools are already publicly available, but applicability of those tools is unclear; 

2. ML-assisted test generation: tester (testing system) is intelligent and learns the optimal policy (way) 
to generate the test cases meeting the testing objective: 

o as it can provide automated test generation without access to source code or system model 
o in some cases, it is able to reuse the gained knowledge (learned policy) in further similar 

testing situations (transfer learning); 
3. Automatic test selection and prioritization as it, when applied, reduces TA infrastructure costs and 

feedback time allowing teams work in the most efficient manner. 
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