
All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 1 of 46 

  

IVVES 

Industrial-grade Verification and Validation of Evolving Systems 

Labeled in ITEA3, a EUREKA cluster, Call 5 

ITEA3 Project Number 18022 

D4.1 – State of the Art on Data-Driven 
Engineering 

Due date of deliverable: June 30, 2020 
Actual date of submission: June 30, 2020 

Start date of project: 1 October 2019 Duration: 39 months 

Organisation name of lead contractor for this deliverable: RISE 

Author(s): Mehrdad Saadatmand, Muhammad Abbas, Niclas Ericsson, Mahshid Helali 
Moghadam, RISE, SWE; Almira Pillay, Tijana Nikolic, Sogeti, NL; Matvey 
Pashkovskiy, F-Secure, FIN; Marcel Hogenhout, Bas Stoker, Praegus, NL; Ivar 
Simonsson, Ekkono Solutions, SWE; Tanja Vos, Pekka Aho, Open Univ. of the 
Netherlands, NL, Yaping Luo, ING, NL; Elio Saltalamacchia, Antonio Alcaide, 
David Diaz, SII Concatel, ES; Jesús Arce, Oscar Luis Gomez, Keyland, ES; Juan 
Corral, Fernando Tornero, Jesus Rio, Netcheck, ES; Juan L. Sanchez, Aunia, ES 

 

Status: Final 

Version number:  1.0 

Submission Date: 30 June 2020 

Doc reference:  IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx 

Work Pack./ Task: WP4 

Description: 
(max 5 lines) 

 

 

Nature:  R=Report,  P=Prototype,  D=Demonstrator,  O=Other 

Dissemination 
Level: 

PU Public X 

PP Restricted to other programme participants   

RE Restricted to a group specified by the consortium  

CO Confidential, only for members of the consortium  



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 2 of 46 

 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 3 of 46 

DOCUMENT HISTORY 

Release Date Reason of change Status Distribution 

V0.1 26/05/2020 First draft Draft All 

V0.2-0.8  Merging and alignment of partner inputs Draft WP4 

V0.9 29/06/2020 Final merge and style updates Concept Submitted to PMT 

V1.0 30/06/2020 Approved by PMT, to be submitted to ITEA3 Final Uploaded to ITEA 

 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 4 of 46 

Table of Contents 

Glossary ___________________________________________________________________ 5 

1. Executive Summary ____________________________________________________ 6 

2. Introduction – Data Driven Engineering __________________________________ 7 

3. Data Handling and Management ________________________________________ 8 

3.1 GDPR implications _________________________________________________________ 8 

3.2 Solutions on the market _____________________________________________________ 8 
3.2.1 Pseudonymisation ________________________________________________________________ 8 
3.2.2 Synthetic data ____________________________________________________________________ 9 

4. Data Sources _________________________________________________________ 10 

5. Virtual Sensors _______________________________________________________ 11 

5.1 Simulators ________________________________________________________________ 11 

5.2 Aggregators _______________________________________________________________ 11 

6. Data Quality __________________________________________________________ 13 

6.1 Quality AI Framework (QAIF) _______________________________________________ 13 

7. DevOps ______________________________________________________________ 17 

7.1 State of DevOps ___________________________________________________________ 17 

7.2 xOps _____________________________________________________________________ 18 
7.2.1 DataOps ________________________________________________________________________ 18 
7.2.2 AIOps __________________________________________________________________________ 20 
7.2.3 MLOps _________________________________________________________________________ 21 

8. Predictive Maintenance _______________________________________________ 25 

8.1 ML-enabled techniques applied to Predictive Maintenance ____________________ 25 

9. Model Synthesis and Construction _____________________________________ 27 

10. Fault Prediction _______________________________________________________ 29 

10.1 ML-based Fault Prediction Techniques ____________________________________ 30 

10.2 ML-based Fault Prediction for Evolving Systems ___________________________ 31 

11. Change Impact Analysis _______________________________________________ 33 

12. Data collection in Exploratory Testing __________________________________ 35 

13. Root Cause Analysis of failures ________________________________________ 37 

13.1 RCA of failures in a production environment _______________________________ 37 

13.2 RCA of test failures ______________________________________________________ 38 

14. Code Quality and Static Analysis ______________________________________ 40 

15. Conclusions __________________________________________________________ 41 

16. References ___________________________________________________________ 42 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 5 of 46 

Glossary 

Abbreviation / acronym Description 

ADA Artificial Data Amplifier 

AI Artificial Intelligence  

API Application Programming Interface 

CI Continuous Integration 

CIA Change Impact Analysis 

CoEST Center of Excellence for Software and Systems Traceability 

CD Continuous Deployment 

DIA Dependency Impact Analysis 

EDA Exploratory Data Analysis 

EIA Experimental Impact Analysis 

ES Evolving Systems 

ET Exploratory Testing 

FODA Feature-Oriented Domain Analysis 

FPP Full Project Proposal 

GUI Graphical User Interface 

HA High availability 

LSA Latent Semantic Analysis 

MTBF Mean Times Between Failure 

ML Machine Learning 

NLP Natural Language Processing 

OCL Object Constraint Language 

OSLC Open Services for Lifecycle Collaboration 

GDPR General Data Protection Regulation 

PII  Personally Identifiable Information 

PLC Programmable Logic Controller 

RCA Root Cause Analysis 

RDL Requirements Description Language 

SAFe Scaled Agile Framework 

SLA Service Level Agreement 

SUT System Under Test 

TIA Traceability Impact Analysis  

UML Unified Modelling Language 

URN User Requirements Notation 

WP Work Package 

 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 6 of 46 

1. Executive Summary 

WP4 in IVVES, titled ‘Data-Driven Engineering’, focuses on implementing solutions for identifying data 
correlations and behavioural patterns throughout the entire product life cycle with respect to component 
failures, and with the ultimate goal of enabling predictive maintenance and anomaly detection. In particular, 
application of machine learning techniques is considered to achieve this goal and making sense of the 
collected data. From this perspective, the scope of WP4 will cover both the development phases as well as 
system operation.  

D4.1 is the first deliverable of WP4 and reports on the core concepts, techniques and topics that will be 
used and investigated for building the solutions of WP4, introducing the key terms and offering a brief state 
of the art overview in each topic area.  



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 7 of 46 

2. Introduction – Data Driven Engineering 

Shortening the feedback cycles, particularly with respect to customer inputs, has always been one of the 
general challenges in engineering of software systems. Approaches such as continuous integration (CI) 
and continuous deployment (CD) are examples of solutions to perform more frequent tests and 
deployments in order to shorten such feedback cycles. Moreover, they can enable collection of diagnostic, 
performance and operational data in each iteration to quickly learn the implications of changes and new 
features and react accordingly [1]. In such a context, systematic collection and use of data is not only an 
effective way to replace opinion-based decision making with data-driven decision making about system 
performance and quality characteristics [1], but also can enable the automation of such a decision making 
process with the help of techniques such as machine learning.  

 

Data-driven development is defined as “the ability of a company to acquire, process, and leverage data in 
order to create efficiencies, iterate and develop new products, and navigate the competitive landscape” [1], 
[2]. In IVVES and particularly in the scope of WP4, we define the term data-driven engineering to refer to 
an engineering process based on systematic collection and processing of data and automation of 
data-driven decision making with the purpose of improving both the overall quality characteristics 
of a system and its development process. For this to happen, various data sources and data artifacts 
can be considered from not only the development phases of a system, but also its operation and during its 
runtime (e.g., runtime logs and monitoring information); hence the focus on DevOps in this WP.  

In connection to this, the work will especially include the application of AI and ML to find data correlations 
and behavioural patterns throughout the entire product life cycle, for instance with respect to component 
failures, and to avoid error prone manual labour to resolve problems earlier (left-shifting) and increase 
automation during development and in operations for specific parts of the project use cases. 

 

To achieve the above-mentioned goals of WP4, in this deliverable the following topics are investigated as 
the baseline for the work and solutions that will be developed in this WP: 

• Data handling, management, and privacy: dealing with aspects of privacy and security, 
anonymization and sharing of sensitive industrial data among different stakeholders 

• Data sources and virtual sensors: discussing various sources of data that can be used in a data-
driven engineering process 

• Data quality: discussing quality of input data and its important role in performance, accuracy and 
output of machine learning algorithms and for data-driven decision making 

• xOps: engineering processes suitable for rapid development and delivery of evolving systems while 
improving their quality at the same time 

• Predictive maintenance: processing of data to predict future failures and plan maintenance 
activities accordingly 

• Model synthesis, extraction and construction: using data to construct models of a system 

• Fault prediction: using different software metrics, properties, and fault data to predict faulty modules 
typically before dynamic testing 

• Change impact and root cause analysis: processing of data to identify and analyze the effects of a 
change and also the root cause of a problem 

• Data collection in exploratory testing: use of data to guide and automate exploratory testing 

 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 8 of 46 

3. Data Handling and Management 

Data security and usage have, in recent light, become an important consideration for not only companies 

but also individuals whose data is being collected and subsequently protected. Every day, we produce 

around 2.5 quintillion bytes of data [3], be it in the form of social media posts, tweets, transactions, likes, 

web searches etc. This data is invaluable to companies as they use it to build and understand their customer 

profiles, look for trends, identify opportunities, tailor better services and products, and even anticipate 

events to capitalise on. However, this data can also be used to exploit, influence and abuse. This is why 

we need regulations, like GDPR, in place that govern and hold companies and individuals accountable for 

the way they use and gather the data.  

3.1 GDPR implications 

GDPR evolved from a rule to become a regulation – the first of its kind in the European Union. Under this 

regulation, personal data or PII is protected by restricting the processing and usage of the data. This 

regulation protects the end consumer and empowers them to be able to choose what happens with their 

data and understand how companies are using their data and for what purpose – this is known as ‘right of 

access’. Under this regulation, individuals can choose whether or not companies can use their data for 

different purposes. Companies have to delete any data they might have from the individual if the individual 

decides to revoke their right of access. 

Another feature of the GDPR focuses on the usage of the data and prohibits companies to use data other 

than for specific purposes that are inherent to their business models. The companies need to be able to 

state what data they collect and for what purpose, making their business model transparent. For example, 

if a company is using production data for testing, this could amount to unlawful processing and result in 

large financial fines. This is especially non-compliant if it was not explicitly stated what the data would be 

used for when getting the consent from the individual.  

In contrast, in data analytics and AI model development, repurposing of data is a natural thing, meaning 

that more efforts need to be put in place in order to explain how the data will be used. Oftentimes AI models 

are called black boxes, leading to some unexpected conclusions when fed the data. It is a company’s 

responsibility to account for these outcomes, making their models trustworthy and transparent [4]. 

3.2 Solutions on the market 

3.2.1 Pseudonymisation 

There are, of course, ways to avoid incurring high fines and one of those methods is to use 

pseudonymised/masked data. The usage of pseudonymised data is more relaxed under GDPR and does 

not have the strict regulations to comply with however, there is still a risk of a data breach. Even better is 

the use of anonymised data, which is not regulated by GDPR data; anonymisation techniques include 

encryption, unique identifiers (replacing a PII value with a symbol), data shuffling and premutation, 

perturbation, or removing sensitive data completely., Although this anonymised data is not regulated by 

GDPR, although this data it does comes with risks as well. Under GDPR, anonymised data is data that 

cannot be traced back to a certain individual, but recent studies have shown that anonymised data can still 

be traced back to identifying the underlying individuals, which makes this strategy still susceptible to 

adversarial attacks [5]. For example, in one study involving the analysis of anonymised credit card 

metadata, it was shown that 90% of the individuals in the dataset could be re-identified with only 4 random 

attributes [6]. The results of the study underlines how difficult it is for a dataset to be truly anonymous given 

the risk of re-identification, which poses a massive privacy risk for the company or institution. This is where 

the power of synthetic data shines.   



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 9 of 46 

3.2.2 Synthetic data 

Synthetic data looks and feels just like the real data holding all the characteristics, and relationships and 

referential integrity present in the real data. Sogeti’s AI team has developed a new solution to create 

synthetic data with AI called ADA – Artificial Data Amplifier. ADA uses state of the art, advanced neural 

networks to generate synthetic data that can then be used in place of real data. This method of generating 

data differs from current data generation tools that are often included in test data management solutions 

and other masking tools on the market, in that does not purely scramble data or use a rule-based algorithm. 

The AI technology in ADA trains on real data such as production data, learns the qualities of the data, and 

then generates completely new data based on those qualities. In this way, ADA can generate production 

like data for Testing and Development or even data to be used for building an AI model. Not only can ADA 

generate tabular data, but it can generate images including documents and unstructured text too. This 

expands the use of ADA to many applications beyond Testing. ADA is not a generic data management tool; 

it is a custom solution that needs to be trained on real data. Typically, ADA extracts a dataset used in an 

application, environment, database or report. It then trains on the data, generates synthetic data and 

pushes it back into your databases. The advantages of using synthetic data over real data are two-fold. 

First, the advantage of creating an entire dataset that looks and feels like your real data but without the 

security risk of any data breach is valuable for companies that operate in very highly regulated industries. 

This ensures that data can be processed, shared and analysed securely and compliantly. Secondly, this 

solution is scalable meaning that we can create endless amounts of data based on a small sample of the 

real data. The advantage here is that we can create enough data for testing, particularly performance 

testing, that is once again, GDPR compliant as it is purely synthetic. Scalable data also allows a dataset to 

be boosted in the case of needed more training for an AI model. An example of this is boosting images to 

improve the accuracy of a computer vision model since these types of deep learning models thrive on an 

abundance of data. 

 

 

 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 10 of 46 

4. Data Sources 

Testing evolving systems is a complex challenge. We have identified the following data sources that need 
to be considered. 

Source Code. Source code is the core and beginning just about any software centric activity. In the context 
of IVVES, there are three dimensions to consider: 

1) Full source code files, which can be meaningful for debugging, test planning, and so on. This is 
usually not a problem as the source code files form the essentials of software development in any 
case. 

2) History view to the source code files, organized for instance in accordance to version information. 
It is well known that programmers use slices while debugging (Weiser 1982), and hence relying on 
this in IVVES seems a rational step to focus testing to certain features. Interfaces to such 
information is available in various systems. For instance, there is a GitHub API for code changes. 

3) Details of contributions from the developers can be used to understand the evolution of the 
system, as well as the development style. This in turn can help in figuring out the best possible test 
policy. 

Test plan and test reports. Test plan and test reports are commonly available for software developers. In 
the scope of IVVES, however, we assume a wider view than commonly associated in testing and include 
detailed information regarding test failures in unit and integration tests including in particular stack traces.  

Logs, traces and monitoring data. Today, applications produce logs regarding their behavior. These logs 
can offer insights to the internal operations of an application, and hence support debugging its internals. 
These logs can be produced by the application itself -- in which case we typically refer them as logs -- they 
can be a result of instrumentation, in which case we more typically call them traces. Furthermore, also the 
hosting instrumentation can monitor the execution of the application and provide insight to its behavior. 
These sources of data can be taken into account in testing, as they indicate the profile of the application in 
terms of frequency of use, real-life use cases, and so on. Finally, the logs may be produced by the 
development tools, too, in which case they provide extra information for developers. 

Human feedback. Human feedback can also help in defining tests for evolving systems. Potential sources 
of such feedback include code reviews, where systematic errors or parts that need extra testing attention 
can be identified, and user feedback via ticket/issue databases or discussion forums, which may flag 
problematic situations that were not considered by the developers. 

While there are plenty of sources of data, this data is not compatible as such. Software tools used in the 
modern software development pipeline produce log or job result data typically in JSON or XML format, 
although some, for example build tools, often produce plain text logs. SoData models are typically tool 
specific, unit testing frameworks being an exception as the xUnit-format is widely adopted. To summarize 
these findings: 

• Data models are tool specific, except in Unit Testing area 

• JSON, XML and plain text formats 

• Data rarely contain metadata or context information 

• Data model/format specifications not always available. 

 

OSLC (Open Services for Lifecycle Collaboration) is an emerging standard tool for interoperability. It has 
been widely used for tool integration in public funded research projects, and plugins are available for several 
tools. OASIS OSLC proposes the application of web principles to software interconnection. These 
specifications allow to conform independent software and product lifecycle tools to integrate the data and 
workflows in support of end-to-end lifecycle processes. However, the use of OSLC is not an industrial 
practice yet, and has not been used for data collection in a manner similar to the IVVES approach. 

 

 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 11 of 46 

5. Virtual Sensors 

A virtual sensor is used in place of a physical sensor when a physical sensor is for some reason 

undesirable or impossible to deploy. For example, the environment could be too hostile for a 

physical sensor or it could be too expensive to deploy and/or maintain. Available physical sensors 

are used to model virtual sensors, either by a model-based approach using known physical 

relationships, or by a data-driven approach to model the target signal [7] [8]. 

 

Basing on usage scenarios two separate groups of virtual sensors could be identified: 

• Simulators – a type of software that, given the available information, processes what a physical 
sensor otherwise would. It learns to interpret the relationships between the different variables, and 
observes readings from the different instruments. 

• Aggregators – is a software sensor as opposed to a physical or hardware sensor, providing indirect 
measurements of abstract conditions (that, by themselves, are not physically measurable) by 
combining sensed data from a group of heterogeneous physical sensors. 

Basing on that the virtual sensor could be defined as a software representing and used together or by itself 
with the hardware device or group of devices and possibly extending its data processing capabilities. 

5.1 Simulators 

Naturally, many machine learning techniques have been used to model data-driven virtual sensors. In [9], 

vehicle sideslip angles are observed using four different virtual sensors, including Extended Kalman Filter. 

As in [10], linear regression models have been used to create virtual sensors in ventilation units, and [11] 

introduces virtual sensors that are trained with neural networks to replace physical sensors in diesel 

engines. In [12], more traditional statistical problems (missing data, outliers, collinearity) are discussed 

within the framework of virtual sensors. 

Other application areas discussed in the literature include aviation [13], [14], NOx emission from industrial 

boilers [15], structural dynamics [16], and image analysis [17]. Additionally, with growing popularity for 

cloud-based solutions, architectures for incorporating virtual sensors in the cloud has been investigated 

[18], [19]. 

5.2 Aggregators 

In existing deployments of sensor networks, data collection schemes commonly require sensors to relay 
raw data to sink nodes to perform further processing. This is not very efficient considering the resource 
constraints (e.g., battery and bandwidth) of sensor networks. Furthermore, the throughput at each node 
decreases as the network scales, due to the broadcasting of redundant data. Sensor network aggregation 
mechanisms [20], [21], [22], [23] offer in-network data processing algorithms that are successful in limiting 
resource usage. However, these approaches support only standard mathematical operators (e.g., MIN, 
COUNT, and AVG) over homogeneous data types but there are cases in which the desired physical 
quantity cannot be measured directly for cost, energy, convenience or other practical reasons. Or, however, 
a qualitative statement rather than a quantitative measurement is desired. In that cases aggregators can 
combine different quantities, which are measured by real sensors, and then deliver the desired result. The 
sensor networks of tomorrow will need to support localized cooperation of sensor nodes to perform 
complicated tasks and in-network data processing to transform raw data into high-level domain-dependent 
information. Another challenge facing sensor networks is reusability. Current efforts create application-
specific solutions, but the future will see multipurpose nets deployed to support numerous applications. The 
cost of physically visiting each sensor to reprogram it is prohibitive, and therefore the ability remotely 
reprogram sensor networks to tailor them to particular applications will be essential. 

As an example, aggregators could be used on an intelligent construction site where users may desire the 
cranes to have safe load indicators that determine if a crane is exceeding its capacity. Such a virtual sensor 
would take measurements from physical sensors that monitor boom angle, load, telescoping length, two-



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 12 of 46 

block conditions, wind speed, etc. [24]. Signals from these individual sensors can be used in calculations 
within a virtual sensor to determine if the crane has exceeded its safe working load. 

Aggregators could be deployed either on one of the sensors or on a separate device (e.g. laptop) outside 
of the sensors network. 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 13 of 46 

6. Data Quality 

Data is the foundation of any model, which means that data quality is the primary point of assessment when 

starting any model development project. Good quality data is data that is fit for the purpose you are 

intending to use it for, meaning it can represent the real-world correctly. Insight into handled data brings 

more value to the model development process, especially when we are talking about AI models, where 

data is used for training and any underlying assumptions and bias can lead to a wrong assumption of the 

model itself. To sum up, accurate representation in data means accurate models. Below is a review of 

methods which can be used to gain insight into data and assess if it represents the problem we are trying 

to solve correctly. 

6.1 Quality AI Framework (QAIF) 

Inspired by the CRISP-DM Framework [25] QAIF [26] is a cohesive, generic framework that can be tailored 

to a specific AI solution in a given business context. The framework is comprised of six gates that follow 

the process flow of the AI project development cycle (CRISP-DM), Business Understanding, Data 

Understanding, Data Preparation, Model Development, Model Evaluation and Model Deployment. The 

gates can be broken down into project phase, processes, outcomes, governance and people. In each gate, 

there are specific tasks that need to be complete for the gate to be passed through in order to enter the 

next gate. This ensures that each phase of the AI development cycle is validated thoroughly. For the 

purposes of this document, we are going to focus on Data Understanding and Data Preparation phases or 

gates, while the rest of the gates are further described in D2.1 in the scope of work package 2 of the IVVES 

project. 

 

 

Figure 1 - Sogeti Quality AI Framework 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 14 of 46 

Data Understanding phase defines Gate 2 in the QAIF, bringing model specifications from the first gate 

and domain knowledge and experience together in order to understand inherent biases or assumptions of 

the data this solution will be dealing with. In this phase, EDA is performed through methods like statistical 

parity and many more, results of which can be presented in form of a data Quality report. The data Quality 

report will aid the model development team in determining the initial model and the metrics it will be 

evaluated on. 

EDA is a set of methods used to analyse data, often visually. EDA is performed to make sure the data 

aligns with our definition of quality and expectations, aiding in detecting mistakes, assumptions, 

dependencies and relationships of data variables. Of course, when working with tabular data format, these 

points can be addressed manually, but this is extremely tedious and error prone, making EDA a useful and 

helpful approach. 

The EDA methods can be classified in a couple of ways, but the most high-level classification would be 

[27]. 

 

1) Graphical EDA, summarizing the data in a visual way, split into: 

 

a. Univariate, summarising one variable at a time. The graphic representation of univariate 

summary can be via line charts, bar, charts, stacked bar charts, scatter plots; 

b. Bivariate or multivariate, summarising two or multiple variables and analysing 

relationships. The analysis results are represented in the same way the univariate method 

does, with addition of area charts and histograms. 

 

2) Non-graphical EDA, the calculation of summary statistics, split in the same manner. 

 

The high-level classification is, more granularly, divided based on the role, type and variables examined 

during EDA. 

 

The type of data or variable explored is of crucial importance when defining techniques executed during 

EDA. There are two types of data: 

 

1) Categorical data or variable is data that can take on a limited number of values and is 

characterized by the range of values, their frequency or occurrence. This data is observed, not 

measured. The categorical variables are handled with below EDA techniques: 

 

a. Tabulation, a univariate non-graphical technique, where we count the number of groups 

in a categorical variable and calculate their frequency. One example is shown below, where 

the categorical variable of nocturnal forest animals has been split into its subgroups and 

analysed. Frequency is calculated by dividing the group count value with the total group 

count value. 

 

Group Group Count Frequency (%) 

Wolf 15 75 

Fox 5 25 

Total 20 100 

 

b. Cross-tabulation, a multivariate non-graphical method, is a two-way table with columns 

that match one variable and row levels that match the other. An example is shown below, 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 15 of 46 

where we can see the count of 2compared variables is noted, giving a good overview of 

how they are correlated. 

 

Sex/Species Wolf Fox 

Male 10 2 

Female 5 3 

Total 15 5 

 

c. Histograms, a univariate graphical EDA technique, is a barplot in which each bar shows 

the frequency or proportion of cases for a range of values. Histograms are a quick way to 

visually represent frequency and count of categorical data. 

 

2) Quantitative data or variable is data in form of counts or numbers, which can and are measured. 

Their characteristics are spread, centre, modality, shape and outliers. These variables are handled 

with the following EDA techniques through sample statistics, where a sample is a set of individuals 

or objects selected from a population by defined procedure1: 

 

a. Central tendency or location of a distribution, a univariate non-graphical method, is 

measured with mean (the sum of all of the data values divided by the number of values), 

median (middle value of an ordered sample) and mode (the kurtosis of data, how many 

peaks it has compared to Gaussian distribution). The skewness or asymmetry of data 

distribution is measured by looking at the mean and median, where a symmetry is reached 

when mean and median coincide. Similarly, if data is symmetric, it is unimodal with no 

outliers. If it’s skewed, it has outliers. 

b. Spread or a measure of similarity between sets in each sample is another univariate non-

graphical method. It is characterized by variance (mean of individual squared deviations), 

standard deviation (the square root of the variance) and interquartile range (defined by 

quartiles, 3 values dividing the observed distribution into even fourths, showing dispersion 

of data). Mean and standard deviation give good insight into normality of data distribution, 

while interquartile range is a robust measure of spread. 

c. Boxplot, a univariate graphical EDA technique, is a visual representation of spread, central 

tendency and skew. A side by side boxplot is a clear way to represent multivariate EDA 

findings. 

d. Quantile-normal plots, another univariate graphical EDA technique, is a visual 

representation on skewness, kurtosis and bimodality. 

e. Correlation and covariance, multivariate non-graphical methods, are used to explain how 

much similarly two random variables tend to deviate from expected values. Visually, they 

are represented in form of matrices, where relationships between variables can be seen 

clearly. 

f. Scatterplots, a multivariate graphical method which shows relationships between 

quantitative variables, with one being on the x, and other on y axis.  

 

 

Data Preparation: Bringing the insights from the previous gate, the Data Preparation phase can begin, 

where the data engineering team, domain experts and model developers play crucial roles. Tasks like data 

mining, data quality assessment and training data construction define this phase’s process. The use of 

synthetic data is advocated when there is sensitive information, or the dataset needs to be boosted. The 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 16 of 46 

outcome of this gate is high quality training data for the model, which enables the next phase of model 

development to begin. 

Some data preparation techniques are defined below [28]: 

1) Handling missing or incomplete data, a very important first step when starting data preparation 

is accounting for missing values. The developer can take a couple of routes here, removing the 

missing values, filling them in (imputing) based on mean, median and mode when handling 

quantitative or imputing based on multiple imputation and logistic regression in case of categorical 

variables [29]. 

2) Handling improperly formatted data, where data cannot be used in the format received and 

needs to be reformatted. Subject Matter Experts can be consulted in this case and data adjusted 

using their comments. 

3) Standardizing quantitative or qualitative variables, where the format of quantitative variables 

can be in percentages, where it should be a number. Or, in case of qualitative variables, some 

naming conventions may misalign. 

4) Handling limited data or features, where some features of the data may be present in one 

dataset, which is used to enrich another one by joining them together. Also, some data may be 

locked by GDPR regulations because it contains PII. In this case, the use of synthetic data for 

dataset boosting is required, please see paragraph 3 for more information. 

5) Feature engineering, where additional variables are constructed using the original dataset to 

boost the model performance (A closer look at AI: data mining, https://brighterion.com/data-

mining/). This step is important because it gives more insight into the data through data mining 

techniques such as association analysis (discovering correlation between variables), regression 

(discovering dependent variables), classification and prediction (grouping of variables in a given 

dataset). 

6) Imbalanced dataset, where the dataset is not representative of real scenarios or there is a 

proportions bias (due to data collection methods) then it is advocated to collect more representative 

data where possible. If the imbalance is indeed representative of the context of the data, there are 

methods such as intelligent sampling and generating synthetic data. Undersampling will sample 

from the majority class with the aim of decreasing its points, oversampling will sample from the 

minority class in the aim of increasing its cardinality and synthetic data will generate new data 

points from the minority class to increase cardinality. (Baptiste Rocca, “Handling imbalanced 

datasets in machine learning” [30].  

 

 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 17 of 46 

7. DevOps   

DevOps is seen as a development methodology aimed at bridging the gap between Development (Dev) 
and Operations (Ops), emphasizing on communication and collaboration, continuous integration, quality 
assurance and delivery with automated deployment utilizing a set of development practices [31]. A lot of 
focus is aimed at continuously improve the system development life cycle, by applying CI and CD practices. 

As DevOps often build on lean and agile practices, there are several ways to adopt this type of process 
improvements in an organization, for example, SAFe, that defines five core competences: Lean Agile 
Leadership, Team and Technical Agility, DevOps and Release on Demand Business Solutions and Lean 
System Engineering, and Lean Portfolio Management [32]. SAFe, blogs [33] and a recent report on the 
state of DevOps [34] all emphasize on the mix of technologies and organizational changes necessary to 
benefit and adopt the DevOps way of working. 

7.1 State of DevOps 

The Accelerate State of DevOps Report [34] present results from six years of research and data from over 
31,000 professionals. Below is a high-level summary of the findings from the report: 

− They recommend that organization start with the foundations and adopt a continuous improvement 
mindset 

− Industry continues to improve, especially the elite performers 

− The heart of the technology transformation and organization performance is quick, reliable and 
safe software delivery 

− Best practices for scaling DevOps focus on community building structural solutions 

− A differencing factor for elite performers continues to be the cloud 

− Productivity improvements in DevOps can drive improved work/life balance 

− Lightweight change approval process leads to improved speed and stability 

− Four key metrics that drive improvement and capture effectiveness are identified: 
o Lead Time 
o Deployment Frequency 
o Change Fail 
o Time to Restore 

The metrics, lead time and deployment frequency are related to software development, while change fail, 
and time to restore are related to software deployment. In addition to these four, are availability added to 
measure operational performance. 

The report contains a lot of interesting findings regardless of whether or not a company has yet to adopt 
DevOps practices. Below is a list of findings and recommendations that are highly relevant and related to 
IVVES: 

• A culture of psychosocial safety contributes to performance 

• Investments in code maintainability, loosely coupled architecture and monitoring help performance 

• Multi-cloud and hybrid-cloud solutions offer flexibility, control and availability, and in addition 
change how we think about costs for infrastructure and deployments 

• Any team/organization can benefit in speed, stability and availability from using public, private or 
hybrid cloud 

• As every organization is different with respect to technology, culture and processes, a holistic 
approach is recommended by first understanding the constraints in the current software delivery 
process 

• Empowering teams to decide how to reach agreed short- and long-term goals, usually result in 
more flexible solutions and less need for detailed plans, thereby letting management focus more 
on high-level outcomes 

• Change effort needs to be concurrent on team and organization levels, (especially large 
organizations with hierarchical structures often require organization-level efforts) 

• A CI platform making it easy for teams to get feedback on automated tests can be beneficial for 

several teams 

• CD at team level will have little impact, if they are depending on code from other teams 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 18 of 46 

• Test automation have a significant impact on CD, and a positive impact on CI 

• Loosely coupled architectures lead to that teams can independently change their systems on 

demand without affecting other teams 

• Short-lived branches, small patches and automatic testing improves productivity 

• Organizations with mission critical systems should have a disaster recovery plan, and perform 

disaster recovery testing (e.g., simulations disrupting the production systems, infrastructure and 

application failover) 

• Disaster recovery exercises that are cross-organizational can improve more than the systems, for 

example improving the processes and communication related to the tested systems 

• Change management is one of the biggest constraints in large organizations, responding to 

problems by adding more approvals will make things worse 

• Measuring productivity using simple metrics such as lines of code, story points or nr of closed bugs 

result in unintended consequences that sacrifice the overall goal, e.g., preventing teams from 

helping others as it affects their results 

• Usefulness and ease of use of engineering tools are highly important, but often tend to be ignores 

as they are expected to be experts 

• Proprietary software tends to be costly to maintain and support, and seems to have a negative 

impact on performance, hence should companies evaluate which software is strategic and which 

is simply utility 

• Access to internal and external information sources supports productivity, e.g., effective search in 

code repositories, ticketing systems and documents 

• Technical dept negatively reduces productivity, and can be found in e.g., scripts, configuration files, 

infrastructure and application code 

In addition to all of this the report also reflects on what really works, e.g., communities of practice and 
grassroots, while other such as training centers and centers of excellence tend to create silos and isolate 
the experts, that in addition may lack hands-on practice. 

The report wraps up with an interesting quote that “DevOps is not a trend, and will eventually be the 
standard way of software development and operations, offering everyone a better quality of life.” 

 

It should also be noted that there is no cookbook-style [35] or best strategy [36] to introduce DevOps in an 
organisation, since products and life-cycle processes differ [35]. In addition, implementing DevOps in a 
company should be approached as a long-term activity requiring a supportive culture and mind-set in 
addition to technical practices [37]. Therefore, we envision that the data driven engineering approach within 
IVVES will act as a catalyst for continuous improvements and DevOps practices. 

 

7.2 xOps 

In the following subsections, we briefly look at other related terms and methodologies derived from DevOps 
concepts that are also important for the data-driven engineering work in IVVES.  

7.2.1 DataOps 

DataOps is another xOps term that has been coined in recent years as big data and data analytics concepts 
and solutions have gained widespread recognition. Here we quote three of the definitions that have been 
offered for DataOps by various sources: 

• DataOps (data operations) is the orchestration of people, processes, and technology to deliver 
trusted, business-ready data to data citizens, operations, applications and artificial intelligence (AI) 
fast, according to IBM [38]. 

• According to Gartner [39], DataOps is a collaborative data management practice focused on 
improving the communication, integration and automation of data flows between data managers 
and consumers across an organization. Much like DevOps, DataOps is not a rigid dogma, but a 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 19 of 46 

principles-based practice influencing how data can be provided and updated to meet the need of 
the organization’s data consumers.  

• DataOps is the function within an organization that controls the data journey from source to value 
[40]  

 

One of the key differences between DataOps and DevOps is that the main focus in DevOps is on application 
and software development, while DataOps focuses more on trusted and high quality data available for fast 
use [38]. According to Palmer [41], two trends that created the need for DataOps are: i) the democratization 
of analytics and giving more people access to data management and analytics solutions, and ii) the 
implementation of built-for-purpose database engines, basically enabling big data capabilities by improving 
performance and accessibility of large amount of data at fast speeds.  

 

 

Figure 2 - DevOps in enterprise vs DataOps in enterprise [41] 

 

To support DataOps and automate its processes, tooling and technology is also important. In its whitepaper 
on introducing DevOps methodology and practice, IBM offers the following supporting architecture for 
DataOps illustrated in Figure 3.   

 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 20 of 46 

 

Figure 3 - Supporting Architecture for DataOps [38] 

7.2.2 AIOps 

AIOps is yet another xOps term that is envisioned to empower software and service engineers to build and 
operate online services and applications with AI and ML, with the aim of e.g., improving service quality, 
customer satisfaction and reducing operational cost [42]. AIOps is also referred to as AI for IT operations 
[43], [44], and was coined by Gartner [45] to address the challenges e.g., scale and complexity of DevOps 
by using AI. 

 

Figure 4 - A generic vision of AIOps [42] 

 

AIOps has currently no agreed-upon definition similar to other recently coined buzz words, hence, may the 
vision and aims also differ depending on domain, organization and business model. The initial motivation 
of AIOps was related to ITOps and in its essence aiming at assisting engineering. There are however a set 
of challenges that needs to be resolved in order to innovate and adopt AIOps solutions [42], such as: 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 21 of 46 

• Resolving gaps in innovation methodologies and mindset, e.g. understanding the whole problem 
space since guiding innovation methodologies are lacking. In addition is a change in mindset 
needed, as traditional approaches to e.g., debugging may change from analysing logs and 
reproducing a bug to automatically learning from history and predicting the future based on patterns 

• Engineering practices may need to change, as more data labelling and quality monitoring might 
also be necessary to serve the needs of AIOps solutions 

• Building supervised ML models for AIOps are expected to add additional challenges compared to 
other ML solutions, since it may be hard to find a clear ground truth 

The overall benefits of AIOps are enabling engineers to reduce manual labour by identifying addressing, 
and resolving issues faster, more specifically [43]: 

• Achieving faster mean time to resolution, by reducing noise and correlating data 

• Go from reactive to proactive and predictive management, since it keeps on learning 

• Modernize operations and the operations team, as filtering and correlations are expected to aid in 
better and faster corrections 

7.2.3 MLOps 

MLOps is an engineering practice that is mainly intended to apply DevOps principles to development of 
machine learning systems and unify the ML development (Dev) and ML system operation (Ops). It involves 
automation of all steps of ML development including integration, testing, deployment and infrastructure 
resource management. Building an ML is not a challenge itself, the main challenge is building an integrated 
ML system and operating it continuously in production. In addition to ML code, the main involved activities 
in the process of ML system development are data collection, data verification, testing and debugging, 
resource management, model analysis, process and metadata management, serving infrastructure, and 
monitoring [46], [47], [48].  
Generally, an ML system is a software system, thus applying a DevOps-like practice to guarantee reliable 
ML building and operating at scale, is essential. In addition to the existing similarities between ML and other 
typical software systems in CI, and CD, there are a few important differences in MLOps which are as follows 
[46], [48]:  

• CI does not involve only testing ML code and components, but also validating data quality and 
models.  

• CD is not about delivering a software package or service but includes an ML (training) pipeline that 
automatically deploys another service, i.e., predication service.  

• Continuous Training (CT) is a new concept which has emerged in MLOps, and is about 
automatically retraining and updating the models.  

  
Overall, the main steps of an ML development pipeline could be summarized as follows [48], [49]:  

• Data extraction: It involves selecting and extracting data from various sources.  

• Data analysis: It includes identifying the data schema, data characteristics and alsothe required 
data preparation and feature engineering.  

• Data preparation: It is about the involved activities in data preparation such as data cleaning, 
splitting the data into training and validation sets.  

• Model training: The ML engineer implements different algorithms to train an ML model with the 
prepared data. The step might also include hyperparameter tuning in the algorithm.   

• Model evaluation: The trained model is evaluated on a validation or holdout test data set.  

• Model validation: The performance of the model is validated and confirmed to be good enough to 
be deployed.  

• Model serving: The validated model is deployed to serve the purposes. The deployment can be 
done in one of the following ways:  

o As a microservice serving the purpose  
o A model embedded in an edge device.  
o A part of a batch system  

•  Model monitoring: The performance of the model is monitored continuously and in case of 
performance degradation a new iteration of training might be invoked.        

   
There are three levels of MLOps based on the level of automation in the ML pipeline, which defines the 
maturity of the ML process. The levels of MLOps are as follows [49]:  



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 22 of 46 

  
MLOps Level 0: A Manual Process  
In level 0 although state-of-the-art ML models might be built by ML engineers, the whole process of ML 
deployment is manual. There is no CI and CD practice and performance monitoring in the process. The ML 
design and operations stay separated. The data scientists hand over the trained model to the ML 
engineering team to deploy on their infrastructure and it is assumed that there is no frequent release 
iterations in the process. Figure 5 shows the steps of MLOps level0.  
 

  

Figure 5 - Manual steps of MLOps level 0 [49] 

 
Currently MLOps level 0 is common in the businesses starting to apply ML to their use cases. The first level 
of MLOps might be sufficient in the cases where the models are not changed or retrained frequently. 
However, in many cases of real world the models are required to adapt to changes of the environment or 
changes in the data. To address these challenges, it is essential to actively monitor the performance of ML 
models, fre3quently retrain the models upon detecting performance degradation, and also continuously 
experimenting with new techniques and implementations. Therefore, the MLOps processes including 
CI/CD and CT practices can play a key role. MLOps level 1 and level 2 are the ones that could be helpful 
[49].  
   
MLOps level 1: An ML pipeline automation  
MLOps level 1 provides continuous training by automating the ML pipeline. It introduces automated data 
and model validation steps, pipeline triggers and metadata management to MLOps level 0. Rapid 
experimentation, online CT of the model in the production, continuous delivery of the model on new data, 
and pipeline deployment instead of model deployment are the special characteristics of MLOps level 1. 
Figure 2 presents the steps involved in MLOps level 1.  



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 23 of 46 

   

  

Figure 6 - MLOps level [49] 

  
MLOps level 1 is sufficient, in case new ML implementations and techniques are not frequently deployed 
and new models are deployed based on new data, rather than new ML techniques.  
However, in many businesses it is essential to be able to try new ML ideas and deploy new techniques for 
ML components rapidly. This is also of importance in case of managing many ML pipelines. To address 
this challenge, MLOps level 2 provides a CI/CD pipeline automation [49].  
   
MLOps level 2: A CI/CD pipeline automation  
MLOps level 2 provides an automated CI/CD process for the pipelines in the production. 
Following MLOps level 2, the data scientists are able to implement the new ideas, automatically build, test, 
and deploy in the target environment. It benefits both the ML pipeline automation and automated CI/CD 
routines.  
MLOps level 2 involves the following stages:  

• Development and experimentation: The output of this stage is the ML source code that is then 
stored in source repository.  

• Pipeline CI: The outputs of this stage are the pipeline components including packages, 
executables, and artifacts that are deployed in a later stage.  

• Pipeline CD: In this stage the outputs of CI stage are deployed in the target environment.  

• Automated triggering: This stage involves automatic execution of the pipeline in the production in 
response to a trigger.  

• Model CD: This stage deploys the trained model.  

• Monitoring: This stage monitors the model performance on live data. The output is a trigger to 
execute the pipeline or execute a new experiment iteration.   
 

Figure 6 shows the stages and the involved components in MLOps level 2 [49].   
   



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 24 of 46 

 

  

Figure 7 - MLOps level 1 [49] 

   

MLOps vs AIOps 

At first glance the terms MLOps and AIOps may sound synonym, and in some places and contexts they 
may be considered interchangeable, or even MLOps might be considered as a subset of AIOps. However, 
there are key differences in the way they are defined and the intention behind each. In simple terms, AIOps 
is about bringing in AI/ML techniques to solve Ops challenges and application of AI/ML in IT processes, 
while MLOps is more on the application DevOps principles for development of ML-based systems and the 
process of bringing machine learning to production [50].  

 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 25 of 46 

8. Predictive Maintenance 

Predictive maintenance is the process of collecting real life operational data, analyzing them in order to 
predict future failures and then planning maintenance accordingly to prevent those failures from happening. 
Predictive maintenance differs from preventive maintenance because it relies on the actual condition of the 
equipment, rather than average or expected life statistics, to predict when maintenance will be required. 
Condition-based maintenance is an extension of predictive maintenance, during which data from sensors 
is being analyzed in real time and alarms are triggered if the algorithm predicts an upcoming failure [51]. 
All three types of maintenance aim to achieve higher up-time and more efficient and less costly 
maintenance. 

  

Some of the main components that are necessary for implementing predictive maintenance are data 
collection and pre-processing, early fault detection, fault detection, time to failure prediction, maintenance 
scheduling and resource optimization [51]. Predictive maintenance has also been considered to be one of 
the driving forces for improving productivity and one of the ways to achieve "just-in-time" in manufacturing. 

8.1 ML-enabled techniques applied to Predictive Maintenance 

The growing availability of data sources (Source Code, Test plan and test reports, Logs, traces and 
monitoring data, Human feedback…) is enabling timely and accurate prediction of maintenance 
requirements in industrial sector. Multiple classifiers in supervised learning have been used to solve 
imbalanced data sets; predicting frequency of unexpected breaks and also to exploit heterogenous data 
(as cutting forces, vibration signals and acoustic emissions). The dynamic nature of systems, and the fact 
that operational data change constantly, may be solved by applying the Diversity for Dealing with Drift [52].  

 

Unsupervised learning, based on the ingestion of structured and unstructured data is being widely used for 
predictive maintenance. The combination of big data analysis and data fusion for predictive maintenance 
has guided research activities in the application of Machine Learning to almost all sectors. Data-driven 
techniques mainly focused in the wider availability of time series, combining different clustering and 
recurring neural networks have successfully provided predictive maintenance solutions. Below as follows, 
a table-summary of an exhaustive survey provides a reference of ML models and applications in industry 
[53]:  

 

Reference ML Solution 

Susto G.A., Schirru A., Pampuri S., McLoone S., Beghi A. Machine Learning for 
Predictive Maintenance: A Multiple Classifier Approach. IEEE Trans. Ind. Inf. 

2015;11:812–820. doi: 10.1109/TII.2014.2349359 

MC supervised 
method 

Yan J., Meng Y., Lu L., Li L. Industrial Big Data in an Industry 4.0 Environment: 
Challenges, Schemes, and Applications for Predictive Maintenance. IEEE 

Access. 2017;5:23484–23491. doi: 10.1109/ACCESS.2017.2765544 

Multi-scale 
analysis 

 (envelope, time-
frequency) 

Wu D., Jennings C., Terpenny J., Gao R.X., Kumara S. A Comparative Study on 
Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction 

Using Random Forests. ASME J. Manuf. Sci. Eng. 2017;139:071018. doi: 
10.1115/1.4036350 

RandF 

Shin H.J., Cho K.W., Oh C.H. SVM-Based Dynamic Reconfiguration CPS for 
Manufacturing System in Industry 4.0. Wirel. Commun. Mob. Comput. 

2018;2018:5795037. doi: 10.1155/2018/5795037. 

SVM 

  Kuo C.J., Ting K.C., Chen Y.C., Yang D.L., Chen H.M. Automatic Machine Status 
Prediction in the Era of Industry 4.0: Case Study of Machines in a Spring Factory. 
J. Syst. Archit. 2017;81:44–53. doi: 10.1016/j.sysarc.2017.10.007 

NN-based for 
online 

 feature 
dimensionality 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 26 of 46 

reduction 
 and automated 

prediction 

Lin C., Shu L., Deng D., Yeh T., Chen Y., Hsieh H. A MapReduce-Based 
Ensemble Learning Method with Multiple Classifier Types and Diversity for 

Condition-based Maintenance with Concept Drifts. IEEE Cloud Comput. 
2017;4:38–48. doi: 10.1109/MCC.2018.1081065.  

Ensemble learning 
with 

 MC types and 
diversity 

Yu W., Dillon T.S., Mostafa F., Rahayu W., Liu Y. A Global Manufacturing Big 
Data Ecosystem for Fault Detection in Predictive Maintenance. IEEE Trans. Ind. 

Inf. 2019 doi: 10.1109/TII.2019.2915846. 

K-means, DPCA-
based 

 T-squared and 
SPE 

Peres R.S., Rocha A.D., Leitao P., Barata J. IDARTS—Towards Intelligent Data 
Analysis and Real-Time Supervision for Industry 4.0. Comput. Ind. 

2018;101:138–146. doi: 10.1016/j.compind.2018.07.004. 

K-means 

Yan H., Wan J., Zhang C., Tang S., Hua A., Wang Z. Industrial Big Data 
Analytics for Prediction of Remaining Useful Life Based on Deep Learning. IEEE 
Access. 2018;6:17190–17197. doi: 10.1109/ACCESS.2018.2809681Yan et al.,  

DL-based DECG 

Sun C., Ma M., Zhao Z., Tian S., Yan R., Chen X. Deep Transfer Learning Based 
on Sparse Autoencoder for Remaining Useful Life Prediction of Tool in 

Manufacturing. IEEE Trans. Ind. Inf. 2019;15:2416–2425. doi: 
10.1109/TII.2018.2881543 

DTL with SAE 

Cheng Y., Zhu H., Wu J., Shao X. Machine Health Monitoring Using Adaptive 
Kernel Spectral Clustering and Deep Long Short-Term Memory Recurrent Neural 

Networks. IEEE Trans. Ind. Inf. 2019;15:987–997. doi: 
10.1109/TII.2018.2866549.  

AKSC with LSTM-
RNN 

Panoutsos G., Luo B., Liu H., Li B., Lin X. Using Multiple-Feature-Spaces-Based 
Deep Learning for Tool Condition Monitoring in Ultra-Precision Manufacturing. 

IEEE Trans. Ind. Inf. 2019;66:3794–3803. doi: 10.1109/TIE.2018.2856193 

Feature spaces-
based DL 

  



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 27 of 46 

9. Model Synthesis and Construction 

Model synthesis is the process of generating structural or behavioural models of the system from the input 
artefacts. The input artefacts can vary from natural language requirements, to models at other levels of 
abstraction, and to source code. In this section, we provided an overview of model synthesis approaches 
available in the literature. 

Reider et al. Presented an approach for feature testing and similarity-based test case prioritization [54]. 
The presented approach relies on formal requirements, written in RDL. A UML model is synthesized from 
the RDL specification and test cases are generated and prioritized for feature testing. 

Whittle and Schumann proposed an algorithm for synthesizing UML state charts from a set of UML 
sequence diagrams [55]. The algorithm generates the state charts by merging the similar behaviour in the 
given sequence diagrams and detects conflicts while merging. 

GK-Tail was proposed to generate finite state machine models using interaction traces of the system [56]. 
GK-Tail also generates condition on the data values for the edges of the finite state machine. 

Prähofer et al. used execution traces to synthesize a high-level behavioural model of  PLC programs [57]. 
The synthesized model represents the timing and transition behaviours of the PLC component. The 
synthesized model can then be used to check the conformance of future executions. 

Feature model synthesis is also an open area of research. Most of feature model synthesis approaches 
look for commonalities and variability to suggest features and extract feature models from the input. In 
some cases, public documents (such as brochures and reviews) are being used for mining common 
domain terminologies and their variability [58], [59]. These approaches focus on aggregating natural 
language requirements to extract a high-level system feature model. Such approaches help in the FODA 
[60] and helps the industry in the adoption of product line engineering. 

Arborcraft [61] uses LSA to calculate the similarity between requirements pairs. Arborcraft then clusters 
the requirements based on similarity (shared concepts in the requirements) and extract feature tree from 
the clustered requirements. Arborcraft uses a fuzzy feature diagram which allows the features to be in 
more than one sub-tree. This means that the feature can be part of more than one cluster, to deal with 
the imprecise nature of natural language. 

The Semantic and Ontological Variability Analysis [62] uses semantic role labelling to calculate similarity-
based semantic roles. The roles extracted in the approach reflect behavioural information and bases 
similarity metrics on behaviour. The approach uses a hierarchical clustering algorithm to cluster the 
requirements based on behavioural similarity. The approach then generates a feature model based on 
the extracted similarities and variabilities. 

Bottom-up technologies for reuse (BUT4Reuse [63]) is another tooled approach for extractive adoption of 
SPL. BUT4Reuse work with variety of artefacts for variability analysis (such as source code, and models 
etc.) to reverse engineer the variability (feature models). 

 

Automated Machine Learning (AutoML) 

Automated machine learning (AutoML) systems are used to find the best machine learning (ML) pipeline 
matching the task and data at hand, typically classification or regression. This includes model selection and 
hyperparameter optimization. Finding good models and hyperparameters are hard and time-consuming 
tasks for human experts, and they frequently involve a lot of trial-and-error experimentation. The promise 
of AutoML is that computers can automate these repetitive tasks and come up with good pipelines with little 
human effort. The drawback is that AutoML systems require a lot of computing power and the quality of the 
results varies. A recent overview of different AutoML systems [64] echoes these issues. 

 

AutoML systems are meta-level machine learning algorithms, which use other ML solutions as building 
blocks for finding the optimal ML pipeline. In this context, an ML pipeline means the set of algorithms and 
their hyperparameters that the ML system uses to infer results from data. An AutoML system has to 
consider multiple ML pipelines and search values for their parameters. It needs to optimize each candidate 
pipeline to an adequate level but also ensure that enough time and resources are used to experiment with 
alternative pipelines. As a result, using AutoML systems can consume huge amounts of time and computing 
resources.  

 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 28 of 46 

There is also the question of how much automation you want from the AutoML system. While an 
experienced data scientist would know, for example, the optimal hyperparameter spaces to search, an 
average user with little ML experience would want good results with minimal configuration. Many tools 
support both groups -- they allow heavy customization, but are easy although less efficient to use with the 
default settings. It is also known that the systems can recommend different optimal solutions for the same 
problem [65]. This can be caused by tight time limits imposed on the system disabling further optimization 
or that two pipelines offer equal performance. In this study, we took the approach of using the systems with 
default settings 

 

Typical tasks that many AutoML systems support are classification and regression. In various examples 
and benchmarks, typically image or text data are used. Some AutoML system like AutoKeras [66] even 
offer specialized image and text classifiers. This is because images are typically represented as pixel arrays 
and in case of grayscale images the value of each pixel can be represented with an 8-bit integer. Pretty 
much all classification systems support this kind of input out of the box, and even in the worst-case scenario, 
type conversion and array reshaping should be all the required pre-processing steps. 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 29 of 46 

10. Fault Prediction 

A fault is a problem in a system that may cause a failure. A failure occurs as long as a system is not 
delivering a service consistent with its specifications. A fault can potentially cause a failure.  

 

Many of the tactics to keep faults from becoming failures -or mitigating the effects-, are available within 
standard execution environments. All approaches for fault management involve a combination of 
techniques for redundancy, health monitoring, and recovery when a failure is detected. 

  

High Availability 

 Other related concept is HA. It refers to systems that are durable and likely to operate continuously, without 
failure, for extended periods of time. HA is mainly measured as the up time per year.  

SLA is the common formal model to define the contract between customers and providers with respect to 
HA. In this agreement, key aspects as quality, availability, responsibilities are agreed between the parties, 
and usually it is linked to economical and legal consequences. The target availability percentages are 
usually defined by the number of 9s: 90.0% -one 9- to 99.9999% -six 9s, for the maximum downtime 
accepter per year, month, week, day… 

  

Fault prevention 

 Beside the traditional techniques for fault detection and recovery, fault prevention is a key topic. In mission-
critical systems, is a fundamental concept. Also, in industrial environments, Fatigue prediction has also 
been an area of increasing research. Gaunaru Ana, et al., [67] present an overview of failures. They define 
“Fatigue” of a component as a result of cyclic stress. Three phases are related to fatigue failures: initiation, 
propagation, and catastrophic overload failure. The duration of every phase is impacted by many potential 
variables: raw material, stress applied, processing history... All industrial sectors work in different 
techniques for detecting critical situation in advance, to trigger preventive measures and mitigate the effect 
of a failure. Two levels related to online failures prediction are present in literature. One of them is focusing 
in observing components and the other is focused in analysing different systems parameters.   

 

Figure 8 - Fault Prediction levels 

  



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 30 of 46 

In recent years, the advent of the DevOps approach, and more recently AIOps, have brought new 
techniques to the fore, that are taking into account the whole lifecycle to find correlations and behavioural 
patterns.  

10.1 ML-based Fault Prediction Techniques 

Relevant surveys and approaches related to the application of ML for detection of faults in Industry 4.0 
have been published during the last years. Angelopoulos et al. [53] summarized recent approaches and 
solutions, highlighting the need to timely retrieve and process data from monitoring systems in order to 
correctly detect abnormal operation and fault. Fault prediction usually involves three steps, that is, data 
collection, data processing for feature extraction and finally, fault classification. 

  

Relevant solutions for fault detection, based on supervised, unsupervised and deep learning methods can 
be found in the next table:  

  

Reference ML Solution 

Lee T., Lee K.B., Kim C.O. Performance of Machine Learning Algorithms for 
Class-Imbalanced Process Fault Detection Problems. IEEE Trans. Semicond. 

Manuf. 2016;29:436–445. doi: 10.1109/TSM.2016.2602226. 

ANNs, SVMs and 
WMV 

Jin S., Ye F., Zhang Z., Chakrabarty K., Gu X. Efficient Board-Level Functional 
Fault Diagnosis With Missing Syndromes. IEEE Trans. Comput. Aided Des. 
Integr. Circuits Syst. 2016;35:985–998. doi: 10.1109/TCAD.2015.2481859. 

SVM, ANN, Naive 
Bayes, 

 and Decision Tree 

Mathew J., Pang C.K., Luo M., Leong W.H. Classification of Imbalanced Data 
by Oversampling in Kernel Space of Support Vector Machines. IEEE Trans. 

Neural Netw. Learn. Syst. 2018;29:4065–4076. doi: 
10.1109/TNNLS.2017.2751612 

WK-SMOTE SVM 

Lin C., Deng D., Kuo C., Chen L. Concept Drift Detection and Adaption in Big 
Imbalance Industrial IoT Data Using an Ensemble Learning Method of Offline 

Classifiers. IEEE Access. 2019;7:56198–56207. doi: 
10.1109/ACCESS.2019.2912631 

Ensemble learning 
with 

 various offline 
classifiers 

Lee T., Lee K.B., Kim C.O. Performance of Machine Learning Algorithms for 
Class-Imbalanced Process Fault Detection Problems. IEEE Trans. Semicond. 

Manuf. 2016;29:436–445. doi: 10.1109/TSM.2016.2602226 

Comparison of three 
sampling- 

 based, four 
ensemble, four 

instance- 
 based, and two 
SVM methods 

Syafrudin M., Alfian G., Fitriyani N.L., Rhee J. Performance Analysis of IoT-
Based Sensor, Big Data Processing, and Machine Learning Model for Real-

Time Monitoring System in Automotive Manufacturing. Sensors. 2018;18:2946. 
doi: 10.3390/s18092946. 

DBSCAN-based 
RandF 

Lei Y., Jia F., Lin J., Xing S., Ding S.X. An Intelligent Fault Diagnosis Method 
Using Unsupervised Feature Learning Towards Mechanical Big Data. IEEE 
Trans. Ind. Electron. 2016;63:3137–3147. doi: 10.1109/TIE.2016.2519325 

Two-stage NN with 
sparse 

 filtering and 
softmax regression 

Yang Z.-X., Wang X.-B., Zhong J.-H. Representational Learning for Fault 
Diagnosis of Wind Turbine Equipment: A Multi-Layered Extreme Learning 

Machines Approach. Energies. 2016;9:379. doi: 10.3390/en9060379. 

Multiple hierarchical 
ELMs 

Diaz-Rozo J., Bielza C., Larrañaga P. Machine Learning-Based CPS for 
Clustering High Throughput Machining Cycle Conditions. Procedia Manuf. 

2017;10:997–1008. doi: 10.1016/j.promfg.2017.07.091. 

K-means, 
hierarchical, agglo- 

 merative and 
Gaussian mixture 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 31 of 46 

Pan J., Zi Y., Chen J., Zhou Z., Wang B. LiftingNet: A Novel Deep Learning 
Network With Layerwise Feature Learning From Noisy Mechanical Data for 

Fault Classification. IEEE Trans. Ind. Electron. 2018;65:4973–4982. doi: 
10.1109/TIE.2017.2767540. 

DL-based LiftingNet 

Sohaib M., Kim C.H., Kim J.M. A Hybrid Feature Model and Deep-Learning-
Based Bearing Fault Diagnosis. Sensors. 2017;17:2876. doi: 

10.3390/s17122876. 

SAE-based DNNs. 

Luo B., Wang H., Liu H., Li B., Peng F. Early Fault Detection of Machine Tools 
Based on Deep Learning and Dynamic Identification. IEEE Trans. Ind. Electron. 

2019;66:509–518. doi: 10.1109/TIE.2018.2807414 

DL-based dynamic 
 properties 
extraction 

Tao Y., Wang X., Sánchez R., Yang S., Bai Y. Spur Gear Fault Diagnosis Using 
a Multilayer Gated Recurrent Unit Approach With Vibration Signal. IEEE 

Access. 2019;7:56880–56889. doi: 10.1109/ACCESS.2019.2914181. 

MGRU-based NN 

Wen L., Gao L., Li X. A New Snapshot Ensemble Convolutional Neural Network 
for Fault Diagnosis. IEEE Access. 2019;7:32037–32047. doi: 

10.1109/ACCESS.2019.2903295 

SECNN with 
MMCCLR 

Iqbal R., Maniak T., Doctor F., Karyotis C. Fault Detection and Isolation in 
Industrial Processes Using Deep Learning Approaches. IEEE Trans. Ind. Inf. 

2019;15:3077–3084. doi: 10.1109/TII.2019.2902274. 

DL-based FDI with 
DAEs 

  

10.2 ML-based Fault Prediction for Evolving Systems 

Classical verification and validation approaches that have been subject of research in computer science 
for a long time like testing, model checking and theorem proving are generally limited when applied to 
evolving systems. Fault Prediction for ML-based Evolving Systems is its very early stages.  

  

In software-intensive systems, traditionally source code has been considered as the main artefact for 
analysis and extraction of metrics for different purposes such as fault prediction, product quality evaluation, 
debugging and fault localization, certification, and taking maintenance decisions. However, as the size and 
complexity of systems have grown, the role of analytics over other development artefacts has gained 
attention as well to provide more accurate insights on the behavior of a software system, that is tightly 
related to fault prediction. In this context, the big data analytics has come to light, and has derived in several 
research and engineering challenges [68] such as: the issue of outdated data and providing real time and 
actionable insights, sharing of information and insights, privacy issues, hardware platforms for big data 
processing, instrumentation mechanisms, probes and sensors for collecting relevant data. Additionally, 
traceability of artefacts and data elements [69], transforming raw data and extraction of patterns are also 
of significant importance to provide accurate insights into the behavior of a system, that could be the 
reference for fault prediction. The link between traceability and fault prediction must be deeper explored. A 
commonly agreed upon definition of software traceability is “the ability to interrelate any uniquely identifiable 
software engineering artefact to any other, maintain required links over time, and use the resulting network 
to answer questions of both the software product and its development process”, and was first formulated 
by the  CoEST. 

  

OSLC is an initiative in the form of an open community developing standards for integrating tools and 
making it easy and practical for software lifecycle tools to share data with one another using traceability 
links, this could be the basis for fault prediction in ES. The references discuss [70] the importance of 
traceability in achieving continuous integration and delivery, and also introduce Eiffel as a framework to 
provide real time traceability. Eiffel was developed by Ericsson to address the challenges of scalability and 
traceability. A reference regarding the adoption of Eiffel protocol, and the technical and organization needs 
and obstacles has been described by Hramyka and Winsqvist [71], remarking the best practices and 
recommendations. Bathae, Yavar described the main challenges related to the black box problem related 
to Machine Learning [72].  



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 32 of 46 

 A very interesting concept was described by Jeffrey Mogul [73], suggesting potential mitigation of emergent 
misbehaviours in complex systems. Mogul stated that emergent misbehavior might often not be the result 
of component failure, traditional failure prediction techniques, such as those based on MTBFs or fault trees, 
might be inapplicable [73]. MTBF data would only be useful if system-wide failures were primarily caused 
by component failures. In this context, a potential approach would be the creation of a corpus of “signatures” 
based on observed events leading up to detected emergent misbehaviour in real systems. The detection 
of these signatures in a running system could be used to indicate that potentially, a misbehaviour may 
occur. A taxonomy of causes should guide the creation of signatures.  

 

In any case, the black-box problem, related to ML-enabled will likely lead fault prediction to be based on a 
combination of big data analytics and a regulatory process to take into account degree of the AI’s 
transparency as well as the extent to which the AI should be supervised by humans. Hence, ES for security 
markets may have lower liability thresholds that mission critical system.  



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 33 of 46 

11. Change Impact Analysis 

Change impact analysis (CIA) is used to reason about effects. That is, ‘the process of identifying the 
potential consequences of a change, or estimating what needs to be modified to accomplish a change’ [74]. 

Kilpinen classified the CIA approaches into three different classes, namely TIA, DIA, and EIA [75]. TIA 
approaches utilize cross-abstraction-level traceability links to identify and propagate the impact of a change 
in an artifact or entity. An extensive review of the role of traceability in impact analysis can be found in the 
literature [76]. DIA approaches are focused on identifying the impact of a change using the dependencies 
among software artifacts (e.g., class dependencies). DIA approaches are more focused on source code-
level and use program slicing and static program analysis (e.g., [77]). However, the same approaches can 
be applied to other levels of abstractions. Finally, EIA approaches use manual reviews and code inspection 
to find the impact of changes on other software artifacts. EIA approaches are dependent on the experience 
of practitioners and involve substantial manual efforts. Studies in the literature show that EIA approaches 
might detect fewer impacts than other classes of CIA approaches [75]. 

The CIA approaches can support the impact analysis at different levels of abstractions (e.g., requirements, 
models, source code). In the rest of this section, we provide examples of CIA approaches focused on 
different levels of abstractions. 

 

Requirements-level CIA 

Arora et al. proposed an approach for the CIA for natural language requirements [78]. This uses NLP 
techniques to identify inter-requirements impact resulting from a change in requirement. In some cases, 
the requirements might be written in a structured requirement modeling notation. Alkaf et al. Proposed an 
automated approach for CIA for URN models [79]. This automated CIA approach helps in identifying the 
impacted URN elements by a change in specification. 

One specific topic within Requirements-level CIA, based on the combination of ML-based systems (mainly 

NLP) and Regulatory Technology is currently driving research efforts in fintech sector. The growing 

regulation -as “Dodd-Frank”, the second “Markets in Financial Instruments Directive” and the revised 

“Payment Services Directive” – as well as the GDPR and the associated growing costs for compliance have 

deep implications in the application of ML-based evolving systems in finance sector. The application of 

Requirement-level CIA, when applied to ML-enabled Evolving Systems for fintech environment, should take 

into any change in compliance and regulatory framework. Some solutions that automatically search, 

monitor and track regulatory content and APIs are available: compliance.ai and cube.global are key 

references.  

 

Model-level CIA 

The research of Piotr is focussed on the effect of changes in effect of changes in class diagrams to the 
structure of state machines [80]. To do so, the UML and OCL are used. It shows how the preservation of 
logical formulas is corresponding to the structure of state machines. 

Source code-level CIA. Several other studies on change impact analysis were conducted. The major part 
is focussed on source code. We reviewed multiple (approaches to) change impact analyses. An example 
of a change impact analysis is found in the prediction of impact of software changes on build times in a 
continuous integration (CI) environment [81]. Adding dependencies on modules can increase build times 
and therefore slow down releases. The impact is measured as the product of properties that are deltas in 
build times, a longest critical path and dependency graphs. Its purpose is to inform developers by stating 
the chances that their change may influence future build times. Shari Lawrence and Joanne M. describes 
change impact analysis as ‘the evaluation of many risks associated with the change, including estimates 
of effects on resources, effort and schedule’ [82]. Costs are mentioned explicitly as motivation to do an 
analysis as it can help to gain control while doing maintenance. 

The discussed research shows several forms of impact and related metrics. Each change impact analysis 
is equal by the interest in a certain effect on a particular object. Build times, (relations between) affected 
objects and property preservation were used to analyse impact. 

 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 34 of 46 

Test case-level CIA 

CIA approaches on the test-case level are generally focused on finding the impact of a change on the test 

suite. Most of the approaches in this category classify test cases into broken, repairable, and executable 

test cases based on a change in source code of a system. Many tools and approaches have also been 

proposed to automatically evolve test cases classified as repairable. An extensive review of these 

approaches can be found in the literature [83]. 

 

Praegus, with its extensive experience in testing, test automation and the application of artificial 
intelligence and machine learning in this domain, offers so-called 'Augmented Testing' within the 
IVVES project as an accelerator within a CI / CI pipeline to accelerate (automatic) feedback and 
a self-learning system for prioritizing tests. From an integrated dashboard, it will provide teams 
and organizations with insight into all the tests they perform, to make the test automation process 
more efficient. From this dashboard, it will be possible to collect all test results in one place, which 
provides a single overview of all different types of test (such as unit, integration, system and E2E-
tests). All test runs of all teams within an organization can be viewed at a glance. In addition, this 
also provides insight into the test history and provides detailed test information for each test. 
Besides this, it will be also visible (per test set) who has tested what, where, so that everyone 
within the team can view each other's results. Everything in real time. 

  

The system will be self-learning, with the ability to learn from previous test results. The system 
recognizes trends in failures and will perform auto-analyses, reducing the time required to 
manually analyse test results. This means that error analyses take less time. With 'Augmented 
Testing' the system learns to recognize which tests belong to which code independently searches 
for the correlation between previously checked code and executed tests. With a code change, 
the system searches only for the tests that are relevant to this specific code change, so that the 
test time can be significantly reduced without compromising on quality requirements. So only to 
test what is needed, resulting in a faster release. 

  

Test automation is of course essential in this process. Once test automation has started, the 
number of automated tests often only increases. When tests are automated by different teams 
with different tools, it becomes increasingly difficult to keep an overview and to keep the test set 
effective. By collecting all test results from all tools in the system, the dashboard provides insight 
into the quality of the underlying test set. In this way one does get a view of the total quality effort 
again. Testers spend a lot of time in their daily work figuring out why tests fail. This search time 
is reduced by the system by means of the auto analysis. This gives testers more room to spend 
their time even more effectively. To be able to go live quickly in a continuous delivery environment, 
a regression test that takes, for example, 8 hours is not ideal. However, is every test in that 
regression set really necessary? In the event of minor changes, you do not end up hitting the 
entire system. Manually prioritizing tests is no longer an option in a continuous delivery 
environment. Based on previous test runs, 'Augmented Testing' learns which tests are relevant 
when and optimizes your test set. 

  

During the initiation of the IVVES project, when when preparing the Full Project Proposal and 

Project Plan, no such solution existed! In the meantime, we see various initiatives starting up, 

including Facebook [84] and Launchable (https://launchableinc.com), confirming that we are on 

the right track and with IVVES can lead the way with this innovation. 

https://launchableinc.com/


D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 35 of 46 

12. Data collection in Exploratory Testing  

Exploratory testing (ET) – simultaneous learning, test design, and test execution – is an applied 
practice in industry but it has received less attention in the research context. In the scope of project 
IVVES, there are two primary directions to investigate in the field of data collection using exploratory testing:  

• Data collection during manual use of the system.  

• Data collection during automated system/program exploration, and 

Itkonen and Rautiainen have identified five properties that describe when testing is exploratory 
testing [85]:  

1. Tests are not defined in advance as detailed test scripts or test cases. Instead, exploratory 
testing is exploration with a general mission without specific step-by-step instructions on 
how to accomplish the mission.  

2. Exploratory testing is guided by the results of previously performed tests and the gained 
knowledge from them. An exploratory tester uses any available information of the target 
of testing, for example a requirements document, a user’s manual, or even a marketing 
brochure.  

3. The focus in exploratory testing is on finding defects by exploration, instead of 
systematically producing a comprehensive set of test cases for later use.  

4. Exploratory testing is simultaneous learning of the system under test, test design, and test 
execution. 

5. The effectiveness of the testing relies on the tester’s knowledge, skills, and experience. 

Hence, it can partly be regarded that ET is not only an activity but also a mindset that the testers adopt 
while performing the actual testing. 

 

TESTAR (www.testar.org) is an open source tool for scriptless test automation through GUI. By scriptless, 
it is meant that the tool generates the test sequences in an exploratory way, one step at a time during test 
execution, based on observed state of the SUT. Without any system specific configuration, with its default 
settings, TESTAR can test a system as a monkey testing tool, randomly clicking the available clickable 
widgets, and typing pseudo-random input string into the input fields of the SUT. In the IVVES project, the 
TESTAR tool will be extended with AI-based action selection strategies and active learning of state models 
during the automated exploration of the SUT. In addition, the goal is to capture actions of a human user 
into the state model for learning and evaluating manual exploratory testing. 

 

Data collection during manual use of the system 

In general, data collection during automated system/program exploration can utilise the prime data sources 
listed in above in previous sections. In addition, and probably more importantly, as ET is partly guided 
intuition and experience of the testers, monitoring tools can be added in the process so that the same 
exploratory procedures can be executed later on either to reproduce the same errors or to check that the 
program has been fixed.  

As for implementing the necessary analytics and monitoring procedures, and resorting to real usage based 

testing, the reader is referred to IVVES deliverable D3.1 State of the art of validation methods and 
techniques on validation techniques for complex evolving systems, sections 3.3.1 and 3.3.3 
respectively, which provide an extended discussion on the topics. 

 

Data collection during automated system/program exploration 

While exploratory testing is most commonly associated with human testers, there are use cases where 
automated system/program exploration is desired. In particular, since continuous software development, 
manifested in e.g. DevOps, aims at automating all the steps that are needed for a successful deployment, 
it is often necessary to replace human testers with automation and robots.  

http://www.testar.org/


D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 36 of 46 

Approaches that can be used for automated system/program exploration are many. In the simplest case, 
one can take the system under test, its previous testware, and use the version history to determine which 
test cases are potential subjects for exploratory testing. Furthermore, techniques that are possible to apply 
when gathering input for automated system/program exploration mainly consists of monitoring the 
behaviour of human testers, as well as performing source code analysis for the system under test.  

As for support for automated test generation, selection and prioritization, the reader is referred to IVVES 

deliverable D3.1 State of the art of validation methods and techniques on validation techniques for 
complex evolving systems, sections 3.2.4 and 3.2.5 respectively, which provide an extended 
discussion on the topics. 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 37 of 46 

13. Root Cause Analysis of failures  

The traditional practice of root cause analysis (RCA) is a form of deductive analysis, working like a 
detective, beginning with a known problem and working backward, sifting through the available evidence 
to identify the culprit. 

First, we identify the problem, establishing a mental timeline from where the happy flow of the application 
was interrupted and a problem occurred. Then we correlate different events (in today's application 
landscape this will often cross different processes, all interconnected with e.g. RESTful API’s). Given all 
this input we try to compose a corrective action to prevent the problem from reoccuring. 

We can identify two types of RCA: 1) The RCA of test failures, like failing automated tests in a software 
delivery pipeline, and 2) Failures that occur in a production-like environment. 

Interesting to note is that the classical dichotomy between ‘Test' and ‘Production' starts to diminish by new 
trends like Chaos Engineering [86], [87]. Chaos Engineering practices apply changes (e.g. killing a pod or 
node inside a kubernetes cluster) to see if the production system is resilient enough to auto-repair itself. 

13.1 RCA of failures in a production environment 

In order to perform RCA of a production failure we have first to identify the problem. Then we try to find as 
much data as possible to find what caused it. In order to identify a problem, we can identify two types of 
monitoring: Black Box monitoring and White Box monitoring. With Black Box monitoring we use the 
system through the same means as an end user i.e. a web application can be tested by instrumenting a 
browser, and an API can be monitored by using the API itself. This can be used to identify a failure but 
does not help much with the RCA of the failure. That is where White Box monitoring comes in. With White 
Box monitoring we mean the idea of exposing the internals of the system, like a software application, by 
letting each component log what is going on. Obviously, this is an important thing to have in place in order 
to perform the RCA of failures. 

Using structured logs 

A common industry standard is to use structured logs as main audit trail for figuring out what is going on 
inside our production software deployments. But in complex application landscapes comprising of dozens 
of microservices parsing all this data, and making sense of it, becomes a time-consuming task. In this case 
anything that can speed up the RCA of a failing component is obviously very valuable.  

Using distributed tracing and metrics 

In addition to logs it is becoming more and more popular to apply distributed tracing. Where logging provides 
an overview to a discrete, event-triggered log, tracing encompasses a much wider, continuous view of an 
application. The goal of tracing is to follow a program's flow and data progression. By tracing through a 
stack, developers can identify bottlenecks Tracing can help by automatically give insight in the runtime 
dynamics of an application. Examples of tools to make tracing easier are Dapper [88], Zipkin1 and 
Micrometer2. These tools all want to help to give insight in flows like the following: 

 

1 https://zipkin.io 
2 http://micrometer.io/ 

https://zipkin.io/
http://micrometer.io/


D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 38 of 46 

 

Where it is important to spot bottlenecks and sources of errors. 

 

Making sense of it 

In order to perform RCA we need data. As described earlier in this document we have the availability of 

logs, traces and monitoring data. A common industry best practice is to collect all this logdata into 
an indexed cluster. Splunk and the Elasticsearch-stack are examples of this. using tools like 
Logstash. The Elasticsearch-stack is commonly refered to as the ELK-stack3. For a good 
introduction of these tools, Atlassian has given a good presentation about this topic with the name 
Find the root cause4. This takes care of tokenizing (grokking) the raw input data and indexing and 
visualizing the data using a dashboard. 

This can help during the manual RCA-process: anomalies can be visually detected using graphs 
and messages logged as an error can be highlighted. 

But this can also lead to an overload of information. Google opted the term ‘Golden signals’ in order to find 
the best filters for the raw data. Amongst others they have identified Latency, Traffic, Errors and 
Saturation [89] as good starting points for effective signals. Based on these signals thresholds can be 
defined at which alerts are send to Ops personnel. Next to that dashboards can provide tools for long-term 
trend analysis. 

Interesting to note is that Google [89], in general, has trended toward simpler and faster monitoring 
systems, with better tools for post hoc analysis. They tend to avoid "magic" systems that try to learn 
thresholds or automatically detect causality. 

13.2 RCA of test failures 

"Testing leads to failure, and failure leads to understanding."  

- Burt Rutan  

In addition to the tools used in production environments, in the testing phase of an application we have 
additional specialized questions to ask: Is this test failing because of a product bug, or are the assertions 
of a test case not correct (e.g. not conforming to specifications) or is the test environment itself unstable? 

Classification of test failures can be a tedious task. Tools like Elasticsearch can be applied to automatically 
classify automation test failures in order to prevent expensive software engineers to parse a lot of 
application logs to triage and classify a test failure [90].  

Using Test Log Output and Stack Traces 

A full-text search solution like Elasticsearch can be applied to perform root cause analysis of e.g. test 

failures in automated test suites using the log-output of frameworks like xUnit/JUnit or FitNesse acceptance 

tests [90]. These tools can cover all parts of the proverbial test pyramid. 

 

3 ELK-stack: https://www.elastic.co/what-is/elk-stack 
4 Find the root cause presentation by Atlassian: https://www.youtube.com/watch?v=SQ2pyS6aTpM 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 39 of 46 

It is good to note that a e.g. a unit test, authored by a programmer, is easier to troubleshoot since the 

programmer is already working on that part of the software and does not have to make a mental ‘context 

switch’ most of the time. But an acceptance test that fails can be caused by any part of the application, and 

in that case an automated RCA can be of tremendous value to a development team. 

Test Case Shrinking 

A lesser known tool, but a very powerful one if applied correctly, is the use of Test Case Shrinking. 
To assist with root-cause analysis the system uses test shrinking to report much smaller versions 
of failing test cases. 

This technique is used as a part of property-based testing frameworks like QuickCheck [91]. How 
this works is that the tool reports much smaller versions of failing test cases that are easier to 
parse for humans. This is possible since property-based testing uses random ’fuzzy’ testdata and 
has heuristics that can try to pin-down the cause of the failure as best as possible. 

Examples of application of this technique are Property-Based Testing of Browser Rendering 
Engines with a Consensus Oracle [92] and an explanation of shrinking with the Java library JQwik 

[93]  in the blogpost by its creator: the-importance-of-being-shrunk [94]. 

 

Natural Language Processing 

Another approach to speed-up and automate RCA is the use of NLP for failures [95]. This uses the problem 
description as given by human testers to perform RCA when no other input is given, next to a problem 
description composed by a tester or end-user. 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 40 of 46 

14. Code Quality and Static Analysis 

In the software industry, it is standard practice to perform reviews on the code of other developers to 
preserve the quality of developed software. This practice includes mitigating the increase of risk that may 
result from adaptations of source code. It is essential to observe that changes to specific parts of a project 
may affect the functionality of other (unchanged) pieces of software that depend on the adapted code. Such 
dependencies are hard to identify, and as such, they present an increased risk. 

Over the past decades, code analysis tools have been developed to make it easier for software developers 
to do code reviews and develop high-quality software. These tools cover all kinds of different code metrics 
and integration with other platforms. Some examples of the most advanced tools are SonarSource [96] and 
Checkmarx [97]. SonarSource supports 27 different languages and has commercial plans that include 
integration with GitLab. It performs source code analysis on the entire code base in repositories, as well as 
on individual merge requests using a plethora of code metrics (500+). Next to commercial version, their 
extendable open source community edition allows other developers to create plugins to increase the 
capabilities of the software. Lists of other tools [98] that perform static code analysis have been created as 
well. 

However, while other tools exist, code reviews are often done manually by developers through version 
control systems like GitLab. GitLab is a web-based, fully-integrated DevOps lifecycle tool that provides a 
Git-repository manager with an integrated wiki, issue-tracking and continuous integration/continuous 
deployment pipeline features. The problem is that these static analysis tools are external to the GitLab 
environment, and therefore they are often disregarded by the users. Consequently, these manual code 
reviews still take much time and are hard to perform when merge requests contain large numbers of 
changes.   

Thus, there is a need for an appropriate selection of a set of tools and metrics which can aid code reviews 
and optimize the process of development. Furthermore, the outputs of the tools and the effect of certain 
metrics need to be analysed and adapted to suit the needs of the developers and provide optimal results. 
The goal is to detect important issues, conflicts and weak spots of the code and merge requests and save 
the most time and effort for the developers while eliminating false positives as much as possible.  

In the context of IVVES, we could start with investigating data sources such as different code analysis tools 
and unifying the output of these for a specific codebase into a generic format so that this data can be 
processed and analysed. After that machine learning and statistical techniques should be applied to enable 
predictive maintenance, fault analysis and anomaly detection, which would assist developers in their work. 

 

 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 41 of 46 

15. Conclusions 

In this deliverable we provided a high level introduction and brief state of the art report on the core topics 
and techniques that build the foundation of the work in WP4 of IVVES on data-driven engineering. It can 
also serve as a quick guide for other projects that would like to adopt a data-driven engineering process to 
identify the key concerns, topics and techniques to focus on.  

 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 42 of 46 

16. References 

[1] H. Holmström Olsson and J. Bosch, “Data Driven Development: Challenges in Online, Embedded 
and On-Premise Software,” in Lecture Notes in Computer Science (including subseries Lecture 
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, vol. 11915 LNCS, pp. 
515–527. 

[2] “Building data science teams - O’Reilly Radar.” [Online]. Available: 
http://radar.oreilly.com/2011/09/building-data-science-teams.html. [Accessed: 26-Jun-2020]. 

[3] “How Much Data Do We Create Every Day? The Mind-Blowing Stats Everyone Should Read.” 
[Online]. Available: https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-
create-every-day-the-mind-blowing-stats-everyone-should-read/#38f7a89960ba. [Accessed: 25-
Jun-2020]. 

[4] “Guide to the General Data Protection Regulation (GDPR) | ICO.” [Online]. Available: 
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-
regulation-gdpr/. [Accessed: 25-Jun-2020]. 

[5] L. Rocher, J. M. Hendrickx, and Y.-A. de Montjoye, “Estimating the success of re-identifications in 
incomplete datasets using generative models,” Nat. Commun., vol. 10, no. 1, p. 3069, 2019. 

[6] “Researchers spotlight the lie of ‘anonymous’ data | TechCrunch.” [Online]. Available: 
https://techcrunch.com/2019/07/24/researchers-spotlight-the-lie-of-anonymous-data/. [Accessed: 
25-Jun-2020]. 

[7] S. Kabadayi, A. Pridgen, and C. Julien, “Virtual sensors: Abstracting data from physical sensors,” in 
Proceedings - WoWMoM 2006: 2006 International Symposium on a World of Wireless, Mobile and 
Multimedia Networks, 2006, vol. 2006, pp. 587–592. 

[8] L. Liu, S. M. Kuo, and M. C. Zhou, “Virtual sensing techniques and their applications,” in Proceedings 
of the 2009 IEEE International Conference on Networking, Sensing and Control, ICNSC 2009, 2009, 
pp. 31–36. 

[9] J. Stephant, A. Charara, and D. Meizel, “Virtual sensor: Application to vehicle sideslip angle and 
transversal forces,” IEEE Trans. Ind. Electron., vol. 51, no. 2, pp. 278–289, Apr. 2004. 

[10] C. G. Mattera, J. Quevedo, T. Escobet, H. R. Shaker, and M. Jradi, “Fault Detection and Diagnostics 
in Ventilation Units Using Linear Regression Virtual Sensors,” in International Symposium on 
Advanced Electrical and Communication Technologies, ISAECT 2018 - Proceedings, 2019. 

[11] K. Rastogi and N. Saini, “Virtual Sensor Modelling using Neural Networks with Coefficient-based 
Adaptive Weights and Biases Search Algorithm for Diesel Engines,” Dec. 2017. 

[12] B. Lin, B. Recke, J. K. H. Knudsen, and S. B. Jørgensen, “A systematic approach for soft sensor 
development,” Comput. Chem. Eng., vol. 31, no. 5–6, pp. 419–425, May 2007. 

[13] A. Lerro, A. Brandl, M. Battipede, and P. Gili, “A Data-Driven Approach to Identify Flight Test Data 
Suitable to Design Angle of Attack Synthetic Sensor for Flight Control Systems,” Aerospace, vol. 7, 
no. 5, p. 63, May 2020. 

[14] A. N. Srivastava, “Greener aviation with virtual sensors: A case study,” Data Min. Knowl. Discov., 
vol. 24, no. 2, pp. 443–471, Mar. 2012. 

[15] M. Shakil, M. Elshafei, M. A. Habib, and F. A. Maleki, “Soft sensor for NOx and O2 using dynamic 
neural networks,” Comput. Electr. Eng., vol. 35, no. 4, pp. 578–586, Jul. 2009. 

[16] J. Kullaa, “Bayesian virtual sensing for full-field dynamic response estimation,” in Procedia 
Engineering, 2017, vol. 199, pp. 2126–2131. 

[17] Y. Iwashita, A. Stoica, K. Nakashima, R. Kurazume, and J. Torresen, “Virtual Sensors Determined 
Through Machine Learning,” in World Automation Congress Proceedings, 2018, vol. 2018-June, pp. 
318–321. 

[18] S. Madria, V. Kumar, and R. Dalvi, “Sensor cloud: A cloud of virtual sensors,” IEEE Softw., vol. 31, 
no. 2, pp. 70–77, 2014. 

[19] S. Bose, A. Gupta, N. Mukherjee, and S. Adhikary, “Towards a sensor-cloud infrastructure with 
sensor virtualization,” in Proceedings of the International Symposium on Mobile Ad Hoc Networking 
and Computing (MobiHoc), 2015, vol. 2015-June, pp. 25–30. 

[20] J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek, “Beyond average: Toward sophisticated 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 43 of 46 

sensing with queries,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. 
Notes Bioinformatics), vol. 2634, pp. 63–79, 2003. 

[21] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TinyDB: An acquisitional query 
processing system for sensor networks,” ACM Transactions on Database Systems, vol. 30, no. 1. 
pp. 122–173, Mar-2005. 

[22] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri, “Medians and Beyond: New Aggregation 
Techniques for Sensor Networks,” SenSys’04 - Proc. Second Int. Conf. Embed. Networked Sens. 
Syst., pp. 239–249, Aug. 2004. 

[23] Y. Yao and J. Gehrke, “The cougar approach to in-network query processing in sensor networks,” 
SIGMOD Record, vol. 31, no. 3. pp. 9–18, Sep-2002. 

[24] R. L. Neitzel, N. S. Seixas, and K. K. Ren, “A Review of Crane Safety in the Construction Industry,” 
Appl. Occup. Environ. Hyg., vol. 16, no. 12, pp. 1106–1117, Dec. 2001. 

[25] “Managing Data Science Projects Using CRISP-DM process framework.” [Online]. Available: 
https://medium.com/@aqureshi/managing-data-science-projects-using-crisp-dm-2b0682c0d894. 
[Accessed: 25-Jun-2020]. 

[26] “An Artificial Intelligence Quality Framework | Sogeti.” [Online]. Available: 
https://www.sogeti.nl/nieuws/artificial-intelligence/blogs/artificial-intelligence-quality-framework. 
[Accessed: 25-Jun-2020]. 

[27] H. J. Seltman, “Experimental design and analysis,” 2015. 

[28] “Data Preparation for Machine Learning | DataRobot Artificial Intelligence Wiki.” [Online]. Available: 
https://www.datarobot.com/wiki/data-preparation/. [Accessed: 25-Jun-2020]. 

[29] “How to Handle Missing Data - Towards Data Science.” [Online]. Available: 
https://towardsdatascience.com/how-to-handle-missing-data-8646b18db0d4. [Accessed: 25-Jun-
2020]. 

[30] “Handling imbalanced datasets in machine learning - Towards Data Science.” [Online]. Available: 
https://towardsdatascience.com/handling-imbalanced-datasets-in-machine-learning-
7a0e84220f28. [Accessed: 25-Jun-2020]. 

[31] R. Jabbari, N. Bin Ali, K. Petersen, and B. Tanveer, “What is DevOps? A systematic mapping study 
on definitions and practices,” in ACM International Conference Proceeding Series, 2016, vol. 24-
May-201, pp. 1–11. 

[32] “SAFe 5.0 Framework - SAFe Big Picture.” [Online]. Available: 
https://www.scaledagileframework.com/. [Accessed: 25-Jun-2020]. 

[33] “Sharing the DevOps journey at Microsoft | Azure Blog and Updates | Microsoft Azure.” [Online]. 
Available: https://azure.microsoft.com/en-us/blog/sharing-the-devops-journey-at-microsoft/. 
[Accessed: 25-Jun-2020]. 

[34] “State of DevOps,” 2018. [Online]. Available: https://services.google.com/fh/files/misc/state-of-
devops-2019.pdf. [Accessed: 25-Jun-2020]. 

[35] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “DevOps,” IEEE Softw., vol. 33, no. 3, pp. 94–
100, 2016. 

[36] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, “A Survey of DevOps Concepts and 
Challenges,” ACM Comput. Surv., vol. 52, no. 6, Nov. 2019. 

[37] L. E. Lwakatare et al., “DevOps in practice: A multiple case study of five companies,” Inf. Softw. 
Technol., vol. 114, pp. 217–230, 2019. 

[38] “DataOps IBM.” [Online]. Available: https://www.ibm.com/se-en/analytics/dataops. [Accessed: 25-
Jun-2020]. 

[39] “Gartner Hype Cycle for Data Management Positions Three Technologies in the Innovation Trigger 
Phase in 2018.” [Online]. Available: https://www.gartner.com/en/newsroom/press-releases/2018-
09-11-gartner-hype-cycle-for-data-management-positions-three-technologies-in-the-innovation-
trigger-phase-in-2018. [Accessed: 25-Jun-2020]. 

[40] “What is DataOps? | Platform for the Machine Learning Age | Nexla.” [Online]. Available: 
https://www.nexla.com/define-dataops/. [Accessed: 25-Jun-2020]. 

[41] “From DevOps to DataOps - DataOps Tools Transformation | Tamr.” [Online]. Available: 
https://www.tamr.com/blog/from-devops-to-dataops-by-andy-palmer/. [Accessed: 25-Jun-2020]. 

[42] Y. Dang, Q. Lin, and P. Huang, “AIOps: real-world challenges and research innovations,” in 2019 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 44 of 46 

IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings 
(ICSE-Companion), 2019, pp. 4–5. 

[43] “What is AIOps? | IBM.” [Online]. Available: https://www.ibm.com/cloud/learn/aiops. [Accessed: 25-
Jun-2020]. 

[44] “AIOps in 2020: A Beginner’s Guide – BMC Blogs.” [Online]. Available: 
https://www.bmc.com/blogs/what-is-aiops/. [Accessed: 25-Jun-2020]. 

[45] “How to Get Started With AIOps - Smarter With Gartner.” [Online]. Available: 
https://www.gartner.com/smarterwithgartner/how-to-get-started-with-aiops/. [Accessed: 25-Jun-
2020]. 

[46] “GigaOm-Delivering on the Vision of MLOps.” [Online]. Available: https://azure.microsoft.com/en-
gb/resources/gigaom-delivering-on-the-vision-of-mlops/. [Accessed: 25-Jun-2020]. 

[47] “MLOps with a Feature Store - Towards Data Science.” [Online]. Available: 
https://towardsdatascience.com/mlops-with-a-feature-store-816cfa5966e9. [Accessed: 25-Jun-
2020]. 

[48] “MLOps: CI/CD for Machine Learning Pipelines & Model Deployment with Kubeflow - Growing 
Data.” [Online]. Available: https://growingdata.com.au/mlops-ci-cd-for-machine-learning-pipelines-
model-deployment-with-kubeflow/. [Accessed: 25-Jun-2020]. 

[49] “MLOps: Continuous delivery and automation pipelines in machine learning.” [Online]. Available: 
https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automation-
pipelines-in-machine-learning. [Accessed: 25-Jun-2020]. 

[50] “AIOps vs MLOps | Ravi Kalia Blog.” [Online]. Available: https://project-delphi.github.io/blog/aiops-
vs-mlops/. [Accessed: 25-Jun-2020]. 

[51] “Fault Class Prediction in Unsupervised Learning using Model-Based Clustering Approach.” 
[Online]. Available: 
https://www.researchgate.net/publication/322900854_Fault_Class_Prediction_in_Unsupervised_L
earning_using_Model-
Based_Clustering_Approach?channel=doi&linkId=5a74cec40f7e9b41dbce3114&showFulltext=tru
e. [Accessed: 25-Jun-2020]. 

[52] L. L. Minku and X. Yao, “DDD: A new ensemble approach for dealing with concept drift,” IEEE Trans. 
Knowl. Data Eng., vol. 24, no. 4, pp. 619–633, 2012. 

[53] A. Angelopoulos et al., “Tackling faults in the industry 4.0 era—a survey of machine-learning 
solutions and key aspects,” Sensors (Switzerland), vol. 20, no. 1. MDPI AG, 01-Jan-2020. 

[54] M. Reider, S. Magnus, and J. Krause, “Feature-based testing by using model synthesis, test 
generation and parameterizable test prioritization,” in Proceedings - 2018 IEEE 11th International 
Conference on Software Testing, Verification and Validation Workshops, ICSTW 2018, 2018, pp. 
130–137. 

[55] J. Whittle and J. Schumann, “Generating statechart designs from scenarios,” 2000, pp. 314–323. 

[56] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic generation of software behavioral models,” in 
Proceedings - International Conference on Software Engineering, 2008, pp. 501–510. 

[57] H. Prähofer, R. Schatz, and A. Grimmer, “Behavioral model synthesis of PLC programs from 
execution traces,” in 19th IEEE International Conference on Emerging Technologies and Factory 
Automation, ETFA 2014, 2014. 

[58] N. H. Bakar, Z. M. Kasirun, N. Salleh, and H. A. Jalab, “Extracting features from online software 
reviews to aid requirements reuse,” Appl. Soft Comput. J., vol. 49, pp. 1297–1315, Dec. 2016. 

[59] A. Ferrari, G. O. Spagnolo, and F. Dell’Orletta, “Mining commonalities and variabilities from natural 
language documents,” in ACM International Conference Proceeding Series, 2013, pp. 116–120. 

[60] J. A. Hess, E. William, and A. Novak, “Feature-Oriented Domain Analysis (FODA) Feasibility Study 
Kyo C. Kang, Sholom G. Cohen,” 1990. 

[61] J. Noppen, P. Van Den Broek, N. Weston, and A. Rashid, “Modelling Imperfect Product Line 
Requirements with Fuzzy Feature Diagrams,” Universität Duisburg Essen, 2009. 

[62] N. Itzik and I. Reinhartz-Berger, “SOVA - A Tool for Semantic and Ontological Variability Analysis,” 
in CAiSE, 2014. 

[63] J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Bottom-Up adoption of software 
product lines - A generic and extensible approach,” in ACM International Conference Proceeding 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 45 of 46 

Series, 2015, vol. 20-24-July, pp. 101–110. 

[64] A. Truong, A. Walters, J. Goodsitt, K. Hines, C. B. Bruss, and R. Farivar, “Towards Automated 
Machine Learning: Evaluation and Comparison of AutoML Approaches and Tools,” in Proceedings 
- International Conference on Tools with Artificial Intelligence, ICTAI, 2019, vol. 2019-Nov, pp. 
1471–1479. 

[65] “Using TPOT - TPOT.” [Online]. Available: https://epistasislab.github.io/tpot/using/. [Accessed: 25-
Jun-2020]. 

[66] H. Jin, Q. Song, and X. Hu, “Auto-Keras: An Efficient Neural Architecture Search System,” arXiv 
Prepr. arXiv1806.10282, Jun. 2018. 

[67] A. Gainaru, F. Cappello, M. Snir, and W. Kramer, “Fault prediction under the microscope: A closer 
look into HPC systems,” in International Conference for High Performance Computing, Networking, 
Storage and Analysis, SC, 2012. 

[68] T. Menzies and T. Zimmermann, “Software analytics: So what?,” IEEE Softw., vol. 30, no. 4, pp. 
31–37, 2013. 

[69] D. Stahl, K. Hallen, and J. Bosch, “Continuous Integration and Delivery Traceability in Industry: 
Needs and Practices,” in Proceedings - 42nd Euromicro Conference on Software Engineering and 
Advanced Applications, SEAA 2016, 2016, pp. 68–72. 

[70] M. Saadatmand and A. Bucaioni, “OSLC tool integration and systems engineering-the relationship 
between the two worlds,” in Proceedings - 40th Euromicro Conference Series on Software 
Engineering and Advanced Applications, SEAA 2014, 2014, pp. 93–101. 

[71] A. Hramyka, M. Winqvist, H. H. Olsson, and Y. Dong, “Traceability in continuous integration 
pipelines using the Eiffel protocol.” 

[72] Y. Bathaee, “The Artificial Intelligence Black Box and the Failure of Intent and Causation,” Harv. J. 
Law Technol., 2018. 

[73] J. C. Mogul, “Emergent (mis)behavior vs. complex software systems,” in Proceedings of the 2006 
EuroSys conference on   - EuroSys ’06, 2006, p. 293. 

[74] R. S. Arnold, “Software Change Impact Analysis,” IEEE Computer Society Press, Washington, DC, 
USA, 1996. 

[75] M. S. KILPINEN, “The Emergence of Change at the Systems Engineering and Software Design 
Interface,” pp. 1–270, 2008. 

[76] A. De Lucia, F. Fasano, and R. Oliveto, “Traceability management for impact analysis,” in 
Proceedings of the 2008 Frontiers of Software Maintenance, FoSM 2008, 2008, pp. 21–30. 

[77] M. Acharya and B. Robinson, “Practical change impact analysis based on static program slicing for 
industrial software systems,” in Proceedings - International Conference on Software Engineering, 
2011, pp. 746–755. 

[78] C. Arora, M. Sabetzadeh, A. Goknil, L. C. Briand, and F. Zimmer, “Change impact analysis for 
Natural Language requirements: An NLP approach,” in 2015 IEEE 23rd International Requirements 
Engineering Conference, RE 2015 - Proceedings, 2015, pp. 6–15. 

[79] H. Alkaf, J. Hassine, T. Binalialhag, and D. Amyot, “An automated change impact analysis approach 
for User Requirements Notation models,” J. Syst. Softw., vol. 157, p. 110397, Nov. 2019. 

[80] P. Kosiuczenko, “The impact of class model redesign on state machines,” in Lecture Notes in 
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 
Bioinformatics), 2012, vol. 7307 LNCS, pp. 264–279. 

[81] M. Tufano, H. Sajnani, and K. Herzig, “Towards predicting the impact of software changes on 
building activities,” in Proceedings - 2019 IEEE/ACM 41st International Conference on Software 
Engineering: New Ideas and Emerging Results, ICSE-NIER 2019, 2019, pp. 49–52. 

[82] S. L. Pfleeger, Software engineering - theory and practice (3. ed.). 2006. 

[83] J. Imtiaz, S. Sherin, M. U. Khan, and M. Z. Iqbal, “A systematic literature review of test breakage 
prevention and repair techniques,” Inf. Softw. Technol., vol. 113, pp. 1–19, Sep. 2019. 

[84] M. Machalica, A. Samylkin, M. Porth, and S. Chandra, “Predictive Test Selection,” in Proceedings - 
2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in 
Practice, ICSE-SEIP 2019, 2019, pp. 91–100. 

[85] J. Itkonen and K. Rautiainen, “Exploratory testing: A multiple case study,” in 2005 International 
Symposium on Empirical Software Engineering, ISESE 2005, 2005, pp. 84–93. 



D4.1 – State of the Art on Data-Driven Engineering 30-06-2020 
IVVES_Deliverable_D4.1_SoTA-DDE_V1.0.docx ITEA3 Project n. 18022 

All rights reserved. No portion of this document may be reproduced in any form without permission from the IVVES consortium. 

IVVES Public © 2020 IVVES Consortium Page 46 of 46 

[86] “Principles of Chaos Engineering.” [Online]. Available: 
https://principlesofchaos.org/?lang=ENcontent. [Accessed: 26-Jun-2020]. 

[87] A. Basiri et al., “Chaos Engineering,” IEEE Softw., vol. 33, no. 3, pp. 35–41, May 2016. 

[88] B. H. Sigelman et al., “Dapper, a Large-Scale Distributed Systems Tracing Infrastructure.” 2010. 

[89] “Google - Site Reliability Engineering.” [Online]. Available: https://landing.google.com/sre/sre-
book/chapters/monitoring-distributed-systems/. [Accessed: 26-Jun-2020]. 

[90] “Selenium Conf 2018 - Smart Test Failure Analysis with ELK (Elastic Search, Log Stash & Kibana) 
| ConfEngine - Conference Platform.” [Online]. Available: https://confengine.com/selenium-conf-
2018/proposal/6146/smart-test-failure-analysis-with-elk-elastic-search-log-stash-kibana. 
[Accessed: 26-Jun-2020]. 

[91] “QuickCheck,” Software.legiasoft.com. 

[92] J. Martin and D. Levine, “Property-Based Testing of Browser Rendering Engines with a Consensus 
Oracle,” in Proceedings - International Computer Software and Applications Conference, 2018, vol. 
2, pp. 424–429. 

[93] “jqwik.” [Online]. Available: https://jqwik.net/. [Accessed: 26-Jun-2020]. 

[94] “Property-based Testing in Java: The Importance of Being Shrunk - My Not So Private Tech Life.” 
[Online]. Available: https://blog.johanneslink.net/2018/04/20/the-importance-of-being-shrunk/. 
[Accessed: 26-Jun-2020]. 

[95] “Test Intelligence demo: Defect Root Cause Analysis using NLP - YouTube.” [Online]. Available: 
https://www.youtube.com/watch?v=x2Lz0dtYNJw. [Accessed: 26-Jun-2020]. 

[96] “Code Quality and Security | Developers First | SonarSource.” [Online]. Available: 
https://www.sonarsource.com/. [Accessed: 26-Jun-2020]. 

[97] “Checkmarx - Application Security Testing and Static Code Analysis.” [Online]. Available: 
https://www.checkmarx.com/. [Accessed: 26-Jun-2020]. 

[98] “List of tools for Java software metrics.” [Online]. Available: https://www.monperrus.net/martin/java-
metrics. [Accessed: 26-Jun-2020]. 

 


