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1. Summary 

The Pianism project aims at putting together predictive and prescriptive maintenance techniques 

in order to achieve an end-to-end automated manufacturing process and optimize end-to-end value 

chains. To achieve this objective, the project requires integrating knowledge and technologies from 

different fields, namely from the industrial maintenance strategies, industrial IOT, and Data Science. 

These fields present the theoretical and technological framework where PIANISM bases its 

approach. 

Predictive Maintenance (PdM) uses extensive data exploration techniques (ex: machine learning 

algorithms and simulation) which convolute real-time streaming data with previously trained models. 

In an industrial environment, this streaming data comes from the equipment. Data is acquired by 

sensors strategically placed in the equipment or environment. Therefore, the selection of relevant 

data, the elicitation of the adequate sensors and their placement are necessary conditions to 

successfully acquire data from the shop floor. Contextual and management information is also 

provided by the management information systems (ex: ERP, MES, Quality Management) present 

in the organizations. This information is fundamental to align the equipment maintenance to the 

company strategy, organizational structure and customer requirements and feedback.  

This document analyses the current state of the art of the base technologies of the Pianism 

project: it starts by reviewing the literature regarding the evolution Maintenance Strategies. It then 

examines the current technologies in the Industrial IOT (I-IOT) field in what concerns to data 

acquisition. The document continues by describing the Data Science techniques and technologies 

relevant for the Pianism project. The state of the art finalizes by presenting the relevant 

Management Systems, the way they provide the necessary context to the maintenance strategy 

implementation. 
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2. Introduction 

Since the outset of the Industrial Revolution, maintenance of engineering equipment in the field 

has been a challenge. While impressive progress has been made in maintaining equipment in the 

field in an effective manner, maintenance of equipment is still a challenge due to factors such as 

size, cost, complexity, and competition[1]. 

Maintenance is defined according to the European standard (EN 13306: 2001) as “ the 

combination of all technical, administrative and managerial actions during the life cycle of an item 

intended to retain it in or restore it to a state in which it can perform the required function”. 

Global Asset Protection Services[2], defines maintenance as “the most important factor in 

equipment availability and reliability. Equipment can and should be properly designed for its 

purpose; carefully built, installed and protected; and skilfully operated. However, the day that 

equipment is installed, it begins to age. (…) Placing equipment in service provides other stresses 

that accelerate aging.” 

The earliest maintenance records date from the 10 th century, when the Vikings relied heavily on 

maintenance to keep their ships in perfect battle condition1. According to Dhillon [3], the history of 

maintenance goes with the technical-industrial development of humanity. Maintenance was of minor 

importance and was performed by the same operations staff until 1914. But with the advent of World 

War I and the introduction of serial production, established by Ford, companies felt the need to 

create teams that could repair machines, in a short time manner. Thus, arose an agency 

subordinate to the operation, whose basic purpose was to perform maintenance, known today as 

corrective. 

From the 1930s onwards, the maintenance history can be divided into three generations with the 

following aspects [1], [3], [4]:  

• The first generation covers the period before World War II, when the industry was poorly 

mechanized. During this period maintenance was fundamentally corrective, that is, the 

repair was made only after the failure event. Due to the economic climate of the time, 

productivity was not a priority. Therefore, no systematic maintenance was required. 

• In the second generation, ranging from World War II to the 1960s, there was a sharp 

increase in mechanization as well as the complexity of industrial facilities. New 

maintenance techniques began to be used, such as manual work planning and control 

systems, and time monitoring. During this period, the concept of preventive maintenance 

emerged, as the need for greater availability and reliability in the pursuit of productivity 

was evidenced. The industry was very dependent on the appropriate functioning of the 

machines. This has achieved a longer equipment life. 

• The third generation began in the 1970s. During this period, the growth of automation 

and mechanization began to indicate that reliability and availability became key points in 

sectors as diverse as transportation, health services, data processing, 

telecommunications. and building management. 

The notions of prediction or prevention didn’t exist, as we know in the present, so maintenance 

suffered from quite a bad image back then [1]. The industrial world, as well as the implications, were 

very different from the ones we know today. At that time, the industry was prospering, so the 

                                                      
1 I. S. Klæsøe, Viking Trade and Settlement in Continental Western Europe, Copenhagen, Denmark: Museum Tusculanum 
Press, University of Copenhagen, 2010, p. 165. 
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consequences on production lines weren’t the same (e.g. equipment were not integrated to a more 

general system) [3], [5]. 

3. Maintenance Strategies 

Several industrial managers overlooked the positive influence of proper maintenance 

management on their company’s activity. Yet, it is a major performance factor and a cause for 

prompt gains within the company: in terms of productivity as well technology, suitable industrial 

maintenance management has positive consequences on organizations and their products  [3]. 

In recent years, manufacturing industry has been facing a major shift of the manufacturing 

requirements (e.g. consumer demand for customized products continues to grow), resulting in a 

much shorter product life cycle, unlike the traditional mass production of standardized products [6]. 

These changes are impacting companies, rising the need for adaptation, driving all sectors of the 

manufacturing activity to move correspondingly. Maintenance activities can impact the entire 

manufacturing/production cost and quality, and consequently, customer satisfaction  [6]. 

3.1. Types of Failure 

Maintenance exists because failures happen. Failure of an equipment is an event in which the 

equipment cannot accomplish its intended purpose or task. There are basically two types of failure: 

potential failure or functional failure (Table 1 - Examples of industrial failure prune of 

maintenanceTable 1). The potential failure is a failure at an early stage, which indicates that 

something is wrong, but the equipment is still performing its function in the production process. We 

can state that there is a potential fault (leak). That is, if it is not treated it will lead the equipment to 

functional failure [6], [7]. 

Table 1 - Examples of industrial failure prune of maintenance 

Potential failure Functional failure 
Imagine that in each hydraulic system there is a 

leak in one of the hoses. Despite the leak, the 

hydraulic system is still performing its function 

within the production process (triggering the 

required pressure, speed and force parameters). 

Assuming the leak grows, and the hydraulic system oil 

level drops critically making it impracticable to 

operate. At this point we have a functional failure; the 

hydraulic system is no longer able to perform its 

function due to leakage in the hydraulic hose. 

Functional failure is when equipment is no longer able to perform its function in the production 

process. If the leak had been repaired when it was still in its early stages and was just a potential 

failure, the functional failure would not have occurred. So, corrective maintenance will always be 

linked to potential failure or functional failure [6]. 

3.2. Taxonomy and Classification 

Maintenance can be classified as planned or unplanned. Planned maintenance refers to any 

maintenance activity that is designed, documented, and scheduled [4]. The aim of it is to moderate 

downtime by having all necessary resources on hand, such as labour and parts, and a strategy to 

use these resources. It is performed while the equipment is still online, preventing it fails . 

Although planned and unplanned maintenance are two of the main ways to categorize 

maintenance types, when defining maintenance procedures in an organization it’s helpful to look at 

three fundamental types [2], in which literature agrees on: reactive, preventive, predictive.  
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• Reactive Maintenance (or Unplanned Maintenance): is fixing things as they break. It’s 

simple and inexpensive (if nothing breaks). This type of maintenance often leads to worse 

and more regular breakdowns, as well as costly downtimes.  

• Preventive Maintenance (or Planned Maintenance): combines a series of smaller, 

scheduled maintenance tasks to overcome the number and severity of breakdowns. It also 

adds greater predictability in managing your parts and labour.  

• Predictive Maintenance (PdM): concerns monitoring equipment conditions to predict when 

it is destined to fail, then performing maintenance to avoid that failure.  

To these three main types, two more can be added: condition-based maintenance and proactive 

maintenance: 

• Condition-based Maintenance (CbM): concerns monitoring equipment conditions to 

assess what maintenance needs to be performed. 

• Pro-active Maintenance (PbM): is focused on by undertaking activities that avoid the 

underlying conditions that lead to machine faults and degradation. 

The taxonomy of the maintenance strategies of these conditions is illustrated at Figure 1. 

 

 

Figure 1 - Maintenance strategies classification. Adapted from assetinsights.net, accessed September 11, 2019 

Reactive maintenance can be divided into two subtypes: Run-to-fail (RtF) and Unintended 

Failure maintenance (UFR). The first one is the simplest one: resources are deliberately allowed to 

operate until they break-down, at which point, reactive maintenance is performed (also called “Fit 

and forget”). No action, including preventive one, is performed on the resource up until the failure 

event. However, a plan can be in place taking into consideration this event, so that the resource 

can be fixed with the minor production issues. UFR is slightly different in the sense that in this 

maintenance type, equipment owners do not intentionally and deliberately allow their assets to run -

to-failure. Still, the equipment’s may fail due to inadequate maintenance budgets, poor planning 

and ignorance. 

Preventive maintenance is a type of planned maintenance that is performed on equipment, to 

prevent malfunctions and minimize the consequences of equipment breakdowns. It is therefore 

appropriate for assets whose function is essential, that is, without which the company's operations 

cannot continue normally, as well as higher value equipment, which can be very expensive to repair 

or replace. It is a time-based maintenance (TBM) TBM can be calendar based (i.e. in fixed days), 

performed at constant intervals or depending on the age of the equipment. 

Condition-based maintenance (CbM) is a maintenance strategy that monitors the actual 

condition of an asset to decide what maintenance needs to be done. CBM dictates that maintenance 

Maintenance 
Strategies
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should only be performed when certain indicators show signs of decreasing performance or 

upcoming failure. Checking a machine for these indicators may include non-invasive 

measurements, visual inspection, performance data and scheduled tests. Condition data can then 

be gathered at certain intervals, or continuously (as is done when a machine has internal sensors). 

Condition-based maintenance can be applied to mission critical and non-mission critical assets. 

This is not a planned maintenance as it is not performed based upon predefined scheduled intervals. 

It is instead performed only after a decrease in the condition of the equipment has been observed. 

Compared with preventive maintenance, this increases the time between maintenance repairs, 

because maintenance is done on an as-needed basis. 

Predictive maintenance (PdM) makes heavy use of the data about current and past equipment 

condition and performance to infer failure conditions and failures events, allowing the prediction of 

failure occurrence and allowing intervention in the equipment before the failure actually happens. 

3.3. Reactive Maintenance 

Reactive maintenance (or breakdown maintenance) refers to repairs that are done when 

equipment has already broken down, to restore to its normal operating condition.  A typical example 

of reactive maintenance (and the impact of it can cause) is having a car breakdown on the side of 

the road and having to wait for roadside assistance to repair it. The trigger for this type of 

maintenance is a failure trigger. One type of reactive maintenance could be unplanned equipment 

downtime repairs (or failure). This is probably the most common type in a manufacturing 

environment [3]. An example of this could be lubricant or another contaminant dripping into a shop-

floor zone.  

Although the equipment is not technically broken down it must be repaired to prevent product 

loss. 

3.3.1. Reactive Maintenance Impact 

Despite being the most basic and common type of maintenance, the level of knowledge about 

such maintenance is still very low. Because this maintenance type is both unplanned and 

unscheduled, its performance is highly unproductive [1]: It usually needs a high amount of time to 

understand the problem and also to get the resource fixed. On top of that, waiting for parts, supplies 

or other staff members to complete the maintenance task adds up to the required time.  

Reactive maintenance is naturally bound with the functional failure and is essentially the “ run it 

till it breaks” maintenance mode. No actions or efforts are taken to maintain the equipment as the 

designer originally intended to ensure design life is reached. This type of maintenance can also be 

very expensive.  

Supplemental costs (e.g., embrace time spent idling, the premium costs that may be spent on 

fast part orders and shipping, and the possible overtime payments that may be required for extra, 

or specialized personnel) needs to accomplish the task. 

In addition, because it is likely that the operation of other parts of the facility will be negatively 

impacted by the breakdown of the equipment in need of repair, the cost of disrupt production needs 

to be reflected into the cost of this type of maintenance. If no planning is initiated, then this type of 

maintenance becomes the default one. This happens as planned and predictive maintenance 

techniques, described later, need investing in planning beforehand, in order  to be successfully used 

[3]. 
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Run-to-failure is usually demonstrated using a bath-tub graph (Figure 2), composed of three 

distinct sections: introductory failures, normal degradation, and excessive degradation followed by 

failure [8]. The cycle shows the initial investment in a system or machine, after which the useful life 

period begins, in which the systems are subject to internal and external factors that degrade its 

operation and, on the other hand, corrective actions are taken to the anomaly states. where at a 

certain point you decide to overhaul or opt to replace it [9]. The conjunction of these failure profiles 

comprises the observed failure rate. 

 

Figure 2 -The 'bathtub curve' hazard function. 

source: https://en.wikipedia.org/wiki/Bathtub_curve, accessed on September 12, 2019 

The graph depicts the lifecycle of equipment and infrastructure normally considered for a 

maintenance program such as run to failure; however, this type of diagram describes the relative 

failure rate of an entire population of products over time, rather than single examples of it.  

A conscious decision is made by the owner to neglect the asset, regardless of any signs of 

Potential Failure ("P") and to wait until the point at which Functional Failure ("F") occurs (section 

3.5.3). 

Failure is usually preceded by noticeable degradation, culminating in either abrupt failure, or a 

decision that the equipment should be stopped or replaced as it is in danger of either causing 

damage or becoming a safety hazard.  

Reactive maintenance implies often, that production needs to be stopped so that the equipment 

can be repaired or replaced. This can be catastrophic for the organizations as most of the times the 

negative consequences go far beyond the measurable (economics of production halt, bottlenecks 

and decreased output) such as loss of trust by customers and business partners, inconsistent 

quality products, low occupation rates of equipment, etc. The impact can, however, be positive if 

criticality of production. 
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3.3.2. Advantages of Run-to-Failure maintenance 

The with run-to-fail strategy, implies having spare parts and personnel promptly to replace the 

failed part and hold equipment availability. This approach should not be confused with reactive 

maintenance, because of the action plan to allow the resource to run-to-failure. This strategy is 

useful for assets that, on the breakdown, act no safety risks and have the least impact on production  

[9]. A common example of run-to-failure maintenance is the maintenance plan for and ordinary light 

bulb. This asset is tolerable to run until it fails. When it occurs, the plan to fix the asset is carried 

out. A new item is collected from stocks and replaced at a suitable time. 

This strategy doesn’t plan of time but reacts when the occurrence happens. For that reason, this 

strategy is easy to understand and implement. Minimal planning is needed since maintenance does 

not require to be scheduled in advance, the resources planning is quite low. Maintenance only 

needs to happen after breakdown has occurred. Also, less staff are required as less work is done 

day-to-day. Situations that could take advantages of this strategy [10]: 

• It is regarded as a short life asset, such as cheap, high-flow pumps, batteries, or high-traffic 

doors.  Some companies consider that equipment such as fire extinguishers can be placed 

on RTF list, and that is okay, provided that any statutory checks or expiry dates – most safety 

equipment has some level of replacement criteria.  

• Assets with disposable parts which are intended to be swapped out or replaced rather than 

repaired. This can include floor and wall surfaces. 

• Non-critical assets such as service and repair tools that can simply be replaced rather than 

repaired. This could include hand tools and even small electrical devices like multi -meters, 

provided that suitably calibrated and usable alternatives are available to use.  

• Durable Assets – Assets that are not subject to wear or assets that are unlikely to fai l inside 

normal operating criteria. This may include signage and labelling but would not include 

racking which may fail catastrophically and dangerously.  

• Assets that exhibit Random Failure Patterns which cannot be predicted and there is no other 

choice other than to run to failure. 

This kind of maintenance program is a quite reasonable method of dealing with the sorts of 

assets stated above but it shouldn't be confused with having any maintenance policy at all. 

Nevertheless, having a run to failure maintenance policy isn’t perhaps as easy as it may sound, 

since many parts of your maintenance schedule don’t fail abruptly, and some level of discretion is 

required. 

3.3.3. Disadvantages of Run-to-Failure maintenance 

Sometimes referred to as fit and forget maintenance, run-to-failure is perhaps the most cost-

effective of the maintenance strategies, and one that is widely adopted by companies that have a 

have certain types of equipment or meet other criteria. 

In time (Figure 3), unexpected downtime during the production can lead to missing a customer, 

damaged goods, standards drop, late deliveries, consequently, impact the revenue. The company 

can end up losing money for emergency spare parts shipping and overtime. Other direct effect, 

relying on reactive maintenance means that labour and spare parts might not be estimated 

accurately, and the organization won’t be able to repair equipment after the failure happens. This 

strategy does not involve keeping equipment online in an optimal way and therefore it does not 



15 

 

PIANiSM 
State of the Art 

Page 15 of 85 Based on the ITEA 3 PO Template v4.0 (August 2017) 

 

maximize initial investment on the asset. Maintaining the machinery before failures can increase 

asset life expectancy. 

 

Figure 3 Reactive Maintenance Impact.  

Adapted from instrumentationforum.com, accessed on September 10, 2019. 

When a maintenance work order is programmed, staff have time to prepare and review standard 

procedures to preserve a specific piece of equipment. Every asset has safety requirements to 

perform the job accordantly. Using reactive maintenance procedures, everything must be on -the-

fly, leading staff under stress. Consequently, they tend to rise more risks to keep the machine up 

and running. 

When an asset is not properly maintained, it consumes more resources. Simple maintenance 

jobs, such as greasing parts or changing filters, can reduce energy consumption by 15% [3]. With 

time to plan the maintenance activities, it increases time to analyse, evaluate and take actions 

based on past events and production schedule. With a reactive approach, failures occur 

unexpectedly, pushing staff to look around correct safety/procedures’ manuals and documentation, 

as well for hardware parts (e.g. spare parts, tools). 

3.3.4. When to use Reactive maintenance 

From the previous study, isn’t clear that reactive maintenance is deprecated for industrial 

domain, but it should be use within a careful plan and resources analysis. Companies will run a 

series of maintenance plans, some of which will ensure that expensive and/or critical equipment 

must kept running, while other parts of it, will consider less critical elements which can be added to 

a Reactive plan. Continue evaluation of the areas should be taken – as long as six months even, or 

even monitored by circumstantial evidence from manual observation. 

This approach is best suited to companies with the following attributes: a) A high-risk tolerance, 

b) A sophisticated maintenance program. Also, RTF is most appropriate when combined with a 

larger maintenance strategy that explores an optimal maintenance mix for the different assets. 

While RTF might sound easy to understand, it requires time and high degree of human expertise 

(good knowledge of the type of equipment used), to run properly. It also depends upon the 

equipment, and is best to be align with other strategies, so that while the equipment and company 

infrastructure is comprised, on the safety requirements [6]. 
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3.4. Preventive Maintenance 

Many companies do not deliberately allow their assets to run to failure - Unintended Failure 

Replacement (UFR). While they may find that they are neglecting some of their assets, this is not 

a conscious decision but rather an unfortunate unintended consequence of other factors such as 

poor planning, ignorance or inadequate maintenance budgets [11]. There is a slight distinction (but 

very important) that should be made between Corrective Maintenance (CM)2 and Reactive 

Maintenance (RM). In the case of CM, the owners anticipate the consequences of their planned 

inaction, they are ready for these consequences and they are therefore still in control.  

“Machines break. That’s the first and probably oldest rule in manufacturing. It used to be the 

best way to manage that was hoping someone on the production floor,  using a combination of 

instinct and experience, would see the indications of an asset about to go down and repair it in time. 

(…) hope is no longer a viable strategy.” [12]  

Today, companies to be competitive need to adopt cost-cutting policies and increased product 

or service quality. Industrial maintenance, more specifically preventive maintenance, has shown 

over several decades that it is an area of high importance within companies, contributing 

substantially to better performance. 

Preventive work is performed regularly and typically determined by time (e.g. every 6 months), 

events (e.g. every 600 uses), or meter readings (e.g. every 3.000 kilometres) with limits. Which are 

often established based on statistics about the average or expected life of the equipment  [11]. 

3.4.1. Preventive maintenance planning 

Corporations progressively became aware of the safety aspect. They desired to protect their 

employees, so they started to take an interest in maintenance to promote it and to give it more 

meaning. Equipment had evolved, combining more advanced technologies, so there were more 

accident risks and companies wanted to diminish them. Maintenance became more important within 

plants: first maintenance procedures were born, in virtue of it, uncertainty risks were drastically 

reduced, the equipment performance was nearly followed and critical breakdowns on the entire 

production line were limited as much as possible. Corporations wanted to develop maintenance for 

human reasons rather than for purely economic ones [13][14]. 

No one wants downtime. It is detrimental to businesses, both in terms of cost and reliability and 

customer trust. Focusing on preventive maintenance plans will reduce the number of unexpected 

breakdowns in critical equipment that can result in downtime [14]. 

The main advantage of having a preventive maintenance plan is that you can prevent all these 

situations by replacing used components promptly, preserving and restoring all necessary parts. 

For this, it is recommended to use maintenance support software where the maintenance manager 

can: a) Improve the technical and operational state of the equipment; b) Reduce equipment 

degradation; c) Decrease the risk of equipment damage; d) Schedule prevention work; e) Perform 

repairs under conditions beneficial to the operation; f) Reduce costs; g) Extend equipment life and 

h) Diminish impact on customer/user.  

                                                      
2 “Corrective maintenance is a maintenance task performed to identify, isolate, and rectify a fault so that the failed 
equipment, machine, or system can be restored to an operational condition within the tolerances or limits established for 
in-service operations”. Source: Wikipedia, accessed September 11, 2019. 
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A preventive maintenance plan is ideal when the maintenance manager can avoid any damage 

to their equipment or can predict and schedule so that the damage has the least possible impact 

on the customer. 

Table 2 preventive maintenance plan design example [15]. 

Steps description 
1. Information gathering The first step is to take a survey of all the working machines, parts 

replacement history and the amount of activities that have already 

been done. Measure what are the most common occurrences found 

on equipment that has long-term defects. 

2. Creation of Maintenance Checklist Create a procedure for checking the condition of each equipment after 

the intervention, whether preventive or corrective. The most common 

checklists are: Mechanical, Lubrication, Electrical and Safety. 

3. Cost Estimation Plan budget and costs are made. It must include all the expenses that 

will be required for the execution of the project. Maintaining project 

profitability is very important for the process to be profitable and 

efficient. 

4. Setting a schedule Define how often each review and maintenance should take place and 

divide it by the number of contributors you will allocate. Increase the 

number of visits to the equipment with the largest volume and time of 

use. 

5. Tracking each activity Controlling each activity in the field is critical for proper execution. Set 

a report standard with each checklist, photos, arrival and departure 

times, and set a minimum quality level. 

6. Structure Productivity KPIs Key performance indicators are critical in executing the maintenance 

plan. It is this data that will show you if the project is on track or if 

adjustments are needed. (e.g. Avg. Service Time, Repair Interval, 

Profitability, Scheduling) 

 

The preventive maintenance plan is a measure that, in addition to bringing more safety and 

quality to the work of its technicians, works as an important strategic decision to reduce operating 

costs in a company. 

To adopt Preventive Maintenance as your main strategy, companies need to develop a 

Preventive Maintenance Plan, which is a document created annually by the Maintenance Manager, 

listing equipment and periods during which maintenance should be maintained during year: 

monthly, annually, twice a month, or as required [15]. 

3.4.2. Advantages of preventive maintenance 

While aware of the benefits of preventive maintenance, many managers still devote most of their 

time and resources to corrective maintenance, viewing preventive as an unnecessary additional 

cost. Preventive maintenance when properly planned can greatly lower overall maintenance costs 

and even increase the productivity of equipment and facilities. 

This approach has many advantages over Corrective Maintenance (CM), which is only 

performed when equipment malfunctions are reported. Advantages include helping to improve 

equipment life and equipment reliability, and to prevent unexpected downtime. These factors are 

important for lowering long term costs.  
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Table 3 Advantages of Preventive Maintenance 

Adapted from blog.infraspeak.com/advantages-preventive-maintenance/, accessed September 11, 2019 

  

Equipment will be more efficient Technicians and managers can have more faith that 

equipment will function smoothly and without 

complications. 

Savings on your resources Any piece of equipment that is showing signs of wear 

and tear or is approaching the end of its usability, there 

is a good chance it will be using far more energy than it 

is worth. 

Longer lasting equipment Implementing preventive maintenance can extend the 

life of functioning equipment by keeping all parts in good 

working order. 

Full and accurate information on 

operations 

Provides the manager with access to more holistic 

information on operations such as on consumption and 

income. This can help to make well informed decisions, 

such as when it comes to opening new equipment 

The creation of a Preventive 

Maintenance Plan (PMP) 

This generates an annual calendar (or 

biannual/triennial, depending on the preferences of 

management) which helps to schedule an event for the 

coming months 

A more motivated and efficient team Having better organized progression plans and a more 

transparent system to reward strong performance will 

help to motivate your team and encourage yet more 

improvement 

Through preventive maintenance, technicians and maintenance managers can reduce the 

degradation of their equipment, extending their life span and avoiding corrective interventions that 

generate high costs and have negative impacts on their customers. 

3.4.3. Disadvantages of preventive maintenance 

 The main problem with Preventive Maintenance is that, since it is not based on the actual 

condition of the equipment, it can result in maintenance actions, including replacement of parts, 

which are unnecessary and cost time and money. 

Though time-based and hands-on equipment maintenance is still common in the industrial 

processes, these techniques have increasingly been bottlenecking and unreliable in recent years[4]. 

The quality of the machine spare parts, although pass through into a systematic quality process 

during their manufactured, under identical conditions, can show different times of failure (Figure 1), 

as they are part of an endemic system. The conclusion to be drawn is that it is impossible to tell 

how long a component may last in an industrial process [13]. 

Performing preventative imposes to perform surveillance or monitoring tasks. Otherwise, there 

is no guaranty to remain preventive (requires no surveillance). This is a blind type of maintenance 

where interventions are performed disregardful of equipment condition [11]. The same task could 

be deemed preventive or corrective depending on when the task is done i.e. before or after failure. 

For a complex asset, the overall failure pattern would most likely be random, in which case time -

based repair or renewal would not be an effective strategy. 

The “scheduled maintenance” (or preventive maintenance) regime is also widely used on more 

complex larger machines where failure can affect production. However, Nowlan et. al.  [16] has 

shown that routine maintenance on some types of machine can actually reduce the reliability of the 
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machine rather than improving it, throwing into question the assumption that routine maintenance 

should be used when reliability is important. 

There are many instances in which preventive is the best maintenance strategy to use, and it’s 

much easier to carry out a PM strategy with the help of maintenance software. 

3.4.4. Computerized maintenance management system (CMMS) 

While the computerized maintenance management system (CMMS) gave the first appearance 

in the 1960s, in the format of a punch-card system used to manage work orders, it evolves 

dramatically over the past 50 or more year to the present. Nowadays, CMMS software is used to 

centralized record of all assets and equipment that maintenance team is responsible for, as well as 

planning and track activities, keeping a detailed track of the work performed.  

These systems monitor all maintenance work for each technician and are even able to calculate 

the time each work takes to complete, thus giving a better insight into each technician's 

performance. 

This maintenance management system is extremely useful management software to help with 

scheduling and managing maintenance work, as well as its assets and costs. As a maintenance 

manager, you may think you have everything under control, but some signs may indicate that it 

needs to consider investing in one of these tools to help perform your tasks smoothly [4]. With a 

CMMS, is possible to make much more informed decisions about various aspects of your work, 

such as maintenance plans, technician allocation, or equipment investments.  

Table 4 CMMS Benefits for planned maintenance. 

Adapted from www.fiixsoftware.com/cmms/, accessed September 11, 2019 

  

Measure maintenance performance A CMMS makes it easy to do preventive 
maintenance, which means there are fewer 
surprise breakdowns and work outages. Allowing 
you to make better business decisions. 

Less overtime Better scheduling means that your team isn’t 
sitting idle or working overtime, which means 
work can be distributed evenly. 

Savings on purchases Inventory planning features give you the time to 
shop around for spare parts pricing, instead of 
having to buy in a hurry. 

Better accountability Work order tracking makes it possible to quickly 
see if a technician did their work on time and get 
alerted when a task is complete. 

Information capture Technicians can record problems and solutions, 
so this information is captured for others to use. 

Certification and analysis A full record of assets and performance helps 
managers analyse energy usage and plan 
maintenance spend. 

 

Most CMMS projects that fail, do so because they are too difficult to use, and it is time-consuming 

to enter data into the system. The next system iteration is focused on optimized user experience 

design, and efficient ways to push data from a pool of sources [17]. A good CMMS system will 

streamline workflows and allow maintenance teams to easily manage records of all assets and 

equipment, which they are responsible for, and the work done on it.  
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3.5. Condition-Based Maintenance 

Common knowledge in the maintenance engineering world is the concepts of systematic 

maintenance and conditional maintenance (see Figure 1): Systematic preventive maintenance aims 

at introducing planned maintenance actions as well as reducing production losses. Maintenance 

actions are scheduled according to the experience of the technical maintenance team or the 

recommendations of the equipment manufacturers. In systematic maintenance, the component is 

replaced with historical, experience-based or more common, high-flow of data in large spreadsheets 

of individual component life, statistically exploring the breakpoint of a particular component and 

replacing it before this point (section 3.3.4 and 3.4.2). 

Equipment failure is not a single event – it is a process. In this notion, the breakdowns/failures 

are both a path and a target, which become tightly established in the core of maintenance best 

practises. In this way, Condition-based maintenance (CBM) can act as a monitor to failure detection. 

The need to know the state of conservation of the various dynamic equipment led to the 

development of the so-called Conditioned Maintenance, sometimes also known as Predictive 

Maintenance [17].  

Condition-based maintenance (CBM) carried out by evaluating the condition of the machine, 

usually performed on an ongoing basis. The components replacement process is based on 

predictive analysis (e.g. Thermography, Ultrasound and Current Analysis in AC motors, vibration). 

Under CBM, maintenance only occurs when data indicates a decline in performance or the early 

warning signs of failure. This differentiates CBM from preventive maintenance, where tasks are 

performed at regular intervals. 

 Just as the electrocardiogram provides a doctor with a set of information about the "state of 

conservation" of the heart, the spectrum of vibration, among other analysis techniques, provides 

information about the "health" of the equipment. “Predictive maintenance typically reduces machine 

downtime by 30 to 50 percent and increases machine life by 20 to 40 percent.”  [12] 

The goal of CBM is to detect failure before it happens, so maintenance can occur exactly when 

needed. Because this maintenance method is supported on collecting and analysing data, it can be 

used to identify trends in asset performance and track their lifecycle status. This help to support 

decisions from scheduling, labour to budgeting. 

 

Figure 4 Total Maintenance Cost 

Adapted from http://onupkeep.com, accessed September 16, 2019 
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One example of CBM, is tracking pressure readings on equipment with water system. Pressure 

levels data let personnel to identify when and where a leak is likely to take p lace before it happens, 

instead of at the point of failure. 

Not all condition-monitoring techniques require complex algorithms or intricate models, as data-

drive condition-monitoring approaches rely on simple queries, which runs periodically or in real -

time, against time-series data generated by machines and external sensors. If a damage parameter 

exceeds a certain threshold, these systems can trigger a deeper analysis or corrective action in 

reliability engineering workflow, or directly pass to maintenance execution [13], [18], [19]. 

3.5.1. Benefits of condition-based maintenance 

CBM fits on the predictive maintenance (PdM) scope, “being a philosophy or attitude that, simply 

stated, uses the actual operating condition of plant equipment and systems to optimize total plant 

operation. A comprehensive predictive maintenance management program uses the most cost - 

effective tools (e.g., vibration monitoring, thermography, tribology) to obtain the actual operating 

condition of critical plant systems and based on this actual data schedules all maintenance activities 

on an as-needed basis (…)” [14]. 

PdM (which has been around for many years now) utilizes data from various sources,  such as 

critical equipment sensors, enterprise resource planning (ERP) systems, computerized 

maintenance management systems (CMMS), and production data. 

Is also called intelligent maintenance, as an intervention is only by manifesting the need. 

Generally applied to machines vital to production, equipment whose failure compromises safety and 

critical equipment with expensive and frequent breakdowns. It becomes easier over time because 

the features of each machine are learned, and the diagnostics get faster to act on the failure. Ideally, 

alarm limits are set high enough to rule out false alarms but conservative enough not to reach a 

critical condition. Alarm limits are continuously adjusted as more equipment is known in the 

maintenance program. 

After the repair is fixed, condition-based analyses run again, this time to measure vibration 

levels, e.g., in the repaired equipment to create a new reading. Thus, quantifying the repair effort 

and ensuring quality repair results from the equipment. This maintenance program can reduce 

unscheduled breakdowns of all mechanical equipment in the plant and assure that repaired 

equipment is inacceptable mechanical condition. The program can also identify machine-train 

problems before they become serious. Normal mechanical failure modes degrade at a speed 

directly proportional to their severity. If the problem is detected early, major repairs can usually be 

prevented [14].  

The current state of the art in the field of sensing, telecommunications, micro-electronics and 

Artificial Intelligence (AI), unlocked a new variety of machine condition-based monitoring, which 

empower business to gain many of the benefits of transitioning from reactive and preventive 

maintenance to a CBM management on a wide range of machines, without the high up-front cost of 

traditional CBM systems [20]. 

A direct correlation with cost-effective advantage, these new systems use small, low cost and 

easily attached wireless sensors, being able of measure a range of condition indicators, with low 

latency time, transmitting to a central database. Users access online data about machine condition 

ubiquitously (e.g. mobile or web app). Earlier warnings can be triggered to nominated staff if 

machine health degrades [19]. 
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According to Coleman et al. [15], maintenance operation costs are reduced by more than 50%, 

and there are several competitive advantages related to the adoption of predictive maintenance, 

such as: 

• Increased reliability,  

• improvement quality and productivity, 

• maintenance cost reduction,  

• increases life of components/equipment and facilities, 

• improved process, equipment, facilities and people safety.  

With Condition Monitoring, it considers a much wider set of granular data that includes sensor 

data from the asset, previous inspections, other components of the same type, location and 

condition of the plant, and historical trends. 

3.5.2. Types of condition-based monitoring 

Condition-based maintenance is rooted in condition-based monitoring. This involves keeping 

track of the state of an asset using specific performance indicators. Different tools and techniques 

allow the maintenance staff to do an assessment. These methods can include low-tech approaches, 

such as observation by a technician, or more technologically advanced processes, like gathering 

data through sensors. A variety of technologies can, and should be, used as part of a 

comprehensive predictive maintenance program [14], [21]–[23]: 

• Visual inspections: Visual inspection was the primary method used for predictive 

maintenance. Almost from the beginning of the Industrial Revolution, maintenance 

technicians performed daily inspections of critical production and manufacturing systems to 

identify potential failures or maintenance-related problems that could impact reliability, 

product quality, and production costs. 

• Vibration analysis: Vibration is the oscillation of a body over a reference point due to a 

given force. There are some fundamental concepts about vibrations that must be understood 

clearly. Vibratory movements include the movement of pendulums, strings of musical 

instruments and even the atoms that make up the solids vibrating around fixed positions in 

the crystal lattice. Physically, the vibration phenomenon is the result of the energy exchange 

between two deposits of the same system. When kinetic energy is exchanged into potential 

energy and vice-versa, we get the natural vibration. 

• Infrared and thermal analysis: The temperature variable is defined as the measure of the 

average kinetic energy of atoms or molecules of a substance, given in  degrees Celsius, 

Kelvin or Fahrenheit. Whenever there is a temperature difference within a system there will 

be a transfer of that energy towards the lower temperatures. The transferred energy is called 

heat, and the transport process is called heat transmission. There are 3 basic mechanisms 

of heat transmission3: conduction, convection and radiation. 

• Ultrasonic analysis: Ultrasound testing is one of the main non-destructive testing methods 

applied in the industry as it allows the analysis of the part in i ts entirety. The use of ultrasonic 

technology results in increased production, reduced maintenance costs and energy 

                                                      
3 Conduction: is the transfer of energy between adjacent parts of a solid as a result of a temperature difference in it. 
Convection: is a mass conduction heat transfer process, characteristic of fluids. Radiation: is the transfer of heat through 
electromagnetic waves. Source: Machine Design Website - www.machinedesign.com/, consulted on September 16, 2019. 
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consumption as well as more efficient staff utilization. Companies end up having greater 

profitability. Ultrasound testing detects internal discontinuities in a particular part by the 

propagation of sound waves. Ultrasonic instruments have been used for leak detection. Its 

ability to accurately measure pressure and vacuum leaks in tanks, pipelines, heat 

exchangers and valves. 

• Acoustic analysis: Is the measurement of sound waves caused by component contacts 

inside the equipment. sound is created when a medium vibrates, which occurs when rolling 

elements inside a bearing are allowed to touch one another or the element raceway. is 

related to vibration analysis; however, its focus is not to detect causes for rotating equipment 

failure by measuring and monitoring vibrations at discrete frequencies and recording data 

for trending purposes. 

• Oil analysis: The smooth running and long-term performance of plant machinery have 

proved to be so critical, that some equipment manufacturers offer their customers a 

preventative maintenance oil analysis program. They will take samples of oil regularly and 

by a combination of physical and chemical tests, gauge how well a gearbox or hydraulic 

system is performing. Monitoring its physical properties, contamination levels, and wear 

debris fingerprint over time to get a better knowledge of the lifetime of the moving parts. 

Some of the most important tests include: Viscosity, water, Total Acid Number (TAN) and 

Total Base Number (TBN)4, Wear Metals, Ferrous Metal Content, Particle counting. 

• Electrical analysis: electrical machinery produces a specific electrical signature when 

operate on normal conditions - Electrical Signature Analysis (ESA) [24]. Is the general term 

for a set of electrical machine condition monitoring techniques through the analysis of 

electrical signals such as current and voltage. Traditional electrical testing methods must be 

used in conjunction with vibration analysis to prevent premature failure of electric motors 

(e.g. Resistance testing, Megger testing, Impedance testing, HiPot testing). 

Using condition-based maintenance doesn’t mean using it effectively. As it was stated 

previously, it doesn’t exist the right systems, processes and procedures, this maintenance can cost 

more time, money and patience. Is necessary to understand everything about how equipment 

functions, so sensors can be properly calibrated, identify probable problems as soon as possible, 

and suggest proper solutions. Asset context-awareness should aggregate baselines, from 

manufacturer recommendations to historical trends. Building baselines for each system, demands 

expert knowledge, to reduce uncertainty, and do decisions more efficient and effective. 

The baseline of an equipment’s stable period is never accurately known and will vary for different 

types of equipment and the different conditions in which that equipment is used. Fo r an industrial 

component such as a process sensor, a shaft in a motor, or tubes in a heat exchanger, maintenance 

and replacement schedules are not easy to establish [25]. Determining the best actions to prolong 

the lifespan of an asset takes a great deal of knowledge about how specific assets fail. In some 

cases, problems don’t always reveal a clear cause. 

  

                                                      
4 “Monitor organic acids and bases respectively that are produced from a combination of heat -generated oxidation products 
and the breakdown of additives in the used oil”. Source: www.plantengineering.com, consulted on September 16, 2019 
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3.5.3. Understand and use the potential failure (P-F) curve 

The Potential Failure (PF) Curve is an essential analytical tool for a maintenance plan that is 

based on reliability and follows Reliability Centered Maintenance (RCM) standards  [26]. Knowing 

this curve makes one aware of both the useful life and the points of failure of equipment. 

understanding the data, it will be even more directional to structure the maintenance plan. 

Equipment is not built to last forever, but it can last much longer than expected. Only 11% of 

equipment failures are linked to ageing, meaning that if there is a good reliability-centered 

maintenance strategy, 89% of equipment can be kept available and reliable for extended periods of 

time [27]. 

 

Figure 5 – P-F curve 

Adapted from Nowlan’s and Heap’s original P-F curve [16] 

The P-F curve describes the correlation between machine breakdown, cost, and how it can be 

prevented. It is based on the basis that equipment might be in the early stages of failing still if seems 

to be working fine. Along the X-axis of the curve is time. Along the Y-axis is the machine’s condition. 

The machine progresses from top working condition to point of failure, and then down from there 

until actual failure. 

Point P (Potential): It is the same as saying that there is a failure mode, or a "symptom". 

Examples of failure symptoms include rising vibration levels, rising temperature levels, a certain 

leak, etc., is any change in the way the equipment works before the failure. Thus, it can be said that 

this is the moment when the failure is born in the asset. It is still a failure at an early stage, it does 

not completely compromise the operation of the equipment but decreases its performance with 

every passing minute.  

Point F (Functional): The equipment has failed/it cannot perform its work within the process, 

i.e. it is the inability of a system to meet a specified design performance standard.  

A complete loss of function is a functional failure. However, a functional failure also includes the 

inability to function at the performance level that has been specified as satisfactory. Defining 

functional failures for any component or system requires a clear understanding of their functions  

[26]. It is extremely important to determine all functions that are meaningful in each operational 

context since it is only in these terms that their functional failure can be defined. 

The most important part of the P-F curve is the P-F interval. The P-F interval is the time between 

an asset’s potential failure and its functional predicted failure. For successful CBM, it must ensure 

that inspection intervals are smaller than the P-F interval so it can catch a failure after it’s detectable, 
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but before it happens. Calibrating your maintenance intervals is also crucial to optimize condition -

based maintenance. 

Once the time interval between potential failure and functional failure is known, the maintenance 

plan will be planned and executed so that it can further extend the life of this analysed equipment. 

Understanding the P-F curve and the P-F interval is key to building an efficient CBM strategy. The 

P-F curve and interval allow you to determine how often you should complete a CBM task. The 

frequency of maintenance is reduced, as are the costs and time commitments associated with 

maintenance [28]. 

The PF Curve is essential for determining preventive and predictive action intervals so that they 

can be performed at the exact times: as close as possible to potential failure and as far as possible 

from functional failure. 

While CBM relies heavily on technology and automated systems (e.g. sensors and software), 

there will always be a human element involved. To improve efficiency and effectiveness from CBM 

strategy, it is relevant that all maintenance personnel are properly trained for CBM benefits and how 

to use the systems. This action will reduce user errors and increase reliability throughout the 

process. 

Training should take in consideration the condition monitoring complexity and different types, 

and how it affects each asset inside the company. Also, should be clear how every maintenance 

personnel gather sensor data correctly (i.e. identify it reliability status/calibration quality process), 

and how resulting maintenance tasks should be treated. In this stage of CBM implementation, is 

advisable to add and asset management policy5, as it will help all staff members, not only 

maintenance [25]. Part of the strategy is to implicate everyone on the benefits of maintenance 

techniques, how them will impact the organization, and consequently, to ensure the strategy works 

to its full potential. 

3.5.4. Challenges for predictive maintenance systems 

Condition-based Maintenance (i.e. predictive maintenance approach) enables more efficient, 

longer-term planning for maintenance operations and makes it easier to define operational 

maintenance goals and to allocate maintenance resources. 

Examining data from hundreds or thousands of sensors, gathered over months or even years, 

is well beyond the capabilities of human operators. Furthermore, the mathematical models, which 

describe an equipment’s evolution (and predict potential faults) based on such a wealth of data, are 

generally prohibitively complex to be used by humans. For data scientists, predictive maintenance 

has several promising outcomes, including reducing machine downtime and avoiding unnecessary 

maintenance costs while adding revenue streams for equipment vendors wi th aftermarket services. 

However, engineers and scientists face challenges around process and data when applying 

predictive maintenance technologies into their business operations  [29]: 

• Being unaware of how to do predictive maintenance 

• Lacking data to create proper predictive maintenance systems 

• Lacking failure data to achieve accuracy 

• Understand failures but not being able to predict them 

                                                      
5 An asset refers to anything that is used in the regular operation of an organization. It can be a physical object (e.g. 
buildings, equipment, raw materials), as well as intangible, such as staff or money. In this approach, asset management 
scope is higher than the maintenance assets objects, but all in the organization, such as computers, staff and infrastructures 
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The growing digitalization of companies marks the beginning of a new era for industrial 

maintenance: the emergence of predictive maintenance. A new generation of smart sensors 

appeals to an increasing number of manufacturers who wish to improve their maintenance methods. 

Companies should press well beyond one digital tool and think about how digital and advanced 

analytical techniques can transform their entire maintenance and reliability system. This means 

looking end to end for opportunities to make better use of data and apply user -centric design 

principles to digitize processes. The sustainable impact will require a blend of new digital tools, 

changes in asset strategy, and improved reliability practices [13], [29]. 

3.6. Predictive Maintenance 

Predictive maintenance is a proactive maintenance strategy that tries to predict when a piece 

of equipment might fail so that maintenance work can be performed just before that happens.  Thus, 

equipment downtime is minimized, and the component lifetime is maximized. The aim of predictive 

maintenance (PdM) is first to predict when equipment failure might occur, and secondly, to prevent 

the occurrence of the failure by performing maintenance. Monitoring for future failure allows 

maintenance to be planned before the failure occurs. Ideally, predictive maintenance allows the 

maintenance frequency to be as low as possible to prevent unplanned reactive maintenance, 

without incurring costs associated with doing too much preventive maintenance.  

Any predictive maintenance program should be characterized by a combination of three phases:  

[30] 

• Surveillance - monitoring machinery condition to detect incipient problems 

• Diagnosis - isolating the cause of the problem 

• Remedy - performing corrective action.  

Analysis of data is where the knowledge and experience of maintenance personnel becomes the 

most important in a PdM program. It normally requires extensive training not only in the analysis 

techniques, but also in the use of the hardware and software employed. There are five important 

analysis techniques in PdM: 

• Data comparison: Recognition of changes in data as compared to earlier data or baseline 

data on similar equipment. 

• Limit or range tests: Specific testing to discover operating parameters that do not follow 

continuous trends or repeatable patterns. 

• Pattern recognition: Identification of deviations from established patterns. 

• Correlation analysis: Comparison of data from multiple sources, related technologies, or 

different analysts. 

• Statistical process analysis: Use of statistical techniques to identify deviations from the 

norm.[30] 
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Figure 6 – Predictive Maintenance Market 

(Source: Predictive Maintenance Market Research Report- Forecast to 2022) 

For predictive maintenance to be carried out on an industrial asset, the following base 

components are required: 

• Sensors – data-collecting sensors installed in the physical product or machine 

• Data communication – the communication system that allows data to securely flow between 

the monitored asset and the central data store 

• Central data store – the central data hub in which asset data (from OT systems), and 

business data (from IT systems) are stored, processed and analysed; either on premise or 

on-cloud  

• Predictive analytics – predictive analytics algorithms applied to the aggregated data to 

recognize patterns and generate insights in the form of dashboards and alerts  

• Root cause analysis – data analysis tools used by maintenance and process engineers to 

investigate the insights and determine the corrective action to be performed [31]. 

 

Figure 7 – PdM architecture 

(Image Source: https://www.seebo.com/predictive-maintenance/) 

 

https://www.seebo.com/predictive-maintenance/
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3.6.1. Data Sources for Predictive Maintenance 

In order to get the performance of assets in real-time, PdM relies on condition-monitoring 

equipment. The formula for PdM can be stated as follows: condition-based diagnostics, predictive 

formulas and internet of things. 

Condition-monitoring Equipment 

With condition-monitoring equipment, each asset is monitored in predictive maintenance. 

Specifically, the machines are fitted with sensors that capture data about the equipment to enable 

evaluation of the asset’s efficiency and track wear in real-time. This step is essential because 

although physical inspections of equipment have traditionally been the major way through which 

maintenance personnel observe assets, there has been a critical shortcoming in that procedure – 

the most wear and tear happens “inside” the machines, which means you need to take them apart 

to do a proper inspection. However, by using condition-monitoring sensors and predictive 

maintenance, you can have an accurate representation of what is happening inside the asset 

without any kind of productivity disruptions.  

These sensors measure different kinds of parameters depending on the type of machine. Most 

commonly, they measure vibration, noise, temperature, pressure, and oil levels, but you can go 

beyond that and even measure things like electrical currents and corrosion. [32] 

 

Figure 8 –Condition Monitoring Equipment sensors 

(Image Source: https://limblecmms.com/blog/predictive-maintenance/) 

The Internet of Things 

It is one thing to gather data, but quite another to be able to analyse and use the data for its 

intended purpose. By using the IoT technology, the different sensors mentioned earlier can collect 

and share data. PdM relies heavily on these sensors to connect the assets to a central system that 

stores the information coming in. These central hubs run using WLAN or LAN-based connectivity 

or cloud technology. From there, the assets can communicate, work together, analyse data, and 

recommend remedial action or act directly based on how the system is set up. This exchange of 

information is at the core of predictive maintenance and allows maintenance techs to make sense 

of what is happening in the machines and identify any assets that (will) need attention. [32] 

Predictive Formulas 

This is where predictive maintenance goes beyond condition-based maintenance. The data 

collected previously is analysed using predictive algorithms that identify trends with the aim of 

detecting when an asset will require repair, servicing, or replacement. 

These algorithms follow a set of predetermined rules that compare the asset’s current behaviour 

against its expected behaviour. Deviations are an indication of gradual deterioration that will lead 

to asset failure. Service technicians can then intervene as required to avoid breakdowns. [32] 
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3.6.2. Predictive Maintenance Techniques  

PdM is a group of emerging scientific technologies that can be employed to detect potential 

failures that may not be evident through a preventative maintenance program. If the failure 

characteristics of the equipment are known, PdM can detect the failure well in advance and 

appropriate actions can be taken in a planned manner. The use of condition-based maintenance 

has dramatically reduced non-value-added maintenance by eliminating the need to unnecessarily 

shutdown equipment for maintenance checks. [33] 

In this section, six techniques will be focused which are stated below: Alignment, Oil analysis, 

Wear particle analysis, Infrared thermography, Vibration monitoring, Motor analysis.  

Alignment 

Misalignment of shafted equipment will not only cause equipment malfunctions or breakdowns, 

it may be an indicator of other problems. Checking and adjusting alignments used to be a very slow 

procedure. But the advent of laser alignment systems has reduced labour time by more than half 

and increased accuracy significantly. 

Laser alignment systems for shafts have been available for many years. Laser devices for 

aligning sheaves and pulleys have recently come to market.  [30] 

Ultrasonic testing: Instruments designed for ultrasonic testing sense ultrasound waves 

produced by operating machinery as well as the turbulent flow of leakage. They provide fast, 

accurate diagnosis of such problems as valves in blowby mode, faulty steam traps, and vacuum 

and pressure leaks. Ultrasonic observations may be taken in either airborne or contact mode. 

Airborne ultrasonic is extremely useful in the location and diagnosis of mechanical problems, 

but the technology is not capable of isolating specific sources of ultrasound within a machine. 

Testing instruments are usually battery operated for portability. Their electronic circuitry converts a 

narrow band of ultrasound (between 20 and 100 kHz) into the audible range so that a user can 

recognize the qualitative sounds of operating equipment through headphones. Intensity of signal 

strength is also displayed on the instrument. 

As scanners, ultrasonic instruments are most often used to detect gas pressure or vacuum leaks. 

Because they are sensitive only to ultrasound, they are not limited to a specific gas, as are most 

other leak detectors. 

In contact mode, a metal rod acts as a waveguide. When it touches a surface, it is stimulated by 

ultrasound on the opposite side of the surface. This technique is commonly used for locating 

turbulent flow or flow restrictions in piping. 

Ultrasonic detectors are somewhat limited in their use. For example, they may help identify the 

presence of suspicious vibrations within a machine, but they are not enough for isolating the sources 

or causes of those vibrations. 

On the plus side, ultrasonic monitoring is easy (requiring minimal training),  and the instruments 

are inexpensive. [30] 

Oil analysis 

Full benefit of oil analysis can be achieved only by taking frequent samples and trending the 

data for each machine in the program. The length of the sampling intervals varies with different 

types of equipment and operating conditions. Based on the results of the analyses, lubricants can 

be changed or upgraded to meet the specific operating requirements. It is nearly always best to 

work with a reputable laboratory for sample analysis and data interpretation. 
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It cannot be overemphasized that sampling technique is critical to meaningful oil analysis. 

Sampling locations must be carefully selected to provide a representative sample and sampling 

conditions should be uniform so that accurate comparisons can be made. 

A thorough oil analysis typically includes 11 tests: 

• Viscosity is one of the most important properties of a lubricating oil. The analysis consists 

of comparing a sample of oil from a machine to a sample of unused oil to determine if 

thinning or thickening of the oil has occurred during use. 

• Contamination of oil by water or coolant can cause major problems. Because many of the 

additives in lubricants contain the same elements used in coolant additives, samples for 

analysis must be compared to samples of new oil. 

• Fuel dilution of engine oil weakens the oil’s film strength, sealing ability, and detergency. 

Dilution may indicate such problems as improper operation, fuel system leaks, ignition 

problems, improper timing, or other deficiencies. 

• Solids content is a general test indicating total solids in the oil as a percentage of the sample 

volume or weight. Any unexpected rise in solids is cause for concern, because the presence 

of solids can significantly increase wear on lubricated parts. 

• Fuel soot content is an important indicator for oil in diesel engines. Although fuel soot is 

always present in diesel engine oil to some extent, increases above normal levels may 

indicate fuel-burning problems. 

• Oxidation of lubricating oil can result in lacquer deposits, metal corrosion, or thickening of 

the oil. 

• Nitration results from fuel combustion in engines. The products formed are highly acidic, 

and they may leave deposits in combustion areas and accelerate o il oxidation. 

• Total acid number (TAN) is a measure of the amount of acid or acid-like materials in oil. 

• Total base number (TBN) indicates an oil’s ability to neutralize acidity. Low TBN is often an 

indicator that the wrong oil is being used for the application, intervals between oil changes 

are too long, oil has been overheated, or a high-sulphur fuel is being used. 

• Particle count as part of a standard oil analysis is quite different from the wear particle 

analysis offered as a separate, specialized service (see following section). High particle 

counts indicate that machinery may be wearing abnormally or that failures could be caused 

by blocked orifices. Particle count tests are especially important in hydraulic systems.  

• Spectrographic analysis reveals the presence of such elements as wear metals, 

contaminants, and additives in oil. [30] 

Wear particle analysis 

While oil analysis provides information about the lubricant itself, wear particle analysis provides 

direct information about wearing conditions inside the machinery. This information is derived from 

the study of particle shapes, composition, sizes, and quantities. Wear particle analysis is conducted 

in two stages: 

• The first involves monitoring collected particles to determine normal conditions and trends. 

• The second is the diagnosis of abnormal conditions as indicated by changes in the particle 

types, sizes, and quantities. 
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Rubbing wear results from the normal sliding wear in a machine and should remain stable as a 

surface wear normally. But a dramatic increase in wear particles indicates impending trouble. 

Cutting wear particles are generated with one surface penetrates another, much as a cutting tool 

removes material. Cutting wear particles are abnormal and are always worthy of attention. These 

particles are produced when a misaligned or fractured hard surface produces an edge that cuts into 

a softer surface, or when abrasive contaminants become embedded in a surface and cut an 

opposing surface. Increasing quantities of longer particles signal a potentially imminent component 

failure. 

Rolling fatigue is associated primarily with rolling contact bearings and may produce three 

distinct particle types: 

• fatigue spall particles, 

• spherical particles, and 

• laminar particles. 

Rolling spall particles are the most critical, because they indicate damage to a rolling element 

has already occurred. 

Combined rolling and sliding wear results from the moving contact of surfaces in gear systems. 

The chunkier particles result from tensile stresses on the gear surface, causing the fatigue cracks 

to spread deeper into the gear tooth before pitting. Scuffing of gears occurs when excessive heat 

from a high load or speed breaks down the lubricant film. Once started, scuffing usually affects each 

gear tooth. 

Severe sliding wear also results from excessive loads or heat in a gear system. Large particles 

break away from the wear surfaces. If conditions are not corrected, catastrophic wear is the likely 

result. [30] 

Infrared thermography 

Infrared thermography uses special instruments to detect, identify, and measure the heat energy 

objects radiate in proportion to their temperature and emissivity. Midwave-range instruments detect 

infrared in the 2-to-5 micron range; longwave-range instruments detect the 8-to-14 micron range. 

Infrared inspections can be qualitative or quantitative. Qualitative inspection concerns relative 

differences, hot and cold spots, and deviations from normal or expected temperatures. Quantitative 

inspection concerns accurate measurement of the temperature of the target.  

As one of the most versatile predictive maintenance technologies available, infrared 

thermography is used to study everything from individual components of machinery to plant 

systems, roofs, and even entire buildings. 

Infrared instruments include an optical system to collect radiant energy from the object and focus 

it, a detector to convert the focused energy pattern to an electrical signal, and an electronic system 

to amplify the detector output signal and process it into a form that can be displayed. Most 

instruments include the ability to produce an image that can be displayed and recorded. These 

thermographs, as the images are called, can be interpreted directly by the eye or analysed by 

computer to produce additional detailed information. High-end systems can isolate readings for 

separate points, calculate average readings for a defined area, produce temperature traces along 

a line, and make isothermal images showing thermal contours. 

It is essential that infrared studies be conducted by technicians who are thoroughly trained in 

the operation of the equipment and interpretation of the imagery. Variables than can destroy the 
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accuracy and repeatability of thermal data, for example, must be compensated for each time data 

is acquired. In addition, interpretation of infrared data requires extensive training and experience.  

[30] 

Vibration monitoring 

Vibration monitoring might be considered the "grandfather" of predictive maintenance, and it 

provides the foundation for most plants’ PdM programs. Monitoring the vibration from plant 

machinery can provide direct correlation between the mechanical condition and recorded vibration 

data of each machine in the plant. Used properly, it can identify specific degrading machine 

components or the failure mode of plant machinery before serious damage occurs. 

Vibration monitoring and trending works on the premise that every machine has a naturally 

correct vibration signature. This signature can be measured when the machine is in good working 

order, and subsequent measurements can be compared with what is considered the norm. As the 

machine wears or ages, the vibration spectra change. Analysing the changes identifies components 

that require further watching, repair, or replacement. 

Most vibration based PdM programs rely on one or more of the following techniques: 

• Broadband trending provides a broadband or overall value that represents the total 

vibration of the machine at the specific measurement point where the data was acquired. It 

does not provide information on the individual frequency components or machine dynamics 

that created the measured value. Collected data is compared either to a baseline reading 

taken when the machine was new (or sometimes data from a new duplicate machine) or to 

vibration severity charts to determine the relative condition of the machine. 

• Narrowband trending monitors the total energy for a specific bandwidth of vibration 

frequencies and is thus more specific. Narrowband analysis utilizes frequencies that 

represent specific machine components or failure modes. 

• Signature analysis provides visual representation of each frequency component generated 

by a machine. With appropriate training and experience, plant personnel can use vibration 

signatures to determine the specific maintenance required on the machine being studied. 

[30] 

Motor analysis 

Until recently, predictive maintenance technologies for motors were limited to vibration testing, 

high-voltage surge testing for winding faults, meg-Ohm and high-potential tests for insulation 

resistance to ground, and voltage and current tests for testing phase balance. Many of these tests 

still have their place in plant maintenance, but several of them are impractical, dangerous, or 

harmful when tests are conducted with motors in place. 

New technologies allow for portable, safe, and trendable tests that can be used for more accurate 

commissioning and troubleshooting. Each of these technologies has its strengths and weaknesses. 

But as part of a PdM program, they can accurately detect potential faults and avoid costly downtime. 

Static motor circuit analysis (MCA) provides a low-voltage, safe method of testing motor 

winding and rotor defects. The best instruments for this analysis use impedance-based tests 

coupled with insulation-to-ground testing. Impedance-based instruments are simple to use, and the 

results are easy to evaluate. Inductive-based instruments are for trending. Tests detect faults in 

motors, transformers, cabling, and connections. Motors must be de-energized. 

Motor current signature analysis (MCSA) is performed by taking current data and analysing it 

using Fourier transform analysis. Primary purpose of the test is rotor bar fault detection, but it is 
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also useful for detecting rotor faults and power quality problems as well as other motor and load 

defects in later stages of failure. Motors must be energized and loaded during tests.  

Surge comparison testing uses high-voltage pulses to detect winding faults. Only experienced 

operators should conduct these tests because of the potentially harmful effects of high voltage 

impressed on used windings and cables. There are also challenges with testing assembled motors 

due to rotor effects on the motor circuit. Motor being tested must be de-energized with controls 

disconnected. 

High potential testing uses high-voltage AC or DC to detect faults to ground. Only the insulation 

condition between stator windings and ground can be evaluated and there is a potential for damage 

to the insulation system if the test is improperly applied or controlled. Motors must be de -energized 

with controls disconnected during tests. [30] 

3.6.3. Predictive Maintenance Technologies 

Understanding how PdM works requires an examination of the specific connected technologies 

that enable it: sensors and communication protocols, analytics and data-handling tools, and data 

visualization and collaborative tools. 

 

Figure 9 – Technologies that drive PdM 

Sensors and networks 

Perhaps the most important pieces of the PdM puzzle are the sensors that create the data and 

the communications needed to get those data to where they can be stored and analysed. These 

sensors translate physical actions from machines into digital signals that communicate variables 

such as temperature, vibration, or conductivity. Data can also be streamed from other sources, such 

as a machine’s programmable logic controller (PLC), MES, CMMS, or even an ERP system. GE’s 

Condition Forecaster system, for example, uses this aggregation approach to maximize the 
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performance and reliability of their plant motors by combining data from over 250 sensors per motor 

with over 40,000 historical maintenance records. 

Whether the types of protocols that enable this sort of transparency are custom designed for a 

specific application or for general use such as Wi-Fi and Bluetooth, today’s low cost and affordability 

of bandwidth and storage mean that massive amounts of data can be transmitted. This allows 

manufacturers to have a full picture of not only assets in a single plant but also an entire production 

network—leveraging the end-to-end transparency of the DSN.[34] 

Data integration and augmented intelligence 

Once digital information has been centralized, it typically must be parsed, stored, and analysed 

using advanced analytics and predictive algorithms. Simply gathering data on machinery from 

sensors is not enough. Predicting the failure of individual parts likely requires high-level solutions 

for unstructured data, augmented intelligence (AI), or machine learning. These technologies are 

needed to sift through the mountains of data to find the “signal” of a part about to fail in the “noise” 

of daily operation. Put simply, while PdM depends on the accuracy of failure thresholds determined 

in a pilot program or review cycle, machine learning technologies improve these thresholds 

iteratively over time by analysing the outcomes of each prediction and adjusting the thresholds 

accordingly. As a result, choosing the right analytics or algorithms is a critical step in creating a 

PdM capability. But the results can be significant: One manufacturer recently reduced downtime on 

a robotic manufacturing line by 50 percent and increased performance by 25 percent by leveraging 

a machine learning platform for its predictive algorithms. 

As these tools move further into the mainstream, they may no longer require a degree in statistics 

or computer science to use, putting them within reach of many organizations that may not have had 

the expertise or resources to leverage them in the past. Operations analysts, who are more in touch 

with manufacturing processes, can easily create dashboards using modern application program 

interfaces (APIs) created specifically for the everyday user.  

Another trend is the movement of data to the edge. Like the lean technique of storing tooling at 

the point of use, data computation is done at the “edge,” meaning it is processed at the machine 

where it is generated. Insights can thus be pushed directly to machine operators as well as 

maintenance technicians. As data continue to proliferate, edge computing reduces the overall 

burden on a computer network by distributing some of the processing work to a network’s outer 

nodes to alleviate core network traffic and improve application performance.  [34] 

Augmented behaviour 

Once data have been analysed, they can be presented to humans and machines in a manner 

that enables them to act, either manually (in the case of humans) or autonomously (in the case of 

machines). At this stage, augmented behaviour becomes relevant. Technologies such as wearables 

and augmented reality can allow maintainers to see large amounts of data, such as a maintenance 

manual or expert advice, while immersed in a task. These technologies use overlaid systematic 

instructions to help operators immediately solve problems as they arise (even in noisy 

environments), and help disseminate knowledge via immersive, on-demand training. They also 

allow teams in other locations to remotely monitor and supervise operations. 

For example, a leading technology manufacturer deployed a suite of industry-leading wearable 

technology to troubleshoot issues remotely and disseminate specialized knowledge in real time. 

The solution supported the manufacturing incident resolution processes, which often witnessed 

severe delays during critical component assembly. The company saw a 50 percent reduction in 

repair cycle time for defects and estimated savings of $500,000 in a single product line through 

reduced downtime. 
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Finally, after the signals have been processed, analysed, and visualized, digital insights are 

translated into physical action. In some cases, the digital conclusions drawn may instruct robots or 

machines to alter their functions. In other cases, maintenance alerts will spur a technician into 

action. Consider a situation where the predictive algorithms trigger a maintenance work order in the 

company’s CMMS system, check the ERP system for spares on hand, and automatically create a 

purchase request for any additional parts required, all automated and prior to unplanned downtime. 

Then the maintenance manager only must approve the items in the workflow and dispatch the 

appropriate technician. [34] 

3.6.4. Dimensions and Technical Infrastructure for Predictive Maintenance 

Alarm detail levels such as asset, line, area and factory should be integrated to digital twin layout. 

Besides, time dimensions including shift, day and week are important in manufacturing use cases. 

In addition, users should configure how predictions will be converted to work orders with platform 

rule engine integration. For instance, if the alarm probability were above 70%, the system would 

start a work order. However, different thresholds apply for critical equipment.    

Transparency and accountability are two main issues regarding the use of predictive 

maintenance in manufacturing units.  Currently, most advanced analytic solutions are black 

box.  When a system gives an alarm, the reason might not be known, or the engineers may have 

doubts about the calculation process. Critical capabilities for successful maintenance include: 

• Having transparent and measurable success rate: False positives would create 

unnecessary maintenance work orders thus additional cost to customer.  

• Easy to implement with Manufacturing Information System (MIS): End-users should view 

the product as a tool that can be used by them in order to get buy-in from enterprise digital 

transformation teams 

Model Reinforcement capabilities: For higher success-rates additional consultancy from domain 

experts and data scientist may be required. 

3.6.5. Implementation Stages of Predictive Maintenance 

The implementation approach is based on gradually building up the PdM model for selected 

assets. Seven steps of implementation can be stated as follows: 

1. Asset value ranking & feasibility study: Identify assets for which it is worthwhile and 

feasible to apply PdM in order to increase asset reliability. Only high-critical and possibly medium-

critical assets will justify the required investments, and only assets for which the required data can 

be obtained are suitable candidates. This selection of assets will help to build an initial positive 

business case that should be part of the feasibility study.  

2. Asset selection for PdM: Keep it manageable and do not try to cover your entire fleet or 

factory in one go. Select assets that can be tackled in pilot-projects draw the necessary lessons 

from the pilots and apply these to the rollout of PdM per asset type.  

3. Reliability modelling: Use root cause analysis (RCA) and failure mode effects analysis 

(FMEA) per asset type to point you in the right direction. What data do you need to monitor root 

causes and failure modes? What sensory data and what external data sets do you need for this? 

How are the various root causes and failure modes interrelated? 

4. PdM algorithm design: This is really the art of data analytics. Choosing an algorithm is the 

single most important factor in determining the quality of your predictions. It may be relatively 
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straightforward to design the best algorithm if you have already built a suitable model for asset 

reliability in the previous step. It may also require several data scientists to construct a self-learning 

algorithm capable of finding meaningful insights in pools of data. 

5. Real-time performance monitoring: This is where your PdM model goes live. The algorithm 

processes data from various sources - sensors embedded in the asset, the asset’s maintenance 

and failure history, or third-party providers of environmental data - to monitor and visualize the 

performance of your assets in real-time. 

6. Failure prediction (early warning): The algorithm will start to predict future failures. Acting 

on these predictions - by shutting down a machine or taking a perfectly operational train out of 

circulation - may initially require a big leap of faith, especially if management and maintenance staff 

have little experience with, or affinity for, data analytics. If this is the case, PdM 4.0 could run parallel 

to existing maintenance procedures without maintenance actions being taken based on its 

predictions. This may help to further build confidence in the predictions. 

7. Preventive task prescription: At the top level of PdM, the algorithm not only predicts when 

a failure is likely to occur, but it also draws from a library of standard maintenance tasks to prescribe 

the best action to avoid such a failure. It may even execute such tasks, for example, by automatically 

issuing the corresponding work order.[35] 

 

Figure 10 – Implementation stages of PdM 

(Image Source: https://www.mainnovation.com/wp-content/uploads/tmp/58e418c645624c08e147d5f9c476d1370f2cc191.pdf) 

This seven-step implementation process is grouped under the ‘putting the predictive model in 

place’ title which is located in the middle at figure above. It is the technical core of PdM 

implementation. After that, the ‘putting technology infrastructure in place’ phase comes. In this 

phase, there are three building blocks: big data infrastructure, internet of things infrastructure, and 

algorithm optimization. Finally, ‘putting the organisational support structure in place’ phase comes 

which is the softer side of PdM implementation. This phase is consisting of building data analytics 

capabilities and building a digital culture. 

https://www.mainnovation.com/wp-content/uploads/tmp/58e418c645624c08e147d5f9c476d1370f2cc191.pdf
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Overall, this implementation approach includes the technological and organisational aspects that 

companies must address to the most of PdM. 

PdM is very popular lately and when it comes to developing PdM processes, companies get 

ambitious about it. Companies should take organisational dimensions seriously and make sure the 

project management and change management skills are the skills that they need for a successful 

PdM implementation process. Also, for a successful PdM implementation process, significant efforts 

and resources will be needed. 

3.6.6. Commercial Applications of Predictive Maintenance 

Predictive maintenance can be applicable to all industries where machines produce significant 

amounts of data and require maintenance or fine tuning of their parameters.  

A significant share of vendors is actually industry agnostic and serve most industries as their 

work relies on data interpretation and can be abstracted from the specifics of machinery in the 

factory floor. 

An overview of industries where predictive maintenance applications is already gaining traction: 

• Automotive: Automotive companies operate some of the largest robot parks in the 

world. With the aim to reduce inventory costs, automotive companies developed Just-In-

Time manufacturing methodology since the 1960s and 1970s. As a result, they have 

tightly integrated supply chains. Though tight supply chain integration allows reduced 

inventory, any reduction in manufacturing efficiency results in significant disruption to 

the supply chain. It is no surprise that automotive companies stand to gain significantly 

from a technology that reduces downtime. 

• Airlines: Airlines are no stranger to closely monitoring sensor data from planes. Today’s  

analytical capabilities allow them to analyse more data increasing safety of passengers.  

• High tech manufacturing: Operating complex equipment at optimal parameters is the 

key challenge to improve efficiency for high tech manufacturers like semiconductor 

manufacturers. Predictive maintenance systems allow them to operate at a level closer 

to optimal parameters. 

• Transportation: Though airlines lead the pack in terms of complexity of their equipment, 

other means of transportation like trains also involve complex machinery that can benefit 

from predictive maintenance. 

• Oil & gas: Despite the rise in green energy, oil & gas is still one of the largest industries. 

Both extraction and refining involve expensive equipment that can cause health and 

environmental hazards in case of failure. For example, Deepwater Horizon oil spill in 

2010, which led to 11 dead and ~ 5 M barrels of oil, spilled, has been one of the worst 

disasters in the last decade. Stakes are high to prevent such disasters with better 

analytics and maintenance. 

• Ports: Exposed to harsh conditions, port equipment’s’ conditions deteriorate quickly. For 

example, cranes are critical components, but they are prone to failure. Crane downtime 

means more waiting time for ships and less throughput for ports. Reducing downtime 

improves service quality and reduces waste for ports.[36] 

Both discrete industries like consumer packaged goods (CPG), automotive, electronics, textiles, 

aerospace and process industries like food and beverage, chemicals, oil&gas, pharma can be 

transformed with predictive maintenance. [36] 
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3.6.7. Predictive Maintenance Algorithms 

There are multiple modelling strategies for predictive maintenance, and we will describe four of 

them in relation to the question they aim to answer and which kind of data they require:  

• Regression models to predict remaining useful lifetime (RUL) 

• Classification models to predict failure within a given time window 

• Flagging anomalous behaviour 

• Survival models for the prediction of failure probability over time 

STRATEGY 1: Regression models to predict remaining useful lifetime (RUL) 

Output: How many days/cycles are left before the system fails? 

Data characteristics: Static and historical data are available, and every event is labelled. 

Several events of each type of failure are present in the dataset.  

Basic assumptions/Requirements: 

• Based on static characteristics of the system and on how it behaves now, the remaining 

useful time can be predicted which implies that both static and historical data are 

required and that the degradation process is smooth. 

• Just one type of “path to failure” is being modelled: if many types of failure are possible 

and the system’s behaviour preceding each one of them differs, one dedicated model 

should be made for each of them. 

• Labelled data is available, and measurements were taken at different moments during 

the system’s lifetime.[37] 

STRATEGY 2: Classification models to predict failure within a given time window 

Creating a model that can predict lifetimes very accurate can be very challenging. In practice 

however, one usually does not need to predict the lifetime very accurate far in the future. Often the 

maintenance team only needs to know if the machine will fail ‘soon’. This results in the next strategy:  

Question: Will a machine fail in the next N days/cycles? 

Data Characteristics: Same as for strategy 1 

Basic assumptions/Requirements: 

• The assumptions of a classification model are very similar to those of regression models. 

They mostly differ on: 

• Since we are defining a failure in a time window instead of an exact time, the requirement 

of smoothness of the degradation process is relaxed. 

• Classification models can deal with multiple types of failure, as long as they are framed 

as a multi-class problem, e.g.: class = 0 corresponding to no failure in the next n days, 

class = 1 for failure type 1 in the next n days, class = 2 for failu re type 2 in the next n 

days and so forth. 

• Labelled data is available and there are “enough” cases of each type of failure to train 

and evaluate the model. 

In general, what regression and classification models are doing is modelling the relationship 

between features and the degradation path of the system. That means that if the model is applied 
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to a system that will exhibit a different type of failure not present in the training data, the model will 

fail to predict it. [37] 

STRATEGY 3: Flagging anomalous behaviour 

Both previous strategies require many examples of both normal behaviour (of which we often 

have a lot of) and examples of failures. However, how many planes will you let crash to collect 

data? If you have mission critical systems, in which acute repairs are difficult, there are often only 

limited, or no examples of failures at all. In this case, a different strategy is necessary:  

Question: Is the behaviour shown normal? 

Data Characteristics: Static and historical data are available, but either labels are unknown or 

too few failure events were observed or there are too many types of failure . 

Basic assumptions/Requirements: It is possible to define what normal behaviour is and the 

difference between current and “normal” behaviour is related to degradation leading to failure.  

The generality of an anomaly detection model is both its biggest advantage and pitfall: the model 

should be able to flag every type of failure, despite of not having any previous knowledge about 

them. Anomalous behaviour, however, does not necessarily lead to failure. In addition, if it does, 

the model does not give information about the time span it should occur.  

The evaluation of an anomaly detection model is also challenging due to the lack of labelled 

data. If at least some labelled data of failure events is available, it can and should be used for 

evaluating the algorithm. When no labelled data is available, the model is usually made available 

and domain experts provide feedback on the quality of its anomaly flagging ability. [37] 

STRATEGY 4: Survival models for the prediction of failure probability over time 

The previous three approaches focus on prediction, giving you enough information to apply 

maintenance before failure. If you however are interested in the degradation process itself and the 

resulting failure probability, this last strategy suits you best. 

Question: Given a set of characteristics, how does the risk of failure change in time? 

Data Characteristics: Static data available, information on the reported failure time of each 

machine or recorded date of when a given machine became unobservable for failure.  

A survival model estimates the probability of failure for a given type of machine given static 

features and is useful to analyse the impact of certain features on lifetime. It provides, therefore, 

estimates for a group of machines of similar characteristics. Therefore, for a specific machine under 

investigation it does not consider its specific status.[37] 

3.6.8. Predictive Maintenance Solutions (Competitor Analysis) 

1. SAP Predictive Maintenance and Service6 

Combine sensor data with business information in your ERP, customer relationship management 

(CRM), enterprise asset management (EAM), and augmented reality systems using SAP Predictive 

Maintenance and Service, part of the SAP Intelligent Asset Management solution portfolio.  

• Cloud and on-premise deployment 

• Insight from sensor data 

                                                      
6 Webpage: https://www.sap.com/turkey/products/predictive-maintenance.html 
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• Prediction of equipment malfunctions 

• Optimized resource management 

Key Capabilities 

• Management and decision support: Enable a closed-loop maintenance and service 

process by optimizing asset maintenance with anomaly detection, spectral analysis, and 

machine learning algorithms. 

• Enablement of IoT and IIoT connectivity: Monitor connected devices and support IoT data 

transfer services to optimize data management with scalable and cost-effective storage 

for time-series data. 

• Visualization of predictive analytics: Expose valuable insights through real-time data 

analytics – according to business needs – with a unified and intuitive user experience. 

Integration with a range of SAP solutions: Integrate your predictive maintenance and services 

capabilities with SAP enterprise solutions – such as SAP S/4HANA – and third-party maintenance 

execution systems. 

2. Honeywell Forge APM – Asset Performance Management7 

Honeywell Forge APM is a real-time machinery analytics solution that continuously monitors 

asset and process performance, detects impending health issues, and predicts time to failure. It 

helps industrial facilities reveal opportunities for performance improvement and expedites analysis 

toward root cause of inefficiencies or impending issues. Honeywell Forge APM helps reduce cos t 

of operations and maintenance and allows personnel to manage more assets concurrently.  

• Calculation and Visualization applications help engineers combine process knowledge 

and plant data to analyse plant efficiency and identify trends.  

• Advanced Planning and Scheduling tools help planners and schedulers come up with 

optimal and feasible plans for a unit, plant or group of plants. 

• Blending and Movement Automation helps plan, control and track manufacturing 

performance for offsites, control optimum in-line blending and control material 

movements. 

• Asset Performance Management tools provide an objective view of machinery 

performance metrics and calculations. 

Production Management tools track determine and report production, material use and inventory.  

3. Oracle IoT Asset Monitoring Cloud8 

Sensor data streaming to Oracle IoT Asset Monitoring Cloud Service is continually analysed in 

real time. Using customizable prediction analytics, your assets will tell you when they need 

maintenance, often long before they fail. 

• Perform preventive maintenance on critical assets. 

• Improve asset availability. 

• Reduce operating costs. 

                                                      
7 Webpage:https://www.honeywellprocess.com/library/marketing/notes/PIN-Forge-APM-R1-2may19.pdf 
8 Webpage: https://cloud.oracle.com/opc/saas/iotam/ebooks/oracle-iot-asset-monitoring-cloud-ebook.pdf 
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4. Limble Modular IoT Predictive Maintenance9 

With Limble you don't have to spend $50,000+ or months' worth of time to figure out if a 

Predictive Maintenance strategy right for you. Limble's Modular IOT approach allows you to quickly, 

easily and cheaply test if a Predictive Maintenance strategy will work in your facility.  

• Plug and play sensor setup. 

• Instant alerts when sensor levels reach unacceptable thresholds. 

• Automatically triggered corrective tasks to your maintenance team when certain thresholds 

are met. 

• Mundane data entry tasks eliminated. 

• Get real time actionable data that trends over time allowing you to make precise analysis 

such as root cause analysis. 

• A test program implemented and proven for under $1000. 

3.7. Proactive maintenance 

Proactive maintenance is any form of maintenance that is done before any significant 

breakdowns or failures occur. As opposed to reactive maintenance, it focuses on anticipating and 

managing machine failures before they take place. To achieve that, a proactive maintenance 

strategy requires to identify the root causes of a failure that can be removed, to determine potential 

failure locations and to avoid breakdowns caused by deteriorating equipment conditions.  In short, 

proactive maintenance aims at correcting the root source of the error, rather than the error itself:  

 

Figure 11 Proactive Maintenance 

Whereas reactive maintenance focuses on repairing equipment only after it has failed,  and 

planned maintenance on substituting pieces of equipment at regular intervals, proactive 

maintenance aims at identifying the potential problems that would eventually lead to equipment 

breakdowns. Those potential problems can be improper machinery lubrication, contamination, 

misalignments or environmental conditions. 

Proactive maintenance is the penultimate step in the maintenance strategy continuum, only 

behind predictive maintenance, which has only become possible recently thanks to the use of smart 

technologies that allow to unite physical and digital assets [1]: 

                                                      
9 Webpage: https://limblecmms.com/predictive-maintenance-software.php 
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Figure 12. Maintenance strategy continuum 

3.7.1. Advantages and challenges 

Having a successful proactive maintenance policy in place typically helps reducing the amount 

of times organizations have to perform maintenance tasks. Besides, having a clear idea of the most 

likely failure points implies fewer unnecessary repairs, lower wear and tear in the most sensible 

components, less need for keeping an inventory of spare parts and longer lifespan of equipment, 

ultimately reducing costs for the company. In turn, a proactive maintenance strategy comes with 

certain challenges, such as the need for organizational changes or increased training for employees 

[1]: 

Table 5. Benefits and challenges of proactive maintenance 

Benefits: Challenges: 

• Longer lifespan of equipment • Ongoing maintenance and 
monitoring 

• Decreased downtime, both planned 
and unplanned 

• Need for organizational changes 

• More cost effective than other 
maintenance strategies 

• Increased training required 

• Lower spare parts inventory  
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3.7.2. Implementation of proactive maintenance strategy 

The approaches followed for predictive and preventive maintenance can also help building a 

proactive maintenance strategy: collecting baseline data, tracking trends and analyzing the data 

produced after a certain fault is detected can, on its own, help companies perform maintenance 

only when necessary. At the same time, a proactive strategy increases the efficiency of predictive 

and preventive maintenance by aiding in the avoidance of the root causes of machine failure, 

addressing problems before they cause failure, and extending machine life.  

However, the biggest challenge to implement a proactive maintenance program lies in deciding 

what amount of resources will be directed to maintenance. Ideally, data from all healthy and faulty 

equipment should be analyzed to determine when a certain component will fail. Since the majority 

of organizations do not have unlimited resources, the challenge consists in deciding which failures 

pose the biggest risk to the company. 

To that end, it is helpful to assess the criticality of each asset the organization has. Instead of 

using only “critical” and “non-critical” as classification options, four different categories should be 

used, attending to the impact that asset has on the company’s abil ity to generate revenue [2]: 

• Star athletes: these are the assets that directly determine the ability of an organization to 

win and by how much. In addition to uptime and downtime, performance and company’s 

revenue are directly related, so any performance improvement translates into additional 

revenue. Thus, these assets should be constantly monitored, regardless of their age.  

• Critical assets: critical assets must be up and running for a company to obtain benefits 

from them. For this type, uptime is the key performance indicator, so it is critical to be able 

to anticipate pending failures. 

• Semi-critical assets: these assets do not necessarily stop production when they are down, 

but they do strain the system, increasing labor costs and slowing down production.  

• Non-critical assets: they do not affect the revenue of the company, no matter how big, 

expensive or complex they are. They do need to be fixed eventually though.  

 

4. Scientific State of the Art 

4.1. Fault Prediction and Root Cause Analysis 

Fault detection and isolation (FDI) is a pertinent and challenging problem in many areas of 

engineering [38]–[42]. Fault detection involves determining if something is wrong with the system 

and fault diagnosis concerns itself with identifying the source and nature of the fault [43]. FDI is 

closely related to fault detection and diagnosis (FDD), in the sense that both fields aim to detect 

discrepancies between observed data and the predictions made by the models built for fault 

detection [44]. 

The term fault refers to malfunctions in one or several components of a technical system (power 

stations, airplanes, automobiles, etc). They may affect core parts of a system, such as motors and 

pumps, or peripheral devices, like sensors and actuators, that connect the main system to control, 

monitoring or other computerized systems. Failures are extremes cases of faults, when a 

malfunction is severe [44], [45].  
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The simplest form of FDI consists in implementing an alarm system, whereby measurements of 

different of individual parameters are compared to pre-set limits [45]. More sophisticated FDI 

methods are based on hardware redundancy or analytical redundancy. Hardware redundancy 

consists in measuring the same parameters using more than one sensor and then comparing the 

different signals by means of signal processing methods, such as Fourier analysis, spectrum 

analysis or wavelet analysis, among others. Analytical redundancy methods are based on 

mathematical models of the system and can be divided in quantitative, or model -based, methods 

and qualitative, or artificial intelligence-based, methods. Since these methods don’t require any 

hardware, they are easier and less expensive to implement. However, analytical redundancy 

methods must deal with issues like noise, model uncertainties and other disturbances [44], [45]. 

4.1.1. Fault Detection/Prediction 

Alarm Systems 

Alarm systems work by comparing measured values with their theoretical thresholds. These 

systems can be implemented using upper and lower limits or only upper limits and may have one 

or two alarm levels. Albeit simple to implement, alarm systems have limited fault specificity as well 

as sensitivity. A fault in a single component can cause several parameters to exceed their 

thresholds and a specific alarm might be related to several faults. Additionally, in a real -world 

scenario the “true” limit of a given output parameter depends on the system’s input and might differ 

significantly from its theoretical value. For an alarm system to be reliable, the alarm thresholds need 

to be set conservatively high [45]. 

Alarm systems are simple when compared to hardware and analytical redundancy methods, but 

that is precisely why they are still widely used in industrial applications, in spite of their limitations 

[45]. 

Analytical Redundancy – Model-based Methods 

There are basically three types of faults: actuator faults, sensor faults and component faults. As 

the name implies, sensor and actuator faults refer to faults in the sensors and actuators of the 

system and are usually modelled as additive faults, while component faults represent changes in 

the system’s parameters and are modelled as multiplicative faults [44], [46]. 

The first step in model-based FDI consists in generating a set of residuals. The residual of an 

observed value is the difference between the observed value and the estimated value of the quantity 

of interest. The generation of residuals is, therefore, based on a mathematical model of the system, 

which may reflect the basic physics of the system or may be based on past experience or 

observations [44], [46].  

In the absence of faults, the residuals should be zero or have mean equal to zero. Deviation 

from zero should thus represent the occurrence of a fault. However, due to errors and uncertainties 

in parameters, mathematical models often don’t represent the system accurately. Addi tionally, the 

system is affected by noise and other perturbations. This causes the residuals to be non-zero, even 

when no fault has occurred, in which case they aren’t useful in practical applications [44], [45]. As 

a result, several methods to generate robust residuals that are insensitive to noise and 

uncertainties, while being maximally sensitive to faults, have been developed. These include the 

full-state observer-based methods [47], the parameter estimation methods [48] and the parity 

relations method [49], among others. 

To reduce the effects of noise, the following action may be taken [45]: 
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• Residual filtering consists in using moving averages of the residuals or applying low-pass 

filters to the residuals. It’s also possible to incorporate low-pass behaviour into the residual 

generators. 

• Statistical testing of the residuals: the testing thresholds are determined either by making 

assumptions about the source of the noise, or by using measurements taken under no -fault 

conditions.  

Disturbances to the system can be dealt with by designing the residuals to be insensitive to  

them. However, this is dependent on knowing the disturbance-to-output transfer function and is also 

subject to a trade-off with fault isolation enhancements. As such, if there is a large number of 

disturbances or if their transfer function is unknown only an approximate solution will be 

possible[45], [46]. 

Reducing the sensitivity of the residuals to model errors is the most important challenge to 

model-based FDI. As in the case of disturbances, it can normally only be achieved by approximate 

solutions, but reducing the sensitivity of the residuals to modelling errors also tends to reduce their 

sensitivity to faults[45], [46]. 

After the residuals have been generated, the next step in FDI consists in determining if a fault 

has occurred (fault detection) and what type of fault it is (fault isolation). Fault detection can be 

performed by testing for significant changes in the residuals. The simplest way of achieving this is 

by comparing a residual vector to a constant threshold [44]. There are, however, other methods that 

combine the history and trend of the residuals with statistical test techniques to produce more robust 

results, such as the sequential probability ratio test (SPRT) [50], the CUSUM algorithm [51] or the 

generalized likelihood ratio test. 

Analytical Redundancy – Artificial Intelligence-based Methods 

The fault detection methods described in the previous section are based on control and statistical 

theories. However, artificial intelligence (AI) methods, like machine learning and data mining 

models, can also be employed to detect and, particularly, predict faults. In fact, efforts have been 

made to combine the knowledge and methods from both fields and develop innovative solutions to 

the problem of fault detection and isolation [44], [52], [53]. 

Machine Learning approaches commonly used for fault detection and prediction include artificial 

neural networks [40], [54], support vector machines [39], [55] and decision trees [41]. These and 

other machine learning models used for fault prediction will be described in detail in sections 4.1.2 

and 4.1.3. 

4.1.2. Root Cause Analysis 

Root-cause analysis (RCA), also known as fault diagnosis, is a method of solving problems that 

tries to identify the failure mechanisms or the fundamental causes of faults or problems. This is also 

referred to as fault isolation, especially when emphasizing the distinction from fault detection. 

Since a fault can propagate between elements of the system, it's important to determine its root 

cause and propagation pathways, understanding the system’s topology and the causality between 

variables [56]. To identify a fault, the residuals generated by the model-based methods described 

above need to not only be sensitive to faults, but also be able to distinguish between types of faults. 

One way to facilitate the isolation of faults is by performing enhancement manipulations on the 

residuals. The most commonly used techniques are [44], [45]: 
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• Structured residuals sets: in the event of a fault, only a specific subset of residuals become 

non-zero; 

• Directional residuals: the response to each particular fault is confined to a fault-specific 

direction in the space of residuals. Isolating a fault becomes a matter of determining the 

direction of the residual vector; 

• Diagonal residuals: each residual is sensitive only to a particular fault. 

Graphical models may also be used to model the causality in the system. For example, signed 

directed graphs (SDG) represent the system's parameters as graph nodes and the causal relations 

as directed arcs [56], [57]. Other causal graphs, such as bond graphs and temporal causal graphs 

can also be used [58]–[60]. Moreover, the knowledge used to build a SDG can also be represented 

by a rule-based model [61]. Ontologies are another way of representing the system, by which the 

relationships between resources are defined by the taxonomy of classes and subclasses, and the 

directed logic relationship is described by their properties. [56]. Additionally, root cause analysis 

can also be performed by analysing historical process data with methods such as cross-correlation 

analysis [X], Granger causality or Bayesian nets, among others [56], [62]–[64]. 

4.2. Data Science 

As stated before, Big Data's general definition is a collection of protocols, techniques, and 

infrastructures for storing, processing, and managing large amounts of data [65]. However, there is 

no commonly accepted definition for such a term. Nonetheless, this data for itself has no value. 

Consequently, when we mentioned the example of the Rolls Royce manufacturing, the extraction, 

and storage of data performed by nanobots was in the Big Data field. However, the actual 

knowledge from that data would be in the domain of data science. 

Data science will play a very important role in predictive maintenance in machine centres owing 

to their complexity and high machining precision. 

There is still a need for interpreting them and drive to conclusions out of them. The set of models, 

scientific methods, and use technologies to extract the value for the data is data science. Data 

science employs technologies like machine learning to obtain knowledge from data, as well as 

techniques like data mining [66]. There are thousands of algorithms involved in data science, 

describing all of them may be an intricate task, and not very useful for the reader.  

Nevertheless, it is possible to assume that all the algorithms and technics have a set of principles 

of data science in common. Following and understanding the before-mentioned principles will 

heighten the prospects of success. 
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4.2.1. Evaluation criteria 

One of these postulates, and perhaps the most important of them, is the evaluation criteria. Big 

Data algorithms have performed pre-filtering, which has eliminated redundant and corrupted data. 

However, it is now time for correlating variables and establishing the value of the data. There are 

many suitable manners to perform such a task. For this reason, it is crucial to decide the most 

performing algorithm. There are four general criteria to determine which algorithm is more suitable 

for the data mining process [67]: 

1. Performance: In terms of time, it is very significant to select algorithms that induce to 

conclusions satisfying time requirements. For this reason, too slow algorithms must be 

discarded. In addition to the value of the data, it is important to be able to use it at a 

suitable time. 

2. Data utility: The utility of the data after having done all the transformations, it can be 

equivalent to the information loss caused by all the data processing. The more relevant 

parameters that we can use, the better the algorithm is. 

3. The level of uncertainty: We can define it as the amount of hidden information you can 

still predict by the information given, we are interested in reducing the level of uncertainty 

as much as we can. 

Resistance to data mining techniques: We must not forget that the owners of some datasets 

protect them from data mining. Ciber terrorist and sometimes, even the competence often extract 

knowledge from datasets with malicious outcomes. 

4.2.2. Data Science in predictive maintenance 

We can briefly describe predictive maintenance is log-based maintenance. The key is using 

some Artificial Intelligence algorithms like machine learning, and the input is processed data 

provided by Data Science algorithms. Predictive maintenance must fulfil a set of requirements to 

be truly useful for users and stakeholders.  

One of the most important features is the timing of an alarm. It is quite useful to have an idea of 

when failures should be occurring. In that approach, it is feasible to detect irregular situations. 

Furthermore, the alarm timing has dual functionality, as it works to evaluate the state of equipment  

[66]. 

There are three intervals in the alarm timing, which indicate three states of the equipment  [3]: 

1. Predictive Interval: It is the time interlude, that should pass right before a fault occurs. A 

fault alarm in this period will have the reparation ready. That is something advantageous 

because the devices will consume a shorter period unavailable for staying under 

reparation. 

2. Infected Interval: It is the time passed right after the fault occurs. As stated before, the 

equipment remains unavailable until the reparation is complete, so the model should 

consider making this period as brief as possible. Data obtained during this interval should 

not be reflected in the model, because during part of this interval, the machinery will not 

be working correctly. 

3. Responsive Duration: It is the time that passes between the performance of reparation 

and the time until the confirmation that the machine is able for suitable performance.  
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The model must be robust and precise. Data science will take information both from the 

environment, and the engineers, and it will set the intervals accurately.  

Another important feature of a good predictive maintenance model is the interpretability [4]. 

Interpretability is the quality of being reviewed by experts. For this purpose, it is crucial to have an 

understandable model. There should not be too many variables so as not to use extra variables that 

are not necessary to describe the system´s behaviour. However, there should be enough to make 

the model explicative enough.  

It is crucial to have a clear idea of the importance of every variable in the model. In that fashion, 

the model will be clean, explicative, and scalable. There is a direct implication of Big Data and Data 

Science techniques in such a task, from extracting the information from structured and unstructured 

sources to interpret the mining of the processed information using Data Science algorithms.  

4.2.3. Examples of the use of Data Science in predictive maintenance 

The use of information as an asset is becoming a cornerstone in modern enterprises, we have 

seen in the last section how Rolls Royce has utilized Big data and data science for their predictive 

maintenance. It may not be a surprise that data science is a technique that most of the modernized 

manufacturers employ to keep their equipment in the most suitable conditions possible and not to 

lose performance or waste energy. 

In this section, we are going to focus not only on the methods for extracting the information but 

also on the value obtained from it. 

For instance, Hyundai Motors, one of the most cutting-edge car manufacturers implemented an 

AI Car Diagnosis Systems which prevents knocks and car faults [68]. 

These systems use data mining techniques together with Artificial Intelligence for preventing the 

impact of noise in the deterioration of car manufacturing. Furthermore, the system has been recently 

installed in their reparation center in Korea this year for enhancing the performance of reparations 

and to find faults in recently produced vehicles. As a result, Hyundai will be able to improve 

production and reducing the costs of it, which will result in a considerable profit.  

As said before, Bosch [69], which is one of the most prestigious manufacturers in Europe, is also 

a representative case of a corporation, that uses Data science for its predictive maintenance.  

Bosch has deeply integrated into Industry 4.0. As a result, their factory floors are highly IoTized, 

yet they can maintain an excellent rate of production, and seldom their equipment has faults.  It is 

all due to their support system. This system has a very simplistic green/red light system to deliver 

the wired and wireless elements on their manufacturing chain. Such a system has a double function, 

on the one hand, it enables and fastens the connection between IoT devices. On the other hand, it 

delivers the status of the elements in the supply chain to the staff to give some decision support.  

For maintenance, BOSCH utilizes Nexeed Production Performance Manager, which is a tool that 

collects data from structured and unstructured sources, and after using a set of algorithms it 

provides some graphic information for decision support. 

The third vital requisite to have robust models in predictive maintenance is Handling the 

imbalance, failures in a determined environment must not be something frequent  [70]. On the 

contrary, there will be orders of ten thousand cases of observed failures in some of the 

environments. From very rare instances, the model should find very general and accurate 

behavioural patterns, which are difficult to find and reproduce. For this reason, not only it is needed 

to have efficient data methods, but also it is required to have some learning algorithms. There are, 
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of course, other important features that are important to consider defining behavioural patterns, 

such as cost reduction, defining the fault tolerance and the business model. 

4.2.4. Data Pre-Processing 

A hard problem on data science is to obtain data from a huge variety of sources when the 

integration is not properly performed redundancies and inconsistencies. Matching all the sources 

can be hard to perform. Data pre-processing takes a long time and it is often faster to do the pre-

processing in external files [66]. 

Redundancy is a problem that should be avoided, it makes the datasets grow unnecessarily and 

hampers scalability in big data techniques [7]. Redundant attributes are the major field for 

optimization in datasets. An attribute is considered redundant when it can be derived from other 

attribute or from a combination of sets of attributes. The most common techniques to find 

inconsistencies are correlation analysis such as chi squared. In case of numerica l attributes, a high 

correlation in value usually means that they are redundant or a combination of several numerical 

values. 

After the redundancy checking it is important to check if data is correct or not. Data must be 

correct and consistent and fulfil the standards of representation.  More concretely in case of 

predictive maintenance data is stored in the warehouse in order to do the previously mentioned 

step for data pre-processing. In regular factory floor operations datasets are huge and redundant 

and they take advantage of the processes of cleaning, redundancy elimination, integration and 

feature extraction [8]. All such process occurs in the warehouse. 

4.2.5. Machine Learning 

As stated, before data needs to be formatted in a manner that is feasible for being used as an 

input for machine learning algorithms. In most of predictive maintenance examples data is 

presented in a way in which rows represent examples to predict or learn from, and columns 

represent variables, including both Predictive Variables and Goals  [9]. In the following paragraphs 

the key concepts in machine Learning and predictive maintenance will be described.  

 A goal variable is the feature of the system which must be predicted, for instance, a goal variable 

would be the life cycle of an asset. Depending on how Goal variables are computed, it will determine 

the size of the training datasets. In other words, the more efficient are goal variables, the less 

computing time they will need.  

Next task consists of defining which of the variables taken are suitable examples for training, for 

instance, if the goal variable is life cycle of an asset, it is necessary to define which previous 

information needs to be considered for take as training examples. Later, a statistical analysis must 

be carried out, all collinear variables will be eliminated. In this point we have, the goal variable and 

a suitable number of training examples which will serve as an input for running the algorithms. 

Predictive algorithms are extremely useful in the domain of predictive maintenance  [9]. Firstly, 

they are the main asset to predict the failure time and therefore calculate when a piece of 

Equipment’s should be replaced. Secondly, machine learning is the manner to be constantly 

adapted to the new changes in the factory floor, which allows the stakeholders view the results in 

the changes performed. Finally, predictive analysis machine learning algorithms serves for 

identifying which variables are important in the performance, deterioration and life cycle of the 

assets, which is a real powerful for decision support. 
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4.2.6. Big Data Analytics 

Big data has a descriptive task in predictive maintenance, in order to draw to conclusions using 

existent data, it is necessary to identify patterns in values. As a result, the true impact of some 

variables and the hidden relationships among certain variables that may look not evident at first 

glance. The kinds of analysis offered by Big Data are the following: [71] 

• Classification analysis: it consists of building a model for prediction based on predefined 

sets of classes, the instances for this classes will be classified using IF-THEN-ELSE 

clauses. Decision trees are a good example of such kind of technology.  

• Clustering analysis: Clustering analysis is the process of separate data into groups of 

different objects, it is very useful to find certain characteristics that can separate the data 

into different categories, concretely in predictive maintenance, this kind of analysis is made 

to find the possible causes of faults. 

• Association analysis: Association models is commonly used for identifying when certain 

events may occur. These algorithms are commonly accompanied with certain level of 

confidence which serves for identifying how reliable results are. 

• Regression analysis: Regression analysis serves to find the relationship between a 

dependent variable with several independent variables. The output will be a predictive 

analysis and the weight of all the independent variables in the function.  

As it has been shown in this section, Big Data Analytics can provide ful ly explicative models in 

predictive maintenance. Despite that fact, the analysis and management of such huge amounts of 

data is quite time-consuming and not-fully optimized. Even though Big Data optimization is a cutting-

edge field for study, there is still a considerable compute time used in activities with no value.  

4.3. Simulation and Industry 4.0 

Probabilistic models have long been used to simulate real-world scenarios [72]. Computer 

models are frequently used for simulation purposes in manufacturing systems, allowing for a study 

of their products and equipment characteristics and lifecycles. The quality of these simulations 

depends on how closely these models can mimic reality and, therefore, better models are born of 

the proper identification and characterization of the different behaviours and variables that can 

affect the system and how these affect each other. 

4.3.1. Simulation Models 

Simulation aims to imitate – or model – how a given system operates, and if and how its 

behaviour evolves over time. Using simulation is it possible to assess whether the underlying 

assumptions concerning a system were true – by comparing the outputs of the simulation with real 

events – and to predict eventual real effects of changes to the system, such as alternative scenarios, 

among other things [73]. 

Static simulations do not take in consideration the time factor, if the system always behaves in 

a similar fashion. Dynamic simulations, on the other hand, evolve over time, and therefore how and 

what changes can happen must be accounted for. If changes are continuous, it is considered a 

continuous simulation; if between two states changes to the system are to be disregarded, it is 

called a discrete simulation – i.e., a simulation is a transition between states. These transitions may 

be the consequence of events – in the case of event-driven simulation – or the progress of time – 

i.e. time-stepped simulation [73]. 
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When it comes to how randomness is considered in the simulation, it can happen in either a 

deterministic or stochastic fashion. In a deterministic simulation, running the simulation with the 

same parameters is guaranteed to generate the same result; contrarily, in the stochastic approach, 

a randomness factor is added, meaning that different results can arise.  

While simulation can be done in any programming language and adapted to the particular needs 

of specific scenarios, there are a number of generic simulation tools to help design and run 

simulations for industry scenarios, such as Anylogic [74], Arena [75], FlexSim [76], ProcesModel 

[77]  and Witness [78]. 

As far as predictive maintenance is concerned, the wear down of equipment is one of the main 

issues to address. In simulation, the degradation of physical objects – such as machines and their 

components – can be modelled in different ways. More traditionally, physics-based models were 

used to compute possible alterations in components over time [79][80]. These are often based on 

the initial conditions on the system and expected wear rates, and do not take in consideration major 

unexpected events that could shift the equipment’s status and, therefore, the wear down processes.  

Applying real data to the simulation makes it possible to assess if its predictions/results are 

accurate and, therefore, useful [81]. The growing sensorization of equipment brought by the advent 

of Industry 4.0 and the Internet of Things allows for collecting and fusing more real data a bout the 

equipment and generate a more realistic picture of its condition [82]. If this data can be processed 

and used to generate models, more reliable forecasts can be obtained – straightening the gap 

between the digital simulation and its real counterpart. However, this also means that the data 

grows continuously over time and that regular probabilistic approaches may not be suitable; in order 

to tackle this situation, more intelligent approaches have been proposed, such as the use of 

machine learning and data mining algorithms. These allow the simulation to evolve over time as 

more real data is known, and thus assessing possible wear trends and even recognizing when the 

behaviour of the physical assets is off the norm [81]. 

4.3.2. Simulation and Cyber-Physical Systems 

Cyber-physical systems are an important part of the Industry 4.0 and, i.e., how machines and 

software communicate and take advantage of each other is of particular importance. Software can 

be used to substitute physical interaction with machines, as often happens in digital dashboards 

that can be used to switch machines on and off, or alter the tasks being performed. In order to take 

full advantage of the capabilities provided by Cyber-Physical Systems and the Internet of Things, 

proper data models of those are required [83].  

Simulation models find application in Cyber-physical systems in different ways, including but not 

limited to: (1) Augmented and Virtual Reality, (2) Computer Aided Design, Manufacturing and 

Process Planning, (3) Enterprise Resource Planning, (4) Digital Mock Up, (5) Lifecycle Assessment, 

(6) Product Data Management, (7) Ergonomics Simulation, (8) Manufacturing Executing Systems, 

(9) Supervisory Control and Data Acquisition and (10) Supply Chain Simulation.  

4.3.3. Predictive simulation applications 

Predictive simulation can be used to assess the consequences of changes in the environment, 

such as the addition/removal of machines, unexpected machine failure and changes to policy or 

production processes. Different possible uses are outlined in [83], and include but are not limited 

to: 

• Monitorization of anomalies (e.g. fatigue) in the physical counterpart by comparing with the 

simulated version; 
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• Monitorization of material deformation; 

• Life-cycle simulation: what are the expected changes on the equipment during its lifecycle 

and how the real components deviate from them [79]; 

• Assessment of possible design flaws before they are implemented in the physical system 

(prognostic assessment at design stage); 

• Study of long-term behaviour: predict future performance and compare it to actual 

performance; 

• System optimization both during design phase and of its future activities;  

• Training operators on a virtual environment, preventing potential damage to the machines 

and diminishing human error; 

• Maintenance activities can be evaluated before they are put into action by assessing their 

effectiveness and consequences to the Digital Twin; 

• Optimization of duty cycles and activity coordination between systems. 

4.3.4. Digital Twin 

Using real data and simulation processes to improve decision making processes gave rise to the 

concept of “Digital Twin”. The first definition of Digital Twin is provided by NASA, stating: “an 

integrated multi-physics, multi-scale, probabilistic simulation of a vehicle or system that uses the 

best available physical models, sensor updates, fleet history, etc., to mirror the life of its flying twin. 

It is ultra-realistic and may consider one or more important and interdependent vehicle systems”.  

As research on the topic progressed beyond the field of aeronautics and into that of Cyber -physical 

systems – and the sensorization of equipment became more ubiquitous – the definition was updated 

in order to make the role of feeding real-data in real-time into the model more evident.  

According to [83], a Digital Twin consists of “a virtual representation of a production system that 

is able to run on different simulation disciplines that is characterized by the synchronization between 

the virtual and real system, thanks to sensed data and connected smart devices, mathematical 

models and real time data elaboration”. As the synchronization between virtual and physical system 

grows, the potential of Digital Twins for the study of the life cycle, prognostic and diagnostic also 

becomes more established. 

The level of integration of real data and the model can be used to establish different subcategories 

of Digital Twins, as proposed by [84]: 

• Digital Model: consists of a digital representation of the physical entity which has no direct 

contact with its physical counterpart (e.g. mathematical models). Real data from the 

physical system can be used, but it is supplied to the digital model manually (i.e. not 

automatically collected). As such, changes in the physical asset have no impact in the digital 

model. 

• Digital Shadow: digital representation of the physical entity where real data from the 

physical version is automatically transferred. As such, any events or changes that affect the 

physical version will also affect its Digital Shadow. 

• Digital Twin: the data can flow automatically between digital and physical versions of the 

system. Events affecting the physical asset will equally affect its digital version, and 

changes to the digital version will be propagated to the physical.  
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As such, the potential of the Digital Twin as a tool to help studying the behaviour and life cycles 

of physical systems has become more prevalent as the synchronization between virtual and 

physical systems grows. 

4.4. R&D projects 

The current section will feature a number of recent and ongoing Research and Development 

(R&D) projects focusing on themes similar to those of Pianism. All of the following projects have, at 

least, dedicated some time and effort to predictive approaches to maintenance, in an effort to 

facilitate the implementation and application of these approaches in the industry. 

4.4.1. InValue: Industrial Enterprise Asset Value Enablers 

The main goal of InValue is to make use of emerging Industry 4.0 technologies to promote the 

change from traditional maintenance practices to more proactive ones in the automotive sector. The 

InValue platform relies on existing standards combined with novel and integrated solutions for the 

content and knowledge management of heterogeneous information derived from various sources. 

Every process the data must go through is addressed by the platform, including information 

acquisition and aggregation, representation, analysis and exchange between smart devices, 

automation systems, and information systems. 

Consortium:  

• Portugal: Sistrade Software Consulting; ISEP/IPP-GECAD; Evoleo; ISQ; Facort 

• Belgium: SIRRIS; Barco N.V. 

• Spain: DATAPIXEL; Engine Power Components G.E., S.L.; Asociación de empresas 

tecnológicas Innovalia; Unimetrik 

• Turkey: Acd Bilgi Islem ltd.sti.; Ericsson Arastirma Gelistirme ve Bi lisim Hizmetle; Hisbim 

Bilgi ve Iletisim Teknolojileri; Turkgen 

Duration: June 2016 – December 2018 

Webpage: http://www.invalue.com.pt/ 

4.4.2. SMART-PDM: A Smart Predictive Maintenance Approach based on Cyber Physical 

Systems 

Under the advancement of Industry 4.0, manufacturing is undergoing massive and fast changes. 

Data acquisition is a fundamental step for diagnosis and prognosis tasks - SMART-PDM’s objective 

is to acquire this data in a financially feasible fashion, lowering costs with maintenance, waste and 

parts, while also improving product quality and equipment health. Any technological insights 

validated by the demonstrations will improve existing technologies, add to existing know-how and 

be applied to future solutions by the various consortium members. 

Consortium: 

• Finland: Caverion Suomi Oy, Teollisuuden Ratkaisut; Junkkari Oy; Nome Oy; Ramentor Oy; 

VTT Technical Research Centre of Finland Ltd.; Wapice Ltd.  

• Portugal: ISEP CISTER/INESC-TEC; SONAE; Virtual Power Solutions, S.A. 

• Romania: BEIA Consult International; Societatea de Inginerie Sisteme SIS SA  

http://www.invalue.com.pt/
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• Spain: CTI SOFT, S.L.; Danobat; Fundacion Tecnalia Research & Innovation; Ideko; IK4-

LORTEK; Mondragon Assembly S. Coop; Savvy Data Systems S.L.; ZAYER, S.A. 

• Turkey: ANADOLU ISUZU OTOMOTİV SAN. TİC. A.Ş.; BitNet Bilişim Hizmetleri Ltd Şti; 

Enforma Information and Communication Technologies A.S.; KOCAER ROLLING MILL; 

Netas Telekomunikasyon A.S.; Zorlu Enerji 

Duration: Dec 2018-2020 

Webpage: http://www.beiaro.eu/smart-pdm/ 

4.4.3. DayTiMe: Digital Lifecycle Twins for predictive maintenance 

Recently, Digital Twins are advanced a solution for the Predictive Maintenance issue in Smart 

Manufacturing. While proposals for it are commonly found in literature, very few functional examples 

of Digital Twin can be found in the industry. DayTiMe aims to fill this gap by integrating findings and 

solutions from 14 industrial use cases and using a generic value chain model.  

Consortium: 

• Belgium: CMI; SIRRIS; Yazzoom 

• Netherlands: Datenna BV; Eindhoven University of Technology; Philips Electronics 

Nederland B.V.; Philips Consumer Lifestyle; Philips Medical Systems Nederland B.V.; PS-

Tech BV; Target Holding; University of Groningen 

• Turkey: Havelsan; Mangodo Dijital Pazarlama ve Reklam Çözümleri Tic. Ltd. Şti.; Simeks 

Tıbbi Sistemler A.S.; Tazi Bilişim Teknolojileri A.Ş.; Triatech Tıbbi Sistemler Tic. ve San. 

A.S.; Turkcell Teknoloji; V.A.S. Telekom 

• United Kingdom: Centre for Factories of the Future Ltd 

Duration: January 2019 – December 2021 

Website: https://www.eurekanetwork.org/project/id/17030 

4.4.4. CyberFactory: Addressing opportunities and threats for the Factory of the Future 

(FoF) 

The goal of CyberFactory is to facilitate the design, development, integration and demonstration 

of enabling capabilities to enhance and optimize the resilience of the Factories of the Future. Pilots 

from Transportation, Automotive, Electronics and Machine manufacturing industries will be 

addressed, and applied to different use cases such as statistical process control, real time asset 

tracking, distributed manufacturing and collaborative robotics. Preventive and reactive approaches 

to security and safety concerns will also be proposed, such as blended cyber -physical threats, 

manufacturing data theft or adversarial machine learning. 

Consortium: 

• Canada: Bluewrist Inc. 

• Findland: Bittium Wireless Ltd.; High Metal Oy; Houston Analytics Oy; Netox Oy; Rugged 

Tooling; VTT Technical Research Centre of Finland Ltd. 

• France: Airbus; Airbus CyberSecurity SAS France; IRT SystemX; LAAS-CNRS; Uwinloc; 

• Germany: Airbus Cybersecurity GmbH; Aviawerks; BIGS; Bombardier; Fraunhofer AISEC 

Institute; HTW Berlin University of Applied Sciences; InSystems Automation GmbH; OFFIS  
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• Portugal: IDEPA INDÚSTRIA DE PASSAMANARIAS, LDA; ISEP; SISTRADE Software 

Consulting, S.A. 

• Spain: Airbus Defence & Space; ENEO TECNOLOGÍA, S.L; Innovalia Association; Nextel; 

PAL Robotics; Trimek; 

• Turkey: GOHM Electronics and Computing Systems Ltd; Lostar Information Security; Vestel  

• United Kingdom: Accelerite 

Duration: December 2018 – June 2022 

Website: https://itea3.org/project/cyberfactory-1.html 

4.4.5. Maintenance 4.0: Intelligent and Predictive Maintenance in Manufacturing Systems 

The project aims to develop integrated and intelligent solutions for industrial maintenance, 

aligned with Industry 4.0 principles, considering the following aspects are considered: i) advanced 

and online analysis of collected data for the earlier detection of failures, and ii) intelligent decision 

support systems to support technicians during the maintenance interventions. Maintenance 4.0 

project constitutes a real-world implementation of intelligent and predictive maintenance through 

the development of advanced data analytics applications, which will enable the reduction of the 

unplanned down times by predicting possible failures. 

Funded by: Norte 2020 

Consortium: Instituto Politécnico de Bragança, Instituto Politécnico de Viana do Castelo, 

Instituto Politécnico do Cávado e Ave, Catraport 

Duration: October 2017 - September 2019 

Website: http://maintenance40.ipb.pt 

4.4.6. PreCoM: Predictive Cognitive Maintenance Decision Support System 

Cheaper and more powerful sensors, together with big data analytics, offer an unprecedented 

opportunity to track machine-tool performance and health condition. However, manufacturers only 

spend 15% of their total maintenance costs on predictive (vs reactive or preventative) maintenance.  

Funded by: H2020-EU.2.1.5.1. 

Consortium: e-maintenance sweden ab,paragon anonymh etaireia meleton erevnas kai 

emporiou proigmenhs texnologias, savvy data systems sl, vertech group bosch rexroth ag, soraluce 

s. Coop., sakana, sociedad cooperativa, overbeck gmbh, spinea sro, goma camps sociedad 

anonima, lantier sl, ideko s coop, commissariat a l energie atomique et aux energies alternatives, 

consorcio instituto tecnoloxico matematica industrial itmati, technische universitaet muenchen, 

technische universitaet chemnitz, 

Duration: 1 November 2017 - 31 October 2020 

Website: https://cordis.europa.eu/programme/rcn/701830/en 

4.4.7. SERENA VerSatilE: plug-and-play platform enabling remote pREdictive 

mainteNAnce 

The growing complexity of modern engineering systems and manufacturing processes is an 

obstacle to concept and implement Intelligent Manufacturing Systems (IMS) and keep these 

systems operating at high levels of reliability. Additionally, the number of sensors and the amount.  
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Duration: 1 October 2017 to 30 September 2020 

Funded: H2020-EU.2.1.5.1. 

Consortium: finn-power oy, vdl weweler bv, whirlpool emea spa, kone industrial oy, engineering 

- ingegneria informatica spa, oculavis gmbh, synarea consultants srl, emc information systems 

international, panepistimio patron, fraunhofer gesellschaft zur foerderung der angewandten 

forschung e.v., teknologian tutkimuskeskus vtt oy, trimek sa, politecnico di torino  

Website: https://cordis.europa.eu/project/rcn/211752/factsheet/en 

4.4.8. PROPHESY: Platform for rapid deployment of self-configuring and optimized 

predictive maintenance services 

The advent of Industry 4.0 provides opportunities for adopting predictive maintenance (PdM), 

which represents the ultimate maintenance vision for manufacturers and machine vendors. 

Nevertheless, there are still barriers to successful deployment including the issues of data 

fragmentation, limited data interoperability, poor deployment of advanced analytics and lack of 

effective integration with other systems at the enterprise and field levels. PROPHESY will deliver 

and validate (in two complex demonstrators) in real plants a PdM services platform, which will 

alleviate these issues based on the following innovations: 

• A CPS platform optimized for PdM activities (PROPHESY-CPS), which will enable 

maintenance driven real-time control, large scale distributed data collection and processing, 

as well as improved production processes driven by maintenance predictions and FMECA 

activities.  

• Novel Machine Learning and Statistical Data processing techniques for PdM (PROPHESY-

ML), which will be able to identify invisible patterns associated with machine degradation 

and assets depreciation, while at the same time using them to optimize FMECA activities.  

• Visualization, knowledge sharing and augmented reality (AR) services (PROPHESY-AR), 

which will enable remotely supported maintenance that can optimize maintenance time and 

costs, while increasing the safety of maintenance tasks.  

• A PdM service optimization engine (PROPHESY-SOE), which will enable composition of 

optimal PdM solutions based on the capabilities provided by PROPHESY-CPS, PROPHESY-

ML and PROPHESY-AR. Service optimization aspects will consider the whole range of 

factors that impact PdM effectiveness (e.g., OEE, EOL, MTBF and more).  

PROPHESY will establish and expand an ecosystem of PdM stakeholders around the 

PROPHESY-SOE, which will serve as a basis for the wider update of the project’s results, as it will 

offer to the CPS manufacturing community access to innovative, turn-key solutions for PdM 

operations. 

Duration: 1 October 2017 to 30 September 2020 

Funded: H2020-EU.2.1.5.1. 

Consortium: philips consumer lifestyle bv, marposs monitoring solutions gmbh, jaguar land 

rover limited, industrial consulting automation research engineering, oculavis gmbh, unparallel 

innovation lda, fraunhofer gesellschaft zur foerderung der angewandten forschung e.v., nova id fct 

- associacao para a inovacao e desenvolvimento da fct, mondragon goi eskola politeknikoa jose 

maria arizmendiarrieta s coop, research and education laboratory in information technologies, 

technische universiteit eindhoven,  sensap microsystems anonimi etairia ilektronikon systimaton kai 

efarmogon logismikou 
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Website: https://cordis.europa.eu/project/rcn/211300/factsheet/en 

 

5. Industrial State of the Art 

5.1. Industrial IOT 

As it is known [85], IoT is the network of connected objects that can build an aware, autonomous 

and actionable system. Just like the Internet of Things in general, the Industrial IoT consists of 

internet-connected machinery and the advance analytics platforms that process the real time data 

they produce. Sensor embedded devices or machines collect and transmit the data via the internet 

connectivity and then the software manages the data. Those IIoT devices range from sensors to 

complex industrial robots [85]. 

IIoT technologies are used in many industries and applications, including manufacturing 

(Industry 4.0), logistics, oil and gas, transportation, energy, mining, aviation, agriculture, healthcare, 

financial services, retail & advertising and other sectors that are similar to these industries  [85]. It 

also includes consumer-facing applications such as wearable devices, smart home technology and 

self-driving cars. 

On a larger scale, the IIoT is a key element of modern cloud computing with intelligent and s elf-

optimizing industrial equipment or facilities. Therefore, IIoT can create game-changing operational 

efficiencies and new business models. Thanks to this technology, industries initially focus on the 

optimization of operational efficiency, real time remote monitoring and data driven automation. With 

this perspective, IIoT technologies create opportunities in automation, optimization, intelligent 

manufacturing, smart factory systems, remote asset management and maintenance capabilities  

[85]. Then, this led to creation of new revenue models and new ways of servicing customers as a 

result of industrial digital transformation. 

Briefly, it has many benefits, but if we need to group the most important ones, they can be listed 

as follows: [85] 

• Operational Efficiency & Productivity: One of the biggest benefits of the IIoT is the 

improvement in operational efficiency and productivity. Many companies are using it to 

automate business and manufacturing processes, remotely monitor assets and control 

operations or optimize supply chains. It let industrial systems continuously improve their 

operations and find new ways for cost-efficient autonomy.  

• New Business Models: The IIoT is disrupting traditional business models and creating 

massive opportunities for companies to create new services based on real time sensor data 

information like machine learning and AI applications or robotic process automation.  

• Cost Efficiency: Enabled with IIoT, separate parts of a production line communicate with 

each other in near real time and makes the entire manufacturing process much easier to 

remotely monitor and control. It allows tracking sensor data, detecting the earliest signs of 

malfunction, managing asset lifecycle and creating smart rules for autonomous device 

behaviour, and many more. Therefore, IIoT is reducing TCO (Total Cost of Ownership), 

including maintenance cost by reducing downtime and maximizing asset utilization.  

• Workforce Productivity & Safety: Thanks to wearable and other IoT-enabled devices, 

workforce productivity and job satisfaction are increasing. The technology is helping 
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employees improve decision making, automate routine tasks, fast-track communication, and 

more. 

• Enhanced Customer Experiences: From integrating customer care with actual product 

performance and usage, to delivering highly personalized products and services, the IoT 

offers many ways to create customer experiences across digital and physical worlds. Based 

on the analysis of collected sensor data and history record, decision-making process is 

largely improving by more precise root cause analysis, because the collected real-time and 

historic data is a rich source of actionable information. That results in a better customer 

service, satisfaction and loyalty. 

As a result, the Industrial Internet of Things has strategic priorit y and critical importance for 

manufacturing companies as it allows them to give more value to their customers as well as improve 

cost-efficiency of their internal operations. Finally, IIoT promotes more flexible, open architectures 

that support greater customization and digital upgrades across lots of devices. 

5.1.1. IOT Reference Model 

Members of the Internet of Things World Forum (IoTWF)10 consist of technology firms, industry 

visionaries, executives and educators and they are committed to accelerate the awarenes s and 

adoption of Internet of Things technologies. One of the resources of this community is whitepaper 

about IoT reference model from Cisco [86]. This paper aims to provide clear definitions and 

descriptions that can be applied accurately to elements and layers of the IoT platforms.  

Before explanation of the reference model, it is more suitable to start with the IoT architecture 

components. Details about them can be found in the following titles but basically, IoT architecture 

is comprised of sensor nodes, gateways, internet with cloud (server) and visualization with control 

endpoints.  

Based on this architecture, the proposed IoT reference model from IoT World Forum contains 

seven levels and defines how IoT system can be complete. Figure 13 shows these levels and data 

flow directions. Most of the IoT systems have bidirectional data flow. In terms of control pattern, 

information flows from the top to the bottom; however, in terms of monitoring pattern, data flow 

direction is reverse. 

                                                      
10 https://www.iotwf.com 
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Figure 13 – IoT Word Forum Reference Model 

(Image Source: http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_4_2014.pdf) 

Levels can be called like: 1 to 3 “edge-side layer”, 4 to 6 “server/cloud-side layer”, 7 “user-side 

layer”: [86] 

1. Physical Devices and Controllers: This starting level is also called the “edge level” and 

contains the actual “things” in the Internet of Things, such as sensors, devices, gateways 

and virtual objects. They are capable of generating data, being queried or controlled over 

the net, sending and receiving information.  

2. Connectivity: Second level consists of the communication and processing units. It performs 

routing, switching and translation of protocols by facilitating communications between Level 

1 devices and Level 2 connectivity equipment or across networks. Therefore, reliable and 

timely information transmission is the most critical function of Level 2. Security and self-

learning network analytics are also provided at this level.  

3. Edge (Fog) Computing: This level receives the network data packets and outputs 

information that is understandable and suitable for storage and higher-level processing at 

Level 4. It means that Level 3 focuses on high-volume data element analysis and 

transformation, data filtering, clean up, aggregation, packet content inspection and event 

generation. 

4. Data Accumulation: The data that is sent over the internet via gateways by the sensor 

nodes are acquired and stored in a database on the cloud. It means that this level converts 

data-in-motion to data-at rest by converting data from network packets to database relational 

tables. Therefore, applications can access the historic data when necessary, beside real 

time usage thanks to transformation of event-based computing to query-based computing. 

5. Data Abstraction: This level combines data from multiple sources and creates schemas 

and views of data that applications want. The main aim is to get the required and significant 

data out of all the data collected. In order to do this, it reconciles the differences in data 

shape, format, semantics, access protocol and security. Then, it simplifies, filters, selec ts, 

projects and reformats data to serve client applications.  

6. Application: Level 6 controls the applications and performs business intelligence reporting 

and analytics. Software at this level interacts with data “in motion” and data “at rest” in order 
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to interpret the information by using several applications. For example, monitoring assets’ 

data, controlling devices, mobile applications, business intelligence reports, analytic 

applications etc. 

7. Collaboration and Processes: Final level of the IoT Reference Model involves the people 

and business processes. Main objective is to empower people to do their work better not the 

application itself because applications provide people to right data at the right time in order 

to do the right thing. Not only the device should be smart enough to perform certain tasks, 

but they should also have some intuitive interactions with the human. The involvement of 

people and business processes is an essential part of developing IoT application.  

Lastly, for each level and the movement of data between levels, security is one of the most 

critical topics. It must involve the entire model: secure each device, secure network access, secure 

communications (protocols & encryption), secure storage, authentication & authorization, identity 

management etc. 

To sum up, this reference model provides industries to baseline for understanding its 

requirements and its potential by describing how tasks at each level should be handled to maintain 

simplicity, allow high scalability and ensure supportability. 

5.1.2. Implementation  

IIoT is a trending concept for industries and it provides a huge opportunity to operate systems 

more safely and productively while improving efficiency and reducing costs. Still, lots of companies 

face problems with the adoption of IIoT without knowing where to start and which automated 

processes will contribute to the highest increase in effectiveness [87]. Therefore, along with the 

rapid growth of IIoT, companies need to know potential challenges and the way of IIoT 

implementation. 

Main challenges that have to be kept in mind during implementation of IIoT may be list as 

follows:[87][85] 

• Security: Security challenges for IIoT technologies are the biggest concern that affect both 

individuals and organizations in terms of financial and operational damage. It is important 

to save critical data from cyber-attacks. All your data in cloud or in-house storage via 

network connectivity requires new security tools that means increased cost and heavy 

maintenance. Thus, businesses are usually resisting the idea of IIoT. 

• Connectivity & Visibility: The critical IIoT-implementation challenges are rooted in the lack 

of connectivity. There is a constant need for uninterrupted connectivity if an enterprise is 

planning to go IIoT. It is vital to monitor assets in real time as well as ensure those assets 

are performing at an optimal level to improve production. Increased visibility and better 

insights on the health of the asset is also critical in order to detect anomalies and fix issues 

before they occur. However, even if using Internet connectivity, its availability of 100% is 

nearly impossible. There may be trouble in synchronizing and connection may be lost as a 

result of internet outages, power blackouts, technical errors and maintenance. This issue 

result in the removal of connected devices from the network, which affects the entire 

production process and costs millions in damages. 

• Integration of IT & OT: Another challenge faced by the IIoT implementation is the 

integration of the information technology (IT) and operational technology (OT). IoT devices 

are commonly developed as independent solutions, and in best-case scenarios, they are 

injected into the manufacturing process to become a part of the system. In this case, 
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integration between IT and OT lacks effective connectivity and synchronization. Therefore, 

it is important to integrate them securely without data loss and vulnerability. 

• Investment Costs: Finally, investment cost that involves new hardware, modifying existing 

ones, hiring specialized personnel, building infrastructure etc. is also important challenge 

for implementation of the IIoT. 

It is important to know not only what to implement it, but also how to implement it. There fore, 

implementation steps can be followed in order to design a successful enterprise IIoT strateg y: [88] 

[87] 

• Define Business Goals & Expected Outcomes: Aligning strategy, operations, and 

technology with new business models requires attention from the start. Therefore, strategic 

concerns should be addressed before the start of IoT implementation. It means that the 

success of an IoT solution is dependent on the clarity of problem statement. It is critical to 

define key performance indicators that can be measured and improved. Therefore, the 

stakeholders of an organization should identify the expected outcome and business goal 

along with the key success metrics. Is it a reduction in cost, person-hours or waste? They 

should precisely know how the solution would influence the productivity, efficiency, and 

customer satisfaction in the short term and long term.  

• Start Small: Create a plan and road map that determine which percentage of company or 

which one of the business cases will be piloted. Company’s target should not be the 

transformation of all business processes in short term. First, pilot study should be conducted 

for a specific business segment and then a dissemination study should be planned.  

• Decide on the Correct Hardware: What needs to be used depends on what company want 

to achieve. It must identify the hardware, equipment, and machinery based on the business 

goals and expected outcome, for example, appropriate sensors, gateways, edge computers, 

actuators, adapters, bridges, and other hardware. In general, the sensors need to be low 

energy devices in order to maintain operable for a long period without having to replace 

energy sources. 

• Gather Useful Data: The sensors attached to the devices generate multiple data points that 

translate to massive datasets. That means generating gigabytes of data every hour, every 

minute, or even every second. Therefore, it is important to choose carefully the right data 

points that contribute to the metrics. Some of those data points need to be analyzed in real-

time while the others are stored for long-term analysis. For example, in a connected car 

scenario, vital statistics of an engine are monitored in near real-time while the fuel 

consumption data is archived for calculating aggregated values at the end of the quarter. 

• Apply Cold & Hot Path Analyze: Cold path analytics should be defined for long term 

decision-making process, on the other hand, hot path analytics should be done for near real 

time processing. Thanks to hot path analytics, immediate action can be triggered by rules, 

in case of anomaly detection. Therefore, vital statistics can be monitored by real time 

processing before is too late. On the other hand, cold path analytics is also important 

because it is possible to know the status of your asses, production, resources and systems 

over time, including the present data. Data should be analyzed and re-analyzed at any time 

in order to see the effects of changes. 

• Make it Visual: For the operation managers and business decision makers, designing an 

intuitive user experience is important. Operation managers are the supervisors who manage 

the device layer of IIoT. They are responsible to control of the functions of devices, sensors 
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or actuators. Analysts and other decision makers are also responsible for data driven. They 

need to access to dashboards that shows critical parameters of collected data. 

• Think About Security: In order to protect business, it should be implemented security, 

governance and policy across each layer. Security is critical for IoT projects so datasets 

must be carefully encrypted. Policies also should define the roles allowed to control the 

devices and access the business intelligence dashboards. 

• Build a Strong IoT Teamwork: Successful IoT implementation requires time and teamwork. 

It should be defined how functional groups can work together and how to enable smart 

collaborations across the teams. This includes sharing data in operations, maintenance, 

system reliability, supply chain management and other potential synergies. Therefore, it 

should be gathered a team from various departments to think IoT thoroughly.  

It is clearly seen that implementation steps are important to design a successful enterprise IIoT 

strategy to the business. In this part, all steps and processes should be thought attentively. 

Otherwise, it may not be possible to increase effectiveness of the business and to reduce costs 

without having a strong IIoT strategy.[88] [87] 

5.1.3. Sensors 

It is obviously clear that to implement IoT it is a must to have some data. So, where does this 

data come from?  Answer is clear that data is produced from the sensors. It will be better to have 

retrofittable IoT sensors. Retrofitting means updating or adding equipment, sensors, or services to 

existing hardware so, it helps to make use of new technologies[89][90] 

By retrofitting IoT sensors, the company can have the opportunity of implementing a well -

functioning IoT solution. Moreover, retrofitting is the best cost-effective way to make your system 

connective, because IoT retrofit sensors only cost a few hundred euros. Today, nearly every value 

chain is improved with retrofitted IoT sensors.[89][90] 

According to IEEE, sensors can be defined as an electronic device that produces electrical, 

optical or digital data derived from a physical condition or event. Data produced from sensors is 

transformed into information that is useful for business decision makers. The selection of sensors 

is done according to factors, including purpose (temperature, vibration etc.), accuracy, range, power 

consumption, security, interoperability etc. Some types of the key sensors used for building smart 

IIoT applications can be listed as follows:[91][92] 

• Temperature Sensor: Temperature sensors measure the amount of heat energy in a 

source, allowing them to detect temperature changes and convert these changes into an 

electrical signal. Machinery used in manufacturing often requires environmental and device 

temperatures to be at specific levels. Similarly, within agriculture, soil temperature is a key 

factor for crop growth. 

• Pressure Sensor: Pressure sensors senses the force per unit area, and it converts into 

electrical signal. When the pressure changes, the sensor detects these changes, and 

communicates them to connected systems. Common use cases include manufacturing of 

water systems to detect fluctuations or drops in pressure.  

• Proximity Sensor: Proximity sensors are used for non-contact detection of objects near the 

sensor. These types of sensors emit electromagnetic fields or beams of radiation and look 

for changes in the field. In retail, a proximity sensor can detect the motion between a 

customer and a product in which he or she is interested. Proximity sensors are also used in 
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the parking lots of malls, stadiums and airports to indicate parking availability. They can also 

be used on the assembly lines of chemical, food and many other types of industries.  

• Optical Sensor: Optical sensors convert light rays into electrical signals. It measures a 

physical quantity of light and transforms into a readable form. There are many applications 

and use cases for optical sensors. In the auto industry, vehicles use optical sensors to 

recognize signs, obstacles, and other things that a driver would notice when driving or 

parking. While optical sensors are playing a big role in the development of driverless cars, it 

is very common in smart phones. For example, ambient light sensors can extend battery life. 

They are also used in the biomedical field including breath analysis and heart rate monitors. 

In addition, it is used in mining, chemical factories, refineries and alarm systems that can 

detect the presence of objects. 

• Accelerometer & Gyroscope Sensor: Accelerometers detect the rate of change of the 

object’s velocity with respect to time based on vibration. Gyroscope sensors measure the 

angular rate or velocity by determining angular position. They are used for acquiring 

acceleration and rotational information in drones, mobile phones, automobiles, airplanes, 

and mobile IoT devices in order to detect the orientation of the objects. Additional use cases 

include motion sensing for video games, and camera-shake detection systems. 

• Gas & Smoke Sensor: These types of sensors detect changes in air quality, including the 

presence of toxic, combustible, flammable, odourless and colourless gasses. They are very 

helpful in safety systems. Industries using gas sensors include mining, oil and gas, chemical 

research and manufacturing. 

• Infrared Sensor: An infrared sensor senses certain characteristic of its surroundings by 

emitting infrared radiation. It can measure the heat emitted by objects and measures the 

distance. It has been implemented in various applications including healthcare as they 

simplify the monitoring of blood flow and blood pressure. IR sensors are also used for thermal 

imagers and night vision. 

• Humidity Sensor: These types of sensors measure the amount of water vapour in the 

atmosphere of air or other gases. Humidity sensors are commonly found in heating and air 

conditioning (HVAC) systems in both residential and industrial domains including hospitals, 

meteorology stations to predict weather and manufacturing processes for perfect working 

conditions. 

• Level Sensor: They are used to detect the level of substances including liquids, powders 

and granular materials. Many industries including oil manufacturing, water treatment, food 

manufacturing factories and waste management systems use level sensors. 

Before implementing an IIoT solution, you must identify which metrics are key to assessing its 

effectiveness. What key metrics are the most important to you? Once these metrics have been 

established, you will need to determine whether or not this data is natively available through sensors 

or if retrofitting is needed to augment the currently available data [93][94]. 

Most industrial processes operate at very high speeds and thus generate extremely large 

amounts of data when retrofitted/instrumented through an IIoT solution. Therefore, it can definitely 

be the right solution for the business to retrofit the sensors [93][94]. 

5.1.4. I-IOT devices 

An edge device is any piece of hardware that controls data flow at the boundary between two 

networks. Edge devices essentially serve as network entry (or exit) points. Some common functions 
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of them are the transmission, routing, processing, monitoring, filtering, translation and storage of 

data passing between networks. Need for more intelligence, computing power and advanced 

services at the network edge for Internet of things (IoT) gives important role for edge devices.  [95] 

Most common types of IoT devices at edge level includes sensors, actuators and IoT gateways. 

The data that is generated by sensors and actuators play an important ro le in the internet of things. 

Actuators is a mechanism for turning energy into motion and may be categorized by the energy 

source to generate motion. For example, in order to generate motion:  

• Hydraulic actuators use liquid;  

• Pneumatic actuators use compressed air; 

• Electric actuators use an external power source, such as a battery; 

• Thermal actuators use a heat source. 

An IoT gateway is a physical device or software program that serves as the connection point 

between the cloud and controllers, sensors and intelligent devices like a bridge. All data moving to 

the cloud, or vice versa, goes through the gateway. Some sensors generate thousands of data 

points per second. A gateway can pre-process that data locally at the edge before sending it on to 

the cloud. When data is aggregated, summarized and analysed at the edge, it minimizes the volume 

of data that needs to be forwarded on to the cloud. It creates a big impact on response times and 

network transmission costs. [96] 

5.1.5. Network and Data Transmission 

Huge number of objects are enabled to collect, process and send data to other objects, 

applications or servers. In the IoT ecosystem, they can transfer information in the online mode only 

when objects are safely connected to a communication network. Therefore, IoT network protocols 

have been developed and new ones are still evolving in order to make this connection possible. 

Fundamentally, connection and network types form a basis for data transmission in IoT systems. 

• Types of IoT Connections: An IoT system has a three-level architecture: assets, 

gateways and data systems. The data moves between these levels via four types of 

transmission channels.[97] 
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Figure 14 – IoT System Architecture 

(Image Source: https://www.sam-solutions.com/blog/internet-of-things-iot-protocols-and-connectivity-options-an-overview/) 

o Device to Device (D2D): It is direct contact between two smart objects without 

intermediaries. They can share information instantaneously between each other’s. 

For example, industrial robots and sensors are connected to one another directly in 

order to coordinate their actions and perform the assembly of components . 

o Device to Gateway: It is telecommunication between sensors and gateway nodes. 

Gateways are more powerful computing devices than sensors. They have two main 

functions:  

▪ Consolidate data from sensors and route it to the relevant data system 

▪ Analyse data and, if some problems are found, return it back to the device 

These IoT gateway protocols depends on the gateway computing capabilities, 

network capacity, reliability, frequency of data generation and its quality. 

o Gateway to Data Systems: It is data transmission from a gateway to the 

appropriate data system. To determine what protocol to use, data traffic should be 

analysed. 

o Between Data Systems: It is information transfer within data centers or clouds. 

Protocols for this type of connection should be easy to deploy and integrate with 

existing apps. 

• Types of IoT Networks: IoT networks are divided into categories based on the distance 

range they provide. [97][98] 

o Nano Network: Set of small devices (sized a few micrometers at most) that perform 

very simple tasks such as sensing, computing, storing, and actuation. Such systems 

are biometrical, military and other nanotechnologies. 

o NFC (Near Field Communication): Low-speed network to connect electronic 

devices at a distance within 4 cm from each other. Such applications are contactless 

payment systems, identity documents and key cards. 
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o BAN (Body Area Network): Network to connect wearable computing devices like 

fixed on the body, near the body in different positions, or embedded inside the body 

(implants). 

o PAN (Personal Area Network): Net to link up devices within a radius of roughly 

one or a couple of rooms. 

o LAN (Local Area Network): Network covering the area of one building. 

o CAN (Corporate Area Network): Network that unites smaller local area networks 

within a limited geographical area (enterprise, university). 

o MAN (Metropolitan Area Network): Big network for a certain metropolitan area 

powered by the microwave transmission technology. 

o WAN (Wide Area Network): Network that exists over a large-scale geographical 

area and unites different smaller networks, including LANs and MANs. 

Beside range of communication they offer, networks can also be categorized according to their 

connectivity configurations known as topologies. There may be various combinations of connections 

between nodes: line, ring, star, mesh, fully connected, tree, bus. 

Mesh networks have the most beneficial if compared to other types of networks, because they 

don’t have a hierarchy, and the hub and each node is connected to as many other nodes as 

possible. Information can be routed more directly and efficiently so this reduces maintenance costs 

and prevents communication problems. This makes mesh networks an excellent and popular 

solution for the connected objects. 

 

Figure 15 -Network Types based on Topologies 

(Image Source: https://www.seebo.com/iot-connectivity/) 

In addition to these connection and network types, there is also some invisible language that 

allows communication between two or more physical objects. Most popular IoT protocols, standards 

and communication technologies can be listed as follows: [97][98] 

• MQTT (Message Queue Telemetry Transport): It is a lightweight protocol for sending 

simple data flows from sensors to applications and middleware. It includes three 

components: subscriber, publisher and broker. The publisher collects data and sends it to 

subscribers. The broker tests publishers and subscribers, checking their authorization and 

ensuring security. MQTT suits small, cheap, low-memory and low-power devices. 

• DDS (Data Distribution Service): It is an IoT standard for real-time, scalable and high-

performance machine-to-machine communication. The DDS standard has two main layers. 

Data-Centric Publish-Subscribe (DCPS), which delivers the information to subscribers and 

Data-Local Reconstruction Layer (DLRL), which provides an interface to DCPS 

functionalities. 

• AMQP (Advanced Message Queuing Protocol): It is an application layer protocol for 

message-oriented middleware environments. The processing chain of the protocol includes 

three components. Exchange (gets messages and puts them in the queues), Message 
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queue (stores messages until they can be safely processed by the client app), Binding 

(states the relationship between the first and the second components) 

• Bluetooth: It is a short-range communications technology integrated into most 

smartphones and mobile devices, which is a major advantage for personal products, 

particularly wearables. This technology is a real foundation for the IoT, as it is scalable and 

flexible to all market innovations. Moreover, it is designed to reduce power consumption.  

• ZigBee: It is a low power, low data-rate wireless network used mostly in industrial settings. 

It is created the universal language for the Internet of Things, so it makes it possible for 

smart objects to work securely on any network and seamlessly understand each other.  

• Wi-Fi: It is the technology for radio wireless networking of devices. It offers fast data transfer 

and is able to process large amounts of data. This is the most popular type of connectivity 

in LAN environments. 

• Cellular: It is the basis of mobile phone networks, but it is also suitable for the IoT apps 

that need functioning over longer distances. They can take advantage of cellular 

communication capabilities such as GSM, 3G, 4G (and 5G soon). The technology is able to 

transfer high quantities of data, but the power consumption and the expenses are high too. 

Therefore, it can be a perfect solution for projects. 

• LoRaWAN (Long Range Wide Area Network): It is a protocol for wide area networks. It is 

designed to support huge networks (e.g. smart cities) with millions of low-power devices. It 

can provide low-cost mobile and secure bidirectional communication in various industries.  

Choosing the appropriate type of connectivity is an inevitable part of IoT projects because it has 

an impact on the design of IoT devices. For example, network range, data rate, and power 

consumption are all directly related. If you increase the network range or rate and volume of data 

that is transmitted, IoT devices will require additional power to transmit the data under those 

conditions. At this point, requirements for IoT networks may be listed as follows: 

• The capacity to connect a large number of heterogeneous elements ; 

• High reliability; 

• Real-time data transmission with minimum delays; 

• The ability to protect all data flows; 

• The ability to configure applications; 

• Monitoring and traffic management at the device level; 

• Cost-effectiveness for a large number of connected objects. 

Therefore, it is important to consider the IoT networking challenges to find the technologies that 

will be the best fit for IoT application. 

5.1.6. Trust and Security 

IoT security includes both physical device security and network security by protecting IoT 

devices as well as the networks they’re connected to. IoT device security must protect systems, 

networks, and data from IoT security attacks, which target four types of vulnerabilities: [85] 

• Communication attacks, which put the data transmitted between IoT devices and servers at 

risk 
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• Lifecycle attacks, which put the integrity of the IoT device as it changes  hands from user to 

maintenance 

• Attacks on the device software 

• Physical attacks, which target the chip in the device directly 

IoT security allows developers to protect their devices from all types of vulnerabilities whi le 

deploying the security level. Cryptography technologies are used to combat communication attacks. 

Security services are offered for protecting against lifecycle attacks. Isolation measures can be 

implemented to beat off software attacks. In addition, finally, IoT security should include tamper 

mitigation and side-channel attack mitigation technologies for fighting physical at tacks of the chip. 

In order to implement a sufficient solution to measure the security of the IoT, first there is need 

to agree on the objectives to be achieved and then re-adapt existing security certification 

frameworks in order to meet these objectives: [85] 

• Allow a quick and agile product manufacturing lifecycle; 

• Reduce costs and time of evaluations; 

• Motivate and educate the developer; 

• Include training; 

• Recognize accredited self-assessment (for basic security assurance level); 

• Provide simple methods / metrics for developers; 

• Recognize existing evaluation methodologies and security standards; 

• Consider the operating environment / process / context / complete domain; 

• Allow the customer and the supplier to compare the different products in an objective way ; 

• Mutual recognition. 

Keeping these goals and concepts in mind reduces the costs of security assessment and 

consulting services, eliminates the lack of cybersecurity experts, raises business and consumer 

security awareness and ultimately creates a level of trust between the stakeholders.  

5.2. Big Data Infrastructure 

The term Big Data often refers to the management of enormous amounts of data. Such term has 

become popular during the 20 latest years [1]. Big Data technology is under constant growth, and 

it is calculated to double at least every two years [3]. Although the term Big Data is abstract, people 

often refer to it as enormous amounts of unstructured data, harder to store and analyse [99]. We 

can define Big Data as datasets with a volume of data that cannot be processed by traditional IT 

systems in an acceptable time. 

Such data needs to be suitably structured to be useful to provide further knowledge and to be 

helpful to match data from unstructured fonts. For this reason, Big Data is working with some 

cutting-edge technologies, such as cloud computing or the Internet of Things, among others.  

5.2.1. Challenges 

Big Data technology still has several limitations to face. These limitations hamper the potential 

of such technology as well as the management, acquisition, processing, and storage of data. The 
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research community has proposed several solutions to some of these problems. For instance, cloud 

computing is the most popular method for providing an infrastructure for Big Data systems. These 

problems have been beneficial for certain technologies that have developed rapidly to help the 

deployment of Big Data systems [100] . 

However, to deploy and implement a suitable Big Data model is not at all trivial. Some of the 

setbacks [101] of using Big Data are listed below: 

• Data representation: Big Data systems often incorporate datasets with different data types. 

Such heterogeneity may be a problem for storing this data and make it accessible in a 

suitable time. 

• Redundancy in data representation: Big Data systems are known for producing redundant 

datasets. Consequently, Big Data systems are slower and more complex than they could be, 

which hinders its scalability. Nonetheless, by compressing this data without losing its value 

systems can make transcendent improvements in terms of efficiency.  

• Data Life Cycle: Some of the systems supported by Big Data technologies such as IoT 

systems provide some Data which becomes useless after a certain amount of time. The 

previously mentioned data causes the system to grow and can reach a size that the 

infrastructure will not be able to sustain. For this reason, one of the most critical issues in 

Big Data is to choose which data is no longer useful to keep a suitable scope for the system. 

• Analytical Mechanism:[101] Structured database schemas have not been designed in terms 

of scalability. Big Data systems are a mix of structured and non-structured sources of data. 

A suitable architecture should be defined to support Big Data systems reaching performance 

requirements. 

• Security in analysed data: Big Data systems are so large that data often cannot be analysed 

by people. Big Data analysts will frequently need to rely on tools designed to execute such 

duties. 

• Energy management: Big Data systems are increasing in size, which leads them to consume 

more and more electric energy. This is not proper for the environment and some power 

management protocols must be implemented. 

• Scalability: As said before in this state-of-the-art, data is experimenting an extremely fast 

growth and systems need to be prepared for it in their architecture as well as in their way to 

manage resource consumption. 

Although the number of challenges is noticeable, they can all be overcome with a good design 

and implementation of the Big Data architecture. 

5.2.2. Big Data generation and acquisition 

Data generation and data acquisition are the two very first of the Big Data life cycle. Both steps 

are therefore very relevant and need to be treated consistently.  

The first step in any Big Data process is to collect the data [4]. This data comes from any variety 

of sources that can be structured and non-structured. These datasets come from clicks, streams, 

videos, queries as well as other sources of data that highly surpass the current IT capacity.  

Big Data systems will have to face the massive data produced by enterprises to higher certain 

levels of profitability, the heterogeneity of IoT sources, unstructured data collected from the Internet 

among other sources [5]: 
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The second step in the Big Data process is Data Acquisition. Sometimes Data comes from some 

sources which give an unsuitable size to datasets, filled with useless data. The Internet of Things 

is an example of such kind of redundant data provided by sensors. However, some techniques to 

select the useful data and compressing datasets are essential for an adequate way to process the 

data and, therefore, make the system work properly.  

Three data acquisition procedures are generally used to sustain Big Data applications. The 

following techniques make it easier for data processing. 

• Log files: these are some text files automatically generated by the system. For instance, 

Web Servers use such information to collect searches, clicks, and visits [102]. Databases 

use log files as well to perform it more efficient for certain complex queries.  

• Sensors: Sensors are commonly employed to handle data from environmental sources and 

represent them into something understandable for the system. Usually, the way to classify 

this information is into categories like heat, sound, and weight, among others.  

• Techniques to collect network data: The network holds an extensive source of data that 

needs to be processed by Big Data systems. For this purpose, it is common to employ 

several tools to process and handle that before-mentioned data. Web Crawlers [103] are the 

most used of those tools. They are programs that look into the URLs containing a particular 

word, index, or any information specified which can categorize web pages into specific 

parameters. 

The vast majority of data storage will occur in the data center. Data transmission should be done 

appropriately so as not to waste hardware resources. Consequently, there are two main ways of 

transmitting the data: the internal ones, named Intra-DCN, which will take place in the Data Center 

Network (DCN) and the external ones, named Inter-DCN, which are transmissions from the source 

to the data center[6]. 

• External data transmissions generally depend on the network's physical infrastructure. In 

most of the world, they use optic fiber technologies. Optical fiber usually uses wavelength 

division multiplexing (WDM) network architecture, which makes smart management of 

optical fiber systems. As a result, data transmission has arrived at speeds of 100 Gb/s. 

Furthermore, prospects figure that it will be feasible to reach speeds of Tb/s. 

• Internal data transmissions depend on the data center infrastructure and its communication 

protocol, which usually consists of server racks connected in a tree structure with two or 

three layers. 

5.2.3. Data Storage 

Big Data storage is a cornerstone of the use of such technology [7]. However, data filtering is a 

necessary step before storing the data so as not to store inaccurate or corrupted data. Such 

measures include implementing a general visualization interface. Afterward, it is of paramount 

importance to eliminate all redundancies and data of poor quality. Before-mentioned operations 

require the creation of plans for determining the format of high-grade quality data, defining the form 

of possible errors and document it. Therefore, the error correction mechanism must modify or 

eliminate such corrupted data. 

After data has developed the filtering steps outlined before, it is time to store it. The primary 

matter on it is to find a manner to save an enormous amount of data reliably and also suitable for 

hardware infrastructures. Numerous schemes have been built only to fulfil the need to reach a fitting 

data storage infrastructure.  
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There are three qualities that Big data systems must fulfil to build a distributed storage system 

to host massive amounts of data. They are the following:  

• Consistency: The most common manner for storing data consist of dividing data into pieces, 

which is common to allocate different servers. The more servers, the more possibilities of 

failure of one of them. For this reason, as we are talking of warehouses with an order of 

thousands of servers, probabilities are proportionately quite high. By no means should be 

permitted to store copies of the same data with different information. Consequently, action 

needs to fail if executing this action, risk the integrity of the systems. In other words, the 

atomicity regarding actions demands to be protected. 

• Availability: We consider a system available if the vast majority of requests receive a 

response. Currently, cloud servers can guarantee a disponibility rate of more than 99,99%. 

• Partition Tolerance: As distributed systems store data in different data centers, they must 

be tolerant of network failures. This means not only to detect network failures but also to 

recover the state of the system and, afterward recover from such failure. 

However, Eric Brewe proved in the year 2000 [104] that only two of the three requirements can 

be fulfilled at a time in the CAP theorem. Even though this limitation still exists many years later of 

the discovery of such theorem, systems may be designed avoiding partitioning to minimize the two-

out-of-three inconsistency. 

5.2.4. Big Data applied to predictive maintenance 

Preventive maintenance is a technique that can ensure the functioning of a system through 

activities of regular revision, while the system is working. Their main goals are the following:  

• Lengthen the productive life of the system. 

• Reduce the likelihood of failure in the system components 

• Reduce productivity due to equipment faults. 

Proper predictive maintenance should detect errors even before they occur. For this purpose, it 

is necessary to carry out several tests and cleaning activities.[105] 

To reach the previously mentioned aims, it will be necessary to build a Big Data system to 

support it. 

The whole Big Data system will focus on the storage, collection, and managing of the monitored 

data, and it will send the results to other applications. For instance, Big Data in indust rial 

environments is automatically stored, analysed, and triggered by such kind of Big Data ecosystems.  

In such a kind of ecosystem, it is necessary to collect data from structured and unstructured 

sources [101]. Then such data is going to be stored in a platform where it can be analysed. For this 

reason, it is important to connect the system to different applications, of different volumes and rates, 

and with different data models. Furthermore, the information from all the previously mentioned 

sources requires a real-time visualization of the changes in their values. 

The most competitive enterprises such as Bosch of Rolls Royce do use this kind of predictive 

maintenance in their production systems.  

In the case of Rolls Royce, their production of engines has experimented with numerous changes 

due to their approach in Industry 4.0 [106]. The vast production of engines for aircraft systems has 

driven to the use of Big Data toward error detection and the increase of production.   
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Rolls Royce uses Big Data in its monitorization of manufacturing processes with an extensive 

plan for error detection. More concretely, Rolls Royce has hundreds of nanobots placed in locations 

which are inaccessible for humans. These nanobots collect data that their engineers monitor in real -

time, avoiding the equipment failure or programming errors. Such information is essential for later 

decision support. 

As we have seen in the Rolls Royce example, it is possible to make a significant cost reduction 

in manufacturing processes by utilizing the constant feedback provided by Big Data systems with a 

predictive maintenance approach. Big Data ecosystems can explain the relationship betwee n the 

loss of performance and the environment.  

The factory floor's situation usually takes place in environments where certain conditions such 

as humidity, temperature, and noise. These kinds of conditions can gradually deteriorate the 

equipment and reduce staff productivity.  

Big Data systems can do a matching between the human-machine intercommunication and the 

environment, through the use of large datasets for examining the conditions. By the proper 

formatting and manipulation of this data, it is possible to find the patterns of equipment deterioration 

and waste of energy [8]. 

As stated before, losses of productivity caused by equipment degradation can lead to the loss 

of considerable amounts of money. However, after obtaining the degradation patterns generated by 

the environment and thousands of inputs from the applications connected to the Big Data 

ecosystem, it is possible to figure out the performance of the same equipment in different case 

scenarios, considering the staff and the environment. By analysing all the situations, it is possible 

to figure out the best combination, which will, therefore, optimize the production or the cost 

reduction. 

Another important source of optimization is power saving, equipment in an idle state can 

considerable amounts of money. There are many ways to reduce energy costs. However, Big Data 

has provided many inputs that will find the most appropriate policies for cost reduction  [9]. 

5.2.5. Architecture  

The new challenges of big data analysis demand that researches investigate an develop new 

and high-performance computing architectures [10]. The rising of Cloud Computing and Cloud 

Storage in industry provides a solution to support dynamic scalability in several predictive 

maintenance applications. Here below, some of the most used architectures for big data processing 

are shown in detail.  

The Lambda Architecture [11] uses three layers to decompose the problem as can be seen in 

Figure 16. The batch and speed layers store and process all the incoming data using the Apache 

Kafka technology. The batch layer makes use of the Hadoop Distributed File System (HDFS) to 

store the master dataset and the MapReduce in order to perform the batch views. The speed layer 

analyses data in real-time compensating the high latency of updates in the serving layer. The 

serving layer indexes the batch views so that views can be efficiently queried with less latency 

thanks to the use of the speed layer. This layer makes use of technologies such as Oracle, HBase, 

Storm and Cassandra. 
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Figure 16 - Lambda architecture 

(Image source: [12]) 

Another big data referenced architecture is the one proposed by Microsoft [13] which includes 

four main functional features. The collected data can be used for a variety of purposes, so it is 

important to choose a reliable data source. The second step is to transform and process the 

collected data to extract useful information. Then, the data infrastructure is defined as the software, 

servers and networks where the collected data is stored and, therefore, transformed. Finally, the 

last component of the big data architecture defined by Microsoft is the data usage having in 

consideration that data can be provided in different formats and under different security 

managements. 

NBDRA [14] is a big data reference architecture proposed by NIST (National Institute of 

Standards and Technology) developed to ensure the secure and the effective usage of big data. 

This architecture is composed of five layers which are the following:  

• System orchestrator: defines and composes the data application activities into an 

operational vertical system. 

• Data provider: collects the incoming data and feeds it into the big data system for data 

preparation, collection, analysis, visualization and access.  

• Data consumer: is continuously receiving the output from the big data system in order to 

accomplish data searching, querying, exploring and analysing. It can be the end user or 

another system receiving the output. 

• Big data application provider: executes the data life cycle considering the privacy and 

security requirements. It collects data from various sources and perform data cleaning, 

analysis, visualization and security and privacy management.  

• Big data framework provider: provides various services for the big data system to 

accomplish some data transformations. It gives the complete computing framework such 

as hardware, storage and network. It comprises three sub-components: infrastructure 

frameworks, data platform frameworks and processing frameworks. 
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Figure 17 shows the complete NBDRA architecture. 

 

Figure 17 - NBDRA architecture 
(Image source: [12]) 

 

As these, there are multiple other architectures that have been defined by the National Institute 

of Standards and Technology (NIST) as are collected in [13]. 

5.2.6. Hardware 

Big data collects and analyses enormous quantities of data. This means that it is crucial to 

arrange high volumes of data storage as well as high velocity data processing. Some of the essential 

hardware requirements for large-data processing are the engines and framework used for the data 

computing [15]. Figure 18 shows the hardware requirements for the main big data frameworks: 

Hadoop, Storm, Spark and Flink. 

 

Figure 18 - Hardware requirements for big data frameworks 
(Image source: [15]) 
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Hardware architectures have developed huge changes and advances since the 1960s and with 

the emergence of the need to process large amounts of data. From this time, hardware has moved 

from faster sequential machines, to vector processors and from massive parallel systems to 

multicore systems with accelerators. However, despite the advantages provided by these hardware 

innovations, there are still some issues that are far from being solved, such as the problem of I/O  

tasks. Also, each of the used frameworks requires different programming models and hardware 

requirements what outcome in an increase in cost and effort.  

One of the main hardware choices in cloud systems are Graphic Processing Units (GPUs) which 

provides high rendering capabilities and resolutions lending to the appearance of Ge Force 8800 

graphic card designed by NVIDIA in 2006 granting advantages for computing applications.  

In what concerns to the network, the collection and analysis of large data sets require enormous 

amounts of processing power. For this reason, distributed computing is performed in order process 

more amounts of data at the same time in different machines. The management and storage of 

large amounts of data requires networks architectures that differ from traditional client-server 

applications. For accomplish this task it is important to understand how data flow behaves. 

Traditional north-south traffic from clients to servers and serves to clients with no communication 

between clients is quite easy to model while big data applications require east-west communications 

between the different nodes which is much more difficult to understand. An example of a network 

topology that allows east-west communications is Spine Fabric. Data Center Bridging (DCB) is 

available on 10G and 40G networks and it helps to manages data flow enabling data segregation 

based on priorities or classes of the processed data. Another important hardware issue related with 

the last one commented is that it must have the ability to handle traffic burst effectively in order to 

not miss any data [16].  

There is also a need of security and protection in big data in order to detect and prevent 

advanced threats and malwares. Data security does not only involve de encryption of the data but 

also its privacy policies. The main challenges on security in cloud computing are summarised into 

de following: 

• Network: it deals with network security protocols by using distributed nodes, data and 

internode communications. 

• Authentication: it deals with encryption/decryption techniques, authentication methods, 

logging. 

• Data: it deals with data integrity and availability. It is important to protect the distributed data.  

• General: it deals with some traditional security tools and technologies. 

In [17] some security approaches that deal with the commented challenges are shown. Some of 

these are: 

• File and network encryption: all data and network communications should be encrypted to 

prevent hacking attacks. 

• Logging: all the map reduce jobs should be logged before modifying the data as well as the 

responsible user`s information. 

• Nodes authentication: authentication techniques such Kerberos can be used to validate 

authorized nodes form malicious ones when joining a cluster. 
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• Honeypot nodes: honeypots are used to trap the hackers that are trying to access the data 

and take the necessary actions to eliminate them. 

As a conclusion it is important to stress the importance of maintaining data security and privacy. 

5.2.7. Big Data Frameworks 

Big Data frameworks are the working environment in Big Data analytics. The objective of a Big 

Data Framework is to represent all the relevant aspects of Big Data user, framework and 

environment. [107] 

In the rest of the section the most relevant big data frameworks will be analysed, the three 

following Big Data Frameworks are going to be analysed [18]. 

Apache Hadoop: Apache Hadoop is an open software library which includes a framework. 

Hadoop can be configured for single computer or thousands of them. Hadoop can be divided into 

two core components; Hadoop Distributed Files are used to allocate the data, MapReduce that is 

mainly used to process the data. HDFS is mainly allocated in the File System, the Hadoop File 

System mainly offers quick access to the data and a determined number of replicas to get data 

quickly to the user. Map Reduce is the component which process the data and offers it in form of 

key-value pairs. As the reader may infer from this paragraph Hadoop offers a low-level programming 

paradigm. 

In factory floors Master-slave architecture is relevant because it is a quite frequent configuration 

among IoT devices. HBase's architecture is based on two different server types:  

• Masters (HBase Master) 

• Slaves (HBase Region) 

Each of them needs a different configuration and specifications. For example, the master server 

doesn't need as much space as a slave server, so a master server doesn't have to have a lot of 

memory. 

Project storm: Hadoop and related technologies can store data to awesome levels. However, 

they are not real time systems. Predictive maintenance is based in taking data from an environment 

which is under constant change. Storm count on a real time processing data based on topologies. 

Storm clusters are quite similar to Hadoop ones. There are two types of nodes on a Storm cluster: 

the master node and the worker one. “Nimbus” is a daemon ran by the master node which is the 

responsible for the code distribution around the cluster, assigning tasks and monitoring for failures. 

Then the “Supervisors” are daemons ran by the worker nodes and are the responsible for 

accomplishing the tasks assigned by Nimbus and to start and stop the processes. The Zookeeper 

cluster coordinates the communications between Nimbus and the Supervisors in the distributed 

environment as is shown in Figure 19. 
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Figure 19 - Project Storm framework 
(Image source: [18]) 

 

Apache Drill: Apache Drill is a distributed system built for performing huge datasets of the order 

of petabytes. Apache Drill has been designed for any kind of user or business logic with many 

modes such as terminal or user mode. It is also a suitable option due to the huge amount of query 

language that it supports. The main goal of this framework is to reply to ad-hoc queries maintaining 

a low latency mode while providing a flexible query execution framework.  

The showed frameworks are the main ones required to process large-scale data. More 

information about these frameworks is collected in [18]. 

5.3. Standards and Regulations 

The need to capitalize on Big Data and Industrial Internet of Things (IIoT) has resulted in the 

need to unlock and maximally utilize whatever value results from the data gathered. Nevertheless, 

value is variable, and the same can be said concerning machine and production data. The priorities 

of a machine builder's Big Data may significantly differ from that of an end-user manufacturer. 

Determining the type of data necessary for every possible application takes the first step by figuring 

out the challenges faced by IIoT technology in key business and production areas, which must be 

addressed. A plan is then created to generate further insights that will ensure consistent 

improvement efforts in the company's operation.  

In light of rapid technological advancement, the demand for technological integration and 

standardization has also significantly increased. Standards play a crucial role in ensuring the 

reduction of technical barriers, at the same time providing technical harmonization to promote the 

idea of a common technical understanding and efficiently analyse digital systems.  
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5.3.1. Standards 

Published standards on IoT and big data, which are also applicable to technologies that cannot 

be overlooked, such as automation systems, software, and system management, and artificial 

intelligence, are seen in this section. According to Unal [93], some of these standards include: 

1. Industrial - process measurement, control and automation (TC 65)  

• IEC TS 62832 Industrial - process measurement, control, and automation - Digital 

factory framework  

• IEC PAS 63088 Smart manufacturing - Reference architecture model industry 4.0 

(RAMI4.0) (Publicly Available Specification)  

• IEC 62424 Representation of process control engineering - Requests in P&I diagrams 

and data exchange between P&ID tools and PCE-CAE tools  

• IEC TR 62794 Industrial-process measurement, control, and automation - Reference 

model for the representation of production facilities  

2. Industrial networks (TC 65/SC 65C) 

• IEC 61784 Industrial communication networks -Profiles 

• IEC 61158 Industrial communication networks -Fieldbus specifications 

3. Cloud Computing and Distributed Platforms (ISO/IEC JTC 1/SC 38) 

• ISO/IEC 17788 Information technology – Cloud computing - Overview and vocabulary 

• ISO/IEC 17789 Information technology – Cloud computing - Reference architecture 

• ISO/IEC 18384 Information technology – Reference Architecture for Service Oriented 

Architecture (SOA RA) 

4. Safety of machinery - Electrotechnical aspects (TC44) 

• IEC 62061 Safety of machinery - Functional safety of safety-related electrical, 

electronic, and programmable electronic control systems. 

5.3.2. Regulations 

In the light of recent high-profile data mishaps in the technology industry, the government and 

politicians now have the technology industry in their purview. As stated by Wood [94], some relevant 

regulations in the industry include: 

1. Antitrust Laws 

Any time a company conspires with its competitors, third-party vendors, or other relevant parties, 

it may run afoul of antitrust laws. These are the issues antitrust laws strive to address, such as the 

following: 

• Conspiring to fix market prices: Discussing prices with competitors—even if it 

affects a small marketplace. 

• Price discrimination: Securing favourable product prices from buyers when other 

companies can't. 

• Conspiring to boycott: Conversations with other businesses regarding the potential 

boycott of another competitor or supplier. 
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• Conspiring to allocate markets or customers: Agreements between competitors 

to divide up customers, territories, or markets are illegal. This provision applies even 

when the competitors do not dominate the particular market or industry.  

• Monopolization: Preserving a monopoly position through the acquisition of 

competitors, the exclusion of competitors to the given market, or the control of market 

prices. 

If your company runs afoul of any of these regulations, the federal trade commission might 

contact you. 

2. Privacy 

The Internet of Things (IoT) has suffered from being unregulated. The privacy of the data created 

and consumed by connected devices is now under the regulation spotlight. Protecting this data is 

vital for companies and consumers to avoid being accessed for malicious intent.  There are a 

number of regulations world-wide with the focus on personal data but not a much that has been 

formalized around business data and use of business data. 

3. Auditing 

Defining the scope of your audit is key and looking for the risks can help outline a protocol for 

your audit.  Risks can include: 

• Software updates and patches. The time for a patch to be released may be longer than the 

typical cycle for non-IoT devices. 

• Hardware lifespan. IoT devices have their own life cycle, often with built -in obsolescence. 

Components such as nonreplaceable batteries in IoT devices require life cycle planning and 

asset management processes specific to IoT. 

• User IDs and passwords to control access either do not exist or are hard coded.  

• IoT devices can be hacked quickly but take days or weeks to rectify. The wider 

consequences remain unknown because it is difficult to know what has been seen, modified 

or stolen. 

• Cybercriminals can plant back doors for future automated attacks in or from IoT devices; 

typical attacks include botnet distributed denial-of service (DDoS) attacks. 

• Hackers can use IoT devices as an entry point to an enterprise’s networks.  

Now that the risks have been outlined you can then assess the steps to evaluate these risks: 

• General baseline controls—Minimum controls that need to be applied to all aspects of the 

technology 

• Data-related controls—Such as controls that apply to the data forming a key part of IoT 

• Analysis and learning-related controls—Applied to ensure that the analysis is ethical and 

enables trusted use of the data and that outcomes of analysis can be applied to business 

decision-making 

• Business and process alignment—Related aspects which ensure that the IoT implementation 

is aligned to business needs and that business benefits are delivered as required.  
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5.4. Industrial Management Solutions 

The concept of industrial management follows a process that engages in strategic planning, 

setting objectives, resource management, as well as the deployment of human and financial assets 

required to achieve specified objectives, and analysing the results. Management is also a result of 

facts storing, recording, and storing information for future use, available to others in the 

organization. An effective industrial management solution would ensure planning, organization, 

staffing, coordination, and control of the industry. 

Some of the solutions for industrial management include: 

• Ensuring maximum output with minimal production cost 

• Individual activities in the industry must be coordinated to achieve the organization's shared 

purpose 

• Production and delivery of goods and services on the agreed-upon date 

• Proper accounting, reporting and overseeing of all operations in the industry 

• Wastage and loss prevention 

• Production of quality alone 

• Innovation 

• Attention to customers' needs, and 

• Maximum utilization of the industry. 

Software Management Solution 

Most organizations largely depend on the enterprise resource planning system (ERP). A lot of 

money is invested in software, implementation, and training costs in relation to their ERP systems 

to collect, track, and report on vital business data. Some of the rules that will efficiently manage and 

improve the ERP system operating with the least potential issues are seen below:  

1. Documentation and Verification of a formidable disaster recovery plan:  in the event 

of a hard disk failure or server crash, one must wonder what will happen. A well -

documented disaster recovery plan is vital to any ERP implementation. When a disaster 

recovery plan is efficiently implemented, several types of disasters will be accounted for, 

be it man-made or natural, which may pose a threat to the ERP system. It is impossible 

to eradicate disasters, but their impacts, such as loss of data and downtime, can be 

significantly minimized.  

A disaster recovery plan is designed to identify preventative and corrective measures required 

should the unfortunate event of a disaster arise. It must address backup, how to store them, 

preferably offsite, and how often to create them. It should as well address how to recover from a 

disaster with a formerly verified and tested recovery solution. 

2. Documentation of Maintenance Plan: critical areas of the ERP system should be 

identified with a clear definition of plans of expansion or roadmap. Constant revaluation 

of requirements and what area of the ERP system may be improved. Key players for the 

ERP must be identified in the plan. Questions ranging from "who the vendor is" to "who 

is in charge of the system internally?" must be answered clearly.  

Keep the software Update: the prospect of software continuously developing additional 

features is inevitable. It is, therefore, paramount to know what software  version you are using and 
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the latest updates. Service packs or version upgrades provided by vendors are directed towards 

addressing bugs that have been identified, as well as adding new functions, improve navigation, 

and likewise change the appearance of the software. For the system to be up-to-date, these updates 

are necessary. A consistently updated system gives one the liberty of utilizing new available 

features that may significantly improve one's system. Hardware be evaluated by asking, what has 

changed about this software? How can the new features be capitalized on to improve system 

efficiency? and upgraded periodically to ensure its adequacy for the ERP software.  

Practical training of the staff: after implementation, without the presence of training, the ERP 

system will not run smoothly. Training, therefore, keeps the ERP system running effectively, with 

negligible or a rather microscopic level of user issues. Starting up training is a significant step, but 

it is of no good if it is not provided over a selected period. Sequential training ensures and monitors 

staff utilization of the system efficiently and users aware of the new processes, and if or not, users 

are able to maximize the system's new features efficiently. Furthermore, consistent training  allows 

users to identify improvements in functionality and processes within the organization. The 

development of a maintenance plan takes the necessary steps to backup and ensure the safety of 

valuable information, ensuring software updates and providing continuous training to the staff, the 

features of an ERP system can be maximally utilized.  
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