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This deliverable is a summary of the State of the Art analysis done within the work-packages 
of the Panorama project. The project is split into several work-packages to cover the different 
aspects and needs. 

 

Figure 1: PANORAMA Work Package Structure 
 

The project is organized into two groups of work packages: The technical solutions to the 
project objectives are developed by WP1-4 (colored in red / orange), whereas WP5-8 cover 
management, packaging, and dissemination related topics (colored in blue). Within the following 
chapters we are focusing on the technical areas wherein the state of the art analysis have been 
done. 
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1.1 Purpose and objectives 

The complexity of future solutions for mobility results in intricate and unforeseen impact of 
product and project decisions on systems level, even in late development phases. Especially 
software development in mobility, one of the main factors for innovation and value creation – 
and costs, must be evaluated also in system context. To cope with this fact, the early assessment 
of design decisions is a key factor for success. Non-recurring cost for aerospace products sees 
software development as main driver – especially for Unmanned Aerial Vehicles (UAV). The 
future mobility will be electrified, automated and connected. As a result, especially automotive 
and aerospace systems will undergo a radical shift in the way they are organized on software 
and hardware level, as well as how they are designed, leading to a threefold heterogeneity: 

1. Integration of heterogeneous function domains on centralized computing platforms 

2. Use of heterogeneous specialized hardware 

3. Involvement of heterogeneous, collaborating parties for design and development 

An early assessment of design decisions increases the development efficiency of new products. 
For this reason, the goal of PANORAMA is to research into model-based methods and tools to 
master design and development of heterogeneous systems and therewith-increasing development 
efficiency. Focus is automotive industry, synergies and learnings for other domains such as 
avionics are researched as well. Open standards for models and open source tools are the main 
approach to achieve a wide adoption of the PANORAMA results. 

Putting the assessment of automotive and aerospace designs and projects on reliable and 
common foundations in all phases of development can be a major lever for better software, better 
products and time-to-market while reducing costs and risks due to qualified decision-making. 
This will enable the European automotive and aerospace industry to cope with the worldwide 
market. PANORAMA’s results will generate new business opportunities for suppliers and 
customers in two of the biggest industries – automotive and aerospace – which are currently 
undergoing a substantial redefinition of their value creation process. In general, PANORAMA 
enables the established players to compete in a fast growing market while establishing new 
opportunities for new players (e.g. consulting or tools providers). The dissemination as open 
source lowers the entry barriers especially for SMEs. 

 
Major technical outcomes of PANORAMA will be: 

• Models (and meta-models) which support the (early) assessment of design decisions 

• Tools, Methods and Processes that enable or improve assessment 

• Means for supporting the user with domain and use-case specific views and visualization 
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• Demonstrators that show the effectivity and efficiency gains 

• A dissemination as open source software supported by an active community 

These technical goals imply three important conditions: (1) PANORAMA’s approach must 
well integrate with existing ecosystems, (2) it is crucial that all information is stored only once 
at a single location, and (3) guidance is needed to efficiently address the specific design task 
(use-case) at hand with the right abstraction level of the performance model and visualization. 
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2 Project overview 
 

2.1 Rationale of the project 

2.1.1 Problem statement and market value chain 

The future mobility will be electrified, automated and connected. As a result, automotive 
systems will undergo a radical shift in the way they are composed of software and hardware, as 
well as how they are designed and developed, resulting in a threefold heterogeneity: 

1. Formerly separated function domains will be integrated onto centralized computing plat- 
forms leading to a heterogeneous mix of applications with different models of computation 
(e.g., control, stream processing, and cognition). 

2. Hardware will be diverse and specialized to satisfy the tremendous increase of needed 
computing power (e.g., application cores, deep learning accelerators, issued across several 
control units and connected by networks). 

3. Collaborating parties for design and development will be more heterogeneous as compared 
to today (e.g., experts of different domains from OEM and Tier1 jointly developing complex 
applications; Tier1 and semiconductor vendor jointly developing hardware). 

In this context, joint and efficient development is required for products that are safe, secure, 
and fascinating for the end user (the car buyer), and eventually profitable for all parties involved 
in creating the product (for instance, Tier2, Tier1, and OEM creating a new video-based 
driver assistance system). To successfully compete with established and forming consortiums in 
Asia and North America, higher development efficiency for European partnerships is the key. 
Consequently, we demand new methodology, approaches, and tools that conveniently enable 
discussion, reasoning, and early assessment of design decisions to increase development efficiency 
of embedded automotive systems. Thereby, sustainable methodology and approaches must 
consider standards and best practices. For instance, modelling approaches may be based on 
open source project APP4MC, and methodology will respect relevant regulatory and industrial 
frameworks such as ISO26262, and the AUTOSAR & AUTOSAR adaptive, MSR, ASAM-MDX 
& CDF standards. The aerospace industry is facing similar challenges, especially with respect to 
the three areas of heterogeneity. “Automated” and “connected” are relevant trends especially for 
Unmanned Aerial Vehicles (UAV). Due to the ever rising share of software development within 
the (also rising) share of the non-recurrent cost in aerospace products similar issues and solutions 
compared to the automotive industry come up. Therefore, it is straightforward to address both 
automotive and aerospace industry within PANORAMA. Additional relevant standards (e.g. 
DO-178B) can be incorporated based on the competence of additional projects partners. Ideally, 
a sole, convenient modelling approach serves the majority of design tasks during design and 
development. Tools needed for efficient development, e.g., timing analysis tools, then obey 
this open modelling approach allowing the development parties to pick their preferred and 
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suitable tool chain, and to change tools during development depending on team preferences and 
design needs. This idealized approach—sole modelling standard, seamless methodology formed 
around it, rich tool ecosystem obeying the standard—paves the way for efficient development 
of heterogeneous systems by heterogeneous parties. In real world, a multitude of modelling 
approaches exists, e.g., based on SysML/UML, or defined by design guidelines based on tools 
such as Enterprise Architect from SparxSystems or Rational Rhapsody from IBM. Most often, 
different approaches are taken by different parties involved in developing the same product (even 
in the same company). Obviously, joint development requires exchange and communication 
between parties, now reduced to the least common denominator, often resulting in reasoning, 
discussing, and assessing on basis of spreadsheets and informal text documents or slide decks. 

On the methodology side, effectiveness of timing and performance analysis for increasing 
development efficiency in the context of single functional domains and multi-core hardware was 
shown in previous projects (e.g., TIMMO, Timmo2USE, AMALTHEA, AMALTHEA4public, 
ARAMiS I & II). Especially non-functional performance analysis based on abstract system models 
proved to be suitable to assess and back-up decisions during the design of hardware/software 

multi-core systems. However, solutions for heterogeneous function domains on heterogeneous 
hardware platforms developed by diverse parties are missing. In other words: performance 
analysis tools lag behind current hardware trends, and solutions are missing to face the 
heterogeneous systems era that demands to master, e.g., accelerators and special IP blocks in 
addition to homogeneous multi-core chips. Introduction of complex scheduling approaches, such 
as POSIX-based operating systems, and hypervisors in automotive systems imply additional 
technological challenges. 

 

Figure 2.1: System Assessment in the early phase of SW design 
 

The focus of PANORAMA is the qualitative assessment of the design of large automotive or 
aerospace systems in the early phase of the design. By providing the means in terms of models, 
tools, methods and processes the project aims to provide the effectivity and efficiency gains 
delivered by front loading the design process in terms to avoid wrong decisions, misunderstanding 
amongst partners, mistakes, wrong assumptions and predictions. Such problems are known to 
have a great influence of project and product success, on time-to-market, on product quality and 
on cost. This is achieved by providing tools and tools chains as well as processes and methods. 
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Figure 2.2: Market Value Chain of Automotive (and Aerospace) SW design 
 

The market value chain for software development solutions in general and for the tools and 
processes for system assessment in particular consists of four main groups of players: 

1. Tool Vendors and Library Providers sell services, licenses, and libraries to all three groups 
of the following steps of the market value chain. In the case of the early phase of the 
design these are tools e.g. for performance, safety and security aspects of automotive and 
aerospace systems, models and libraries with respective models. They earn money by 
charging license and service fees. Their market access is becoming much easier due to 
standardized models and interfaces to the open source tool platform. 

2. Consulting, Training and Engineering companies integrate the tools and libraries into the 
software development tools chains. They have similar business models as the tool vendors. 
In addition they may charge for engineering services based on time and material. Their 
market access is improved by the open standards and tools, too. 

3. Based on the tool and process environment provided by the first two groups the developers 
of automotive software can do their job. This will be supplied by 3rd parties, e.g. with 
navigations maps, OS suppliers, cloud services etc.. Finally, they deliver the software 
product to the systems developers. They benefit from better tools by achieving better 
quality, lower cost and faster time-to-market. Furthermore, they benefit from better 
interfaces and exchange of the development artefacts. 

4. System developers are direct suppliers to the car makers or airplane producers. They 
deliver electronic control units (ECUs) together with the respective software. System 
developers have the challenge to give concrete offers (quality, prices and timelines) based 
on uncertain assumptions to their customers (the car makers and aerospace companies). 
Furthermore, they have to set up and manage the network of their software suppliers. The 
definition and setup of the joint tooling for the system development is in their responsibility 
and benefits from common standards and interfaces. 

The PANORAMA project consortium needs partners covering all four steps in both the 
aerospace and automotive industry. Furthermore – to establish common European standards – 
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it needs access to the most relevant European markets. Finally, the consortium needs a strong 
open source partner for dissemination and access to important automotive OEMs and aerospace 
companies for evaluation and review of the results (e.g. as a steering board). 

 
2.1.2 Project innovations and technology value chain 

The goal of PANORAMA is to research into model-based methods and tools to master design 
and development of heterogeneous systems by heterogeneous parties, and provide best practice 
and guidance for development (cf. Figure 3). To that end, the main line of action is extending 
the scope of current system level approaches by enhancing existing abstract performance meta- 
models to be suitable for heterogeneous hardware, and heterogeneous function domains. We will 
stand on the shoulder of giants by building on the meta-model developed in the AMALTHEA 
and AMALTHEA4public projects, taking results from projects such as TIMMO, Timmo2USE, 
ARAMiS I & II into account. Thereby, the enhanced meta-model must be a common and open 
standard to support development by diverse parties across organizations. 

 

Figure 2.3: PANORAMA project overview 
 

For integration and transition, existing modelling approaches (see Chapter 2.1.1) have to be 
respected and transformations into the developed meta-model may be offered. To ensure broad 
acceptance and justify investment by industry, the meta-model has to suit many use-cases, 
ideally across the complete development cycle. A meta-model that is rather wide and generic is 
the result. In addition, performance models of products usually grow and get enriched during 
the development process. These facts impose three important conditions: 

1. PANORAMA’s approach must well integrate with existing ecosystems, 

2. it is crucial that all information is stored only once at a single location, and 
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3. guidance is needed to efficiently address specific design tasks with the right abstraction 

level of the performance model. 

Therefore, 

co-existence of models proposed here with established forms of information storage and 
system specification such as AUTOSAR, AUTOSAR adaptive, SysML, and EAST-ADL 
has to be considered, industrial practice has to be cross-checked, 

co-existence of tools deployed in design, open source and commercial, has to be sought, 
and 

use-case specific "views" on the performance models are required that provide focus for 
the developer on specific design tasks at hand, and are suitable for exchange between 
parties. 

Use-cases addressed by PANORAMA’s methodology are, for example, assessment of different 
hardware architectures for given software, assessment of deployment alternatives in a system, or 
guidance for optimization of system level design decisions by visualization of analysis results. 
To address these use-cases, besides the underlying modelling approach, static and dynamic 
analysis approaches will be provided. For instance, dynamic analysis based on performance 
simulation is one path we will take, paying attention on combining strengths of flexible and 
open solutions (such as SystemC) with established and mature commercial simulators. In 
context of static analysis, we intend to evolve current timing and schedulability analyses for 
multi- and many-core platforms to consider the extra complexity of heterogeneous platforms 
and hierarchical scheduling approaches, provide methods and tools for checking fault isolation 
and path coverage. Moreover, we will employ performance analysis methods based on the theory 
of models of computation to develop scalable design space exploration methods for distributed 
multi-core real-time systems, enabling the identification of efficient implementations at an early 
design stage. 

• 

• 

• 
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Figure 2.4: Technology Value Chain for Early Design Phase 
 

Out of scope of PANORAMA are, for example, development of functions, development of 
hardware architectures, and automatic optimization framework. Functions will be provided 
by partners in the project, but developing or optimization of functions is not sought to be 
funded. While any sort of assessment and then tuning of design decision can be considered as 
an optimization of the target product (what is in scope of PANORAMA), PANORAMA has 
no intention to build feature rich frameworks to automatically optimize the system at whole. 
As lesson learned from related projects and industrial practice, two further aspects will be 
considered to pave the way of methods and tools provided by PANORAMA: 

Closed source only and non-adaptable solutions are prohibitive in the heterogeneous era; 
flexibility for tools and methods is required to cope with fast-paced hardware trends. It 
will be ensured that PANORAMA’s solutions are freely available and highly adaptable. 
Provided solutions shall be completed with commercial tools that offer maturity and 
experience required for industrial deployment. 

• 
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Documentation of meta-models often lacks formality; to eliminate confusion from the 
beginning, our meta-model solutions are escorted with reference implementations that 
clearly define their semantics and provide guidance for usage. 

The major technical outcomes of PANORAMA will contribute to the provision of the complete 
technology value chain for system assessment in the early design phase by: 

Providing new models (and meta-models) which support the early assessment of software 
designs by containing non-functional (e.g. qualitative) information. Such abstract models 
need to support exchange with tools and R&D partners, system level description and 
a sufficiently accurate assessment of system features (e.g. performance, required HW 
configuration). A consistent and comprehensive modelling environment for this purpose is 
new. It would put the partners on all stages of the market value chain in position to develop 
better systems in a faster and more cost efficient way. The modelling environment (common 
model definitions, tools, standards) enables the partners to set up their contributions and 
to connect and cooperate. 

Tools, Methods and Processes which support the analysis of the models and the modelled 
systems form the next step of the technology value chain. They enable the tool vendors 
and library providers to develop their products and provide their services. Tooling for 
model based systems engineering and especially for the analysis in the early design phase 
are a growing market and opens the way for additional tools and services. 

Tools, Methods and Processes which support the assessment of the analysis results are the 
final step of the overall process. Such tools need to support the user (software engineer, 
but also other domains like project management and product definition) with domain 
specific views and visualization of the analysis results. This enables discussion within 
the network of partners of a development project. Providers of the tools benefit from 
the developed technology and from the standardized models and interfaces. Furthermore, 
automotive and aerospace software and system developers benefit from using the tools. 

Demonstrators which show the effectivity and efficiency gains are crucial for generating 
market acceptance, wide spread usage and adoption of the tools, methods and processes. 
This is relevant for the positioning of standards and de-facto standards. 

A dissemination as open source software supported by an active community will lead to 
continuous maintenance and further development of the tool chain and the modelling environment. 
This community is the basis of spreading the use and adoption and forms the fundament of the 
business models of the partners of the market value chain. 

• 

• 

• 

• 

• 
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3 State of the art standards and data 
models 

3.1 AMALTHEA 

The foundations for a more efficient use of modern high-performance hardware were created 
by  the ITEA projects Amalthea  and Amalthea4public.  The main result of the projects    
is a software platform for multi-core systems with the central datamodel called Amalthea. 
Amalthea4public extended the platform to support many-core systems and established the 
Eclipse project APP4MC1. The community continued to work on the project after the end of 
the research projects. 

In order to investigate the (timing) behavior of systems in a multi- or many-core context, 
a suitably abstracted description of the factors must be available. The Amalthea system 
model combines various partial models, which together contain the information required for a 
performance simulation, leading to an analysis and optimization of the timing behaviour of a 
system. The descriptions include the hardware characteristics, the structure of the software, 
execution times and prescribed requirements. The description can vary in degree of abstraction 
and detail, depending on the stage of the development. For example, execution times can be 
estimated at the beginning of the process and later on be replaced by measurements from the 
real controller. 

 

Figure 3.1: Main data in the Amalthea System model 
 
 

1https://www.eclipse.org/app4mc/ 

https://www.eclipse.org/app4mc/


– Revision 1 ITEA 3 – 17003 

11 

 

 

 
An Amalthea model per se is a static, structural model of a hardware/software system. The 

basic structural model consists of software model elements (tasks, runnables), hardware model 
elements (processing units, memories, connection handlers), stimuli that are used to activate 
execution, and mappings of software model elements to hardware model elements. Semantics 
of the model then allows for definite and clear interpretation of the static, structural model 
regarding its behavior over time. 

 
Different levels of model detail Amalthea provides a meta-model suitable for many different 
purposes in the design of hardware/software systems. Consequently, there is not the level of 
Amalthea model detail – modeling often is purpose driven. Regarding timing analysis, we 
exemplary discuss three different levels of detail to clarify this aspect of Amalthea. Note that 
we focus on level of detail of the hardware model and assume other parts of the model (software, 
mapping, etc.) fixed. 

Essential software model elements are runnables, tasks, and data elements (labels and channels). 
Runnable items of a runnable specifies its runtime behavior. You may specify the runnable 
items as a directed, acyclic graph (DAG). Amalthea has different categories of runnable items, 
we focus on the following four: 

• Items that branch paths of the DAG (runnable mode switch, runnable probability switch). 

Items that signal or call other parts of the model (custom event trigger, runnable call, 
etc.). 

• Items that specify data access of data elements (channel receive/send, label access). 

• Items that specify execution time (ticks, execution needs). 

Tasks may call runnables in a activity graph. Note that a runnable can be called by several 
tasks. We then map tasks to task schedulers in the operating system model, and we map every 
task scheduler to one or more processing units of the hardware model. Further, we map data 
elements to memories of the hardware model. 

This coarse level of hardware model detail - the hardware model consists only of mapping 
targets, without routing or timing for data accesses - may already be sufficient for analysis 
focusing on event-chains or scheduling. 

As the second example of model detail, we now add access elements to all processing units 
of the hardware model, modeling data access latencies or data rates when accessing data in 
memories - still ignoring routing and contention. This level of detail is sufficient, for example, 
for optimizing data placement in microcontrollers using static timing analysis. 

A more detailed hardware model, the third and last example of model detail, will contain 
information about data routing and congestion handling. Therefore we add connection handlers 
to the hardware model for every possible contention point, we add ports to the hardware elements, 
and we add connections between ports. For every access element of the processing units, we add 
an access path, modeling the access route over different connections and connectionHandlers. 
the combination of all access elements are able to represent the full address space of a processing 
unit. This level of detail is well suited for dynamic timing simulation considering arbitration 
effects for data accesses. 

• 
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Structural modeling of heterogeneous platforms To master the rising demands of perfor- 
mance and power efficiency, hardware becomes more and more diverse with a wide spectrum 
of different cores and hardware accelerators. On the computation front, there is an emergence 
of specialized processing units that are designed to boost a specific kind of algorithm, like a 
cryptographic algorithm, or a specific math operation like “multiply and accumulate”. As one 
result, the benefit of a given function from hardware units specialized in different kinds may lead 
to nonlinear effects between processing units in terms of execution performance of the algorithm: 
while one function may be processed twice as fast when changing the processing unit, another 
function may have no benefit at all from the same change. Furthermore the memory hierarchy 
in modern embedded microprocessor architectures becomes more complex due to multiple levels 
of caches, cache coherency support, and the extended use of DRAM. In addition to crossbars, 
modern SoCs connect different clusters of potentially different hardware components via a 
Network on Chip. Additionally, power and frequency scaling is supported by state of the art 
SoCs. All these characteristics of modern and performant SoCs (specialized processing units, 
complex memory hierarchy, network like interconnects and power and frequency scaling) are 
supported with the current Amalthea hardware model. The concept tries to represent hardware 
components in a flexible and easy way. It supports modeling of manifold hierarchical structures 
and also domains for power and frequencies. Furthermore, explicit cache modules are available 
and the possibilities for modeling the whole memory subsystem are extended, the connection 
between hardware components can be modeled over different abstraction layers. Only with such 
an extended modeling approach, a more accurate estimation of the system performance of state 
of the art SoCs becomes feasible. 

The design of the hardware model is focusing on flexibility and variety to cover different kind 
of designs to cope with future extensions, and also to support different levels of abstraction. 
To reduce the complexity of the meta model for representing modern hardware architectures, 
as less elements as possible are introduced. For example, dependent of the abstraction level, a 
component called ConnectionHandler can express different kind of connection elements, e.g., a 
crossbar within a SoC or a CAN bus within an E/E-architecture. 

ProcessingUnits are the master modules in the hardware model. The following example shows 
two ProcessingUnits that are connected via a ConnectionHandler to a Memory. There are 
two different possibilities to specify the access paths for ProcessingUnits like it is shown for 
ProcessingUnit 2 in the next figure. Every time a HwAccessElement is necessary to assign the 
destination e.g., a Memory component. This HwAccessElement can contain a latency or a data 
rate dependent on the use case. The second possibility is to create a HwAccessPath within the 
HwAccessElement which describes the detailed path to the destination by referencing all the 
HwConnections and ConnectionHandlers. It is even possible to reference a cache component 
within the HwAccessPath to express if the access is cached or non-cached. Furthermore it is 
possible to set addresses for these HwAccessPath to represent the whole address space of a 
ProcessingUnit. A typical approach would be starting with just latency or data rates for the 
communication between components and enhance the model over time to by switching to the 
HwAccessPaths. 
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Figure 3.2: Access elements in the Amalthea hardware model 

 
3.2 AUTOSAR 

AUTOSAR (AUTomotive Open System ARchitecture) [AUT18] is a standard (process/data 
exchange) developed and mainly used by the automotive industry. It was initiated in autumn 
2003 by the need to manage the growing software complexity in electric/electronic systems. 
Enabling software component reuse, variability, accelerated development, cost optimization, 
system scalability, etc., it defines standardized highly configurable interfaces and design processes. 
A simplified version of that design process is depicted in Figure 3.3. 

Generally, AUTOSAR can be used after the initial system design (when it is clear which parts 
will be software and which will be hardware), i.e., AUTOSAR is targeted for software design and 
configuration. As a starting point for the AUTOSAR process there are some system constraints 
to initiate the system configuration and software component (SWC) description. Since the 
system configuration step relies on a SWC description the latter step is done first. Then, during 
the system configuration, the SWCs are deployed to computing resources (Electronic Control 
Units - ECUs) and the communication between them is defined. After that, the SWCs can be 
implemented in parallel to the ECU configurations. The system configuration is usually done by 
Original Equipment Manufacturers (OEMs), while a single ECU is provided by Suppliers. The 
interface (subject matter of the contract) between OEM and suppliers is ECU Extract for the 
supplier specific ECU. It contains only the communication relevant for that ECU and its SWCs. 
Suppliers can now extend this ECU Extract by configuring it. During the ECU configuration 
additional SWCs may be introduced by the supplier. 

SWCs communicate via a standardized interface, the Virtual Function Bus (VFB). Refined 
interfaces of the VFB and their implementations are called Runtime Environment (RTE), i.e., 
the RTE  is the realization of the VFB. On the lower abstraction level of the hardware, there  
is the Basic Software (BSW) which takes care of hardware specifics, e.g., Input/Output, low 
level drivers, etc. In addition to the BSW there is the operating system (OS) which governs 
the resource sharing (computation time and physical resources like memory) among the SWCs. 
Once the ECU is configured the BSW modules, the RTE implementation, and the OS can be 
generated. Combined with the SWC implementation, these artifacts can be compiled to a binary 
which can be flashed to the target device for execution/testing. 
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Figure 3.3: Simplified AUTOSAR development process. 

 
There are several meta-model parts and their extensions (e.g., TimingExtensions) in AU- 

TOSAR. As indicated in Figure 3.3, there are two layers/views of interest for AUTOSAR models: 
System and ECU layer. On system layer, the general communication between ECUs is important 
to deploy functionality (SWCs) to appropriate computation nodes. Hardware resources, SWCs, 
and communication signals are modeled here. On ECU layer, many details can be described, 
it is also possible to model new parameters and assign values to them. More details about 
hardware resources, operating system specifics, communication protocols, partitions, etc. can 
be modeled here. Most of these details are modeled via parameter and value definitions. 

On top of the general two layers there are crosscutting artifacts like constraints, data types, 
mappings, and even SWCs (they are used on both layers). SWCs can be decomposed into 
subcomponents, constituting an arbitrary deep compositional hierarchy. Leaf SWCs (not further 
decomposed) have Runnable Entities (REs) which can be combined to OS tasks (different 
composition) to be scheduled by an OS for efficient resource sharing. With AUTOSAR all these 
artifacts can be modeled and persisted in well defined AUTOSAR XML files. 

 
3.3 SysML 

SysML [OMG19] is a general-purpose systems modeling language standardized by the Object 
Management Group (OMG) for application of a model-based systems engineering (MBSE) 
methodology to development of complex multidisciplinary systems. As opposed to the con- 
ventional document-based design specification approach, this methodology aims at exploiting 
domain models (or model-based specifications) as the primary medium for information exchange 
between engineers while directly involving project stakeholders in early development stages. It 
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was initiated by INCOSE MBSE Initiative in January 2007. 

The design complexity of embedded hardware/software systems is continually increasing, 
while on the other hand, due to ever growing variability of products and their optimizations, 
functions from different domains are getting increasingly mixed up together in different new, 
often beforehand unforeseen contexts of their operation which leads to potential interoperability 
problems for entire system. This kind of potential interoperability malfunction can rather hardly 
be mitigated or even detected by tests. To approach that, MBSE methodology and SysML 
provide means to describe a system in a top-down manner starting from an abstract system level 
by capturing consistent system requirements, system context, use cases, boundary conditions, 
functions, and their interfaces for subsystems from different interacting engineering disciplines 
(such as software, hardware, engine, control, power electronics, mechanics, etc) down to the 
detailed design at component level. Such a system architecture model comprises a structured 
set (or a graph) of logically interconnected model elements that together with an appropriate 
tooling provide an engineer with the ability to automatically query a context of any function 
with corresponding requirements and intended scenarios of its usage during any stage of a 
development process. In contrast to conventional document-based description approaches, a 
SysML model as a formalized specification has a further advantage of representing a traceable 
single source of information regarding requirements, structure, behavior, and parameters over 
the whole lifecycle. This allows for automated validation and verification of cross-disciplinary 
consistency between important specifications such as system requirements, boundary conditions, 
and interfaces for system components from different domains. 

Generally, SysML, being a derivative of OMG Unified Modeling Language (UML), provides 
means (i.e., a structured set of model elements and respective diagrams) for describing a modeled 
system on various levels of granularity and from different viewpoints such as requirements, 
structure, behavior, and parameters. However, the language itself does not provide any guidance 
method to adopt the MBSE methodology in a specific development process. SysML is not  
an approach or a software tool that guides engineering during the specification of a system. 
There exist several methodologies to guide engineers in adoption and use of MBSE technology, 
like INCOSE Object-Oriented Systems Engineering Method (OOSEM[FMS14]), SYSMOD 
[Wei16], Architecture Analysis and Design Integrated Approach (ARCADIA) [Voi17], IBM 
Rational Unified Process for System Engineering (RUP-SE) [Can03], SPES/SPES XT [BDH+12; 
BDK+16], and others, that can be implemented using SysML. Since OMG SysML is based  
on UML, the language extendability features have been preserved by means of additional 
domain-specific profile definitions at the meta-level of the language. This makes the language 
easily extendable and thus it can be integrated into a wide range of development processes of 
different organizations. 

Although last decade has shown a steadily growing interest of different industries toward 
adoption of MBSE methodology [INC14], there are however some points of criticism concerning 
the current implementation of SysML. In particular, an extensive use of language extendability 
in terms of UML profile extensions, which is rather often the case for practitioners from different 
domains, unfortunately leads to a restricted interoperability of SysML models among different 
collaborating partners and different modeling tools. Furthermore, since a significant part of 
an exchanged model represents a visual information, the standard format for storing SysML 
metadata information, i.e., OMG XML Metadata Interchange (XMI) [OMG], becomes rather 
tool and vendor specific. Due to a general nature of the language and to some extent due to 
syntactic and semantic overlap with UML, SysML models lack a precise unambiguous semantics 
to encompass methods of formal verification and model checking or at least to formally judge 



– Revision 1 ITEA 3 – 17003 

16 

 

 

 
about model equivalence. 

OMG is currently working on the new version v2 of SysML addressing major problems of the 
current implementation by improving following key elements [Fri]: 

• New Metamodel that is not constrained by UML (grounded in formal semantics), 

Robust visualizations based on flexible view & viewpoint specification and execution ( 
graphical, tabular, textual), 

• Standardized API to access the model. 

Initial submission of the proposed v2 specification to OMG is planned by SysML v2 Submission 
Team in June 2020. 

 
3.4 EAST-ADL 

EAST-ADL [CFJ+10] is an Architecture Description Language (ADL) defined within the 
ITEA EAST-EEA. EAST-ADL aims at describing automotive electronic systems through an 
information model that captures engineering information in a standardised form. The EAST- 
ADL model is structured in abstraction levels (i.e., Vehicle, Analysis, Design and Implementation 
level) which map to the abstraction levels given in ISO26262[FiXme Fatal: Please add a FiXme 
reference!]. What is more, the EAST-ADL model covers a variety of orthogonal concerns 
spanning from requirements to structure, through timing, dependability and several more. To 
this end, EAST-ADL provides the following packages. 

The Structure package defines the static structure of the instances of the system being 
modelled and their static relationships. This includes the instances internal structure as well 
as their external interfaces. Within this package, each abstraction level has a corresponding 
artefact as follows. 

• Vehicle Level include the Technical Feature Model. 

• Analysis Level includes the Functional Analysis Architecture (FAA). 

Design Level includes the Functional Design Architecture (FDA), the Hardware Design 
Architecture and the Allocation. 

• Implementation level includes a reference to an AUTOSAR model (see section 3.2). 

The Structure package is UML2 [OMG17] compliant. 
The Environment package describes the environment of the vehicle electric and electronic 

architecture by means of continuous functions. The Behavior package describes either a function 
performing some computation on provided data or the execution of a service called upon by 
another function. Within EAST-ADL, the execution of the behaviour assumes a strict run- 
to-completion, single buffer-overwrite management of data. What is more, the execution is 
non-concurrent within an elementary function. The Variability packages serves for expressing 
variability in the FAA, FDA and implementation level architecture. 

The Requirement package describes conditions or capabilities that must be met or possessed 
by a system or components to satisfy a set of (formally imposed) properties. EAST-ADL offers 
constructs for dealing with the highly changing nature of requirements, e.g., courses, types, 
levels of abstraction, stakeholders, etc. The Requirement package, as the Structure one, is UML2 

Fatal! 

• 

• 
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compliant. The Timing package serves for the specification of timing constraints according to 
TADL2[FiXme Fatal:  Please add a reference!]. The Dependability package supports: FiXme 

Fatal! 
the definition and classifications of safety requirements through preliminary Hazard 
Analysis Risk Assessment, 

• tracing and categorising safety requirements according to their role in the safety life-cycle, 

• formalising safety requirements using safety constraints, 

• formalising and assessing fault propagation through error models, and 

• organising evidence of safety in a Safety Case 

The Dependability package is designed to support the automotive standard for Functional Safety, 
ISO/DIS 26262. 

Eventually the GenericConstraints and Infrastructure packages serve for the specification of 
properties, requirements or validation results for identified elements and for the specification of 
the infrastructure constructs, respectively. 

 
3.5 Rubus Component Model (RCM) 

The Rubus Component Model (RCM) is a component model for the development of distributed 
real-time systems that has been conceived by Arcticus Systems AB2 together with Mälardalen 
University. The model targets three main activities in the design of vehicular systems, 1) design, 
2) analysis, 3) synthesis [HMN+08]. RCM can be used together with architectural languages 
such as EAST-ADL (see section 3.4), where it focuses mainly on the design and implementation 
level. 

In RCM, the basic unit of hierarchical decomposition is the Software Circuit (SWC). A SWC 
encapsulated software functions and is defined by its interfaces, internal states, and behaviour. 
Multiple behaviours can be implemented, where each has its own entry function. A SWC 
has distinct trigger and data ports that separate the flow of data from the flow of execution. 
When triggered for execution, a SWC follows the read-execute-write semantic, i.e., first all 
input variables are copied, then execution is performed on the copied variables, and finally all 
output variables are written. Budgets or estimates of for timing attributes, and/or memory 
consumption (on different platforms) can be specified on the model and serve as guidelines or 
constraints for the function development. 

Timing constraints can be specified and analysed via formal timing analysis methods [MNS+17; 
BCC+16]. Timing analysis requires the annotation of WCET and maximum stack usage for 
each SWC. Different values can be annotated for different target platforms. Most of the available 
timing constraints in RCM can directly be expressed, or modelled by the Timing Augmented 
Description Language v.2 (TADL2) [MNS+17]. 

The platform model in RCM allows to define Nodes (i.e., ECUs), Cores, and Partitioned. The 
mapping of software architecture elements to the hardware platform can be specified among any 
two elements. Communication between different ECUs can be modelled via different networks 
or buses (for example CAN). A network connection transmits signals, where one or more signal 
can be part of a message. 

 

2https://www.arcticus-systems.com 

• 

http://www.arcticus-systems.com/
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Figure 3.4: Example counter system modeled in the synchronous MoC. 
 

3.6 ForSyDe 

The ForSyDe methodology, as a mathematical system(s) design framework, has no particular 
data model aside from mathematical descriptions of the system(s) being modeled. As long as the 
tooling built around the ForSyDe methodology captures the essential ideas of signals, processes, 
processes constructors and Models of Computation (MoCs), it can be considered a ForSyDe data 
model [SJ04]. Thus, the ForSyDe methodology can loosely be considered a standard for data 
model definitions and tooling development. To illustrate this claim, the tooling built around 
the ForSyDe methodology, hereinafter referred as ForSyDe tooling, is implemented both as a 
set of Haskell libraries (e.g. ForSyDe-Shallow) and a a SystemC library (ForSyDe-SystemC)3. 

Moreover, the ForSyDe methodology can also be interpreted as a component based framework, 
where the processes are the primary blocks and their connections happen due to the interplay 
of connected signals. These processes, as components, can only be instantiated if they have an 
accompanying process constructor to clearly define their input-output relations of the mentioned 
connected signals. From this viewpoint, hierarchy is created by grouping processes into a single 

bigger process so that free signals are now the inputs and outputs of the new process. 
Figure 3.4 showcases these concepts via an example where an arguably common counter is 

described upon the synchronous MoC without any absent values. Everytime the signal sin is a 
true value, the counter increments and outputs the current count of true values in the signal 
 sout; considering that the count is zero initially. The functions bool2int outputs 1 for true 
values and 0 for false values ; whereas identity simply returns any value evaluated. mapSY , 
zipWithSY and delaySY are all process constructors for the synchronous MoC that cannot 
be reduced any further and that uniquely define the bigger mooreSY and counterSY process 
constructors, the latter which also corresponds to the desired counter system specification. Note 
how it is possible for mooreSY  and counterSY  to pass information down to their defining 
children, as seen usually in component-based frameworks. To finish this example, suppose 
that a signal sin  = {T, T, ⊥, T} is applied to this system design/specification.  Then  by  the 

 
 
 

3All ForSyDe tooling projects can be found in https://forsyde.github.io/tools.html 

counterSY (bool2int, +, identity, 0) 
 

mooreSY (+, identity, 0) 

 sin mapSY 
(bool2int) 

 snum zipWithSY snext 
(+) 

delaySY 
(0) 

 sstate mapSY 
(identity) 

 sout 

https://forsyde.github.io/tools.html
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Figure 3.5: ForSyDe’s design flow overview. 

 
synchronous MoC semantics, there is only one possible outcome, which is: 

 snum = {1, 1, 0, 1}, snext = {1, 2, 2, 3}, 
 sstate = {0, 1, 2, 2}, sout = {0, 1, 2, 2} 

This system model specification does not enforce any affinity for processes to be implemented 
completely in hardware, completely in software or somewhere in between. Rather, it is taken as 
the specification from which the behaviour, as in outputs, of the implementation is compared 
against. Typically a system to be designed will have other requirements that are not captured 
commonly by MoCs, such as computation taking physical time, maximum power consumption 
for some parts of the system etc. The ForSyDe methodology tackles these requirements by 
using other data models as companion representations for such extra specifications, as shown in 
Figure 3.5, and finding a suitable final implementation through design space exploration [RS14; 
RMU+18]. Examples of other potential data models for constraints and mappable platforms 
include ad-hoc descriptions for some specific use cases or the AMALTHEA meta-model (see 
section 3.1); both in XML format. 
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3.7 ASAM MDX 

A first version of the Model Data Exchange Format (MDX) was released by the Association for 
Standardization of Automation and Measuring Systems (ASAM) in 2006. The standard specifies 
a model that enables the description of SW-components of a single ECU, their interfaces, and 
data elements. Since the ASAM MDX standard intents to be an exchange format for model 
data, it does not define its own methodology. The standard also does not provide an actual 
reference implementation, just a XML schema definition and a document type definition for 
formal file validation. 

 

 
Figure 3.6: Top-level structure of an MDX-file 

Source: https://www.asam.net/standards 

3.8 SHIM 2.x 

SHIM (Software-Hardware Interface for Multi-many-core) is an interface for software tools 
to extract the properties of a multicore hardware platform, which affect the software at the 
architectural design level. SHIM is a joint effort form academia and industry and is maintained 
and extended by the multicore association. 

SHIM and its successor SHIM 2 should support tools which focusing on the architectural 
design level of multi- & many-core systems. Therefore the important characteristics like 
communication channels between cores(e.g. routing, message passing protocols), memory (e.g. 
memory size, access latency, hierarchy, topology, coherency) and the cores and accelerators 
itself (e.g. instructions, special execution units, address space) are described in a XML schema 
where the software tools can extract the relevant information. The idea is that the hardware 
vendor provides the SHIM XML for a dedicated hardware platform and tool vendors can 
use this description as an interface for their tools to us the SHIM model for optimization, 
analysis and system configuration (mapping of software tasks to hardware or performance 
analysis/prediction). 

SHIM as well as SHIM 2.x do not cover any modeling regarding the software architecture, 
middleware or runtime environment also OS or Hypervisor related topics like scheduling are not 

http://www.asam.net/standards
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supported. 

Improvements from SHIM 2 over SHIM are extended power consumption modelling, func- 
tional units to represents special execution units within a core, extended parameters for CPU 
instructions, more detailed caches, contention groups and more (see SHIM 2.o specification). 

 

Figure 3.7: SHIM - Relationship to Multicore Tools 

Source: https://www.multicore-association.org/workgroup/shim.php 
References: SHIM 2.0 specification, SHIM 1.0 specification, www.multicore-association.org 

 
3.9 AADL 

The Architecture Analysis & Design Language (AADL) is an architecture description language 
that comes with a well defined textual and visual representation semantics [FGH06]. It was 
initiated in the field of avionics (AADL formerly stood for Avionics Architecture Description 
Language). The AADL is a Society of Automotive Engineers (SAE) standard released in 
November 2004 as AS5506. Targeted for software/hardware architectures of real-time, embedded 
systems it supports early analyses. The underlying formal modeling concepts enable an 
automatic architecture verification and conversion between notations. It supports specialized 
real-time/performance properties and software to hardware mapping. So called annexes that 
extend the capabilities of the main language are also available, e.g., error model, requirements 
definition and analysis, ARINC653, and behavior. There is an Eclipse based open source AADL 
modeling tool: “Open Source AADL Tool Environment” - OSATE4. 

The language offers a number of predefined component categories with formally specified 
semantics. There are three of those categories: 

4https://osate.org 

http://www.multicore-association.org/workgroup/shim.php
http://www.multicore-association.org/
https://osate.org/
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• Software: Data, thread and processes 

• Execution platform: Processor, memory, bus, and devices 

• Software- and execution platform components: systems, groups 

Each of these component categories can contain a group of features. Features represent 
connectors between interfaces of components forwarding control- or dataflows. There are three 
kinds of connectors in the AADL: 

Ports represent point-to-point connections for individual data of events 

Subprograms are groups of control- or dataflows (subprogram parameters) 

Subcomponents-Access represents access to external data or bus components 

Components and feature descriptions are enriched by a group of predefined specialized 
properties which offer flexible data attributes. These properties can be used to define a variety 
of things like a reference to source data or real-time constraints. Using property groups, these 
special properties can be accumulated and globally utilized. 

Another feature of the AADL are so called modes attached to components. Modes represent 
alternative configurations of the implementation of a component. Only one mode can be set 
at a time so only one implementation can be active. Additionally, alternative configurations 
of execution plattform components can also be modeled with modes. With these modes it is 
possible to model dynamic changes during run–time in a static topology. 

Components are defined through type and implementation declarations. A component has 
a type which is defined by elements contained in the component’s interface and attributes 
that are externally visible. The definition of the component’s implementation consists of the 
internal structure of components through subcomponents and their connections. There are 
also subprogramm squences, modes, flow implementations, and properties contained in the 
implementation. Components are grouped by the application software, execution platform, and 
their combinations. Furthermore, a global grouping is enabled through packaging. Extensions 
in the form of annexes enable the designer to expand the language specification. 

According to [FGH06], the goal of the AADL was to define a standard to describe the 
software architecture and the execution platform of a system to design. Like in EAST-ADL 
(see section 3.4) there is a way to describe system components, their interfaces, and the data 
they interchange. Figure 3.8 depicts the structure of AADL. It is divided in global and private 
declarations. Private declarations are further divided as displayed in the figure. 

An AADL specification file contains a package specification on the top level. Packages can 
have private and public components. This indicates whether the components are externaly 
usable or not. Sets of properties are not part of the core specification of AADL and can be 
viewed as a collection of types and units. Component types can be declared in packages. They 
can for example be a system or device. A system also has an implementation to be specified, 
which can contain further subcomponents and their interconnections. These connections can 
either be control- or dataflows. Component types also have features, which describe the input 
and output ports along with required bus connection access (like access to the CAN or LIN 
bus). Furthermore, component types contain flow specifications to describe from where to where 
a flow is connected. Properties can also be specified in component types. Port group types 
establish the identity (name), features, and properties of a collection of ports. Through annexes, 
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Figure 3.8: AADL structure. 

 
AADL offers easy extensibility. Annex libraries define the name and contents of reusable AADL 
core-model declarations that are not part of the AADL standard. 

AADL offers different ways to describe a system architecture, namely a textual, a graphical, 
a combined format, and a storing format defined in XML. The textual and graphical notations 
are part of the AADL standard. 

 
3.10 Safety models 

3.10.1 EAST-ADL Error Model 

The Dependability package of EAST-ADL (Electronics Architecture and Software Technology - 
Architecture Description Language) (see Section ??) is designed to complement the development 
guidelines of the ISO 26262 automotive safety standard [Int11]. Using this approach, a vehicle 
system’s safety analysis begins with a hazard and risk analysis, where high-level hazards are 
identified and their risk is estimated as a combination of severity, likelihood of occurrence and 
driver controllability. Based on these hazards, safety objectives are defined to avoid or mitigate 
the hazards accordingly. The vehicle functions defined in the vehicle layer are associated with 
each of the hazards and are assigned appropriate functional safety objectives. As functions are 
implemented by systems and, in turn, by components, safety objectives are assigned accordingly 
based on failure analysis targeting the appropriate architectural level. 

Potential error behavior identified by engineers can be captured through an EAST-ADL 
Error Model and then used to perform tool-supported analysis. Each Error Model (Type) 
(EMT) identifies potential error behavior of a system and characterizes it with properties such 
as anomaly types (e.g., internal fault, input/output failure), propagation links to other EMTs 
and how the output failures of the system/component function are related to its input ports 
or internal components. ISO 26262 Safety Integrity Levels (ASILs) can also be incorporated 
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into the EMT description. Different EMTs are composable via Prototypes, which apply a given 
EMT to a specific context, such as linking to a nominal system design [CMW+13]. 

The EAST-ADL Behavior Description Annex also supports the definition of state machines. 
State machines enable, among other uses, the incorporation of temporal/dynamic features into 
the system design and analysis. State machines are particularly relevant to the HiP-HOPS 
models methodology for its temporal fault tree analysis extensions [Wal09] and [Mah12]. These 
allow the definition and analysis of fault trees where the likelihood of system failure depends, 
wholly or partially, on the sequence of two or more failure events. 

 
3.10.2 AADL Error Model Annex (AADL EA) 

The Architecture Analysis & Design Language (AADL) is an SAE standard [Com17] that supports 
system architecture modeling. Its application domain focuses on the aerospace industry. The 
language supports the specification and analysis of software and hardware system architecture. 
The language follows a component-based paradigm, viewing systems as collections of software 
components mapped onto a (hardware) execution platform. 

AADL is extensible, allowing a more detailed or specialized description of system behavior 
aspects to be defined through such extensions. One key example is the AADL Error Model 
Annex (AADL EA), which allows component error models and relevant properties to be captured 
in addition to the base system architecture. This feature delivers many of the benefits of Model- 
Based Safety Analysis [JHMW06]; most notably, early, rapid and repeatable dependability 
analysis. 

Under the AADL EA, error models and properties can be defined for each AADL component. 
Properties can include fault/repair assumptions, fault propagation behavior and fault tolerance 
policies. Error models describe component behavior in the presence of local (i.e. , internal to the 
component) failure/repair events and failure propagations as input deviations of the component. 
Input deviations can be propagated from other components as output deviations from the latter. 
Error propagation is specified by rules along system dataflow paths or explicitly by the designer. 

AADL and its application in dependability modeling have been described in detail in [FR07; 
JH07; RKK07]. Further support has been added for deriving static fault trees [JVB07], dynamic 
fault trees [DD08], generalized stochastic petri nets [RKK08] and HiP-HOPS models [MBPB12]. 

 
3.10.3 SysML Failure Logic Extension 

In the COMPASS project, SysML was chosen for the development of systems-of-systems (SoS) 
models which were later analyzed using the project’s techniques and tools. In an outline of 
the vision for COMPASS [CML+12], SysML is employed alongside UML by the modeling 
tool Artisan Studio to model and generate software. Afterwards, the remaining tools connect 
either directly or through file exchange, the files being defined in the project’s shared modeling 
language, CML. The remaining tools provide static & dynamic analysis (theorem proving and 
Fault Tree Analysis (FTA) [VGRH81], among others) as well as simulation of the generated 
software. The use of contracts aimed to address confidentiality issues between collaborating 
users. Contracts provide abstract behavior definitions of the systems that compose the SoS in a 
formal way [ABPK14]. 

Fault modeling in COMPASS enables the generation of fault trees from annotated system 
models, which can then be exported to external tools such as HiP-HOPS [PM99] for analysis. 
The Fault Modeling Architectural Framework (FMAF) aims to provide support for structured 
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fault modeling and is designed based on the taxonomy from [ALRL04a]. The FMAF is defined as 
a SysML profile from which a tool generates the corresponding HiP-HOPS XML input [IAPP14; 
AFPR13]. The FMAF can also be leveraged to model and analyse faults in SoS contracts 
[ABPK14]. For a more in-depth description of how HiP-HOPS is leveraged by this process, we 
refer the reader to [14]. 

 
3.10.4 SafeML 

Another approach that aims at extending SysML with a viewpoint for modeling the artifacts 
of the safety engineering lifecycle is the modeling language SafeML [BSK16]. SafeML5 is a 
SysML profile for integrating safety information with system design information, as an aid to 
information consistency and communication between development teams and among members 
of a team. It can be used for: 

Tracing from hazards through the safety measures used to the verification steps taken to 
test those measures 

• Documenting the analyzed hazards and their safety measures to certification authorities 

Communicating from safety engineers to system engineers the hazards that must be 
considered while designing to meet requirements, as identified through the hazard and 
safety analysis processes 

Communicating from system engineers to safety engineers the hazards that the system is 
designed to manage, including the safety measures used 

The goal of SafeML is to allow the intuitive documentation of hazard and safety analysis results 
and safety measures in the system model. This can improve consistency among multiple analyses 
and aid in communicating the results of analyses. SafeML focuses on making this information 
visible in the system design. SafeML is designed to be used in conjunction with SysML. SysML 
provides the diagrams and element types necessary for design modeling, while SafeML provides 
the element types used to add safety information to the model (see Figure 3.9). 

 

Figure 3.9: SafeML usage concept 
 

The modeling approach is organized in two parts. The first deals with hazards, harms and 
the context necessary for harms to occur. The second deals with safety measures, which in 
SafeML are targeted at preventing the hazardous event necessary for a hazard to lead to harm, 
or mitigating harm should a hazardous event occur. 

5https://astahblog.com/2016/01/28/safeml-intro/ 

• 

• 

• 
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One of the most remarkable aspects of the SafeML approach is that it is a concrete modeling 

language. It defines modeling elements and relationships and, more over it relies on SysML, 
which is by itself also a modeling language. 

The purpose of SafeML is to extend SysML models with safety information, by focusing on the 
definition of hazards and measures. This covers however just a portion of the actual information 
needs for dependability systems. One could even consider the language as incomplete, since 
there are no means to perform a complete hazard and risk analysis. For instance, there are no 
means for identifying malfunctions. Therefore, this process should basically occur somewhere 
else and only the resulting hazards will be documented. 

 
3.10.5 Common Assurance & Certification Metamodel (CACM) 

In the AMASS project6, a Common Assurance & Certification Metamodel (CACM) has been 
developed. CACM is a cluster of metamodels that captures concepts in various aspects of 
system assurance, such as system specification, argumentation, evidence, process, standards and 
the mapping between process and standards. The overlap between AMASS and DEIS is quite 
observable, therefore, it is best practice to re-use part of the CACM from AMASS to model 
process and certification. CACM has a subset of metamodels called Compliance Management 
Metamodel, which contains the following aspects: 

Assurance project definition. It is used to define the assets produced during the 
development, assessment and justification of a safety-critical system; 

Process Definition. It is used to model general reference processes (e.g., Waterfall 
Process, Agile Process, V-model process), or company-specific processes (e.g., the Thales 
process to develop safety-critical systems). 

Standard Definition. It is used to model standards (IEC 61508 [Int98], ISO 2626 [Int11], 
DO-178C [Rad11], EN 50126 [Eur99], etc.) and any regulations (either as additional 
Requirements or model elements in a given model representing a standard or a new 
reference standard). For the implementation another metamodel is added, the Baseline 
Metamodel, to capture what is planned to be done or to be compiled with a defined 
standard, in a concrete assurance project. 

Vocabulary Definition. It is used to provide a Thesaurus-type vocabulary, which defines 
and records key concepts relevant to safety assurance within the target domains and the 
relationships between them. 

Mapping Definition. It is used to capture the nature of the vertical and horizontal 
mappings between the different levels of model in the AMASS Framework and between 
the concepts and vocabulary used in these models. There are two types of mapping: 
equivalence mapping that maps process models with models of standards; and process 
mapping, which maps process models to project specific models. 

 
3.10.6 Open Dependability Exchange Meta-model (ODE) 

The Open Dependability Exchange Meta-model (ODE) is the meta-model for the core concept of 
the Digital Dependability Identity (DDI) and thus a central artifact of the H2020 DEIS project7. 

6https://www.amass-ecsel.eu/ 
7http://deis-project.eu/ 

• 

• 
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The second version of the ODE (ODEv2) consists of two part: the Structured Assurance Case 

Metamodel (SACM) [Obj19; WKD+19] and the ODE itself. The ODE is clearly distinguished 
in its role as a collection of ‘Product’ metamodels. In contrast, the SACM provides a generic, 
higher-level structure for encapsulating assurance claims and argumentation and can reference 
other models, including those derived from Product metamodels such as the ODE v2. 

Figure 3.10 presents an overview of both the SACM (highlighted in purple) and the ODE 
(highlighted in green). The overview indicates that while there has been some reduction and 
simplification, the ODE (and SACM) remain quite complex metamodels, spanning across a 
plethora of metamodeling elements. The ODE is open source and can be found on GitHub 
https://github.com/DEIS-Project-EU/ODEv2. 

 

 

Figure 3.10: Overview of the ODE v2 Metamodel 
 

Structured Assurance Case Meta-Model (SACM) 2.0 

The Structured Assurance Case Meta-Model (SACM) [Obj19; WKD+19] is a modeling language 
specified by the Object Management Group (OMG) to create model-based assurance cases. 
SACM supports existing system assurance case approaches such as the Goal Structuring Notation 
(GSN) [KW04] and Claims-Arguments-Evidence (CAE) [BB00]. 



– Revision 1 ITEA 3 – 17003 

28 

 

 

 
An assurance case is a set of auditable claims, arguments and evidence created to support 

the claim that a defined system/service will satisfy typical requirements such as safety and/or 
security. An assurance case in this context is a machine-readable model that facilitates the 
exchange of information between various systems stakeholders such as suppliers and integrators, 
and between the operator and regulator, with the knowledge related to the safety and security 
of the system being communicated in a clear and defendable way. Each assurance case should 
communicate the scope of the system, the operational context and the safety and/or security 
arguments, along with the corresponding evidence. 

In general, the SACM enables the user to create assurance cases by combining structured 
argument(s) into ArgumentPackage(s) with their corresponding evidence defined in Artifact- 
Package(s), as well as the controlled vocabularies used within the scope of the assurance case 
with regards to the information of the system/service for which the assurance case provides 
assurance for, in TerminologyPackage(s) 

The SACM meta-model consists of the following parts: 

The SACM takes into consideration that machine-readable assurance cases can be created. 
The Base component of the SACM provides the necessary means such that not only 
names/descriptions can be described in natural language, they can also be described in 
computer languages (e.g., formal notations) to ena ble automated argument reasoning in 
future. At the same time, the SACM provides various facilities allowing the user to define 
necessary constraints, notes, additional attributes etc. 

The SACM Argumentation component provides the facilities for creating structured 
argumentations. The user of the SACM can make a number of different types of claims 
which provide means of assertion, context, assumption and justification. The user can also 
make use of the Artifact component to refer to corresponding evidence (internal/external to 
the SACM model) to support the claims. There are various types of AssertionRelationships 
to link claims to sub-claims, contexts, assumptions, justifications etc. 

The SACM Artifact component provides the facilities to maintain evidence such as 
Resource, Artifact as well as Activities, Event, Participant and Technique,. SACM enables 
the user to point to external files/URLs of the related artifacts via the use of Property. In 
this sense, the SACM provides the necessary abstraction, as it does not demand the use 
of models for argumentation evidence. This abstraction provides a significant degree of 
openness regarding its adoption in open systems (i.e., Cyber-Physical Systems). However, 
the SACM does provide the necessary means for the Artifacts to be linked to model 
elements in the sense that constraints (described in model querying languages such as 
the Object Constraint Language) can be embedded into each one of the Artifacts, which, 
in turn, would be executed at runtime and retrieve the value of the referenced model 
elements. 

The Terminology component provides the necessary means for defining controlled 
vocabularies which in turn link system information to the structured argumentation in the 
ArgumentPackages. Concerning system information, the user can define Terms, Expressions 
and Categories, which are the terminologies in the system for which the assurance case 
provides assurance. At this point SACM also provides the necessary abstraction so that 
external system information (such as system models, failure logic models, FMEA models, 
FTA models etc.) can be referenced. 

• 

• 

• 

• 
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ODE v2 Product Metamodels 

This section provides an overview of the overall structure of the ODE meta-model. 
 

Design Package The Design package contains elements that are necessary for describing 
architectural aspects of the system under development. These aspects model both the structure 
and behavior of the design, including functional, performance and design attributes. Note that 
ODE::Design is not intended to provide modeling elements that are required for engineering a 
system architecture completely, but rather only those required as input for the dependability 
lifecycle. 

The System is the central root element of the design package.A System can comprise sub- 
systems and ports. Ports represent the explicitly defined interface through which the System 
communicates with external systems or sub-systems via signals. A Signal can be described 
as a connection between ports through which information (e.g., data flows) is passed between 
different Systems. Depending on the direction of the signal (incoming, outgoing, both), a Port 
has an assigned PortDirection. Independent of the specific modeling aspect, a System as a 
hierarchical representation of the architectural structure will always have a set of Functions 
representing the behavior the System should realize. Attached to a function to be realized are the 
required PerfChars (=performance characteristics) emerging from the functional requirements 
of the System. In addition, the (typically embedded) System will always operate within a 
certain Context, which might contain relevant information about the System’s operation, usage 
or environment. 

 
FailureLogic Package The FailureLogic package contains the meta-model elements which 
describe the potential causes of failure of the system. These causes are derived from the failure 
analysis (Markov modeling, Failure Modes and Effects Analysis (FMEA) [Int91] or Fault Tree 
Analysis [VGRH81; Int90]) captured under a specific FailureModel. 

The FailureModel contains most of the other elements of the package, providing access to 
various types of Failures to be shared through it. FailureLogicPackages are also composable, 
which provides support for modular and hierarchical analysis techniques such as Component 
Fault Trees (CFTs) [KLM03; KSA+18; HJZ+18] and HiP-HOPS [PM99]. The Failure element 
aims to abstract common characteristics of the various failures that can be identified within 
functions, systems or components. Failures attributable to a specific architectural element  
can be categorized into InterfaceFailures, which can be InputFailures or OutputFailures, or 
InternalFailures. This distinction is based on the viewpoint of the analysis of the failure. For 
example, if the analysis of a system identifies failures originating from within its boundary, 
those are InternalFailures. Furthermore, the abstraction is useful for composing heterogeneous 
failure analysis results of hierarchical models. Other types of Failure that can be modeled are 
so-called Common Cause Failures (CCFs), which can trigger other failures and are captured via 
the CCF element. The MinimalCutSet element describes the combinations of Failures that can 
lead to OutputFailures. 

 
HARA Package In the HARA package, the essential root data elements used in Hazard and 
Risk Analyses (HARAs) and their relationships are modeled. 

The root of this meta-model is the element Hazard, which linking the data elements Failures 
and Measure and where the hazard analysis takes place based on the corresponding malfunction. 
Malfunction is modeled as a separate data element which references the identified function 
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(Function). It is further referenced by the Hazard element, where the hazard analysis takes 
place based on the corresponding malfunction. A Hazard can be associated with zero or more 
Failures since hazards can also be caused by a combination of failures. The identified hazard is 
then referenced by: 

• A RiskAssessment, for conducting quantitative risk analysis of the corresponding hazard 

• A SafetyRequirement, for the derivation of the safety goal and safety requirement 

• A SafetyFunction, for the derivation of the safety function; 

ODE::Dependability::Requirements Package The focus with respect to dependability-requirement 
modeling rests on safety requirement modeling in the ODE meta-model. A safety requirement 
is derived from a Measure and the corresponding RiskAssessment. It refers to what the Safe- 
tyRelatedSystem shall do as well as to what it shall not do, in order to ensure the SafeState of 
the designated system and its environment, and the quantitative or semi-quantitative quality 
and integrity requirements that the designated system shall fulfill. Except for the security 
requirements, all the other dependability requirements are derived from hazard and failure 
analysis techniques. Functional hazard analyses, FME(C/D)A, FTA and Markov chains all 
lead to the fault tolerance measure and the risk assessment. The respective dependability 
requirements could be derived as follows: 

Safety requirement based on the identified measure and its associated integrity level, which 
are the results of the hazard analysis and risk assessment 

Reliability requirement based on the probability and failure rate (as a time function) 
calculated by means of a quantitative hazard/failure analysis, such as fault tree analysis 

Availability requirement based on the availability calculated by means of quantitative fault 
tree analysis 

Maintenance requirement based on Mean Down Time (MDT), also calculated by means 
of quantitative fault tree analysis 

 
ODE::TARA Package The TARA package models the results of a Threat And Risk Analysis 
(TARA) for security. ThreatAgents are either Human or NonHuman (typically electronic) 
sources of Attacks. While individual Attacks may serve many purposes, ThreatAgents will 
also feature some higher-level AttackerGoal, representing the overall goal of the attacker. The 
AttackerGoal revolves around negatively impacting the Assets being considered for security, 
often being the system’s operation and its data for example. Attacks exploit Vulnerabilities of 
the system. 

Cumulatively, the above elements contribute towards the SecurityRisk posed by the various 
threats identified during the TARA. To combat these threats and reduce risk, SecurityCapabilities 
and SecurityControls are established. Respectively, these are high-level and low-level security 
safeguards/counter-measures. 

SecurityCapabilities are directly associated with SecurityRequirements. SecurityControls are 
instead directly associated with Measures. After applying these measures, risk is reduced 
accordingly. 

• 

• 

• 

• 
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3.11 Event traces 

A trace is defined as a sequence of events. Events depict a change in the state of a system 
and can be represented on different levels of abstraction. For the timing analysis of embedded 
multi-core real-time systems a trace on system level is required. 

Tools that analyze or visualize traces must be able to interpret the recorded events. For 
example, the software that interacts with hardware trace devices must be able to understand 
the hardware events that are generated on-chip. Otherwise it is not possible to transform the 
hardware events into higher level software events. For that reason a well-defined format for 
events is required for further processing of recorded traces. 

Depending on the goal pursued with a trace measurement, one level of abstraction can be 
more appropriate than another. On the one hand, a software engineer who implements a 
feedback control system is mainly interested in the functions and variables that correspond to 
that particular task. A system engineer on the other hand, who integrates a variety of different 
modules into a single application, is not interested in the details of each individual module. 
Instead the functionality of the system as a whole is of interest. There are several trace data 
exchange formats, in the following, we will give brief introductions about some of them. 

 
3.11.1 Better/Best Trace Format 

A trace on system level can be used to analyze timing, performance, and reliability of an 
embedded system. The Better Trace Format is a simple text-based trace format which was 
developed to support these use cases. It is intended to ease the exchange of traces between 
measurement tools, simulators and analysis tools. Its simple structure based on columns and 
separators allows the implementation of own scripts as well as the import into MS Excel and 
other spreadsheet programs. 

The Better Trace Format was defined in 2009 by Continental and INCHRON. Since then, the 
format has been changed slightly and was renamed “Best Trace Format”. It was also provided 
as a trace format by Timing Architects (now Vector) to the ITEA2 project AMALTHEA and 
was released by the Eclipse Auto IWG [Tim14]. The following details about BTF are mostly 
sourced from [Mar15]. 

BTF assumes a signal processing system where one entity influences another entity in the 
system. This means an event does not only contain information about which system state 
changes but also the source of that change. For example, an observed event on system level could 
be the activation of a task with the corresponding timestamp. Then a BTF event additionally 
contains the information that the task activation was triggered by a certain alarm. 

Let k be an index in N0 denoting an individual event occurrence then a BTF event can be 
defined as an octuple: 

 

bk = (tk, 
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Field 

time (t) 
source  

source instance (ψ) 
target type (ι) 

target (T ) 
target instance (τ ) 

action (α) 
note (ν) 

Meaning 
Timestamp relative to a certain point in time. 
Entity that caused an event. 
Entity instance that caused an event. 
Type of the entity that is influenced by an event. 
Entity that is influenced by an event. 
Entity instance that is influenced by an event. 
The way in which target is influenced by source. 
An optional field that is used for certain events. 

 

Table 3.1: A BTF event consists of eight fields. An event describes the way in which one system 
entity is influenced by another one. 

 
A BTF event can be represented textually as a comma-separated list where each field maps 

to an element as shown in the following listing: 
 
 

1 12891 , TASK_200MS, 3 , SIG , EngineSpeed , 0 , write  , 42 
 
 

The first field (12891) represents the timestamp of the event. A BTF trace contains the 
chronological order of events that occurred in a system. Therefore, for each timestamp tk N0 
in a trace it holds that tk tk+1. All timestamps within the same trace must be specified 
relative to a certain point in time, that can be chosen arbitrarily. Hence, neither trace nor 
system start must occur at t0 = 0. The time period between two events bk and bk+1 can be 
calculated as t = tk+1 tk. If not specified otherwise, the unit for time is nanoseconds. 

A BTF event represents the notification of one entity by another. Each entity has an unique 
name. In the previous example, the source entity has the name TASK_200MS and the target 
entity T is called EngineSpeed. 

The fourth field SIG is the short representation of the target entity type ι. Table 3.2 gives an 
overview of all entity types and their corresponding short ID. In this example, the target entity 
EngineSpeed is a signal. The source entity type is not part of a BTF event. 

Some entities, tasks, isrs, runnables, and stimuli have a lifecycle. This means at a certain 
point in time an entity becomes active in the system and eventually it leaves the system. For 
example, the lifecycle of a task starts with its activation and ends when it terminates. If multiple 
task activations are allowed for an application, it is possible that multiple instances of a task 
are active at the same time. For those cases where multiple instances of an entity are currently 
active, it is consequently not clear to which instance of the entity the event refers. 

Instance counter fields ψ and τ are used to distinguish between multiple instances of the 
same entity. The counters are integer values ψ, τ N0 that are incremented for each new  
entity becoming active in the system. The first instance of an entity gets the counter value 
0. TASK_200MS has an instance counter value of 3 which means the event refers to the fourth 
instance of this entity. For entities that do not have a lifecycle like signals, the counter field is 
not relevant and 0 can be used as a placeholder value. 

The seventh field α represents the way in which the target entity is influenced by the 
source entity. In this example TASK_200MS writes a new value to the signal entity EngineSpeed. 
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 v e r s i o n 2 . 1 . 3 
c r e a to r BTF W riter ( 1 5 . 0 1 . 0 . 5 3 7 ) 
cr e ati o n Date 2015 02 18T14 : 1 8 : 2 0 Z 
ti m e Scal e ns 

5 0 , Sim , 0 , STI , S_1MS, 0 , t r i g g e r 
 0 , S_1MS, 0 , T, T_1MS_0, 0 , a c t i v a t e 
 100 , Core_0 , 0 , T, T_1MS_0, 0 , s t a r t 
 100 , T_1MS_1, 0 , R, Runnable_0 , 0 , s t a r t 
 25000 , T_1MS_1, 0 , R, Runnable_0 , 0 , terminate 
10 25100 , Core_1 , 0 , T, T_1MS_0, 0 , terminate 

Listing 3.1: A BTF trace file consists of two sections. A meta section at the beginning of a file 
includes information such as creator, creation date and time unit. It is followed 
by a data section that contains one event per line. Comments are denoted by a 
number sign followed by a space. 

 
 

Depending on source and target entity type, different actions are allowed by the specification. 
For signal write events the note field ν is used to denote the value that is written to the signal 

in this case 42. The note field is only required for specific events. 
A BTF trace can be persisted in a BTF trace file. This file contains two  parts:  a meta and  

a data section. The meta section is written at the beginning of the file. It contains general 
information on the trace such as BTF version, creator of the trace file, creation date, and time 
unit used by the time field. Each meta attribute uses a separate line, starting with a , followed 
by the attribute name, a space, and the attribute definition. 

In the data section one BTF event is written per line in chronological order. The first event 
of a trace is located directly after the meta section and the last event at the end of the file. 
Comments are denoted by a followed by a space. Listing 3.1 shows an example trace file. 

As shown in Table 3.2 BTF specifies fourteen entity types that can be classified into five 
categories: environment, software, hardware, operating system, and information. The actions or 
in other words the way in which one entity can be influenced by another are defined for each 
entity type. 
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Category Entity Type Type ID 
Environment Stimulus STI 

Software 
Task 
Isr  

Runnable 
Instruction Block 

T 
I 
R 
IB 

Hardware 
Electronic Control Unit 

Processor 
Core 

Memory Module 

ECU 
Processor 

C 
M 

Operating System 
Scheduler 

Signal 
Semaphore 

Event 

SCHED 
SIG 
SEM 

EVENT 
Information Simulation SIM 

 

Table 3.2: BTF entity types can be divided into five categories. 
 

The current version of the BTF specification [Tim14] is in some definitions not clear and 
unambiguous enough, so a reworked version is currently being prepared. 

 
3.11.2 SQL database 

Tracing in text-based formats, as BTF, offers an easy way for interoperability between different 
tools, but there are several downsides. Textfiles or comma separated value files have usually 
a lower density of data, because e.g. numbers are mostly stored as character strings. This 
especially slow down the creation of such files in simulations or while the execution of real 
systems. Moreover, for the analysis of such files, they mostly need to be parsed completely into 
memory or you use line based file operations, which are usually slow. Besides these technical 
issues, the proposed structure of an ordered list of events is a natural and beneficial way to 
describe trace events. Therefore, the APP4MC project also includes the AMALTHEA Trace 
Database (ATDB) specification. 

Basically, the ATDB describes the usage of a relational database for the same information 
as stored in BTF. In APP4MC the usage of SQLite is proposed, but the database model can 
also be used in other SQL-based systems. The traced events are stored in EventTables, which 
mainly correspond to the data section of BTF: a list of occurred events with the corresponding 
timestamp and involved entities. The referenced entities in EventTables are described in Entity 
tables. Further information about event-entity relations are stored in EntityInstance and 
EntitySource tables. 

Besides the more efficient storage and faster processing of a relational database, the usage 
of an SQL-based data storage allow the definition of standardized analysis queries, by the 
definition of SQL-Queries. For example, a query to determine the latency for the completion 
of a Runnable. Such queries allow a formal and unambiguous analysis objectives and may be 
defined within the PANORAMA project. 
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4 Abstraction Levels 

During the design process of an embedded system there are several versions of the model 
representation of said system. These versions are intermediate states of the system model(s) 
e.g. after taking a design decision, after a handover between different departments, after 
adding specific details, etc. There are two dimensions in which these versions can be classified: 
Abstraction levels and views. All views of a system combined, constitute the whole system 
model - they must be consistent. Whereas each abstraction level represents a whole system 
model (which may differ between levels). This abstraction level/view matrix has been used and 
adapted in several other research projects SPES2020 [BDH+12], SPES_XT [BDK+16], CESAR 
[RW13], CRYSTAL [CRY16], and others. There is also a standard about architecture views and 
viewpoint definitions: [IEE11]. It served as a reference for the abstraction levels and views. 

 
4.1 ISO/IEC/IEEE 42010-2011 

This standard defines a set of terms and notions to better understand architecture descriptions 
in general. Among these notions are: Architecture, Architecture Description, Architecture View, 
Architecture Viewpoint, Concern, Model Kind, and Stakeholder. It then relates the terms to 
each other, e.g., an architecture description expresses an architecture which a system exhibits; a 
stakeholder has interest in a system; stakeholders have various concerns. The standard does 
not define abstraction levels, however, abstraction levels can be seen as a concern. 

Figure 4.1 shows an excerpt of the relevant artifacts and their relations in the scope of an 
architecture description. An architecture description (which expresses an architecture) identifies 
relevant stakeholders and concerns. The stakeholders themselfes have these concerns which, 
in turn, are framed by one or more architecture viewpoints. Architecture viewpoints govern 
architecture view, i.e., the viewpoints define what is visible or not in a specific view. Architecture 
viewpoints have one or more model kinds for representation purposes. An architecture view 
has one or more architecture models which are governed by the respective model kinds of their 
architecture viewpoints. 

With these architecture description definitions we can define abstraction levels as follows: 
Having the possibility to subdivide the system design process artifacts into different abstraction 
levels is a concern. Two such abstraction levels could be called “System Design” and “Software 
Design”. These two are architecture viewpoints. Within each of these viewpoints we define what 
model kinds can be used to model the architecture on this abstraction level. For example: A 
package diagram is only to be used in the viewpoint “System Design” whereas a class diagram is 
only to be used in the viewpoint “Software Design”. 

There are also some additional Meta artifacts that relate to all of the above architecture 
description elements: Correspondence, Correspondence Rules, and Architecture Rationale. 
Correspondences (which are governed by Correspondence Rules) can be used to enforce relations 
between concrete architecture description elements. For example, we can enforce that models 
on the “System Design” abstraction level must exist befor we can start creating models on the 
“Software Design” level. We can then enforce that each “System Design” artifact must have 
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Figure 4.1: Architecture Views and Viewpoints (excerpt from [IEE11]). 

 
at least one “Software Design” pendant which it was refined into. As mentined, there are also 
Architecture Rationales which can be used to motivate the existence of certain architecture 
elements. These rationales can serve as a basis upon which specific decisions can be made 
during the development. For example, when transitioning from “System Design” to a lower 
abstraction level, it may be necessary to decide if a “Hardware Design” level is needed at all. 
The description of the rationale for the “Hardware Design” abstraction level can then be used to 
justify the decision. 

The ISO/IEC/IEEE 42010 standard “Systems and software engineering – Architecture de- 
scription” gives a broad overview of artifacts to consider during the system development process. 
How this architecture description is structured and implemented is highly dependent on the 
development process of that system. For example, if we know we want to develop an embedded 
system it may be a good idea to first design the system before subdividing the design into soft- 
and hardware. The relevant chosen abstraction levels and the order in which to traverse them 
thus is intertwined with the process. The following section will shortly outline how this standard 
was used as a reference in earlier research projects. 

 
4.2 Abstraction Levels in other Projects 

This section shortly describes two previous research projects which relate to abstracion levels 
and viewspoints. There are the two BMBF-funded projects “Software Plattform Embedded 
Systems 2020” - SPES2020 and the followup “Software Plattform Embedded Systems XT” - 
SPES_XT. On european level there are the projects CESAR - “Cost-Efficient methods and 
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processes for SAfety Relevant embedded systems” and the followup CRYSTAL - “CRitical 
sYSTem engineering AcceLeration” 

 
4.2.1 SPES2020 and SPES_XT 

During the two SPES projects abstraction layers and perspectives were defined, resulting in a 
design matrix. In this matrix each cell within a row represented a different viewpoints of the 
same system, and the conjunction of these viewpoints constitutes a consistent system. There 
are four of these viewpoints defined: requirements, functional, logical, and technical viewpoint. 
Whenever the designer forwards into another abstraction layer or viewpoint there are some 
conditions and steps to be taken into account (e.g., to ensure proper traceability). The resulting 
two-dimensional matrix is depicted in Figure 4.2. The development process usually starts with 
the requirements phase in which the system under design is considered as a black box that 
should perform certain functions. This requirements viewpoint (see top left hand side of the 
figure) is described in the next paragraph. 

 
Requirements Functional Logical Technical 
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Figure 4.2: SPES2020 design process: Two-dimensional matrix. 
 

Requirements Viewpoint 

Classic systems design starts with numerous natural language requirements towards the system 
that is to be developed. In model based design it is beneficial to model these requirements 
since this gives a more unambiguous meaning, enables a better understanding, and allows for a 
higher degree of automation early in the design process. For example, one possibility to model 
requirements is to use the Unified Modeling Language (UML) [OMG17] use case diagrams, 
activity diagrams, or sequence charts. The latter may be automatically transformed into initial 
functional interfaces [DWP14]. 

Abstraction 
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Functional Viewpoint 

With the help of elicited details about the requirements towards the system under design the 
resulting functional structure is further refined in this viewpoint. With this step the system 
engineer now enters the solution space and refines the internal functional structure of the 
functions derived from the corresponding requirements. This process also involves deriving more 
technical requirements (also called constraints) from the initial ones elicited in the requirements 
viewpoint. 

 
Logical Viewpoint 

After defining the functional structure we now need to take a deeper look into the logical 
structure which does not have to be the same as the functional one. Since we now explicitly 
consider the communication between the functions it might be a good idea to group some 
functions to a logical component and to optimize the structure in a logical way. Consider  
for example two functions both calculating something based on the same sensory input. To 
minimize the overall communication in such a scenario on the one hand we could combine both 
functions to one logical component. On the other hand we have to ensure that such a logical 
component does not meld too much behavior such that it is impossible to be executed on a 
target platform. 

 
Technical Viewpoint 

Once we described the size and frequency of communication messages between logical components 
in the logical viewpoint we can now decide on which technical architecture this logical architecture 
is to be executed. One of the most important decisions to be made in this viewpoint is how 
to realize a logical componet. This decision alone for each logical component is already a 
research topic of the last decades. The technical viewpoint uses more abstract notions. It mainly 
involves resource providers (i.e., computation resources) and resource consumers (i.e., features 
or applications to execute) [WRHS12]. It also employs various concepts of resource sharing and 
their inherent necessity of a resource provider to have a scheduler. This is particularly important 
when validating hard real-time constraints against the model in the technical viewpoint. 

 
4.2.2 CESAR and CRYSTAL 

CESAR and CRYSTAL take a somewhat different approach to viewpoints and layers. They 
first define development activities like requirements engineering, architecture exploration, and 
component-based development. Then, the Reference Technology Platform is introduced which 
brings these activities together into a tool prototype with a meta-model, a general process, and 
domain specific instanciations. Another general idea is to connect tools with each other via  
a common understanding (meta-model) to build tool-chains that support the general process 
(this idea was later picked up by SPES_XT). In CESAR, the abstraction levels, viewpoints 
(called perspectives), and how to traverse them are defined in more detail as in SPES2020. 
Nonetheless, these levels and viewpoints are very similar to SPES2020. The main difference is 
that in CESAR the abstraction levels are not arbitrary. 

Figure 4.3 shows the four perspectives and abstraction levels addressed in CESAR. As can 
be seen, apart from the operational perspective, the viewpoints are the same as in SPES2020. 
There are four abstraction levels: Operational, Functional Need, System Composition, and 
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Figure 4.3: CESAR Engineering multi-views (from [RW13, p. 226]). 

 
Final Architecture Analysis Level. Intersecting the rows with the columns shows how these cells 
should be traversed during the development process. The levels and perspectives have been 
inspired by EAST-ADL (see section 3.4). 
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5 Static Analysis 

This Chapter describes static analysis methods, which are based on offline analysis of the 
expected behavior of the system focus. These methods stipulate assumptions on the, usually 
worst-case, behavior of the system, to analyze, if non-functional requirements can be met. 

The Chapter starts with the description of the approaches to determine the behavior of the 
system, in what concerns timing properties. Section 5.1 discusses the approaches to offline 
determine the execution times of applications, whilst Sections 5.2 and 5.3 provide two different 
approaches to determine if the execution of the application will meet its end-to-end timing 
requirements. 

Afterwards, the joint consideration of time and energy is analyzed in Section 5.4, which 
discusses a method to minimize the energy consumption of an application, using Dynamic Voltage 
and Frequency Scaling (DVFS), whilst guaranteeing the timing requirements of applications. 

Finally, the Chapter focuses in approaches to analysis safety properties of the system. Section 
5.5 describes approaches to guarantee that the deployment of an application into the underlying 
platform meets the segregation requirements mandated to ensure system safety. Section 5.6 
then describes approaches to analyze fault-propagation, whilst Section 5.7 focus on a specific 
approach (CFT). 

 
5.1 Static Timing Analysis 

Most timing analysis methodologies focus on determining the worst-case execution time (WCET) 
of a program, a thread or a task, in order to use this value to determine a safe upper bound 
(Figure 5.1) on the execution time, to be able to verify if the software will meet specific timing 
deadlines imposed by the application (using other analysis such as schedulability analysis – e.g. 
utilization tests or response-time analysis). 

Although several different techniques for determining WCET are available, they can be 
basically divided in two main blocks. Static timing analysis is based on using the information 
available on the structure of the program, and a model of the underlying hardware, to determine 
the WCET, without actually needing to execute the application. Measurement-based timing 
analysis (MBTA) is based on executing the application, with multiple inputs steps, to obtain 
the maximum observed execution time. This section will provide some information on static 
timing analysis, with MBTA (and hybrid approaches) being described in the next chapter. 

Static timing analysis is usually performed in three conceptual and possibly overlapping 
phases [NYP15]: 

1. A flow analysis phase in which information about the possible program execution paths is 
derived. This step builds a control flow-graph from the given program with the aim of 
identifying the worst path (in terms of execution time). 

2. A low-level analysis phase during which information about the execution time of atomic 
parts of the code (e.g., instructions, basic blocks, or larger code sections) is obtained from 
a model of the target architecture. 
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Figure 5.1: Example distribution of execution time (picture taken from [EE07]). 

 
3. A final calculation phase in which the derived flow and timing information are combined 

into a resulting WCET estimate. 

Flow analysis needs to consider both loop bounds (requiring upper-bounds on the number 
of iterations) and maximum recursion depth. Another purpose of flow analysis is to identify 
infeasible execution paths, which are paths that are executable according to the control-flow 
graph but are not feasible when considering the semantics of the program and the possible input 
data values. 

Low-level analysis methods typically use models of all the hardware components and their 
arbitration policies, including CPU caches, cache replacement policies, write policies, instruction 
pipeline, memory bus and their arbitration policies, etc. These models are typically expressed 
in the form of complex mathematical abstraction. 

The use of static analysis lends itself to formal proofs in guaranteeing timing response    
of applications, with several WCET tools available, with examples being aiT [aiT] on the 
commercial side and OTAWA [OTA] in the research domain. 

Static timing analysis relies on the existence of an accurate model of the timing behavior 
of the underlying hardware, a difficult but possible task for simpler platforms, but that is 
very challenging when considering parallel and heterogeneous platforms. Although the bulk 
of work which has been performed to derive schedulability analysis for predictable parallel 
execution [BBB10], the multiple interferences and inter-dependencies between parallel execution 
(together with the many times absence of details of commercial platforms), make that designing 
an accurate hardware model is currently very challenging [NYP+14]. Moreover, solutions tend 
to model each hardware resource separately, deriving independent worst-case values, which are 
then composed together to form the final WCET bound, inherently extremely pessimistic. 

Tools are lagging hardware evolution, and solutions are not coping with the emergence of 
heterogeneous systems (e.g., accelerators and specialized IP blocks), and multiple layers of 
underlying software, including complex OSes and hypervisors. Therefore, static timing analysis 
is not considered in the scope of PANORAMA. 

 
5.1.1 Memory Management 

On multi-core systems allocation and distribution of data and code to microprocessor memories 
RAM, Flash of an ECU plays an important role. Because, each reading and writing operation 
have different latencies depending on the memory location. Therefore, the following aspects need 
to be covered for improving the runtime efficiency of the system. Variable access times The 
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read/write access times for accesses from SW running on a specific core to a variable allocated 
in RAM varies on a microprocessor with NUMA architecture. 

Instruction Fetch time The instruction fetch time to load an instruction from a Flash 
Bank to the Core local program cache of a specific core depends on the bus situation. 

So methodologies should be developed based on static analysis techniques to identify the 
access statistics for variables and data and re-allocate them according the core usage. 

 
5.2 Schedulability Analysis 

Methods for schedulability analysis allow to calculate safe bounds for the possible timing due 
to scheduling. All possible and allowed schedules, activation and execution variations are 
covered to calculate worst-case boundaries of e.g. the response times of functions. Furthermore, 
performance indicators like the possible utilizations of resources, the worst-case filling of queues 
and especially the worst-case response times on end-to-end chains for data processing (event 
chains) are of interest. There are multiple general methods to conduct a schedulability analysis. 
The first method was developed to calculate utilization-bounds, which is required to answer the 
question whether process executions always finish within a certain period of time [LL73]. The 
response-time analysis [JP86] allows to calculate worst-case response times for processes based 
on a fix-point calculation. The analysis was initially defined for fixed-priority scheduling and a 
periodic occurrence of events. Later on its scope was successfully extended to analyze period 
task sets with jitter [Leh90] [LSST91], distributed systems [TC94], task-set with offsets based 
on transactions [PGG97], as well as other task models [Bar03]. 

Another approach is the real-time calculus [TCN00] [Wan06] which is based on the network 
calculus [LT01], a method developed for predicting network traffic and message queues in 
communication systems. Based on the available capacity functions (service curves) and the 
requested demand functions (arrival curves) of a processing unit, the method calculates the 
remaining capacity curves after processing the demand and, if applicable, the resulting densities 
of outgoing activation events (outgoing event curves). The calculated remaining capacity may 
then be used as available capacity for the next priority level. The outgoing event curve is the 
incoming activation curve for a following task. The method is based on min-plus and max-plus 
algebra. Events, processing demand and available and used capacities are described by a set 
of interval-based functions providing for each interval length upper bounds on the worst-case 
and lower bounds on the best-case behavior. To allow an efficient calculation of the functions a 
flexible approximation is provided in [Alb11]. 

The common goal of all approaches for schedulability analysis is to calculate safe upper 
and lower bounds for the timing behavior, mainly the response times. The bounds cover all 
scheduling variations, event densities and execution demands. If the modeling is done correctly, 
the calculated bounds will not be exceeded in the later system execution. Academic and 
commercial tools are available for performing schedulability analysis for various scheduling 
methods and models. An academic example is the tool MAST[GGPD01] provided by the 
University of Cantabria. It implements the generalized response-time analysis and a lot of 
extensions developed in the last decades. For the real-time calculus the Matlab RTC toolbox 
[Matlab], implements the RTC calculations [RTCToolbox]. The tool chronVAL [chronVAL] 
provided by INCHRON is a commercial analysis tool based on the Real-Time Calculus but it 
also uses parts of the response-time analysis. 
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5.2.1 Event chain analysis 

Effect or event chains in the context of multi-core system is an important aspect, depending on 
their type event can trigger different kind of communication pattern in the system. For example, 
as chains of processes or tasks connected by signals starting at the inputs and ending at the 
outputs, while being processed sequentially by executable software units task, thread. 

So we need to analyze the behavior of events and triggered chains based on their timing as 
well as data characteristics. 

 
5.3 Mapping and scheduling of Synchronous Dataflow 

Applications 

There exists a large amount of model-based frameworks that can be used to make deductions 
at design time for systems described in them [SY15; DB11]. For example, in a general sense, 
the basic independent periodic task model [Liu00] provides to the designer ability to conclude 
if, for a certain scheduling algorithm, the system as a task set will meet its deadlines or not. 
Unsurprisingly, different models are better suited for different challenges of systems design than 
others. The task model just aforementioned is useful for deriving timing guarantees of a system 
that is scheduled at runtime. On the other hand, complex data dependencies require refinement 
of the model into another one of higher complexity, accompanied by a matched refinement of 
the analysis method [SY15; DB11]. 

Models of Computations (MoCs) are a family of formal models focusing on input-output 
relations between data. The relations need not to transform data, for instance, the Synchronous 
Dataflow (SDF) MoC [LM87; SB17] is a MoC where the input-output relations of interest are 
communication input-outputs between computing actors. An example where data transformation 
is considered is the Synchronous MoC [BCE+03]. The ForSyDe methodology itself is based 
on MoCs so that a system modeled in it becomes an unambiguous executable specification 
[SJ04]. The trade off of this approach is that timing properties are not part of most MoCs: 
they are accessible only after a ForSyDe-modeled system is considered mapped into a hardware 
element, so that then it makes sense to say that the input-output relations occurs for some 
physical time. For this reason, Design Space Exploration (DSE) within ForSyDe is defined as 
the exploration of combinations between hardware (platform) elements with the application 
elements (MoCs/Software) as to produce a final fusion (mapping and scheduling) that respects 
the MoC relations and timing constraints given; optionally optimizing the fusion for metrics 
such as energy or throughput [RS17; RMU+18]. 

Although the tooling built around the ForSyDe methodology, hereinafter referred as ForSyDe 
tooling, already sports a variety of MoCs to be simulated, including the two examples mentioned; 
the DSE segment, DeSyDe, currently focuses solely in SDF applications. Moreover, DeSyDe 
currently supports only TDMA-based buses and Buffer-less NoCs platforms, as platforms that 
provide analytical bounds in the form of worst case execution times (WCETs) and worst case 
communication times (WCCTs) for DeSyDe to reason with. Note that these platforms have no 
middle-ware between the application and themselves, i.e. the result is a bare-metal order-based 

schedule implementation [RS17; RKUS17; RMU+18]. Figure 5.2 illustrates DeSyDe’s DSE flow. 
Thus, we define DeSyDe’s static analysis methods as ones that check if a feasible SDF 

application mapping and schedule exists. This schedule encompasses both execution and 
communication. If such a mapping and schedule exists, optimizations are performed for either 
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Figure 5.2: DeSyDe’s flow overview 

 
power or throughput. Generally, the search space where this map and schedule combination can 
be found is very large, more so if one considers that almost any formulation of this problem 
ends up as a bin-packing and job scheduling variation [GJ09], so accordingly, exponential in 
size. To tackle this challenge, DeSyDe’s methods make heavy use of constraint programming 
as to enable direct benefit of a mature programming discipline that deals specially well with 
combinatorial problems [RvBW06]. As an example, the mapping and communication of SDF 
actors into the platform can be partially instantiated as a Hamiltonian cycle problem [GJ09], 
for which many efficient search pruning techniques exist and are promptly available for use in 
constraint programming solvers. Additionally, constraint programming solutions are complete 
ones: to the limit of the provided model, if no solution is found, it means that none exists 
[RvBW06]. 

Alternative similar methods include the use of Mixed Integer Linear Programming (MILP) 
to find the optimal SDF mapping and schedule in terms of latency and throughput [LSGE11]; 
Nature-inspired meta-heuristics, genetic algorithms in particular [Pim17]; and specific purpose 
heuristics that search for a mapping and schedule simultaneously [SBGC07]. 

The end result, as illustrated at the bottom in Figure 5.2, is the mapping of each SDF actor 
onto the platform’s computing units and a order-based schedule for execution and communication. 
The platform is assumed to provide blocking writes and reads. Blocking write is necessary so 
that the fastest repeating computing unit does not overflow the communication channel with 
any other computing unit during runtime. If the platform does not provide such communication 
features, a time-triggered schedule can be derived from the order-based schedule computed 
through the provided WCETs and WCCTs. 

A1 A2 Repeat 
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5.4 Energy Analysis and Minimization 

A rudimentary approach for analyzing and optimizing (e.g. minimizing) the energy consumption 
of an embedded system can be achieved by applying DVFS techniques and assigning a fixed 
number of cycles an executable should be computed for each voltage mode. The approach 
described in the following has already been published in [KWF15] and [AMA14]. 

An approach that aims at minimizing the energy consumption of variable voltage processors 
executing real time dependent tasks is provided by Zhang et al. [YXC02]. This method is 
implemented as a two phase approach which integrates 

• Task assignment: allocating each task to a core 

• Task ordering: ordering of tasks in due consideration of their constraints and deadlines 

Voltage selection: selecting a slower but less energy consuming processor mode in order 
to save energy without harming any constraints, such as deadlines 

In the first phase, opportunities for energy minimization are revealed by ordering real-time 
dependent tasks and assigning them to processors on the respective target platform. 

On single processor platforms, the ordering of tasks is performed by applying Earliest 
Deadline First (EDF) scheduling. A further allocation of tasks to processors becomes 
needless, as only one allocation target exists. 

On multi processor platforms, a priority based task ordering is performed. The 
allocation of tasks to processors is determined by a best fit processor assignment. 

Once the scheduling is created, there will be time frames between the end of one task and the 
start of another during which the processor is not being utilized (so-called slacks). These slacks 
the prerequisites for the second phase, which performs the voltage selection. This phase aims 
at determining the resp. (optimal) processor voltage for each of its task executions without 
harming the constraints and eventually minimizing the total energy consumption of the system. 
In order to determine these voltages, the task scheduling is transformed into a directed acyclic 
graph (DAG) that is used to model the selection problem as integer programming (IP) problem. 
Once the model has been set up, it is optimized by a mathematical solver. 

 
5.4.1 Switching Capacitance per Processor Cycle 

The switching capacitance per cycle (Cu) for a specific task u is typically [IY98] used in energy 
consumption calculations. Usually, it contains an unique value for each of the executed tasks. 
However, it also depends on several device related parameters at circuit level, which usually are 
not part of publicly available material and therefore hard to obtain. Henceforth, we assume a 
common switching capacitance C instead the processor individual switching capacitance Cu. 
Thus, the constant C represents a linear scale in calculating the total energy consumption (see 
Equation 5.2). This fact consequently allows to set this value within this method’s context to 
any random value = 0 without harming the correctness of the energy minimization process, 
allowing us to neglect the constant in further calculations. 

• 

• 

• 
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5.4.2 Adaptated ILP Formulation 

The ILP formulation for assigning voltage modes to distributed tasks is listed in Equations (5.1)- 
(5.7) with Dx describing a node (task) x’s start time. This notation is based on the work in 
[YXC02] and slightly adjusted towards an efficient implementation into the ILP Solver Oj!Algo 
that is used by App4MC. 

 

minimize Eu (5.1) 
u∈V 

The objective of the formulation is shown in (5.1) and aims at minimizing the total power 
consumption of all tasks. 

 

subject to Eu  = Cu(
    

Nu,i(V 2 − V 2) + NuV 2) ∀u ∈ V (5.2) 
 

The power consumption Eu for each single Task u is described in equation (5.2). It is the 
sum of the respective voltages Vi times the number of cycles Nu,i during a voltage level i, with 
Nu being the total number of cycles, Vh the highest available voltage level, and Cu a task’s 
switching capacitance. 

 

DOut − DIn ≤ TCon (5.3) 

Equation (5.3) ensures, that the path from the first node of a graph DIn to it’s last node 
DOut, i.e. a single activation (call, execution) of the application, is executed within the time 
limit specified by TCon. 

 

m 

Dv  − Du − Nu,i(CTi − CTh) ≥ Tu ∀e(u, v) ∈ E (5.4) 
i=1 

Equation (5.4) is used to prevent the start of a successor v before its predecessor u is finished. 
The sum term represents the amount of time the task u is delayed by being executed at lower 
voltage cycles, with CTi being the cycle time1 at voltage level i, whereas CTh represents the 
cycle time for the highest voltage level. The initial task execution time, i.e. the time task u 
requires if being executed only at the highest voltage level, is represented by Tu. 

m 

Nu,i(CTi − CTh)  ≥  0, int, ∀u ∈ V (5.5) 
i=1 

 

Du  ≥  0, Nu,i  ≥  0, int, ∀u   ∈ V (5.6) 

m 

Nu,i ≤ Nu ∀u  ∈ V (5.7) 
i=1 

Finally, (5.5)-(5.7) are used to constraint the values for the tasks duration (5.5), constraint 
start times Du as well as cycles for each voltage level Nu,i to positive integer values (5.6), and 
prevent Nu,i from exceeding a task u’s total number of cycles Nu (5.7). 

 
1Time required for a single cycle 

i=
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5.5 Spatial Segregation Analysis for Software Deployment 

In a typical model-based development process, a major part of the system development is the 
decomposition of the top-level functional architecture into smaller components [SDP12]. For 
safety-critical systems, during functional decomposition and logical component design not only 
partitioning of functionality takes place, but also measures are developed and introduced into the 
design that ensure system safety. These so-called safety mechanisms are additional functionality 
to detect and mitigate failures during system operation and maintain a safe state. In order to be 
effective, sufficient independence of the safety mechanism from the primary component has to be 
ensured. A common approach to protect the system against failure of one hardware component 
is to duplicate the entire functionality. In this case, independence means that the software 
implementing the primary and secondary system function must not share certain hardware 
resources. For example, they must not be executed on the same core or share the same memory. 

In the ARAMiS II project, OFFIS has developed an analysis for this kind of spatial segregation 
requirements between software components. The analysis prototype serves two tasks: 

1. It checks if a set of spatial segregation requirements is consistent wrt. a given hardware 
architecture, i.e., if there exists a mapping of components to hardware that satisfies all 
segregation constraints. 

2. Given a concrete software model and an allocation of the software to hardware, it checks 
if the segregation constraints are satisfied. 

In the following, the analyses are described in detail. 
 

5.5.1 Methodical Background 

As stated above, during functional decomposition, segregation requirements are introduced that 
describe the needed independence between components. During development of the logical 
architecture, it is typically known which kind of hardware resource a component needs (e.g., 
shared memory and communication resources), and which resources of the needed type are 
available on the target platform. But it is usually not known, to which part of the hardware the 
component will be mapped finally. For example, a function might require access to a specific 
type of communication port. On the target hardware, three ports of that type may exist and 
two cores where the function may be mapped to. Depending on the deployment configuration, 
the function will finally use one of each. Additionally, accessing the communication port from 
the core may be possible only via shared hardware access paths on the board that need to be 
considered when assessing independency. 

To overcome this problem, service oriented design principles [BBP+18] are used. The idea 
is to allow access to hardware resources only via services of the operating system. In other 
words, the access to resources is encapsulated in that services. Services and resources may be 
concrete or abstract. When defining the logical architecture, it is described which abstract 
services are required for each function. When allocating the logical architecture to the hardware, 
the abstract services are mapped to concrete services provided by the operating system. The 
abstract services needed by each function and the amount of resources needed for each call to a 
concrete service is expressed in a textual language. The language that has been implemented in 
the RTAna tool suite during the ARAMiS II project [The19a] is a variant of the pattern-based 
RSL [RSRH11; BBB+11] that has been developed and improved in different projects (i.a. SPES 
2020, CESAR, MULTIC, ARAMiS II) over the last decade. 
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The reaction pattern is the basic pattern to describe the behavior that is visible at a com- 

ponent’s ports. It relates the input and output of a component in form of an if-then relation 
on timed events. The periodic event pattern describes recurring events and is mostly used to 
describe events coming from the environment (i.e., assumptions of the system under design). 
The semantics of these patterns is close to that defined by the TIMEX extension of AUTOSAR 
[RSRH11]. The service request patterns are variants of the reaction and periodic patterns that 
describe which services are requested by a component, and how many requests are made. The 
resource usage patterns in turn are used to describe the amount of resources needed for one 
service request. The spatial segregation pattern finally is used to describe spatial segregation 
requirements. 

As an example, consider the hardware architecture outlined in Figure 5.3. The example is 
taken from [BBP+18] and describes the main board of the “multirotor” research prototype, 
which is a remote-controlled quadrocopter. It is equipped with a camera and intended to 
autonomously record soccer games. The board consists of an FPGA that implements two 
softcores. The quadrodopter’s flight control function shall be implemented redundantly on both 
cores on the FPGA, and a third instance as a backup on the ARM core next to the FPGA.  
The sensors and the motorboard are connected via I2C. Figure 5.5 shows the system functions 
(left) and the services for the I2C access (right). Each of the softcores (MicroBlaze and Leon are 
considered to be identical here) a service for accessing I2C is provided. This service implements 
wto abstract I2C service (e.g., one service for normal speed and one for high speed mode). The 
Flight1 and Flight2 components each have a service specification 

1 times I2C1.request occurs and 4 times I2C2.request occurs every 10ms 

which states that within each activation of the function – which happens each 10ms – the 
I2C1 service is requested once and the I2C2 service is requested four times. The I2C service 
implementation in turn has a resource usage specification attached to it: 

whenever I2C.request occurs then Softcore is used for 2us and then AXI_Bus is  
used for 3us and then I2C is used for 100us and then AXI_Bus is used for 4us       

and then Softcore is used for 2us 

This specification describes which resources (the softcore, the AXI bus and the I2C bus) are 
used during each service call. The segregation requirement on Flight1 and Flight2 is specified 
as 

Flight1 and Flight2 shall not use the same resources MicroBlaze, LEON 

which states that Flight1 and Flight2 must not both use resources on LEON or both use 
resources on MicroBlaze. 

 
5.5.2 Analysis Prototype 

Input 

The analysis input is an AMALTHEA (APP4MC version 0.9.3) model2. As not all information 
that is necessary for the analysis can be modeled natively within AMALTHEA, general-purpose 
elements – so called custom properties and custom elements – are used instead. The input 
model contains at least the following elements: 

2Documentation available online: https://www.eclipse.org/app4mc/help/app4mc-0.9.3-help.zip 

https://www.eclipse.org/app4mc/help/app4mc-0.9.3-help.zip
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Figure 5.3: Multirotor main board architecture [BBP+18] 
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Figure 5.5: Example model for the segregation analysis 
 

A Component Model that describes the logical architecture. The components are equipped 
with textual specifications in the above pattern language. Custom properties are used to 
attach the specifications to the components. 

A Hardware Model that describes the target hardware for the logical architecture. The 
hardware elements (cores, buses, memories, . . . ) are interpreted as concrete resources by 
the analysis. 

For the segregation consistency analysis, in addition abstract and concrete services need to 
be modeled. For the services custom elements are used in AMALTHEA that are attached to 
the hardware via custom properties. 

The segregation check, opposed to the segregation consistency analysis, does not use a service 
model, but instead directly checks a software to hardware mapping against the segregation 
constraints. Therefor the AMALTHEA model needs to contain the following information: 

A software model describing software tasks that implement the components. The tasks 
must be linked to the components. 

A mapping model that describes an allocation of the tasks to cores, and a mapping of 
software elements (task bytecode and labels3) to memory. 

 
Software integration 

Both analyses integrated into APP4MC IDE as a model validation. They can be started from 
the APP4MC IDE’s graphical user interface. 

 
Output 

The analysis prototypes generate simple HTML reports. They contain a textual description of 
the analysis results as well as error and warning messages. The following analysis results are 
provided: 

3In AMALTHEA, a label is an abstraction of a memory address 

{1 times I2C1.request, 4 times I2C2.request} occurs every 
10ms 
 
 

MiniFCS 

Flight Control 

mapping 

Mission Control 
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Voter Flight1 
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For the consistency analysis: A statement whether a mapping of the components to 
hardware is possible or not. 

– Result “mapping possible”: A candidate mapping is printed into the report that guar- 
antees at least the spatial segregation constraints. Because the analysis approximates 
the timing behavior, the mapping may still be unfeasible. 

– Result “mapping impossible”: A mapping is definitely not possible. As additional 
information, the analysis produces a minimal subset of the requirements that leads 
to the conflict. 

For the segregation check : For every segregation requirement, a statement is made whether 
the requirement is satisfied (Yes) or not (No). If the answer is No, a short reason for that 
is given in the report. 

Additionally to the report, the analysis results are presented as markers in the AMALTHEA 
model editor. Violated/conflicting requirements as well as elements that caused an analysis 
error are marked with a red X. 

 
5.6 Failure Propagation Analysis 

When designing a product, the sooner potential risks can be identified, the more costs can be 
saved because it is easier to modify a project in its early stages [KG07]. There are several 
methods for analyzing risks in a system, but all require mature design. This task becomes more 
important when we refer to safety critical systems. 

Developing safety critical systems requires ensuring that the system does not harm people 
and the environment, even if some system components fail [Lev95; Lut00]. The related warranty 
process, known as safety analysis, consists of a risk and hazard analysis phase. The purpose 
of risk analysis is to identify potential risks that may occur during the life of the system 
and to determine their tolerable hazard rates (THR) or probabilities (THP) [Lev95; GCW07]. 
A combination of a formally specified hazard condition, along with its probability/tolerable 
hazard rate is a prerequisite for formulating a safety requirement. More specifically, a safety 
requirement is formulated as the denial of a hazard condition combined with THP/THR [Lev95]. 
A comprehensive list of these safety requirements is the end result of the hazard analysis process. 

The set of all safety requirements identified in the risk analysis process becomes an input to 
the risk analysis process. The purpose of this process is to evaluate whether a system design 
meets its safety requirements. Traditionally, manual methods such as Fault Tree Analysis (FTA) 
[Sta03; VGRH81] and Failure Mode and Effects Analysis (FMEA) [GCW07] are used to create 
evidence that the system meets its safety requirements. In addition to these traditional methods, 
model-driven safety analysis techniques have gained increasing attention from researchers and 

practitioners [Gru07]. 
Model-oriented approaches (applied in the design phase architecture) are used to automatically 

produce fault trees and FMEA tables based on an annotated architecture design specification 
with information on the failure behavior of architecture components. Example languages for 
these annotations are: Failure Propagation and Transformation Notation (FPTN) [FMNP94; 
FM93], Component Fault Trees (CFTs) [KLM03] (see detailed description in Section 5.7), 
State Event Fault Trees (SEFTs) [GKP05; KGF07], Failure Propagation and Transformation 
Calculation (FPTC) [Wal05] and the tabular failure annotation of the HiP HOPS methodology 
[PM01; PMSH01; PPG04]. 

• 

• 
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Within the context of fault propagation, this study aims to research and summarize some 

works related to static failure analysis. We briefly describe the topics and approaches in 
heterogeneous systems. We also survey available methods and tools. 

 
5.6.1 Approach 

FMEA is a risk assessment tool that mitigates potential failures in systems, processes, projects 
or services and has been used in a wide range of industries [LLL13].  Like FMEA, FTA  is   
an important approach to fault propagation analysis for engineering systems. Using these 
techniques, our approach is similar to that presented in [AKB04], as we focus on the static 
diagnosis of hardware and software components through timeless fault propagation models. 
Initially, the method will be applied to two heterogeneous systems types: Insulin Pump Systems 
and a Remote Interface Unit. 

Therefore, in the context of the PANORAMA project, we are proposing fault propagation 
modeling, because the use of static analysis techniques we focus on are FMEA and FTA. In 
this approach, we will use the APP4MC4 tool in conjunction with other Eclipse Environment 
plugins as shown in Figure 5.6. 

For failure modeling, we start from the logic proposed by Project DEIS5, called Open 
Dependability Exchange (ODE) metamodel6, which proposes an entity model and supports 
FMEA and FTA. We adopt these as the formats for the outputs of our static analysis. Moreover, 
ODE allows defining functions and dependency relationships among them, which map to the 
component concept we defined for deliverable D1.1. This way, the propagation modeling is 
performed using ODE as a foundation. 

To relate each function with its failure modes, defined from the ODE model to an AMALTHEA 
component, we will use Capra’s traceability function7. Our approach should be similar to the 
work [LL14] that used Altarica Models to build Fault Trees. We also intend to use PlantUML8 

to write Fault Propagation Models just as Capra uses these models to link components. One 
possibility is to have an individual mapping between the executables defined in AMALTHEA 
and the functions defined for ODE. The objective is to model the most critical software 
component/function/failure mode relationships of the system in order to identify each executable 
affected by a failure directly or indirectly (if propagation occurs). 

 
5.7 Component Fault Tree (CFT) Methodology 

5.7.1 Overview 

With Component Fault Trees (CFTs) there is a model- and competent-based methodology for 
fault tree analysis [Int06], which supports reuse by a modular and compositional safety analysis 
strategy. Component Fault Trees are Boolean models associated with system development 
elements such as components [KLM03; KSA+18; HJZ+18]. It has the same expressive power as 
classic fault trees, which are described for instance in [VGRH81]. Like classic fault trees, CFTs 
are used to model failure behavior of safety-relevant systems. This failure behavior, including 

 
4https://www.eclipse.org/app4mc/ 
5http://www.deis-project.eu/ 
6https://github.com/DEIS-Project-EU/DDI-Scripting-Tools/tree/master/ODE_Metamodel 
7https://projects.eclipse.org/proposals/capra 
8https://plantuml.com/ 

https://www.eclipse.org/app4mc/
http://www.deis-project.eu/
https://github.com/DEIS-Project-EU/DDI-Scripting-Tools/tree/master/ODE_Metamodel
https://projects.eclipse.org/proposals/capra
https://plantuml.com/
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Figure 5.6: Failure propagation modeling approach. 

 
their appearance rate, is used to document the absence of unreasonable risk of the overall system. 
In addition, it can also be used to identify drawbacks of the design of a system, e.g. by the 
propagation of failures or by the failure rates. 

In CFTs, a separate so-called CFT element is related to a component [KLM03; ADH+11]. 
Failures that are visible at the outport of a component are modeled using Output Failure Modes 
which are related to the specific outport. To model how specific failures propagate from an 
inport of a component to the outport, Input Failure Modes are used. The internal failure 
behavior that also influences the output failure modes is modeled using Boolean gates such as 
OR, AND and M-out-of-N as well as so-called Basic Events. Basic Events model failure modes 
that originate within a component. Each Basic Event can be assigned a failure rate, e.g. the 
Mean Time Between Failures (MTBF) or the Failure In Time  (FIT). In case of an OR gate a  
failure propagates if at least one of the inputs is active, while an AND gate propagates failures 
only if all input failures are active. 
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Figure 5.7: Example of a simple CFT [KSA+18] 

 
5.7.2 Example 

A small example of a CFT was presented in [KSA+18] (see Fig. 5.7). The example shows an 
exemplary controller system Ctrl, including two redundant CPU s (i.e. two instances of the 
same component type) and one common power supply Sply (which would be a repeated event 
in traditional fault tree). The controller is unavailable if both CPUs are in the state "failed". 
The inner fault tree of the component type CPU is shown on a separate screen; as the CPUs 
are of identical type, they only have to be modeled once and are then instantiated twice. The 
failure of a CPU can be caused by some inner basic event "E1" (the repetition of the ID "E1" 
in several components is not a problem, as each component constitutes its own name space). 
The failure of the CPU can also be caused by an external failure cause which is connected via 
an input port. As both causes result in a CPU failure, they are joined via a 2-input OR gate. 
The power supply is modeled as a separate component. Let us assume that the power supply is 
in its failed state if two separate basic failures are present (for example having two redundant 
batteries). Hence, instead of a single large fault tree, the CFT model consists of small, reusable 
and easy-to-review components. 

 
5.7.3 Input 

Input for the Component Fault Tree methodology is the 

• list of hazards identified during the Hazard and Risk Assessments (HARA) 

description of the system architecture in any model-based system architecture description 
language (e.g. UML/SysML, EAST-ADL, AADL, Capella, etc.) 

information about failure rates of components (e.g. taken form standards such as MIL- 
HDBK-217, SN29500, etc.) and repair times, etc. 

 
5.7.4 Output 

Fault Tree Analysis is a top-down, deductive failure analysis to identify the causes which lead to 
a system hazard. The output of the Fault Tree Analysis is either a qualitative or a quantitative 
analysis: 
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Minimal Cut Set (MCS) Analysis: Qualitative analysis of a hazard which determines  
the minimal cut set. A cut set is a combination of component failures which lead to the 
hazard (the top event of the fault tree). 

Quantitative Analysis: If the events in a fault tree are associated with statistical proba- 
bilities, the probability of the occurrence of a hazard (the top event of the fault tree) is 
calculated. 

The results of these analyses help the prove that the safety requirements are fulfilled by a certain 
architecture or help to improve the architecture. 

 
5.7.5 Advantages of the Component Fault Tree Methodology 

The CFT approach has multiple advantages compared to classic fault tree analysis. It eases 
the creation and especially the maintenance of safety analysis due to the divide-and-conquer 
strategy applied when creating component fault trees. Since CFT elements are related to 
their development artifacts, they can be reused along with them. Moreover, it is possible to 
automatically compose system-wide failure propagation based on the CFT elements of each 
component[MZH+16; MBZ+17]. Hence, it is possible to create a library, which contains CFT 
elements for all system components. Based on this library, different CFTs by can be created by 
just changing the assembly of the CFT elements according to the system architecture. Moreover, 
with the concept presented in [ZM18] Markov Chains can be integrated in Component Fault 
Tree models combined in an arbitrary way. 

Since Component Fault Trees provide a relation between the ports (i.e. the interfaces of 
components) in the system design and the failure modes in the failure propagation specification, 
it is possible to derive test data or input for the fault injection into simulations [ZH15; RZH+17]. 

Every CFT can be transformed to a classic fault tree by removing the input and output 
failure mode elements. The CFT is just another representation of the information in the fault 
tree. Therefore, the same algorithms can be used for qualitative (minimal cut set analysis) and 

quantitative fault tree analysis as for classic fault trees. 
These advantages of the CFT methodology have been proven in different evaluations [JJH+13; 

GZOH18]. In addition, several industrial case studies showed the advantages of using CFTs for 
the safety or reliability analysis of large-scale complex systems in different industrial application 
domains [MNZ18; KZS18; HJZ+18; ZK19]. 

• 

• 
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6 Dynamic Analysis 

This Chapter describes analysis methods, which focus on the dynamic behavior of digital 
electronic systems. These methods often investigate functional and extra-functional aspects of 
the developed systems, which depend on the run-time behavior of hardware and software. 

This Chapter roughly divides into two general methodologies: simulation-based and mea- 
surement based approaches. The contributions in Sections 6.1 and 6.2 describe methodologies, 
which are based on the simulation framework SystemC as discrete event based simulator. Both 
also partly use AMALTHEA models as input, but they focus on different technologies, as in 
section 6.2 virtual integration tests are performed and in section 6.1 model transformations are 
utilized. The Sections 6.3 and 6.4 present commercial simulation tools and both mainly focus 
on timing and schedulability analysis. Both can work on a variety of different input models and 
different abstraction layers. 

The last two Sections 6.5 and 6.6 describe approaches, which use actual hardware. In 
section 6.5, a fault-injection methodology is described, which allow the analysis of the resilience 
against hardware and software faults. The section 6.6 describes an approach based on timing 
measurements on actual hardware to analyze timing and schedulability characteristics of systems. 

 
6.1 SystemC Simulation 

The design and development with a model-based process creates the need for early evaluation 
of the created models. Depending on the abstraction level and underlying semantics of the 
meta-model an evaluation based on simulation can be beneficial, as such executable specifications 
can serve many demands. In the first design stages, a simulation can serve as an early tool to 
investigate functional aspects and to give hints for design decisions. For later design phases, the 
same simulation can be used to test existing implementations. 

In the Electronic Design Automation (EDA) community, SystemC is one of the de facto 
standards for system-level simulation and the development of virtual prototypes. SystemC is 
defined in the IEEE 1066 standard [SystemC12] as a C++ class library, which includes modeling 
primitives and a discrete event-based simulation kernel. The modeling primitives can be divided 
into the following parts: structural, behavior, communication, data types. 

 
Structural Modeling 

The main model primitive of SystemC is the class sc_module. A module can contain other 
modules to create a hierarchical structure. Moreover, a module describes the interface for 
communication to other modules with ports, where a port describes the exchanged data and 
the channel, which should be connected to the port. Besides the functional properties of such 
structures, SystemC also serves a hierarchical naming system for modules, to allow an easy 
debugging while the execution of simulations. 
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Behavior Model 

The behavioral description of SystemC modules is organized in processes. There exist multiple 
types of processes, but the main are sc_method and sc_thread. A sc_method have the semantics 
of most Register-Transfer-Level models, like VHDL or Verilog, and are functions, which are 
completely executed as a consequence of an event occurrence from the set of predefined events of 
thesc_method’s sensitivity list. Contrary to that, a sc_thread normally do not have a predefined 
sensitivity list, but is executed once at the begin of the simulation, and can dynamically interact 
with blocking communication calls, await events  with the  wait call,  or uses a wait call with 
a time object to release the execution thread to the simulation kernel. Since a sc_thread is 
executed only once, a common pattern is to use an endless loop reacting on dynamic inputs, 
which is also a common pattern for modern software. The SystemC reference simulation kernel 
employs a cooperative scheduler, which executes only one process at the moment, which allows 
the simulation of many parallel executing processes, without the need for thread-safe algorithms. 
The obvious downside is the missing exploitation of parallel computing resources of modern 
computers. Depending on the abstraction level, models may mix the usage of both process 
types. 

 
Communication 

The communication between sc_modules is abstracted in communication sc_channels. Prede- 
fined channels exists for the semantics of simple traces (sc_signal) with arbitrary width or 
buffering FIFO channels (sc_fifo). To describe more complex communication protocols, e.g. to 
model bus accesses and arbitration, SystemC offers Transaction Level Modeling (TLM), which 
is often used for high-level system models. In general, a transaction describes the information 
to issue an access to a memory, e.g. address, length, read or write action. Moreover, SystemC 
TLM also defines a standard protocol state machine and is generically designed to map easily 
to existing protocols, like PCI or other on-chip Buses. 

 
6.1.1 Application of SystemC 

Due to its generic concepts, SystemC covers a variety of abstraction levels transfer level, for 
instance, register transfer level, describing the signal flow between registers and logical gates, 
but also abstract models of the system behavior. SystemC is for example often used for the 
simulation of virtual prototypes, where instruction set simulators execute the actual target code 
of a platform and hardware modules are described in SystemC. 

The nature of SystemC as C++ library offers the power and degree of freedom, that a 
general-purpose and multi paradigms programming language supports. The downside of that 
is less analyzability and tool-assisted semantic guiding of modelers. Therefore, it is beneficial 
to use more restricted and domain-specific meta-models to describe an embedded system and 
then transform the model to SystemC for simulation. There exist many system-level design 
meta-models, which cover many aspects of the developed system. The paper [NSTW04] describes 
a methodology for the metamodeling language UML, which transforms UML models, especially 
behavior describing state machines, to SystemC and simulate them. In [PMPV10] a quite 
similar approach with the MARTE profile of UML is proposed. A similar methodology was 
proposed in [Abd16] which used SysML, another offspring of UML, and use simulations for 
verification purposes. The work in [HFK+07] describes another approach, which uses SysteMoC, 
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a template library based on SystemC, for the modeling of streaming applications. The resulting 
simulation models are used in a guided design space exploration as performance evaluation. 

Although a SystemC simulation model does not offer intrinsic formal methods for model 
checking, there are several methodologies for analysis. Firstly, all source code methods for the 
C++ language are also applicable for SystemC. Moreover, methods exploiting the object-oriented 
aspects of C++ or respectively SystemC class library are beneficial. Secondly, simulation-based 
statistical model checking, for instance, proposed in [NLQ16], can also be applied, if the model 
as statistical-based execution semantics. 

The AMALTHEA meta-model, which is one of the proposed input models within this project, 
allows an extensive description of many aspects of heterogeneous systems, as it includes repre- 
sentation for hardware and software components and corresponding models for the mapping 
of applications. The software model of AMALTHEA describes most of the application-specific 
behavioral aspects of the designed system. Although the meta-model does not describe explicitly 
a formal execution semantics for all components, it is easy to derive from the meta-model 
description. The hardware model of AMALTHEA represents the hierarchical structure of  
the underlying system. The HwStructure describes the system hierarchy including its inter- 
faces to other structures. It can contain HwModules of the type ProcessingUnit, Memory,  
Cache, HwConnection, ConnectionHandler and  other  HwStructures.  The  interfaces  between 
all HwModules are HwPorts, which allow a one-to-one connection via HwConnection. The 
ConnectionHandler are used to model n-to-n semantics, e.g. in communication buses. Other 
important aspects of the AMALTHEA meta-model are the OS-model, which describes the 
scheduling of software model elements, and the mapping model. The latter is used to describe 
the connection between hardware, software and OS-model. 

After a comparison of SystemC and AMALTHEA, it can be recognized, that the hardware 
model has obvious similarities. This makes AMALTHEA a suitable candidate for a model 
transformation to SystemC and subsequent simulation. The simulation can then be used to 
investigate the given constraints within the AMALTHEA model, like latency requirements. As 
the AMALTHEA model also involve statistical distribution within the modeling elements of the 
software model, suitable statistical methods for the SystemC model need to be developed. A 
SystemC simulation may also be used to create traces, which include exemplary event chains, 
e.g. of software task state changes, which can be used for further analysis methods. Therefore, 
suitable tracing formats need to be defined. 

 
6.2 Integration Testing for Timing Requirements 

During development of safety-critical embedded systems, the system functions are successively 
decomposed into more elementary functions which are finally to be implemented in software 
and hardware. In this section, analysis approaches and tools are presented that OFFIS has 
developed in recent research projects and that help in validating functional decompositions wrt. 
timing aspects. 

 
6.2.1 Methodical Background 

In contract-based design [Ben+18], a component is specified by so-called contracts. A contract 
consists of two parts, the assumption and the guarantee. The assumption describes some aspect 
of the environment in that the component shall operate, and the guarantee describes in the what 
the obligations of the component are in such an environment. Contracts may describe functional 
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A = Assumption, G = Guarantee 
 
 
 

Figure 6.1: Example: Functional decomposition with timing contracts 

 
and non-functional aspects of the systems. In this section, especially timing properties are 
considered. 

During functional system design, the system functions are successively decomposed into more 
elementary functions. The functions on lowest level are finally implemented into software tasks. 
In a contract-based development process, each of the functions is described by contracts. As an 
example, consider the top-level decomposition of the flight function of the quadcopter example 
from section 5.5. It is shown in Figure 6.1. The behavior of the system functions is specified as 
timing contracts using the pattern language from section 5.5. The assumptions describe the 
events that are expected at the component inputs, and the guarantees describe which events 
shall occur in response to these inputs. In sum, the contracts at the Sensors, Flight Control, 
and Motor Control components describe an event chain from input to output of the system. 
The contract at the system component specifies that this event chain may not exceed 10ms. 
Virtual integration testing can be used to check – based on the contracts – if the decomposition 
of the system function into Flight Control and Motor Control is  correct.  Formally  this  is 
done by checking if the contracts at the sub-level components together imply the contracts of 
the top-level component. More information on the formal background of virtual integration 
testing can be found in [Ben+18; DHJ+11]. 

When implementing the system functions in software, it needs to be verified that the software 
also satisfies the timing properties specified in the functional architecture. In ARAMiS II, 
OFFIS has developed a satisfaction check for timing properties that also considers the effect of 
fault handling. Consider again the quadcopter example. As it has been introduced in section 5.5, 
the quadcopter’s flight control function relies on a operating system service to read sensor data 
via I2C. Because the data transmitted via I2C may be corrupted, it is protected with a check 
sum. Figure 6.2 shows the control flow of an implementation of the flight control function (more 
precisely the part that acquires data from the sensors) and the system service for accessing I2C. 
If the checksum of the data reveals a transmission fault, the service is called a second time in 
order to request the data again. 

A: Sensors.Data occurs every 10ms 
G: Delay(Sensors.Data,MotorControl.ActCmd) within 10ms 
G: MotorControl.ActCmd occurs every 10ms with jitter 2ms 

System 

Data CtrlCmd ActCmd 

A: Data occurs every 10ms 
G: Delay(Data, CtrlCmd) within [3,4]ms 

A: CtrlCmd occurs every 10ms with jitter 2ms 
G: Delay(CtrlCmd, ActCmd) within [4,7]ms 

Rotor 
1..4 

 
Sensors 

 
Motor Control 

 
Flight Control 
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Figure 6.2: Example: Service call with HW/SW safety mechanism 
 
 
 
 
 
 
 
 

 
 
 

Figure 6.3: Analysis model for satisfaction check 
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6.2.2 RTAna2 

In the ARAMiS II project, a virtual integration analysis and the satisfaction check outlined  
in the last section have been prototypically implemented and integrated into the APP4MC 
platform. The analysis relies on a successor of the RTAna2 model checker [SRGB13]. The 
analysis approach is to model the top-level assumptions and sublevel guarantees as a task 
network that simulates the behavior specified in the contracts. The guarantee of the top-level 
contract is instead implemented as a (virtual) observer that monitors violations of the guarantee. 
The model checker uses a variant of stopwatch automata to model task networks. In some cases 
it is possible to achieve complete analysis results by unrolling and examining the complete state 
space. The satisfaction check uses the same model checker to simulate an AMALTHEA software 
model. The control flow graphs of the software tasks – that can be modeled quite detailedly 
in AMALTHEA – are annotated with information on fault handling. Finally, a fault injector 
component is inserted into the analysis model. 

 
Input 

Input of the VIT and the satisfaction analysis is an AMALTHEA model that contains at least a 
component model as described in subsection 5.5.2. The satisfaction check additionally requires 
an AMALTHEA software model and a mapping to hardware that contains stimuli for all the 
software tasks. The analysis interprets write accesses to AMALTHEA label elements as events 
on the component ports. 

 
Integration 

The VIT and satisfaction check are integrated into the APP4MC platform the same way as the 
OFFIS segregation analysis (see subsection 5.5.2) is. 

 
Output 

The VIT and satisfaction check produce HTML reports in the same way as the segregation 
analyses (see subsection 5.5.2). The result of the VIT and satisfaction check is either “pass” or 
“fail” for every (top-level) guarantee. Additionally some statistics are reported such as the run 
time of the analysis and the state space size. It is also reported if the state space has been 
completely unrolled. In this case, the analysis results are complete. 

 
6.2.3 MULTIC Tooling 

The virtual integration test developed in the MULTIC and MULTIC Tooling projects implements 
contracts in a similar way to the ARAMiS II VIT prototype. The important difference is that 
in the MULTIC approach SystemC is used for simulation. 

 
Input 

The input of the MULTIC Tooling VIT analysis is a Papyrus SysML component model with 
requirements. The SysML requirement elements contain contracts that are expressed in a 
pattern language that is close to that presented in section 5.5, but more expressive. An example 
taken from [DEG+19] is shown in Figure 6.4 
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Figure 6.4: Example SysML model with requirements (taken from [DEG+19]) 

 
Integration 

The analysis can be started from the Papyrus IDE’s graphical user interface. An overview on 
the MULTIC Tooling architecture is given in Figure 6.5. 

 
Output 

The MULTIC tools display the analysis results as annotations in the Papyrus model editor. 
Traces for the simulation runs are also provided. 

 
6.3 Timing Simulation and Evaluation 

The Vector Timing Architecture Tool Suite (TATS) [Vec20] incorparates a model-based, event- 
based simulator and evaluator. The simulator uses a Monte-Carlo based Discrete Event Simulator 
to generate an event trace out of a given system model. The TATS then provides the possibility 
to evaluate the timing behavior based on that trace (either generated from the simulation or 
measured from a tracing hardware). The simulator mainly considers homogenous processor 
platforms. There is some support for heterogeneous processor cores, but specialized/custom 
hardware like GPUs, ASICs, or FPGAs is not supported. 

The TATS can be used for the following purposes: 

In-depth evaluation of system and component timing behavior, as well as resource con- 
sumption 

Evaluating hardware resource consumption of the application software and the operating 
system 

• Performance analysis and evaluation of different hardware platforms and software designs 

• Shared resource interference and cause-effect analysis 

• 

• 
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Figure 6.5: MULTIC Tooling architecture (taken from [DEG+19]) 
 

• Validation and comparison of design decisions in an early phase of the development process 

The key features of the TATS are: 

Detailed simulation of single- and multicore architectures using generic or detailed vendor 
specific processor and operating system models 

• End-to-end timing simulation and analysis of multicore and multi-processor systems 

Evaluation of the performance, resource contention, and caching effects for different 
hardware architectures, as well as operating system overhead 

• Analysis of different multicore synchronization and resource sharing mechanisms 

Ability to define a range of requirements and evaluation criteria for the in-depth analysis 
of event-chains, processes, runnables, and software components 

Various (multicore) scheduling algorithms are supported, including: 

• OSEK (fixed-priority) 

• AUTOSAR (fixed-priority) 

• EDF (Earliest Deadline First) 

• Linux (deadline based, priority based, and fair scheduling) 

• etc. 

• 

• 

• 
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The TATS interfaces with external tools by importing and exporting model files, including 

AUTOSAR description files, OSEK implementation language (OIL) files, AMALTHEA model 
files, and ASAM MDX files. The interfaces are used for creating the Timing Architecture Model 
(TAM), which is used as input model for scheduling simulation. Likewise, event traces generated 
outside of the simulator can be imported into the TATS through those mentioned file formats 
(e.g., BTF). 

 
6.3.1 Development Process 

The simulator is used during the schedule validation/verification step to evaluate timing require- 
ments and the typical system behavior with the given scheduling parameters and deployment. 
The result can be visualized via Gantt charts, report tables, and others. 

 
6.3.2 Input 

The following input artifacts are considered by the TATS: 

Hardware cores, frequencies, memories, networks, etc. 

Operating System scheduling, OS overhead, events, semaphores 

Application Software tasks, interrupt service routines, functions, function execution tree, data 
variables and data communications/accesses, OS task configurations, inter process activa- 
tions, execution times as fixed values or as distribution functions 

Architecture system description, software components and compositions, ports 

Mapping deployment and communication information 

Stimulation activating events specification from external sources 

Requirements timing requirements such as deadlines, end-to-end duration of event-chains, etc. 
 

6.3.3 Output 

The following output is generated by the simulator and evaluator: 

Execution Trace as Gantt chart or BTF format 

Evaluation results various metrics and statistics in Gantt charts, tables, histograms, bar charts, 
etc. 

Reports configurable result summary documents in XML or HTML format 

A typical simulation output in the TATS is depicted in Figure 6.6. Here, task executions in a 
Gantt chart, evaluation results of requirements, metrics, and the system load is visualized. 
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Figure 6.6: Simulation results in the TATS simulator view. 
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6.4 chronSIM 

6.4.1 Simulation 

A simulation is meant to recreate a dynamic process in a system with the help of an experimental 
model in order to obtain knowledge about the behavior of the real system with respect to this 
process. In comparison to performing experiments with the real system, simulation can offer 
several advantages like easier accessibility of complex system behaviors, reduced time and cost 
efforts, enabling of frontloading or in-creased safety at the expense of system abstraction. 

The simulation tool chronSIM [chronSIM] is a multiple resource simulation tool with the 
strong focus on timing. The model consists of functions, interrupts and their interconnections 
and communications, their mapping on multiple ECUs which can be of different type and have 
different operating systems or scheduling. chronSIM allows a timing accurate simulation of the 
model, taking the operations systems, scheduling and even the drift of clocks for the different 
ECUs into account. The model allows hierarchical scheduling with some basic schedulers as 
well as complete operation systems with their timing and scheduling specific specialties, all 
already built into the simulator. The models for chronSIM can be abstract description models 
including the elements above (and a lot more). Such a model can be enriched and combined 
with C-code describing functions, tasks and their communication. Timing relevant information 
is added to the C-Code by various specific macros. The functions, tasks and messages defined 
in the code are connected to the abstract model so that the simulation of the model can decide 
when a function is activated and executed (in the context of the simulation time). The code of 
a function decides what is done, thereby considering how long the execution of the function will 
take. The code can be used as a modeling language allowing a large flexibility, or implementation 
code can be executed within the simulation. The execution is functional-aware. Hence, the 
complete functionality defined within the C-code is executed at the appropriate simulation time. 
With this approach non-functional models can be combined with partially functional models or 
full functional models. The simulation tool chronSIM allows to model different clocks for the 
different resources in the system. So the stimulus and the execution time does not necessarily 
depend on a global time base but on a local time base. The time bases can be correlated to 
each other, especially there can be an offset, drift, etc. between different clocks [AADG12]. For 
example the FlexRay bus has its own time base which is derived from the different time bases of 
the ECUs connected to the bus. Such systems can be modeled accurately and it allows finding 
effects originating from not completely synchronized time bases. 

 
6.4.2 Optimization 

The optimization is based on methods for timing evaluation with means of simulation and 
schedulability analysis. The special characteristic for the optimization is to generate the new 
candidate solutions based on the existing results from a timing analysis or timing simulation 
using the already calculated knowledge of the system. It includes functions to re-investigate 
a certain change of the candidate solution (move) based on the already calculated evaluation 
results of the candidate solution. In case the move is selected due to this estimation of the 
changes a complete simulation or analysis is performed to take all dependencies into account. The 
resulting accurate evaluation result will then be finally the base for the heuristic to either accept 
or reject the move and the resulting candidate solution. Some of the potential optimization 
goals are listed below: 
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Calculation of realistic values for the optimized timing behavior like response times and 
jitter values 

Calculation of suitable scheduling parameters like priorities, message priorities, selectable 
offsets 

Calculation of a meaningful distribution and execution order of runnable entities (functions) 
on tasks. 

One possibility to solve the optimization problem is to use specialized heuristic algorithms 
designed for the specific problem. Candidates are heuristics to generate a good static schedule 
or to distribute priorities. Another possibility is to use meta-heuristics. That are general 
optimization algorithms designed to solve optimization problems. Candidates are algorithms like 
Genetic Algorithms, Simulated Annealing, Tabu-Search, Ant-optimization [AntColonyOpt] and 
so on [Mic10]. These optimization algorithms follow in general the same scheme. They starts 
with one or more given or generated initial candidate solutions and then have the following 
general steps: 

Evaluation of the candidate solutions. They are evaluated resulting in some kind of 
comparable quality measurements. 

Comparing the evaluated quality with the quality of other candidate solutions or the 
previous candidate solutions. 

• Selecting candidate solutions to proceed. 

• Modifying these candidate solutions in the expectation to improve them. 

The meta-heuristics can be divided into two groups, round-based and pool-based heuristics. 
 

Round-based Heuristics 

In a round-based heuristic one candidate solution is considered in each step. The candidate 
solution is modified. The modification can be for example by changing one certain parameter 
like a priority, by switching the position of two tasks, changing an offset or other things. The 
group of candidate solutions which can be reached by one move from a certain candidate solution 
is called neighborhood. The modified candidate solution is than evaluated and compared with 
the previous solution. In case the evaluation detects a progress, the move will be accepted. 
Otherwise, depending on the heuristic, another move in the neighborhood is evaluated. A 
basic round-based heuristic is hill-climbing [HillClimbing] It accepts a move when it has a 
better evaluation. The heuristic leads to a static progress and to a locally optimal solution. 
The problem is that a local optimum is not necessary globally optimal or even near a global 
optimum. So it is necessary for heuristics to accept, from time-to-time, also candidate solutions 
which do not directly lead to an improvement. Simulated Annealing therefore accepts also such 
back-stepping moves with a certain probability. The key-point is that this probability depends 
on the progress of the optimization. It is high in early phases of the optimization to allow a 
more global search and is lower in later stages to step to an (local) optimum at the end. It 
relies on the assumption that good local optima have a large foundation on good closely related 
solutions (same as with high hills in the mountains). So it is very likely to end at good local 

• 

• 

• 

• 

• 
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optimal solution. Tabu-Search solves the problem with local optima by allowing back-steps in 
cases a local optimum is reached [Tabu]. To avoid that the optimization returns immediately 
to the same local optima, the move is put into a list of not allowed moves. The heuristic 
depends on the assumption (and a corresponding model) that local optima are not far from each 
other. chronOPT part of the INCHRON Tool-Suite [INCHRON] that provides a framework for 
optimization uses Tabu-Search meta-heuristic . There are a lot of other round-based heuristic. 
Depending on the heuristics either one modified candidate solutions is considered or several 
moves out of the neighborhood. 

 
Pool-base Heuristics 

Some heuristics are pool-base (genetic algorithms, ant optimization), considering in each round 
a set of different candidate solutions. In one step of the optimization, the best candidate 
solutions of the pool will be selected as the base solutions for the moves. Other candidate 
solutions with less success will be removed from the pool. Genetic algorithms uses two kind 
of moves, modification and recombination. The modification changes one or a few parameters 
of one candidate solution. The re-combination tries to combine parts of two different (good) 
candidate solutions [Mic96]. The challenge for many pool-based heuristics is to develop an 
adequate modeling which takes advantage of the special strategy of the heuristics. For example 
for genetic algorithms a modeling is necessary which supports a meaningful re-combination 
operator. The resulting candidate solutions need to include meaningful characteristics of both 
previous candidate solutions. A problem with pool-based heuristics is that for one step of the 
optimization many evaluations are necessary. One step for a pool-base heuristic with 50 active 
solutions in the pool would require as much computation time as 50 steps of a round–base 
heuristic. But the pool-based heuristics might have advantages if it is possible to parallelize and 
distribute the computation on a grid-computer. 

 
6.5 Fault Propagation Analysis for Hardware 

In the era of autonomous driving, automotive software is growing in both size and complexity. 
Simultaneously, the unremitting effort of semiconductors down-scaling its feature sizes following 
the well-known Moore’s Law to diminishing design margins and stringent power constraints. 
This orientation lead to more dependence on commercial off the-shelf (COTS) hardware [GL08; 
OM19], that provides high performance on one hand, whilst rising their sensitivity against 
random hardware faults due to external causes such as radiation effects or electromagnetic 
interference [Bor05; Bau05]. 

Dependable systems include attributes such as reliability, availability, safety and security. The 
design of dependable systems and software rely on the systematic scrutiny of potential faults, 
their subsequent effect and the countermeasures of detecting and recovering them. Fault injection 
(FI) is widely adopted dependability assessment technique that ISO26262 strongly recommend 
to validate the functional and technical safety mechanism are properly achieved [OLSM18]. 

PyFI (Python backend for Fault Injection), is a fault injection mechanism utilizing iSystem 
iC5000 on-chip Analyzer to inject faults to the components of application at microarchitectural 
level (e.g. register and memory locations) or to application level that are accessible at its 
assembly instructions. It captures program execution traces and applies fault-space reduction 
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algorithms to reduce the overall execution time of the conducted campaigns. The reaction to 
of the injected faults campaign are recorded during the experiment and evaluated afterwards 
[OM19]. 

 
6.5.1 Fault Model 

Faults can manifest in all system levels, from Hardware Faults (e.g. bit flips) to Software 
Faults (e.g. control flow faults). Hardware faults can be categorized - regarding their duration - 
into permanent- and transient -faults. Permanent Hardware faults reflects durable deficiency 
in the system’s hardware due to manufacturing process variations, aging or decay [SPW09; 
KK10]. Transient Hardware Faults on the other hand, is a result of decrease of feature sizes of 
the System-of-Chip (SoC) which makes them more vulnerable to electromagnetic interference 
and other sources of electrical noise [SWK+05; OLSM18]. Hardware faults impact the system 
operational behavior either directly by arsing on the system components, such as memory 
or registers and clock values, or indirectly due to the effect of propagated error on further 
abstraction levels of the systems emerging safety and dependability threats [ALRL04b]. 

Since that the space of possible faults can not be thoroughly foreseen; FI is a crucial step for 
the development and design of dependable embedded systems, and it considered an essential 
validation tool for the system’s functional safety against fault. The evaluation of the fault 
properties of an application is usually accomplished by applying Software-Implemented Fault 
Injection (SWiFI) techniques which emulate hardware faults at software level[SFB+00; QHXL09]. 
SWiFI techniques typically operate at the assembly or machine level of the application to emulate 
hardware faults at the low level which propagate up to the application level [OLSM18]. In 
the context of fault injection experiments, a fault model is characterized by the fault location 
(where to inject), fault timing (when to inject) and fault pattern (what to inject) [HTI97]. 

Figure 6.7 illustrate the abstraction level of fault model. These models are adopted in PyFI 
and represent the exploration space of PyFI for fault injections and analysis: 

Microarchitectural Level (MA) [LRK+09]. 
Faults in MA consists of three main elements: 

– Central Processing Unit (CPU) 
– Memory 
– Interconnecting Bus 

Instruction Set Architecture Level (ISA) [KF15]. 
ISA Faults can be categorized mainly into three types: 

– Operand error 
– Operator error 
– Arithmetic error 

Operating System Level (OS) [SFB+00]. 
Fault that propagate from ISA to OS, can be categorized into: 

– Data Error 
– Program Flow Error 

• 

• 

• 
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Application Level (APP) [Frt16]. 
Fault that propagate from ISA to APP, can be categorized into: 

– Data error 
– Program flow error 
– Access error 
– Timing error 

 
 

 

Figure 6.7: Fault Model adopted in PyFI. The model is divided into four levels of abstraction 
[OLSM18]. 

 

6.5.2 PyFI - Workflow and Design 

The PyFI architecture comprises of three phases [OLSM18] (see Figure 6.8): 

• pre-injection analysis 

• fault injection campaign 

• post-injection analysis 

 
Pre-Injection Analysis 

This phase consists of three operations: 

1. Experiment Configurator: An experiment configuration file contains the setup that 
tailors the fault injection mechanism. This configuration file determines the: 

Location of faults to inject at the MA-level (address of memory (volatile and non- 
volatile) or CPU register) 

• 

• 
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Figure 6.8: PyFI Architecture [OLSM18]. 
 

• Mode  of injected error (bit-flip, stack-at) 

2. Workload Analyzer: For the purpose of improving fault injection campaign’s efficiency, 
the workload analyzer: 

a) Traces the gold run execution of disassembled ELF-file of the application (with no 
faults injected), by utilizing the iSystem On-chip Analyzer. During the execution 
of the golden run, statistical values are collected for the memory and register usage. 
This provides the static behavior of the system under investigation. 

b) In addition to tracing static behavior, the gold run execution provide insight for 
the dynamical behavior as well. This is fulfilled by collecting information whether 
the executed instructions perform a memory or register access, the current program 
counter, the accessed register and memory addresses and the type of each access, i.e., 
if a read or write access occurred. 

c) The obtained information is afterwards made available to the next fault library 
generator/optimizer. 

3. Fault Library Generator/Optimizer: The fault library generator/optimizer uses the 
data set provided by the workload analyzer to create an optimized fault library according 
to the experiment configuration. The optimization include reducing the space of test to 
be performed by eliminating faults that have no possibility of activation. This so-called 
Fault Collapsing methods can be split into two main groups: 

a) Reduction of the number of possible faults to only effective ones 
b) Reduction of the duration for a singe experiment. 
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Fault Injection Campaign 

The controller coordinates the fault injection campaign under the guidance of the fault library, 
generated in the pre-injection analysis step. It then parameterize the fault injector with the: 

• fault type 

• fault location 

• trigger for the injection. 

The fault injector then injects the specified fault using the API of the iSystem On-Chip Analyzer 
which is connected to the targeted controller for investigation. 

During the fault injection, the monitor logs the time, location and type of the fault. Also is 
observes the system’s behavior for, e.g., trap occurrences or timeouts, and traces the memory 
and register contents by triggering the data collector which stores a log file for post-injection 
analysis. 

 
Post Injection Analysis 

While the data collector redirects the output of the monitor to a file to save logging information 
for further analysis, the data analyzer generates detailed statistic about the number of injected 
and detected faults as well as silent data corruptions. Furthermore, the deviations from a 
normal system behavior such as traps, crash and timeouts can be extracted from the logs. On 
basis of the obtained information the data analyzer is able to calculate different metrics such as 
diagnostic coverage. 

 
6.6 Measurement-Based Timing Analysis 

The traditional and most common method in industry to determine program timing is by 
measurements (MBTA – Measurement-Based Timing Analysis). The approach is to use the 

actual hardware as the model for analysis: the code is deployed and executed in the hardware, 
providing different inputs, and actual execution is measured (usually by instrumenting the 
source code at different points). To obtain statistical validity, multiple executions of the code 
must be done, for the same set of inputs, to capture variations in execution time. The main 
challenge is basically to determine the inputs that leads to the worst (observed) execution time. 

Compared with static analysis, measurements have the advantage of being performed on the 
actual hardware, which avoids the need to construct a hardware model and hence reduce the 

overall cost of deriving the estimates. 
The use of MBTA is nevertheless hindered by several factors [NYP15]. First, measurements 

require that the hardware is actually available, and that the environment (important in the 
embedded domain) acts as the final system. Moreover, most of the time the code requires 
instrumentation, which means that the code is changed from analysis to deployment (although 
in most cases instrumentation code can be left in the deployed application). 

The main issue, however, is, as noted above, that it is required to guarantee that the input 
values which lead to the worst-case are known. However, the number of possible execution paths 
is too large to guarantee exhaustive testing and therefore, measurements are carried out only 
for a subset of the possible input values. This leads to a safety margin being added, in the hope 
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Figure 6.9: UpScale Analyser flow (picture taken from [NYP17]). 

 
that the actual WCET lies below the resulting WCET estimate [WEE+08].  The main issue   
is whether the extra safety margin provably provides a safe bound, since it is based on some 
informed estimates. A very high margin will result in resource over-dimensioning, leading to 
very low utilization while a small margin could lead to an unsafe system [NYP15]. 

Addressing this challenge requires that the semantics of the program, and the architecture of 
the hardware are actually known, to be able to guide the selection of the program inputs to 
test. This leads to what is called the hybrid approaches [Pet00]: which combines static and 
measurement-based timing analysis. 

Hybrid approaches, borrow the flow analysis phase from static methods to construct a control 
flow-graph of the given program and identify a set of feasible and potentially worst execution 
paths (in terms of execution time). Next, unlike static methods that use mathematical models 
of the hardware components, hybrid tools borrow their second phase from measurement-based 
techniques and determine the execution time of those paths by executing the application on the 
target hardware platform (or by cycle-accurate simulators) to collect execution traces. These 
traces are a sequence of time-stamped values that show which parts of the application has been 
executed. Finally, hybrid tools produce performance metrics for each part of the executed code 
and, by using the performance data and knowledge of the code structure, they allow to estimate 
the worst-case execution time of the program. This maps well to the approach in the project, 
as the flow-graph of the application is available in the system models. Example of tools include 
Rapitime [Rap] in the commercial domain, and the UpScale Analyzer in the research domain 
[Ana]. 
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Figure 6.9 depicts the analysis flow of the latter [NYP17]. First, the application is compiled 

and its parallel graph of computation is annotated with the maximum execution time of every 
parallel task when it suffers a maximum interference on the shared resources. This execution time, 
the MEET (Maximum Extrinsic Execution Time), is measured for each independent code block 
by enforcing the “worst” interference conditions it may suffer (as much interference as possible 
from other tasks and applications running concurrently accessing shared memory and network). 
This allows to derive an initial mapping of parallel tasks to the hardware. Schedulability analysis 
for parallel DAGs can be thus used to determine if this worst-case condition meets application 
deadlines (see [Fon19] for a discussion on schedulability and mapping of parallel DAGs). If it 
does, no more processing is required. 

If no mapping is possible that leads to a guaranteed execution, a second step is taken, where 
the graph is annotated with the execution time of each code block in isolation, the “MIET” of 
the tasks (Maximum Intrinsic Execution Time), which means there is no interference. Obviously 
this is the best case scenario, so if no solution exists in this case, then the system is never 
possible. 

If a solution is possible in this case, then an iterative process of actual execution of the 
application, with the normal contention between its parallel blocks, is used to determine  
the maximum actual/observed execution time (MAET) for each block. In each iteration, 
schedulability analysis is used to assess validity of the solution. 

The approach combines well with frameworks to assess the statistical validity of the obtained 
traces, as well as deriving probabilistic analysis on the WCET [SMDJ14]. Specifically, in the 
UpScale approach, the traces of execution times collected at runtime are fed into a statistical 
framework, called DiagXtrm [Dia], in which they are subjected to a set of tests to verify basic 
statistic hypothesis (such as stationarity, independence, . . . ) which determines if the usual 
Extreme Value Theory (EVT) can be applied. Even more, the framework provides an approach 
to assess how “trustworthy” EVT estimations can be (to evaluate the quality of the estimations 
and find out whether confidence can be placed into the analysis). 
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7 Visualization Techniques 

This chapter discusses the techniques for visualizing data coming from e.g. analysis results in 
order to support assessment. Section 7.1 provides a general overview on existing techniques that 
can be used for e.g. large amounts of data. It summarizes the variety of graphs, charts, plots, 
and other visualization techniques along with proper examples on how those can be applied for 
assessing analysis results during the development of embedded systems in e.g. the automotive 
or avionic domain. Finally, Section 7.2 extends this description by an in-depth discussion of 
assessment techniques for safety based on a failure propagation use case. 

 
7.1 Data Visualization 

The visualization of data is an important part of every analysis. Data is gathered or produced 
during an analysis and has to be filtered and represented in a way that a person can understand 
and explore the information. 

There are five steps that need to be considered during the visualization of data (see [Maz09] 
for more information): 

1. Define the problem: The problem defines for what a visualization is used. It could be the 
representation of a hypotheses, finding new information in a data set, or communicate 
information between people. 

2. Examine the nature of the data: There are different types of data and every type is 
suitable for different visualizations. The data could be quantitative (e.g. integers), ordinal 
(days of a week), or categorical / nominal (city names). 

3. Number of dimensions: The number of dimensions is important for choosing the visualiza- 
tion. The dimensions can be independent or dependent. The dependent variables vary 
and their behavior is analyzed compared to the independent variables. 

4. Data structures: The data can be linear structured (e.g. tables), temporal (changing 
over time), spatial or geographical (e.g. a map), and network (e.g. relationships between 
entities). 

5. Type of interaction: A visualization can be static (e.g. figure), transformable (a user can 
control the process of date visualization, e.g. change the scale), or manipulable (the user 
can modify parameters of the visualization, e.g. zoom on details). 

Fig. 7.1 shows a summary of important variables that need to be considered during the process 
of visualize data. 

Different examples of graphical elements that can be used to visualized data are represented 
in Fig. 7.2. The different elements can be combined to represent different characteristics of data. 
The color could be used to identify different variables or categories in a set of points. 
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Figure 7.1: Variables to consider when designing visual representations [Maz09] 
 

Figure 7.2: Example of graphical elements [Maz09] 

 
In Fig. 7.1 the effectiveness of graphical elements or variables for the visualization of the 

three types of data quantitative, ordinal, and nominal is shown. For example the length is 
very good to represent quantitative data (like a set of Integers) but is less effective to represent 
ordinal (weak days) or nominal data. Colors should be used to separate the different categories 
of nominal data, but is less effective for quantitative data. 

The next section represents different charts that are used to visualize the different types of 
data sets. 

 
7.1.1 Charts 

This section gives an overview of different charts and what kind of data is suitable for a specific 
chart. 

In a scatter plot different variables are visualized. Every data point is represented as a 
point between the axis. The scatter plot helps to identify correlations between two different 
variables or identify clusters and outliers. Fig. 7.3 shows an example of a scatter plot. The plot 
represents the results of an optimization for a combustion system. The goal of the optimization 
was to achieve similar soot and NOx emissions to that of the baseline case but with a 10% fuel 
consumption improvement. 

The line chart is used to visualize quantitative data as a position on quantitative scale. The 
points are connected to form a line- or curve-segment. Points between to data points can be 
interpolated. The interpolation helps to visualize trends, locale structures, and the general 
distribution of the data. The line chart helps to visualize groups of data points with a continuous 
domain. One line chart can consists of more than one data visualization. The different variables 
need to be on the same scale to be integrated in a single line chart. The numbers of combined 
line charts should not be higher then 3 or 4. Fig. 7.4 shows an example for a line chart diagram 
illustrating the periodic activation pattern of three tasks over time scale of 20ms. 

A bar chart can be vertical or horizontal. The data is represented as a bar instead of a 



– Revision 1 ITEA 3 – 17003 

78 

 

 

 
 
 
 
 
 

 
 

Figure 7.3: Example of a Scatter Plot  
Figure 7.4: Example of a Line Chart, illus- 

trating the number of triggering 
events (activations) for a given 
task set. 

 
line. It can be used to represent nominal, discrete, quantitative, and dependent data. Normally, 
the horizontal axis contains the independent dimension and the vertical axis the associated 
dependent dimension. The Integration of several bar charts in a single chart is possible to 
represent several variables. A 3D visualization in a 3D-coordination system can be used if a 
second independent variable is available as a third dimension. Fig. 7.5 shows an example of a 
bar chart indicating the number of memory accesses per task from a modern engine management 
system. 

 
 
 

 

Figure 7.5: Bar Chart used for graphically 
representing the number of mem- 
ory accesses for a given task set. 

 
 

Figure 7.6: Example of a Pie Chart, Vector 
[Vec] 

 

The pie chart is used to visualize quantitative characteristics over a nominal and independent 
variable. The characteristics a represented as different colored or textured segment of a circle. 
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A pie chart implies, that the segments can be summed up to a basic population. The size of a 
pie charts is important because in small circles it is difficult to compare the surfaces of segments. 
Fig. 7.6 shows a pie chart that indicates the current status of an automated calibration process, 
including information on how much work has already been completed (green area), along with 
the status of the remaining activities. 

An histogram chart is a special bar chart or line chart. The chart is used to visualize the 
frequency of occurrence of a data point and not the data point itself. For the representation of 
quantitative data, the values are classified. Fig. 7.7 illustrates a bar chart histogram depicting 
the number of activation events for two tasks that were extracted from multiple traces with 
individual time spans. An example of a line chart histogram showing the distribution of e.g. 
the execution time of a task following a gaussian distribution is shown in Fig. 7.8. 

 

 
 

Figure 7.7: Column Histogram representing 
the number of activations of two 
tasks for a limited number of 
traces with different time spans 
[App] 

 
 

Figure 7.8: Line Histogram visualizing three 
Gaussian distributions with differ- 
ent values for mean and standard 
deviation [App] 

 

Examples of different possible curve forms for a histogram are illustrated in Fig. 7.9 representing 
the following distributions: 

• a) Normal distribution 

• b) Bimodal distribution (indicates, that characteristics of two different populations exist) 

c) Multi-modal distribution (indicates, that characteristics of several different populations 
exist) 

• d) skew distribution (positive) 

• e) skew distribution (negative) 

• f) Upset distribution (indicates a very concentrated distribution) 

• g) Very flat curve (indicates values from different populations) 

• h) cropped curve (indicates, that a part of the population is missing or was deleted) 

i) Upset distribution with a peak (indicates, that all elements after a specific threshold 
are combined) 

• 

• 
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Figure 7.9: Possible Curve Forms of a Histogram, Schumann & Mueller [SM00] 

 
The extension of a line or curve chart in the 3 dimensional space is the surface chart, 

represented in Fig. 7.10. Points in the 3 dimensional space are connected to build a surface. 
The surface structure provides information about the distribution and local trends, such as the 
fitness landscapes representing the quality of a solution space resulting from an optimization 
approach. 

 
 
 
 

 
 
 
 

Figure 7.10: Surface Chart representing the 
fitness landscape of an optimiza- 
tion solution space [AM15] 

 
Figure 7.11: Spider Chart visualizing various 

metrics of three possible imple- 
mentation candidates 

 

A spider chart can be used to compare different strengths and weaknesses of multivariate 
data with three or more quantitative variables. The axis represent different characteristics. 
The values are represented by lines between the axis. An example of a spider chart comparing 
various quality metrics of three possible implementation candidates is illustrated in Fig. 7.11. 

The parallel plot represents the different characteristics as vertical parallel bars and not  
as a circle like the spider chart. It is used to compare different strengths and weaknesses of 
multivariate data with three or more quantitative variables. 

The box and whisker plot is used to visualize the distribution of a data set by categories. 
The median and first and third quartiles are represented in a box. The whiskers represent 
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Figure 7.12: Example of a Parallel Plot, Schumann & Mueller [SM00] 

 
the minimum and maximum of a data set. Fig. 7.13 shows an example of a box and whisker 
plot. The plot represents the emission factors for individual plume analysis separated between 
periods with no influence from trucks (red) and periods with at least one passing truck (black). 
Horizontal lines represent the median values, boxes represent the 75th percentile and whiskers 
represent the 90th percentile. 

 

Figure 7.13: Example of a Box and Whisker plot, Wang et al. [WJZ+15] 
 

The identification of the best chart to represent data depends on many different variables 
as mentioned in section 7.1. The Fig. 7.14 represents the "chart chooser " from Abella [Abe]. 
The chart chooser can be used as a starting point to choose a chart. Beginning in the center 
different ways based on the data types and attributes of the data a chart can be chosen . 

 
7.1.2 Graphs 

This section shows how information can be visualize using graphs. A graph is an abstract 
structure and can be used to represent any information that can be modeled as objects and the 
relationship between the objects. Objects are represented as nodes and relations between the 
objects as edges. 

The first and major challenges for visualize structured information lies in the representation 
of a graph. The challenge is to visualize the graph covering most information but make it easy 
to read and to interpret. The second challenge is the scaling problem. The algorithm that are 
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used for the layout of the representation must be able to process the amount of information in a 
given time. Another scaling problem is the limited real estate of display area. 

In a graph different information can be visualized by using colors, sizes, forms, or shapes for 
the nodes and edges. 

Next, different graph types are described and some example graph layouts to handle the 
challenges regarding graph visualization 

 
Graph Types 

All Graphs have general attributes that classify their type. A graph consists of a nonempty 
set of nodes (vertices or points) and a set of edges that represents the relation between the 
nodes. The edges can be unweighted or weighted (nominal or ordinal quantitative). The weight 
is sometimes referred to as the cost of an edge. Examples for weights are a measure of length of 
a route, the energy required to move between to locations, etc. Some graphs can be traversed 
to form a path. This path consists of all traversed nodes and a sequence of edge to reach the 
nodes. A simple path has no repeated nodes within the path. In a cycle path the initial nodes 
is also the end node of the path. A graph without any cycle path is called acyclic. 

 

Figure 7.15: Example of an Undirected Graph 
 

Undirected Graphs. An undirected graph is a graph, which only contains bi-directed edges. 
Fig. 7.15 shows an example of an undirected graph. 

 
 
 

 

Figure 7.16: Example of directed cyclic graph 
Figure 7.17: Example of directed acyclic 

graph 
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Directed Graphs. A directed graph hast direction for every edge. The direction is normally 
visualized by adding arrows to an edge. A path can be build by traversing between the nodes via 
the directed edges. As mentioned before, a distinction is made between directed cyclic graphs 
(see Fig. 7.16) and directed acyclic graphs (see Fig. 7.17). 

 
Tree. A tree is a special type of graph. It contains no cycles, is usually directed, and has a 
single node as starting point, which is called root. The tree is a hierarchical structure that starts 
at the root node. The end nodes of a tree are called leaves. Fig. 7.23 shows and example of a 
tree. The tree represents an Amalthea system model including its nested sub-models (software, 
hardware, ...) and model elements. 

 

 
Figure 7.18: Example of Tree represented as Indented List 

 

Network. A Network is a special type of directed graph. It has usually weighted edges, but in 
contrast to a tree, it has no topological restrictions. The graph in Fig. 7.19 shows a Network on 
Chip (NoC) as an example of a network graph. A NoC has a specific topology which describes 
the structure of the Network, in this case a mesh structure. The graph shows the connection 
between the cores via network interfaces and routers. 

 
Graph Layout 

There are many different layouts for the visualization of graphs. In the following paragraphs, 
three example layouts are described. 

 
Radial. The nodes are arranged in circles around a focus node. It is usually used in an 
interactive visualization, where a user can choose the focus node. Fig. 7.20 shows an example 
for the radial layout. 

 
Circular. In a circular layout, the nodes are arranged in a circles. The space between the nodes 
is usually evenly. Fig. 7.21 shows an example of the circular layout. 
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Figure 7.19: Example of a Network, Liu et al. [LGY12] 
 
 
 
 
 
 
 

 

Figure 7.20: Example of Radial Graph 
Layout 

Figure 7.21: Example of Circular Graph 
Layout 
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Adjacency Matrix. The adjacency matrix represents a graph as matrix. The rows represent 
edges leaving the node and the columns represents edges entering a node. The structure is used 
for storing and processing a graph on a computer. Fig. 7.22 shows an example adjacency matrix. 

 

Figure 7.22: Example of an Adjacency Matrix 
 

Tree Layouts. Trees are hierarchal structures with a root node. Every node can have multiple 
child nodes and with every refinement of a node the tree becomes larger. The following three 
layouts are examples to visualize trees. Fig. 7.24 shows a note diagram, which is a simple 
visualization of a tree. The starting point is the root node, which is refined vertically or 
horizontally layer for layer. A more complex visualization is the tree-map shown in Fig. 7.18. 
A tree-map is used to visualize a hierarchical structure. The different nodes are represented 
as nested rectangles. The size of the rectangles represents the value of the data element. A 
tree-map can be used to compare different structured information by the size of data elements. 
The last example in Fig. 7.23 shows a tree represented as indented lists. The Tree is build 
vertical and every new layer is indented on the horizontal. The examples in the Figure represents 
an Amalthea model used in PANORAMA. 

 

Figure 7.23: Example of Tree represented as 
Tree Map Figure 7.24: Example of a Node Tree 

 
 

7.1.3 Tools for Assessment 

A variety of tools exist that implement e.g. graphs for assessing analysis results, executions, 
dumps, application behavior, and other aspects that are relevant in developing multi- and many 
core systems. Two tools that integrate a variety of views, charts, graphs, diagrams, metrics, and 
various other visualization techniques to extract information from traces and logs is realized by 
Eclipse Trace Compass (cf. Fig 7.25) and the App4MC Task Visualizer (cf. Fig 7.26). 

Eclipse Trace Compass [Ecl20] is a Java-based open-source tool that allows displaying and 
analyzing any kind of logs or traces. It provides support for a large number of trace formats, 
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Figure 7.25: Example of Trace Compass usage for kernel analysis [Ecl20] 

 
such as Common Trace Format (CTF), allowing to inspect Linux LTTng kernel traces as well as 
bare metal traces, GDB traces, and hardware traces. Especially its support for the Best Trace 
Format (BTF) for OSEK, along with features for e.g. Latency and Critical Path analysis along 
with Real-Time deadline investigation makes it especially applicable for the automotive domain. 

 

Figure 7.26: Gantt-Chart illustrating the execution of 10 tasks on a dual-core ECU 
 

The App4MC Task Visualizer [App] is a tool for visualizing the execution of tasks along 
with their states and state changes on the resp. executing cores. In order to execute the task 
visualizer, it is necessary to describe the overall system in terms of an AMALTHEA Model 
file. The minimal amount of information consists of a Software Model, Hardware Model, and 
Mapping Model denoting the specifying the deployment of software to hardware, allowing its 
usage in early design phases without any dine-grained knowledge of implementation details. 

For an overview on additional tools that can also be used for assessing e.g. analysis results, 
such as the commercial INCHRON or Vector Tools, we refer to the State of the Art section in 
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[PAN20]. 
 
7.2 Failure Propagation Visualization 

As described in delivery D3.1, in the context of PANORAMA, we are also focusing on fault 
propagation modeling and analysis, specifically applying the FMEA and FTA techniques. The 
goal in this step is to create one or more views that represent FMEA, FTA as well as the 
propagation of modeled system failures. Figure 7.27 shows graphical examples of the outcome 
of the system safety analysis process. 

 

Figure 7.27: System Safety Analysis Process Representation 
 

7.2.1 Safety Modelling Process 

In our Safety Analysis process proposal the cycle starts with the construction of the ODE and 
AMALTHEA models with the specification of Critical Functions, Failures and Runnables. 

Figure 7.28 represents an ODE model for the Insulin Pump case study and Figure 7.29 refers 
us to the mapping of Runnables within the AMALTHEA model. 

 
FTA Using the ODE FailureLogic model we can create an abstract view of an FTA through 
the FaultTree, FailureModel, Cause, and Failure classifiers as shown in Figure 7.30. 

 
FMEA Although an FMEA is commonly represented through a table for this work, our 
visualization approach consists of ODE model class diagrams with a list of failure modes. Figure 
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Figure 7.28: Insulin Pump Systems ODE Figure 7.29: Insulin Pump Amalthea Software 

Model Model 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7.30: Insulin Pump - Fault Tree Analysis 
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7.31 shows a generic case study of an Insulin Pump System. 
 

 
Figure 7.31: Insulin Pump - Failure Mode and Effects Analysis 

 

7.2.2 Conclusion 
 

Figure 7.32: Insulin Pump - Failure Propagation Model 
 

Our approach uses the APP4MC tool in conjunction with other Eclipse Environment plugins 
like Capra (Figure 7.32) to enable the construction and analysis of critical heterogeneous 
systems. Here our main focus is not on building an Amalthea model, but on the relationship 
of its components to the critical functions of a system for mapping and representing failure 
modes and their propagation analysis. For this, we use ODE component modeling. Importantly, 
at this time of prospecting, we still have models at a high level of abstraction. However, as 
future work, we will make possible a more definite view of modes and fault propagation through 
graphs and tables representing FMEAs and FTAs. 
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8 State-of-the-Art of Collaborative 
Development Processes 

In this section, we provide an overview of the state of the art for collaborative development 
processes. Thus, we summarise how these processes have been described in the scientific literature 
and in other projects. After providing a general high-level view of software development processes 
in section 8.1 and extending it to safety-critical systems in section 8.2, we report on the processes 
developed in DEIS in section 8.4 and ARAMIS II in section 8.5. Finally, we also introduce the 
general workflow supported by Siemens Polarion in section 8.6. 

 
8.1 Software Development Standard Process 

In practice, every development process is adaptable, depending on the system context. How- 
ever, the process generally follows the life cycle of Figure 8.1, which can cover most software 
development projects on heterogeneous systems: 

 
System Engineering consists in the initial specification of the system/software to be developed 
including the features list, architectural design (high-level design) and – if applicable - first user 
interaction solution previews (form and behaviour). 

Kick-off Meeting (KOM) is the formalization of the beginning of the project. This 
usually has as input the initial version of the Technical Specification contains a high-level 
definition of the features / functions, main components, which may include User Interfaces 
(Mock-ups), and high-level solution and design of the system to be developed. 

 
Requirements Engineering consists in the specification of the software to be developed in- 
cluding the software requirements, architectural design (high-level design) and user interaction 
solution previews (form and behaviour). 

 
 

 
 

Figure 8.1: Critical Software – Software Development Generic Life Cycle 

• 
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The software requirements engineering phase is completed by the Preliminary De- 
sign Review (PDR). The inputs to this milestone are: the Software Requirements 
Specification, system architecture, the preliminary interface control document and So- 
lution Previews (e.g. Mock-ups, lo-fi and/or hi-fi Prototypes), all part of the Technical 
Specification. 

 
Design Engineering produces the detailed design and source code in parallel allows the design 
to be generated from source code using reengineering tools. Producing the unit testing in 
parallel with the coding allows the errors to be identified and corrected earlier. 

The results of this phase are the input to the Critical Design Review (CDR), which 
signals the end of the design phase. The state of the software project after critical design 
review is called Defined State. 

 
Validation verifies the end-to-end functionality of the system in satisfying all requirements 
and specifications (mainly system testing), including system usability verifications. 

The validation phase includes a Qualification Review (QR). The state of the software 
project after qualification review is called qualified state. 

 
Acceptance demonstrates that the system meets your requirements in the operating environ- 
ment through testing conducted under the supervision of an independent acceptance testing 
team and follows the procedures specified in the Acceptance Test Plan. 

The acceptance phase includes an Acceptance Review (AR). The state of the software 
project after acceptance review is called the accepted state. 

 
Operations and Maintenance process is activated when the software product undergoes any 
modification to code or associated documentation as a result of correcting an error, a problem 
or implementing an improvement or adaptation. 

 
8.1.1 PANORAMA Context 

The PANORAMA project aims to provide modeling tools that will support mainly the design 
engineering phase and the validation phase. For instance, we aim to support modeling of safety 
related models such as Faults Tree Analysis (FTAs) models and Failure Modes and Effects 
Analysis (FMEA) models. We also aim to facilitate the use of analysis results from the different 
analysis tools for improvement of the models. Since various modeling languages are used in 
the different steps, in the PANORAMA project aims to extend the AMALTHEA model so 
that it can be integrated with the various commonly used modeling tools to allow for smoother 
collaborative work. 

 
8.2 Safety-critical Systems Development Process 

In section 8.1 we have described a generic process for software development. In this section, 
we describe a typical development design flow for safety critical systems that includes both 
hardware and software [TreiEtAl2016]. This process describes the functional steps as well as 

• 

• 

• 

• 
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Functional 
Design Steps 

 
Safety-related 
Design Steps 

 
 

Figure 8.2: Safety-critical Systems Development Life Cycle [TreiEtAl2016] 

 
Table 8.1: Overview of the Identified Design Steps 

Functional Design Steps 

DS 1: System Requirements Engineering DS 7: Variant Configuration 
DS 2:  System Architecture Design DS 8: Implementation 
DS 3: Software Requirements Engineering DS 9: Validation and Testing 
DS 4:  Derivation of Product Variants DS 10: System Integration 
DS 5: Definition of Software Architecture DS 11: Handover 
DS 6: Behaviour Modelling 
Safety-related Design Steps 

DS A: Derivation of the Functional Safety 
Concept 
DS C: Software Safety Requirements Engi- 
neering 

DS B: System Safety Requirements Engi- 
neering 
DS D: Verification of Software Safety Re- 
quirements 

DS E: Safety Validation DS F: Functional Safety Assessment 
 

safety-related steps required to design a whole system. This design flow is a result from the 
project AMALTHEA4Public, and is compatible with the ISO 26262 standard. It is depicted in 
Figure 8.2. Step DS 0 to DS 11 are functional design steps while steps DS A to DS F are 
safety related design steps. A summary of these design steps is given in Table 8.1. Additionally, 
more details on how this fits into collaborative systems engineering process are given in ?? 

 
8.3 Collaborative Work in Tool Platforms 

The development of heterogeneous embedded systems involves coming together of different 
organizations with expertise in different domains. Realizing such systems requires concrete 
collaboration between specific groups of different organizations. Hence for efficient collaboration 
between different organizations, interoperable tool support is necessary. Essential aspects of 
collaborative work in tool platforms may include data management, information management, 
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data privacy, data security, and tool usability [crest]. 
 

Emails are one of the most commonly used communication tools to share information among 
organizations. However, emails may not be well suited for specific tasks such as working on 
a draft that involves the input of multiple parties. Essential information such as comments, 
context information, and managing of documents are challenging to track and can get mixed up 
in a long chain of email history. Version control systems (VCS) improve the document editing 
process, as every partner has a view of current state and complete version history, including 
tags for special versions. The VCS such as GIT [git], SVN [svn] also offers integrated diff tool 
that highlights the differences between different versions. The VCS also provides the possibility 
to resolve conflicts before a new version is created. Although VCS offers a better solution to 
manage data; however, context information such as task sharing among partners needs to be 
tracked using a separate tool such as kanban board. 

 
8.3.1 Document-centric Collaboration 

Document-centric collaboration tools keep track of the collaboration metadata in addition to 
the document. Comments (metadata) created are highlighted in the document and are visible to 
everybody. Hence the problem of missing context information is addressed by keeping track of 
the metadata. Cloud collaboration tools share the data in a public cloud. Therefore, documents 
can be shared with external organizations by taking appropriate security measures. The editing 
possibilities of the documents are supported by desktop and web applications. The web services 
offered by cloud collaboration tools enable interoperability with other web services using public 
APIs. Real-time collaboration tools are a special type of cloud collaboration solution that allows 
multiple users to work together at the same time. Ad hoc discussions can be started with the 
help of integrated chat and video conferencing capabilities. Hence, real-time collaboration tools 
enable all collaborators to see the changes made by each other instantaneously and offer the 
possibility to react immediately or later. 

 
8.3.2 Artifact-centric Collaboration 

Collaborative development between different organizations not only involves sharing of documents 
but also involves sharing of other artifacts such as models. The artifact-centric collaboration 
process facilitates the exchange of well-defined artifacts between partner organizations. Essential 
aspects of artifact-centric collaboration tools are described as follows [crest]: 

Supports synchronization of the artifact data such that all collaborators can see the 
updated version as soon as possible. 

Avoids introducing new bugs to the artifacts during the process of editing to ensure the 
safety of the artifact exchanged. 

• Enables automatic notifications of artifact changes to all the partners involved. 

• Enables ad-hoc communication between different partners. 

• Supports version management of artifacts. 

• Enable legacy support for importing and exporting artifacts 

• 

• 
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Figure 8.3: DEIS Collaboration Scenario 1 
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8.4 Distributed Dependable Systems Development 

The following collaboration scenarios were specified as part of the H2020 research project DEIS1. 
In industrial practice, the development of complex, safety-critical systems is scattered across 
different partners (e.g., OEM, Tier-1 suppliers). This is the case for instance in automotive, 
avionics, or railway domain. Thereby, the suppliers need to take over an increasing share of 
the risk from the OEM. Moreover, the OEMs builds their safety case based on the information 
provided by the suppliers. 

A high amount of alignment activities is required for ubiquitous feature development and 
several iterations are needed to align the interdependent function development. Moreover, lots 
of assumptions and constraints for development of elements-out-of-context are made by the 
suppliers. Hence, interdependent functions are avoided as much as possible, therefore innovative 
functionalities are hampered. All partners involved in the development process interchange 
safety- but also reliability-related information. Thereby, all involved participants along the 
supply chain use different methodologies and tools for engineering functionalities. Today, the 
information is exchanged using documents. 

 
8.4.1 Collaboration Scenario: Requirement-driven Design 

The OEM provides the safety requirements which must be taken into account by the suppliers. 
The individual component suppliers can base their assumptions on the exchanged information 
and update the context their sub-system/component. The suppliers themselves provide safety 
information (e.g., about the conducted safety analyses as well as their safety concept) in addition 
to the component/sub-system they deliver to the OEM (see Figure 8.3). This information is 
exchanged with other suppliers and the OEM (during the integration stages of the development 
life-cycle). Based on this the OEM is able to generate a safety case for the target product. 

 
 
 
 

1http://deis-project.eu/ 
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Figure 8.4: DEIS Collaboration Scenario 2 
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Figure 8.5: DEIS Collaboration Scenario 3 

 
8.4.2 Collaboration Scenario: Components-of-the-Shelf 

The OEM builds its system based on pre-existing components of the suppliers. Thereby, the 
OEM does not provide safety requirements to the suppliers. However, the suppliers need to 
deliver safety information to the OEM in addition to the component/sub-system (see Figure 8.4). 
Based on this information the OEM builds its safety case for the overall system. 

 
8.4.3 Collaboration Scenario: System-of-systems Integration 

The OEM provides all necessary dependability information related to a product/system which 
must be integrated into a (pre-existing) system-of-system (see Figure 8.5). Hence, the system- 
of-system operator can create an safety case for its system-of-system. 

 
8.4.4 Challenges 

Seamless interchange of safety information enables the creation of safety cases and/or the 
assurance of correct integration for systems/products. Moreover, the safety requirements 
provided by the OEM helps the supplier to develop a dependable sub-system/component. Since 
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safety-related information are currently exchanged in a document-based way, it is too much 
effort for the involved parties to read and understand the information and to enter the data into 
the own custom tool chains. A machine-readable format is required to formalize the information 
and to automate the exchange. Moreover, since different methodologies and tools are used by 
the partners along the supply chain for the various engineering activities, a tool-independent 
exchange format is required. 

 
8.5 ARAMiS II Generic Process 

Within the ARAMiS II project [Aramis], a common and generic design process that covers a 
variety of structured development processes used in industrial practice of multiple domains such 
as automotive, avionics, and industrial automation has been defined. It includes comprehensive 
expertise and know-how from manufacturers (e.g., Audi, Bosch, Continental, Denso, Airbus, 
Diehl, Liebherr, Siemens, Wika), research institutes (e.g., DLR, OFFIS, Fraunhofer, KIT, 
fortiss), and tool providers (e.g., Timing Architects, Vector, AbsInt, Symtavision, Silexica). 

While the focus is on the development of multicore systems, it is based on the commonly 
used V-model as a state-of-the-art process model. In addition, the generic design process is 
aligned with a variety of international standards such as Functional Safety for Road Vehicles 
(ISO 26262), Software Considerations in Airborne Systems and Equipment Certification (DO- 
178C), Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems 
(IEC 61508), Systems and Software Engineering – System Life Cycle Process (ISO 15288), and 
Systems and Software Engineering – Software Life Cycle (ISO 12207). 

The description of the generic design process consists of tasks/activities and corresponding 
work products. The individual parts are defined in terms of the Software Process Engineering 
Metamodel (SPEM). The basic process is divided into five key activities, which are depicted in 
Figure 8.6 and will be examined more closely in the following sections. Work products are those 
that have been identified to be relevant among all industrial project partners. 

 
8.5.1 User and System Requirements Engineering 

As a first step, user and customer needs are collected in the User and System Requirements 
Engineering (REQ) activity. Moreover, the problems to be solved are formulated as a set of 
requirements. Subsequently, these requirements are transformed into system requirements that 
have to be fulfilled by the system under development. 

Inputs Customer Needs 

Outputs System Definition and Interfaces, System Requirements and Constraints 
 

8.5.2 System Architecture 

Based on these first results, the analysis of the system requirements is carried out in the System 
Architecture (SYS) activity. Following the design of the system architecture, which identifies 
the system elements and their relationship as well as the mapping between requirements and 
elements, it is decided which elements are realized by hardware, software, and/or mechanics. 

Inputs System Definition and Interfaces, System Requirements and Constraints 

Outputs System Architecture, Software Architecture Requirements and Constraints 



– Revision 1 ITEA 3 – 17003 

98 

 

 

 
 
 
 

 
 

Figure 8.6: ARAMiS II Generic Process [AramisGenericProcess] 

 
8.5.3 Software Development 

The Software Development (SW) activity comprises the whole software development process, 
which is summarized in Figure 8.7. Besides the analysis of the system architecture and the 
development of the software architecture in the Software Architecture (SWA) activity, this step 
also includes all Software Design (SWD) and Software Implementation (SWI) activities. 

 
8.5.4 Hardware Development 

In analogy to the SW activity, the Hardware Development (HW) covers the whole hardware 
development process, which is illustrated in Figure 8.8. It is subdivided into the Hardware 
Architecture (HWA), Hardware Design (HWD), and Hardware Implementation (HWI) activities. 

 
8.5.5 Mechanics Development 

The last step to be mentioned is the Mechanics Development (MEC) activity. 
 

8.5.6 Verification and Validation 

As indicated in Figures 8.7 and 8.8, the corresponding verification and validation steps are 
performed along the individual tasks. Besides the elicitation of relevant process phases a common 
structured terminology has been defined. 

 
8.5.7 Importance for PANORAMA 

In the context of PANORAMA, the generic design process will be used as a tool to structure 
the requirement elicitation process and to align the design process with all standards mentioned 
above. It is important to note that the process does not cover all aspects of the development 
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Figure 8.7: ARAMiS II Generic Software Development Process [AramisGenericProcess] 
 

 
Figure 8.8: ARAMiS II Generic Hardware Development Process [AramisGenericProcess] 

 
process. Just to name a few examples from ISO 26262, missing things are the planning of safety 
activities such as validation plans (clause 4-6), integration and testing plans and specifications 
(clause 4-8) as well as verification plans and specifications (clauses 6-6, 6-9, 6-10, 6-11). 

 
8.6 Collaboration Traceability Workflow 

This section describes how the Polarion platform [Polarion] allows to find an effective way to 
organize the collaborative process across different teams and to manage multiple projects along 
the development process stages depending on the project specifics [PolarionAAI-WP]. 

 
Web-based  Collaboration   The Polarion platform is the browser-based front-end.  Thanks   
to the always-up-to-date online environment with live dashboards as well as access-controlled 
threaded commenting the tool is designed to eliminate emails and meetings in order to keep all 
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Figure 8.9: Key Features of the Polarion Platform 

 
the information on specification, change requests, design decisions and etc. in one system. One 
centralized repository at the core of all activities serves the single source of truth. The centralized 
nature of information exchange enables development teams sitting in different locations to 
effectively convey ideas, much faster than the use of email, instant messaging and teleconference. 

 
Team Collaboration Stakeholders can collaborate and communicate on various levels. For 
discussions and collaboration at higher levels, Polarion features a built-in wiki with default 
wiki spaces and documents for the repository and each project. This provides a highly flexible 
communication medium accessible to everyone with access rights to the repository, project or 
document. 

More granular collaboration and communication takes place in comments on individual work 
items. Discussions on multiple threads can occur among project team members. Comment 
visibility can be optionally controlled and limited; for example, some comments may be visible 
only to managers. 

 
Interchange between OEMs and Suppliers Domain experts who want to stay in their familiar 
environments can do so and still be tied into the centralized repository. The Polarion software’s 
native integration with MATLAB R , for example, enables customers to include Simulink Model- 
Based Design workflows as an integral part of their application lifecycle. Bidirectional traceability 
facilitates navigation from Simulink model elements to associated Polarion work items and vice 
versa. Versioning aids collaborative design, opening up the assets for easy re-use and variant 
management across an entire automotive portfolio. 

Another native integration that is popular among automotive customers is the round-trip 
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for Requirements Interchange Format (RIF/ReqIF) through which traceability across multiple 
documents or tools is maintained. The Object Management Group’s (OMG’s) standard for 
requirements exchange, a widely used Extensible Markup Language (XML) file format and 
workflow to support lossless exchange between partners, brings OEMs and their suppliers 
together around the globe. 

 
Sharing and Reviewing Documents/Work Products Polarion also enables data modification, 
including approval of requirements via Word documents. Using the Polarion unique Round- 
trip for Word capability, documents containing managed artifacts can be exported to a Word 
document, which can then be shared with and reviewed by people who don’t have access to 
Polarion. After changes (the type of which can be optionally restricted during export), the 
Word document can be re-imported to Polarion, where the changes it contains are incorporated 
into the online document, and the document history is updated. 

 
Development Workflow Polarion allows to establish a workflow among diverse groups within 
and outside the organization working together. A customized solution can be established in 
the beginning, or a template for most common methodologies, as for example, V-Model, Agile 
Software Project, can be chosen and configured to map to specific business scenarios. 

 
Traceability Comprehensive traceability allows developers to refer back to the software re- 
quirements that underlie their assigned tasks, and to reach out to the respective authors when 
they have questions. The same applies to the testers that verify whether the requirements have 
been met. All activities and decisions are automatically tracked, with collaboration history 
available to reveal how decisions were made every step along the way. Formal approval processes 
with compliant e-signatures complete the information exchange. 

 
ISO 26262/IEC 61508 Qualification by TÜV NORD Siemens PLM  Software  is  the  first 
ALM vendor to receive ISO 26262/IEC 61508 qualification by TÜV NORD for the Polarion 
suite of products. The qualification at the highest Automotive Safety Integrity Level (ASIL-D) 
as defined in ISO 26262 is based on evidence that Polarion’s software development processes can 
be reliably implemented and replicated. Due to the nature of the qualification, any software and 
hardware systems developed using Polarion’s processes is also deemed to meet the functional 
safety requirements of ISO 26262, in turn radically reducing compliance efforts. 

 
Future  Goal  within  PANORAMA  Project  As it was mentioned, the Polarion platform allows 
to organize a workflow and to customize the traceability links according to a specific methodology 
by defining an extension[PolarionExt]. Such an extension would allow Polarion customers to 
arrange a collaboration process in a faster and in a more effective way. It is planned that an 
extension established within the PANORAMA Project covers a collaborative workflow for timing 
analysis compliant with PANORAMA model (support timing requirements and constraints 
using compatible information models). 

A future PANORAMA extension would involve template specification, which is basically defini- 
tion of semantics of the basic Polarion elements. As for example, work item plays a role of a basic 
element and can be related to anything you want to track in the project [PolarionALG-WP]. 
Regularly, a work item turns into requirements, activities, change request and test cases. The 
relationship between working items can be customized as well. Continuing this way, the Polarion 



– Revision 1 ITEA 3 – 17003 

102 

 

 

platform gives a lot of opportunities to customize a working flow. Additionally, it is planned to 
integrate with architecture modeling tools, such as Mentor Capital Systems and Mentor Capital 
Software Designer, where bidirectional traceability across requirements/tests/risks/etc. and 
modeling elements is already implemented. 
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