
Test Automation for
Regulated Software

Systems

This is a booklet in a series from the
EUREKA ITEA Testomat Project - The Next
Level of Test Automation

Please follow us on:
Twitter: @TestomatProject
YouTube:https://www.youtube.com/testomat
project

Content
1. Introduction 2
2. How Software Testing benefits from Test
Automation 3
3. Why Test Automation Ought to be
Required for Regulated Software 5
4. Advanced Test Automation Techniques 7

4.1 New Test Coverage Method:
Mutation Testing 8
4.2 Simulation for Better Testing 10
4.3 Fuzzing 12
4.4 Continuous Integration (CI)/
Continuous Delivery (CD) 13

5. Steps to take to put a safety-critical
product on the market (when it comes to
testing) 14

5.1 eHealth/Medical Devices 16
5.2 Automotive Functional Safety 18

5.3 Aerospace Safety-Critical Systems
20
5.4 Conclusion and a Plea! 21

6. Examples from TESTOMAT Project on
testing Safety-Critical Software 22
6.1 Testing Trains’s in Simulation 22
6.2 Model-based testing and SafeScrum in
safety-critical Rail Software Development 24
6.3 Simulation-based testing of safety-
critical systems comprising rare events 25
6.4 Fuzzing of financial application 26
6.5 Why Mutation testing gives us better
coverage than current standard for
aeroplanes 27
Summary - A Final Word to Regulatory
Agencies 29

1

1. Introduction

Today’s software-intensive systems have
assumed a complexity that makes it difficult
to foresee all possible situations and
contingency that may occur. One reason for
this are the ubiquitous connectivity of
systems with other systems, their
environment or the access to large sets of
data that enable reasoning on a much more
reliable, but varying basis. Testing such
systems is challenging, because testing
techniques do not evolve with the same
velocity as the complexity of software
systems. Automating parts of the testing
activities seem to be the only way to tackle

the testing challenge adequately. It is
important that tests today are automated, so
they can be repeated, and as such provide
proof of validation in detail for e.g.
regulatory purposes. The research and
industry best practice has now moved
beyond the existing safety-critical
standards, which consequently is not being
sufficiently updated. In the ITEA 3
TESTOMAT Project we have identified this,
and can show that the new methods, not
only provides better tested and validate
software, but also is possible to achieve
with a reasonable cost for the industries,
and that these techniques are mature and
sufficient to be accepted into the new

2

standards and regulatory descriptions. We
therefore urge you to make sure these
results find their way into the right
committees,- as we want to save lives in the
future by preventing software bugs.

2. ​How Software Testing benefits from
Test Automation

Software testing per se is a highly creative
task when it comes to finding the best
usage samples (test cases) that will detect a
fault if there is one. Writing and executing
test cases (potentially over and over again,
e.g. in regression testing) manually
however, are error prone, tedious and
resource consuming tasks. Test automation

is generally understood as the automated
execution of test cases against the system
under test. This is, however, only one
testing activity that bears the potential of
being automated. Others are test design,
test environment setup, test result analysis
etc. In particular the activities of the
dynamic test process have a great
automation potential.
Among others, test automation has the
following advantages : 1

● More tests can be run per build

1 Taken from ISTQB Test Automation Engineer
(TAE) Syllabus

3

● The possibility to create tests that
cannot be done manually (real-time,
remote, parallel tests)

● Tests can be more complex
● Tests run faster
● Tests are less subject to operator

error
● More effective and efficient use of

testing resources
● Quicker feedback regarding software

quality
● Improved system reliability (e.g.,

repeatability, consistency)
● Improved consistency of tests

Of course, test automation comes along
with a trade off of increased investment
compared to manual testing. Addressed
properly, test automation helps deliver
better software systems.

Test automation will never be the only way
of performing test activities. There are some
testing activities that have lower automation
potential such as analyzing the test basis.
Eventually, at some test levels, manual
testing will remain the dominant testing kind
such as in acceptance testing. However,
these manual testing activities will also
benefit from the clear processes that are
required for a test strategy that incorporates

4

test automation. As such, these side-effects
are indirect benefits of test automation.

3. ​Why Test Automation Ought to be
Required ​for Regulated Software

It is not about automating each and every
testing activity. As discussed earlier this
cannot and will not be the aim. Looking at
test automation from a compliance point of
view, test automation should be more
emphasized in the standards that are
relevant for regulated software.

Regulated software is usually required in
domains where failures in certain areas are
not acceptable. Test automation frees

resources that would be bound otherwise in
testing. This holds in particular true for
regression testing. The freed resources can
be further invested in testing to increase the
coverage. More coverage means more
eligible test results in the end.

For domains where vendors have to prove
conformance with technical standards (e.g.
implementation of communication protocols
and interoperable devices and services
thereof), it has proven beneficial for the
regulatory agency to also provide a set of
standardized automated test cases along
with the standardized specifications. The
vendors have to run these test cases

5

against their implementation, before even
submitting it to the regulatory agency for
deeper analysis. Both sides benefit from
such an approach. The vendor can rely on
the given standardized test cases to argue
that their implementation fulfills a (reduced)
set of conformance requirements. The
benefits for a regulatory agency are mainly
twofold: First, the standardized test cases
can be understood as precise, yet
executable, requirements specification. In
particular for highly critical or very complex
requirements it is a good strategy to
complement the requirements specification
with standardized test cases to resolve
possible ambiguities or inconsistencies in

the requirements specification. Second, the
test result analysis of the regulatory experts,
basically a time consuming and costly task,
becomes easier and faster, and can even
be automated itself. If the standardized test
cases also have to follow a standardized,
yet structured test log, the regulatory
experts do not have to cope with a plethora
of tools and test log report formats, but only
with their standardized format.

4. Advanced Test Automation
Techniques

In the TESTOMAT Project, a number of
advanced test automation techniques have
been focused that go beyond traditional

6

automated test execution. In the ubiquitous
computer age, software must satisfy
numerous quality aspects. Functionality and
functional safety is just one category of
these aspects. In particular non-functional
properties (such as security, performance,
interoperability, reliability) of software-
intensive systems becomes more and more
important, as software systems become
more open and connected with each other
and the test environment. In the
TESTOMAT Project we applied several test
automation techniques that have proven
helpful and beneficial in producing better (in
a sense of test results for both
non-regulated and regulated software

systems. ​Better has different dimensions
here: More efficient in detecting faults
(through automated test design), increased
coverage of code or requirements (through
mutation testing, fuzzing or simulation),
faster in test design of meaningful test
cases, more frequent test cycles (through
CI/CD), simplified test result analysis
(through purposeful visualization). All these
techniques have been applied on case
studies that stem from a regulated domain.
The remainder of this section gives a more
detailed overview of these techniques.

7

4.1 ​New Test Coverage Method: Mutation
Testing

Given the widespread reliance on test
automation, lots of research went into
measuring the quality of test cases. Usually
test quality is measured in terms of code
coverage, i.e., the proportion of code that is
executed by the test suite. The measures
most often used in industry are statement
coverage and branch coverage . 2

The trial is to make this at a reasonable
cost. Today we can show that it is both
possible and feasible to improve your
coverage with Mutation Testing

2 ​[Gopinath2014]

.
Mutation testing means that you change
some aspect of the program, data or
context, and then repeat your test cases or
test suite with the goal that your test suite is
complete, and it will detect this change. The
change that normally is very small is a
variant of your system but can also be
called an “amplified” system. If your test
does NOT detect this change, the variant
software, or amplified system, is then called
a mutant. The goal will now be to create a
test case that “kills” the mutant, meaning -
that makes sure that your new test case
(suite) detects this change. This process is
then repeated (and automated) over and
over through a set of rules. Test suites are
measured by the percentage of mutants that

8

they kill. ​The whole mutation analysis
ultimately results in a score known as the
mutation coverage. This is the number of
mutants killed divided by the total number of
mutants injected.

In 2017, Ramler et al. reported on a second
application of mutation testing on an industrial
scale, this time for a mechatronic system
written in C, comprising 60,000 lines of code . 3

Unit testing was deemed important and 100%
MC/DC coverage was set as a goal. From a
practical standpoint, the authors confirmed
that it is a non-trivial task to integrate the
mutation analysis into the development
pipeline. To handle the scale of the mutation

3 ​[Ramler2017]

analysis (a total of 4,071 hours), they
parallelized the test execution cycle and
distributed it across a cluster of standard
desktop PCs. The whole mutation analysis
resulted in 27,158 live mutants. They
manually sampled 200 of them and 24% of
them were classified as equivalent mutants
(false positives). The time to manually review
each mutant was recorded as well and was
quite reasonable: 2 minutes on average and
20 minutes at most.

The authors conclude that a mutation analysis
provides actionable suggestions for the test
engineers. “… mutation testing provides hints
about deficiencies in test cases that are
otherwise hard to discover. The feedback can

9

be directly used for revising and enhancing
the tests.” . 4

4.2 Simulation for Better Testing

A final result for safety-critical testing is to
test sufficiently in the real environment. For
many safety-critical systems, the real
environment is costly to set up, and
vulnerable to bugs. Instead, testing can be
done using a simulated or emulated
environment. All software can in fact be
tested thoroughly “in vitro”, and the fact is,
in simulation one can sometimes test more
extreme situations than can be done in real.
Most of today’s software systems are

4 ​[Ramler2017]

distributed or connected with other systems,
devices or the environment. For testing,
representative test environments need to be
established, however, the more complex the
real environment becomes, the more
expensive will the mimicking test
environments be. Furthermore, the sheer
number of varying test environments might
be so numerous that it is not feasible to
address them all. Simulation finds a remedy
to this dilemma.

Simulation is also well suited for fault
injection in the course of robustness testing
or disaster recovery testing. In a simulation
the worst case, that is the occurrence of a

10

hazard, can be tested and how the system
under test may recover from that worst
case, if ever. Faults external to the system
under test are often hard or even impossible
to establish manually. For example, how
shall a tester manually introduce an error
into the driver software of a hard disk that
prevents the system from accessing the
hard disk? Waiting for a real driver failure
would be way too inefficient, so having a
simulation in place enables us to let external
failures occur as often as required.

Another very new topic is virtual
commissioning of systems prior to release.
Virtual commissioning is based on the idea

of digital twins (or digital shadows), where
the real code of systems, sub-systems or
devices (such as robots, vehicles etc.) are
deployed to a simulated representative of
those systems, sub-systems or devices. As
a result, the integrated system is subject to
testing, before the real system has to be
built or set up. Contingencies, robustness,
or critical situations can be fully explored on
the basis of a simulation that mimics the
reality as close as possible. In the
TESTOMAT Project, simulation has been
applied to many use cases from different
domains such as automotive, aerospace or
industry 4.0 with great success.

11

4.3 Fuzzing

Fuzzing is a technique that stimulates the
test item with invalid or unexpected inputs
aiming at discovering weaknesses that
result from missing or faulty input validation.
Inherent to fuzzing is the high degree of
automation from its origin where input data
were generated randomly and submitted to
the SUT completely automatically, including
checks for potential crashes.

Over the years, fuzzing has been evolved
along the following dimensions:

● Test basis, i.e. from nearly no test basis
with random fuzzing, to specification-based
fuzzing and fuzzing the source code

● Fuzzing heuristics, to mutate inputs for the
test item, or to mutate specifications and
generate input data from the mutated
specification

● Syntax to semantic, to fuzz on a binary
level or syntactic level, i.e. fuzzing with
respect to input data and the semantic
level that comprises dependencies
between fields of the same inputs, data
flows, states, and messages flows.

Although fuzzing is mainly known and
understood as an automated security

12

testing technique, it is applicable to fault
tolerance testing of safety-critical systems.

4.4 Continuous Integration (CI)/
Continuous Delivery (CD)

Modern software development is centered
around quickly developed small and
incremental steps. This is opposed to the
V-model where the software artifacts are
developed in different phases. CI/CD
targets quicker response cycles after
changes have been made to the code
bassis. Testing, building and deploying the
system after changes enable the vendor to
identify issues with the last changes soon..
Ideally on the very same day, the change

has been introduced. This leads to much
more reliable delivery of the software
system to be developed.

Since the compliance guidelines are around
for longer periods (decades instead of
years), they are based on a more waterfall
development. The (technical) delivery of a
functional correct software artifact (including
all the required test-steps, often performed
automatically) in a continuous flow will be
followed by a compliance phase before the
product can be actually delivered and put on
the market.

13

These are the formal compliance
requirements that impact the validation
phases in the CI/CD process. And they
might slow down the promise of the CI/CD.
Nonetheless, CI/CD has been proven
successful in the development of complex
software systems and should be considered
even for regulated software.

5. Steps to take to put a safety-critical
product on the market (when it comes to
testing) 5

There is some difference in putting a
safety-critical product than a normal product
on the market, even if the majority is very
similar. We will only highlight some aspects
to consider, w.r.t. testing, validation and
certification. First, it is important to know
that certification adds cost to a product, and

5 ​This chapter is written mainly for people in
software/systems/testing that previously not
have addressed safety-critical products and
marketing, e.g. in the context of IoT.

14

that you need specific knowledge of what it
takes to get there. It is important to
understand what regulatory bodies you work
with, and that you need - from the start of
your development - to work with certified
tools, certified partners and both plan and
conduct a series of important verification
and validation aspects to secure your
software. Note that each domain often has
its own set of standards.
Standards are introduced for a long period
of time, and focus on the process of
producing the safety critical system. There
is a tension between the use of modern
(testing) techniques as for example
introduced by TESTOMAT Project and

using (only) the techniques that are
mandatory in the standard. We advocate
that modern techniques are in no conflict
with creating safety-critical software, but
instead increases the repeatability through
automation, and as such increases the
security. If there are ​less “human-in-the
loop”-construction, the entire process can
be made more reliable. We also advocate
the latest of advanced verification and test
techniques, that we can show brings value
to the software development process, e.g.
utilizing mutation testing to complement the
software unit testing, as well as adding
simulations to increase the testing and act
as a complement to testing with the

15

environment. The project aim is to make
modern technologies cost-efficient to use
and complement traditional (often manual
and slow) approaches to testing.

The following subsections describe three
different safety-critical domains, where the
standards are on the verge of requiring
updates with respect to testing techniques
because of modern software systems. The
examples stem from the eHealth domain
(medical devices), automotive domain (ISO 6

6 International Organization for Standardization:
https://www.iso.org/

26262) and aerospace domain (RTCA 7

DO-178B/C).

5.1 eHealth/Medical Devices

The FDA has started to introduce
cyber-security concerns into their guidelines
in 2018. It started to introduce mandatory
software testing techniques. We quote the
FDA document: “Content of Premarket 8

7 Radio Technical Commission for Aeronautics:
https://www.rtca.org/
8 FDA draft guideline:
https://www.fda.gov/regulatory-information/searc
h-fda-guidance-documents/content-premarket-s
ubmissions-management-cybersecurity-medical-
devices

16

https://www.iso.org/
https://www.rtca.org/
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/content-premarket-submissions-management-cybersecurity-medical-devices
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/content-premarket-submissions-management-cybersecurity-medical-devices
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/content-premarket-submissions-management-cybersecurity-medical-devices
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/content-premarket-submissions-management-cybersecurity-medical-devices

Submissions for Management of
Cybersecurity in Medical Devices”:

A description of the testing that was done to
ensure the adequacy of cybersecurity risk
controls (e.g., security effectiveness in
enforcing the specified security policy,
performance for required traffic conditions,
stability and reliability as appropriate). Test
reports should include:

(a) testing of device performance
(b) evidence of security effectiveness of
third-party OTS software in the system.
(c) static and dynamic code analysis
including testing for credentials that are

“hardcoded”, default, easily-guessed, and
easily compromised.
(d) vulnerability scanning
(e) robustness testing, which is often helped
by technologies like fault injection and
mutation testing.
(f) boundary analysis, complemented with
data-flow analysis. (and random data
testing)
(g) penetration testing
(h) Third Party test reports

It is an example where specific test
technologies are mandatory practice to
become compliant.

17

A similar development happened in the EU,
where the “Guidance on Cybersecurity for
medical devices” that focussed on security 9

related testing such as the test automation
technique fuzzing:

“The primary means of security verification
and validation is testing. Methods can
include security feature testing, fuzz testing,
vulnerability scanning and penetration
testing. Additional security testing can be
done by using tools for secure code

9 MDCG 2019-16 - Guidance on Cybersecurity
for medical devices:
https://ec.europa.eu/docsroom/documents/4186
3

analysis and tools that scan for open source
code and libraries used in the product, to
identify components with known issues.”
This is an example where testing
techniques are becoming mandatory as part
of the certification process.

5.2 Automotive Functional Safety

The goal of Functional Safety (FuSi) is to
reduce the risk from electrical and electronic
(E/E) systems to a tolerable level.
Especially with regard to highly automated
and autonomous driving, the Functional
Security of E/E systems is increasingly
important. The safe development of these
systems according to an established

18

https://ec.europa.eu/docsroom/documents/41863
https://ec.europa.eu/docsroom/documents/41863

standard minimizes the occurrence of
random and systematic errors, thus
preventing personal injury and damage to
property.

When developing and testing your systems
and or components, teams follow the
automotive-specific standard ISO 26262:
2018, which refers to the current state of the
art and includes guidelines for the design,
development, series and post-series
support of E/E systems in the field of cars,
trucks, buses and motorcycles.
The ISO 26262 defines standards for the
safety lifecycle of individual automotive
products for the

● concept phase,
● product development at system,

hardware and software level,
● production and operation and
● service and decommissioning.

The ISO 26262 also provides an
automotive-specific risk-based approach for
determining risk classes or ASILs:

● identifying and assessing safety
risks by Severity, Exposure and
Controllability Classifications,

● establishing requirements to reduce
those risks to acceptable levels and

● tracking requirements to ensure that
an acceptable level of safety is
achieved in the delivered product.

19

5.3 Aerospace Safety-Critical Systems

Regarding the ​RTCA DO-178, Software 10

Considerations in Airborne Systems and
Equipment Certification and its European
equivalent ​EUROCAE ED-12C​, it is the 11

primary document that it is used by the
regulatory aerospace agencies, like FAA 12

or EASA , for approving software-based 13

10 Radio Technical Commission for Aeronautics:
https://www.rtca.org/
11 European Organisation for Civil Aviation
Equipment: ​https://www.eurocae.net/
12 Federal Aviation Administration:
https://www.faa.gov/
13 European Safety Agency:
https://www.easa.europa.eu/

aerospace systems. The considerations of
the standard are intended to support the
objectives, according to the Software Level
or Design Assurance Level or DAL, that are
determined from the safety assessment
process and hazard analysis by examining
the effects of a failure condition in the
system. The failure conditions are
categorized by their effects on the aircraft,
crew, and passengers as:

● Level A: Catastrophic.
● Level B: Hazardous.
● Level C: Major.
● Level D: Minor.
● Level E: No Effect.

20

https://www.rtca.org/
https://www.eurocae.net/
https://www.faa.gov/
https://www.easa.europa.eu/

The following processes have to be followed
in order to be compliant with the DO-178:

● Planning,
● Development,
● Verification,
● Configuration Management,
● Quality Assurance and
● Certification Liaison.

In the last version of the standard
(DO-178C) a new chapter has been
introduced with guidelines for the Model
Based Development and Verification.

The example of DO-178C is that the
required safety provided could be

considered old fashioned when it comes to
some of the verification technologies. The
main claim is that new automation,
simulation and new technologies have been
validated as better than the existing
directives.

5.4 Conclusion and a Plea!

We, the TESTOMAT project, therefore urge
the use of more updated and modern
technologies - as well as we urge the
regulatory bodies to update their standard.
In particular we suggest increasing the use
of automation and mutation testing as well
as more exhaustive use of varied simulation
scenarios.

21

6. Examples from TESTOMAT Project on
testing Safety-Critical Software

The following subsections summarize
success stories of the TESTOMAT Project
case studies, where advanced test
automation techniques were successfully
applied to software systems from safety-/
security-critical domains.

6.1 Testing Trains’s in Simulation

In this section we describe the importance of
simulated environments as a base for test
automation. ​Validation of software
developed for safety critical functions on

trains includes testing to show that the
failure modes are working correctly. The
train shall work in a safe way even if a part
of the train starts to work incorrectly. It is
difficult to test failure modes on a train
without causing damage to the tested train.
Therefore, a simulated environment that is
surrounding the system under test, is
necessary to perform ​nondestructive testing
of failure modes. This leads to the necessity
to qualify the simulated environment to
show evidence that it satisfies all mandatory
regulatory requirements for the environment
to be considered as a trusted test tool. A
qualified simulated test environment makes
it possible to run both testing of failure

22

modes and, as an additional possibility, to
automatically run frequent and extensive
automatic software regression testing.

In the same way as the qualification of the
simulated environment is done it is possible
to qualify an emulated runtime environment,
for the system under test, to be a trusted
test tool. The complete distributed control
system hardware can be replaced with
software functions if the virtual environment
reaches the state of a qualified test tool.
This virtual system with the complete
application software running on it will then,
at a low cost, be available for all developers
and testers in the project as soon as the

environment is installed on their standard
laptops. The availability of this virtual test
environment is a necessary base for
increasing the use of automatic testing on
all test levels from unit tests to integration
and acceptance tests. The work to create
the emulated runtime environment for the
Train Control System has to a large extent
been done in the Testomat Project.

The emulated runtime environment is also a
condition for automatic regression testing of
different train configurations. Train units can
be coupled together in different patterns to
form the requested train and the number of
possible train configurations increases
rapidly with the number of train units

23

engaged when coupling the train together.
The only way to efficiently regression test a
huge number of train configurations is to
use a simulated environment with the
emulated runtime environment together with
automatic test generation methods.
Different possible ways to realize this were
investigated in the TestomatProject.

The creation of simulated and emulated
environments used to enable early software
testing is a time and money saving factor
when the objective is to efficiently develop
qualitative and safe software for trains.

6.2 Model-based testing and SafeScrum
in safety-critical Rail Software
Development

The development of safety critical rail
software is internationally regulated by
CENELEC standards, such as CENELEC
EN 50126, EN 50128, and EN 50129.
These regulations encourage safety-related
projects traditionally to develop in a waterfall
manner. Our experience with iterative
software development methods, such as
Agile and Scrum is that these are a good
approach to create high quality software.
The incremental nature allows us to learn in
the project and to fix mistakes in a fast and

24

efficient way. We were looking for a way to
combine Agile and safety critical. We have
found this in a combination of model-based
testing and SafeScrum. SafeScrum is an
iterative software development method that
is developed by SINTEF and NTNU which is
approved for safety critical systems.
Model-based testing is a low code scriptless
test automation solution. It allows for
thorough and fast testing. Low code models
are created incrementally and are extended
every sprint. Tests are automatically
generated from the models and executed
against the System. Because no test scripts
need to be programmed (they are
generated from the low-code models) it is

possible to test with a big test-set in a
maintainable manner. Together with
InTraffic and ProRail we use this approach
to develop safety critical systems.

6.3 Simulation-based testing of safety-
critical systems comprising rare events

Due to the constantly increasing
interconnection of control units and
assistance systems within a car, the effort
required to prove their function for
correctness is also increasing, especially
with regard to the focus on certification.
Simple methods such as testing of corner
cases and equivalence classes are rapidly
reaching their limits and are no longer

25

up-to-date. Simulation-based approaches,
which use intelligent algorithms to analyze
complex models and identify rare events,
have reached product maturity. By means of
statistical estimation, they can provide
reliable information on residual risks, and
thus make a valuable contribution to
reducing safety-critical events. Within the
TESTOMAT Project, for instance, OFFIS
conducted a case study on an industrial use
case provided by AKKA Technologies
where we applied such algorithms on a
battery management system. In that case
study we showed that these algorithms are
able to identify critical parameter
combinations much more efficiently

compared to traditional Monte Carlo
simulation methods. That is, critical events
are detected with increased probability while
at the same time much less simulation
budget is required therefore. As the
underlying methodology is rather general,
the approach can be easily adapted to other
industrial use cases as well.

6.4 Fuzzing of financial application

Kuveyt Turk Bank applied fuzzing with the
Fuzzino tool of Fraunhofer FOKUS to its
financial application case study. The
integrated Fuzzino into the test environment
and executed fuzzed functional test cases

26

against the financial application. Fuzzino
resolved two problems in that case study:

1. Reuse of existing functional test
cases and test environment for
security testing

2. Automated prioritization of security
test cases based on type-specific
security heuristics.

Fuzzing (with Fuzzino) was deemed very
helpful in conducting automated security
testing of the financial application with little,
respectively adequate manual resource for
setup and execution of security test cases.

6.5 Why Mutation testing gives us better
coverage than current standard for
aeroplanes

Saab made the strategic decision to leave
the academic problem with equivalent
mutants behind, and focus on a
user-centered approach in an industrial
setting. In parallel with our insight growing
of how to use mutation testing together with
the results from Google in their papers from
2017 and 2018 we came to the conclusion
that by changing the problem to what the
user is actually requesting, insight into the
test cases and the program under test,

27

equivalent mutants could be reduced from a
roadblock issue to a nuisance.

By exploring the relationship between a
mutant and which test cases that killed it,
we noticed that it could be exploited to
create user insight. This relationship could
be used to answer key user questions, such
as:

● "Can the technique tell me what is
unique about a test case because I
have this test case that I have a
feeling is good but I want objective
facts to tell me what it is that is
actually good about it?"

● "I have these test cases that I wrote
during one phase of the
development. I haven't really kept
them up to date. Since then I have
written many more test cases. I
wonder if these old test cases are
worth keeping or if they can be
thrown away?"

● “I wonder if all test cases actually
verify my software”

By answering the users actual questions it
means that tool and technique is useful in
practise. This is the most significant insight
for Saab and the avionics domain that we
have learned through the Testomat Project.

28

We are certain that there are more
interesting ways of exploiting this
relationship between the test cases and the
mutants than what we have found so far.
This shift in the focus means that we have a
clearer road ahead of how to align mutation
testing with the avionics safety standard
RTCA/DO-178C.

The relationship can be used to find some
of the faults that previously could only be
found by manual inspection of the test
cases. It may never be able to fully replace
a manual inspection but the technique can
be used to automatically find severe faults
in the test suite at an early stage in the

process with minimal effort where it is ​cheap
to correct the mistakes. It is an automated
sanity check of a test suite. If the test suite
passes the sanity check it is worthy of a
costly manual inspection.

Summary - A Final Word to Regulatory
Agencies

The TESTOMAT-Project has created this
booklet to make regulatory agencies aware
of the constant progress in technology and
methods in the realm of test automation.
Many of the project partners stem from a
regulated domain and work on regulated
software systems.

29

TESTOMAT dealt with advanced test
automation techniques. The techniques
described in this booklet have been applied
to real case studies not only but also from
regulated domains.

As one of our major results in the
TESTOMAT Project we have tried mutation
testing out in industrial settings. As a result
we can today recommend mutation testing
to be a mandatory technique for all
safety-critical software. The cost and effort
is reasonable compared to the improved
quality. We can improve quality and should
use mutation test analysis for all
safety-critical software. And if you are

mature enough and fulfill the criteria for
mutation testing, it will bring better quality

We, the TESTOMAT Project, ask the
regulatory agencies to have a closer look on
test automation in general, and the
advanced test automation techniques in
particular. Our overall ambition is to help the
regulatory agencies in keeping their relevant
standards and processes up to date, so that
in the end, regulated software systems of
higher quality and less defects will be
produced.

If you have any further questions, please
contact us.

30

Acknowledgements:
This booklet is produced by
EUREKA ITEA3 TESTOMAT PROJECT
The Next Level of Test Automation
Find out about us on the web:
https://www.testomatproject.eu/
Follow us on Twitter
@Testomatproject

You can also watch us on Youtube
https://www.youtube.com/testomatproject

This booklet was produced by a research collaboration
between the following partners:

Copyright: All rights reserved

31

https://www.testomatproject.eu/
https://www.youtube.com/testomatproject

The Testomat Project is sponsored by:

Disclaimer: The content of this booklet is true to the best of
our current knowledge. The authors, publishers, participating
partners of the project as well as the funding agencies
disclaim any liability in connection with the use of this
information.

32

