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SUMMARY 

This document contains the state of the art on context and knowledge management technology 
regarding modern networked surveillance systems. Also included are feasibility study results on the 
current state of the art, compared to the goals for context and knowledge management in the ITEA2 
SPY project. 

For the state of the art study regarding video and image analysis, we have looked at technologies 
and algorithms related to object detection and localization, feature extraction, motion detection, 
tracking and event detection. Furthermore, issues related to embedded video analysis have taken 
into consideration. 

The state of the art is also studied from the perspective of context analysis, event recognition and 
decision making in distributed multi-sensor systems. Studied aspects consist of exploitation of 
multiple multi-modal sensors, information adaption, data fusion, distributed intelligence and the use of 
positioning in mobile surveillance. 

In the feasibility analysis, we compare the studied state of the art into the requirements and software 
architecture plans for the SPY framework, taking in consideration technological, economical, 
operational and schedule constraints. 

Feasibility analysis of different context and knowledge management aspects identifies some potential 
challenges, but also methods to avoid and overcome them. Overall, no serious feasibility issues have 
been discovered. 
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1. SCOPE 

 
The SPY project aims at reaching advancements in developing a flexible and generic fusion and 
reasoning framework for supporting a scalable network of multiple sensors and sensor modalities. 
Further goals consist of building data fusing support for new event types generated by new and 
improved event detection algorithms, providing an open framework enabling integration and 
exploitation of data from legacy systems and detecting anomalies automatically and reliably in the 
stream of surveillance data. 
 

The objective of this deliverable is to identify technology limitations and evaluate how to overcome 
these limitations to fulfill the SPY system requirements defined in WP3. Considering the system 
specification, feasibility of the technological, economical, operational and schedule constrains will 
also be studied. The state of the art will focus on video and surveillance applications. 
 

2. ASSOCIATED DOCUMENTS 

 

2.1 APPLICABLE DOCUMENTS 

 

A1 Project Full Proposal. SPY 

A2 SPY WP3 System Specification D3.1 

 

2.2 REFERENCE DOCUMENTS 

See Chapter 6 for references. 
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3. TERMINOLOGY 

 

3.1 ABBREVIATIONS 

COTS Commercial Off The Shelf 

EM  Expectation Minimization 

EMC Electromagnetic compatibility 

ESD Electrostatic Discharge 

GPS  Global Positioning System 

HoG  Histogram of Oriented Gradients 

IIR  Infinite Impulse Response 

ISODATA  Iterative Self-Organizing Data Analysis 

JDL  Joint Directors of Laboratories 

LBP  Local Binary Patterns 

MID  Mobile Internet Device 

MRF  Markov random Fields 

MSER  Maximally Stable Extremal Regions 

N/A Non Applicable 

OGC  Open Geospatial Consortium 

PCA  Principal Component Analysis 

PTZ  Pan Tilt Zoom 

RAG  Region Adjacency Graph 

RAM  Random Access Memory 

RANSAC  RANdom SAmple Consensus 

SDK  Software Development Kit 

SIFT  Scale-Invariant Feature Transform 

SURF  Speeded Up Robust Features 

SUSAN  Smallest Univalue Segment Assimilating Nucleus 

TBC To Be Completed 

 

3.2 DEFINITIONS 

N/A 
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4. CONTEXT AND KNOWLEDGE MANAGEMENT 
STATE OF THE ART 

 
This chapter details the State of the Art of context and knowledge management in modern distributed 
surveillance systems. Regarding the exploitation of video in the surveillance context, we present the 
state of the art on video analysis, computer vision and image processing. Furthermore, issues 
regarding automated and distributed intelligence in networked surveillance systems, including the 
exploitation of multiple and multi-modal sensors, are explored. 
 
 

4.1 OBJECT DETECTION AND LOCALISATION BY VIDEO 
ANALYSIS (ENSTA)  

4.1.1 Scope and General Architecture  

4.1.1.1 Introduction and Scope 

 
This chapter is dedicated to the problem of finding objects of interest in a video. “Object” is 
understood in its familiar (i.e. semantic) sense: e.g. car, tree, human, road… and the system is 
supposed to automatically find the location of such objects in the captured video. To be consistent 
with the project technological level, we shall exclude the “developmental” approaches, where the 
system does not know the objects in advance, and constructs incrementally its own internal 
representation. We then suppose that the system operates with a provided representation of the 
objects and its environment that has been constructed (learned) off-line, and that may evolve on-line. 
Such representation includes a set of object classes that the system is then expected to recognize 
and localise in every image, either by attributing accordingly a label to every location in the image 
(task referred to as “semantic segmentation”), or by localising – more or less precisely – instances of 
each class in the video and tagging every image accordingly (referred to as “semantic indexing”).  
 
In this chapter we present a state-of-the-art of the video analysis methods for object and environment 
modelling and semantic indexing or segmentation with respect to the corresponding model. Being 
one of the Grail quests of computer vision for a long time, object detection has motivated a huge 
literature, and this state-of-the-art is by no mean exhaustive; our objective is rather to construct a 
representative survey of applicable methods, according to the following arguments: 
 

 Every chosen technique should be known to be successful enough and well referenced. 

 The presented techniques should differ fundamentally enough to cover the largest range of 
methodologies. 

 The technique should be applicable in the context of outdoor sequences acquired from in-car 
camera in urban or peri-urban scenarios. 

 The technique should be reasonably adaptable to an embedded implementation, or at least 
provide hints for the reduction of the computational cost. 

 
We first present the general architecture of video based object detection systems, identifying the 
fundamental tasks or parts that are present in most systems, or should be present in our particular 
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context. Then, in the following sections, we present and discuss some significant instances of each 
one of these parts that can be found in the literature.   
 

4.1.1.2 General Architecture 

 

Figure 1 shows the generic software architecture of a vision based object detection and localization 
system. According to the previously stated restrictions, the system is separated in a "learning" phase 
(dashed-line box), which is previously computed off-line, and whose function is to construct the 
“world (objects, background, context...) model” from a series of training examples, and in an 
"operating" phase (plain line box), which embeds the world model and performs on-line the task of 
object detection and localization. The description in the figure emphasises some fundamental parts 
which are all present in most techniques given in reference, but under many different forms: 
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Figure 1: Object detection methods general overview 

 

 Visual representation: this part refers to the extraction of visual information from images. 
Some filters are applied to select local structures (colour, region, direction, frequency...) in 
images. The produced information can be summarised using statistics and clustering, and/or 
used to reduce the computation domain to a small number of significant points. The 
corresponding tasks are applied both during the learning and the operating phases, but not as 
intensively.   

 Modelling and Learning: this part is the creation of the world model from the series of 
training examples. It corresponds to the process of selecting the most relevant visual features 
and/or automatically finding the parameters of the classification mechanism that will be 
applied in the operating phase.        

 Context representation and modelling: this part is not a module in itself, as it is usually 
performed by tasks from the two previous items. It refers to mechanisms using global 
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description of the image or the video to improve the detection of objects by contextual 
considerations (e.g. a car is more likely to appear on the road than in the sky). 

 Object detection and localisation: this distinctive part of the operating phase refers to the 
task of finding instances of objects from known classes in every image of the video. As this 
will be the real-time part of the system, we will particularly examine the data exploration and 
prediction strategies able to reduce the computational cost.  

 

The following sections now present the most significant existing work according to the previous 
organization. 

  

4.1.2 Object Visual Representation 

 
In this section we examine the image processing operations performed to extract meaningful 
information from the images, and the way this information is reduced or coded to provide a useful 
representation of the objects and their environment. 
 

4.1.2.1 Filter Banks and Local Structures  

 
The initial information available in every pixel, say colour or grey level, is very sensitive to small 
changes or distortions, and then unreliable for direct representation purposes. Thus, the first level of 
processing is enriching the local information by computing measures relative to the local appearance 
of pixels. 
 
Those measures are generally multiple and obtained through a bank of filters, usually a set of 
convolution kernels whose aim is to quantify the local geometry of pixels, regarding: orientation, 
curvature, scale and frequency.  
 
The local jet, defined as the set of partial derivatives calculated at every image location, is a 
fundamental feature space [1], that can be used to construct many geometrical invariants [2]. In the 
scale-space framework, the partial derivatives are estimated at a given scale, which is done by 

convolving the image with the corresponding derivative of the 2d Gaussian function G, whose 

standard deviation  corresponds to the estimation scale: 
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Figure 2: Three scale (normalised) local jet of order 3. The derivative estimation is obtained by 
convolution with the corresponding kernel appearing on the top. 

 
Figure 2 shows an example of the multiscale local jet and the corresponding filter bank of Gaussian 
derivatives.  
 
The local jet is one of the most generic and versatile local description spaces. It includes - or can be 
reduced to - many useful invariant features, such that the orientation of the gradient or orientation of 
the principal curvature, and it is used to compute another fundamental invariant: the image contours, 
usually defined as the local maxima of the gradient intensity in the gradient direction. 
 
Figure 3 shows examples of such invariant features. The orientation of the gradients [3] and the 
contours [4] have been used in several real-time object detection methods. 
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(a) (b) 

Figure 3: Two examples of contrast invariant features (a) Direction of the isophote (orthogonal 
to gradient), and (b) Contours defined as the local maxima of the gradient intensity in the 

gradient direction. 

 
Another important filter bank is the Gabor filter collection, whose simplified real expression can be 
defined as: 

 
Where  corresponds to the spatial extent,  the orientation angle, and  the frequency of the filter. In 
practice the spatial extent is often coupled with the frequency, and then a Gabor filter finally detects 
the presence of rectilinear periodic structures at a certain frequency and orientation. Gabor filters are 
acknowledged as a good model of one fundamental early visual function of the mammalians and 
then has been used in many object modelling and detection systems [5]. Figure 4 shows an example 
of direction/frequency decomposition using a bank of Gabor filters. 
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Figure 4: Local response to five scales and four orientations using a bank of Gabor filters. 

 
Many real-time methods are based on collections of Haar filters [6], sort of approximations of 
derivative convolution kernels, which are particularly attractive for being computed very fast thanks 
using integral images. A Haar filter can be defined as a convolution kernel with rectangular support, 
with values only equal to -1 or +1. The number of operations needed to compute these filters do not 
depend on the size of the support, but on the number of rectangles with the same value inside the 
support. Figure 5 shows a few examples of Haar filters and their corresponding output.  
 
Some methods radically differ from the previously cited ones in the sense that they begin by 
aggregating pixels in small homogeneous regions called “superpixels”, that will be used later as more 
reliable (and less numerous) individuals than pixels to extract relevant descriptors from images [7], 
[8]. In this case, the lowest level operator is a segmentation algorithm, like the morphological 
watershed, which is fast enough and allows easy tuning of the size and relative contrast of the 
superpixels. Figure 6 shows examples of multi-level watershed superpixel segmentation. Like the 
contours, the superpixel approach can be better adapted than filter banks methods to the case of 
poorly textured objects. 
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Figure 5: Four examples of Haar filters approximating multiscale derivatives 
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(0) (1) 

  
(2) (3) 

Figure 6: An image (0) decomposed in superpixels by watershed (over)-segmentation of the 
morphological gradient image, with area closing of different sizes (1-3). 

 

4.1.2.2 Salient Point and Regions 

 
One important question rising in any method is whether the visual descriptors may be extracted from 
everywhere in the image or only from a few points or regions previously selected in the image. This 
can be interesting both to reduce the data flow and to improve the robustness (by selecting the most 
significant and stable structures), but it needs extra processing to perform the detection of salient 
structures. This detection generally uses a combination of filters and local detectors presented in the 
previous sub-section. A brief presentation of some significant detectors follows: 
 

 The multiscale Harris detector [9] outputs the local maxima of an interest function computed 
from the autocorrelation matrix, estimated at various scales. It corresponds to corner points 
and it is rotation invariant (see Figure 7). 

 The SIFT points [10] are the local extrema, both in space and scale, of differences of 
Gaussian filters. They correspond to peak and valleys disappearing during a progressive 
smoothing of the image. Every point is associated to a particular scale and orientation (see 
Figure 8) 
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 The SURF detector [11] is a much faster multiscale detector which uses certain collection of 
Haar filters to approximate the multiscale second derivatives. The SURF salient points are 
then defined as the local maxima of the determinant of the Hessian matrix.  

 The MSER detector [12] uses a segmentation approach and selects superpixels with certain 
invariance and stability properties, corresponding to regional extrema of certain size, which 
are stable to perspective transformations. 

 

   
 = 1.0  = 3.0  = 5.0 

Figure 7: The Harris salient points (red crosses), calculated at three different scales. 

 

 

Figure 8: The SIFT salient points. The salient point is located at the origin of the arrow; the 
length of the arrow represents the scale, its direction the argument of the gradient.  
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4.1.2.3 Feature Descriptors and Statistics 

 
In this sub-section, we discuss the last part of visual representation, i.e. how the visual information is 
finally represented in the world model. The challenge of designing good descriptors is to find both 
concise and rich models, to be compared with the unknown objects from the video in an efficient and 
relevant way. The descriptor must capture essential structure, discard irrelevant details and lend itself 
to efficient metrics for comparison purposes.  
 
When the image support is reduced to salient structures, the representation can be simply made by 
the collection of feature vectors corresponding to local structures calculated at every interest point 
location. For example, in [2], the descriptor attached to every Harris point (which is attached to a 
specific scale) is a vector made of Hilbert invariants (combinations of the local jet components with 
rotation invariance), calculated at the corresponding scale. This local approach has several 
advantages, like some robustness to deformation and occlusion, but it is very sensitive to the quantity 
and quality of detected salient points. 
 
One common problem in designing descriptors is to find a good trade-off between local and global 
representation. Many approaches address this problem by computing spatial statistics or estimating 
regional tendency of a local measure. One of the most successful examples is the Histogram of 
Gradient orientations (HoG) and its variants. The descriptors usually attached to the SIFT [10] or 
SURF [11] salient points belong to this category. Every SIFT or SURF point is attached to the specific 
scale where it has been detected. It also comes with a specific orientation corresponding with the 
argument of the gradient calculated at the location point and the selected scale. Now the descriptors 
principle is to calculate the orientation of the gradients for every pixel around the salient point and to 
calculate the histogram of these orientations for one (or more) windows surrounding the salient point. 
The number of orientations is quantized to reduce the size of the descriptor, and the occurrence of 
every orientation is weighted in the histogram by (1) the distance of the pixel w.r.t. the salient point, 
and (2) the intensity of the gradient. Figure 9 and Figure 10 illustrate the actual descriptors proposed 
in the original articles. 
 

 

Figure 9: SIFT descriptor, from [10]. The image is split in small blocks around the salient 
point, and the histogram of weighted and quantized orientation is calculated for each block. 

Dominant orientations correspond to the arrows of highest lengths in the descriptor. 
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Figure 10: One example of SURF descriptor, from [11]. The sum of some (absolute or signed) 
partial derivatives is recorded for small sub-regions around the salient point in the image. 

 
 
Histograms of orientations can also be used more densely, i.e. not only around salient points but in 
the whole image by dividing the image in (overlapping) blocks. In this case it is essential to use a 
dedicated orientation bin as “void” to code the homogeneous area without significant gradient. This is 
done in particular by [3], who adopt a more radical approach (motivated by getting a very small code 
for real-time purposes), consisting in retaining only the dominant orientations present in a given block 
instead of a full histogram, turning the visual model into a simple binary code (see Figure 11). 
 

 

Figure 61: Dominant orientations descriptor from [3]. The model records a subset of the 
(quantized) dominant orientations present in a small image block. To measure the (binary) 

matching with the model (Figure), only one dominant orientation is calculated by block (blue 
arrows). 

 
One very popular class of methods in object modelling is the Bag-of-Features approach, which 
generalizes the concept of texton that has been used in texture recognition. The principle is based on 
the quantization of the n-dimensional descriptor space, which is then reduced to a codebook of N 
visual words (so called in analogy with the bag-of-words classification methods in linguistics). A 
visual class, object or image can then be represented by a histogram of visual words. A fundamental 
characteristic of these approaches is to mostly ignore the geometry of objects by considering only the 
presence of visual structures and not the relations between them. However, taking into account more 
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geometry can be done by considering higher order statistics, like co-occurrence between visual 
words. 
 
Bag-of-features (first order) classical approaches are known to work well for global image 
classification, e.g. place recognition, example based image retrieval, image categorization. But they 
are not designed to perform localization of the object in the image. To address this issue, several 
authors have proposed visual codebooks including information of relative localization. For example, 
[13] use a codebook made of triplets (filter, patch, position). Every triplet is associated to a selected 
(learned) point and includes: (1) a filter from a filter bank, (2) the resulting patch containing the local 
output of the filter applied at the point location, and (3) the relative location of the point with respect to 
the object (See Figure 12). In [14], every code word or texton t is paired with a rectangular mask R 
made of an origin point and a rectangle. The matching measure at location x with the corresponding 
feature is obtained by counting the number of pixels of texton t within rectangle R when its origin is in 
x (See Figure 13).   
 
 

 

 

Figure 12: Feature triplet from [13], combining a filter f, a response patch P, and a relative 
localisation (blurred Dirac) g. 

 

 

Figure 13: Texture shape by pairing texton index and relative location mask, according to [14] 

 
    
 
 



                                         Surveillance imProved sYstem                  

 
 

SPY -  Surveillance imProved System 

DELIVERABLE D4.1.1 V1.0 

Page 

21/74 

 

4.1.3 Learning the Object Model  

 
In this section we describe the techniques used to construct the world model from instances of 
objects captured off-line.  
 

4.1.3.1 Selection of the Object Prototypes 

 
In the methods based on codebooks, object prototypes are constructed within a process of statistical 
reduction of the representation space. In this case the learning algorithm consists in summarizing the 
set of descriptors extracted from all the instances of objects captured in the learning base, to a (much 
smaller) set of significant vectors. The selection is usually performed by a vector clustering method 
such as K-means, but is sometimes done at random. Figure 14 shows some examples of the 
selected triplet prototypes used in [13] to represent an object class.  
 

 

Figure 14: Examples of the M triplet prototypes selected by vector quantization to represent 
the “Screen” object class in [13] (see also Figure ). 

 
In some cases the data reduction is done by reducing the dimensionality of the descriptor space, e.g. 
using principal component analysis or non-negative matrix factorization. In this case the object is not 
represented by prototypes, but by a small number of vectors from a new algebraic base representing 
the main directions of variation of the descriptor space.     
 

4.1.3.2 Feature Selection and Learning 

 
As previously explained, several techniques are based on the calculation of a large – potentially 

huge– number of operators from a bank of filters. However, only a small proportion of them are really 
significant for the detection of a certain class of objects. Automatically selecting the basic operators, 
and/or combining them to construct more sophisticated local detectors, is at the core of various 
object learning approaches. 
 
One particularly successful technique is the Adaboost method applied for the selection and 
combination of the Haar filters [6]. Although extremely fast to compute, the collection of all Haar filters 
computable within a region of reasonable size is much too high to be computable at detection time. 
The Adaboost algorithm learns the detection operators associated to a given class using a set of 
positive and negative example images. Every example is attributed a weight defining its influence in 
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the learning process, the weights being uniformly distributed at the beginning. Then, the algorithm 
iteratively selects the best “weak classifier” defined as the single Haar filter that best separate the 
positive and negative examples by simple threshold of its output. The best weak classifier is the one 
that minimizes the error measure obtained by summing all the weights of the failed examples. The 
weight of every example is then updated in such a way that the influence of the badly classified 
example increases in the selection of the next weak classifier, and so on. Finally a “strong classifier” 
is constructed using a linear combination of the weak classifiers, each weak classifier being weighted 
according to its single performance. See Figure 15 for the detailed algorithm.      
 

 

Figure 15: Adaboost algorithm, taken from [6], for training one strong classifier using T weak 

classifiers. Every weak classifier is of the form , where ft is the 

output of one single Haar filter.  
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It is worth noting that Adaboost is an instance of more general boosting meta-algorithms, whose 
purpose is to automatically construct sophisticated classifiers from a set of simple (weak) binary 
classifiers. Boosting algorithms have been frequently used under different forms in object modelling 
and detection. 
 

4.1.3.3 Template and Shape Hierarchies 

 
As seen before, the most computationally efficient methods generally rely on rough descriptors 
(contours, dominant orientation), which are seriously affected by the shape variability in terms of size 
and point of view that can occur in the applications. One common way to address this problem is to 
construct, during the training phase, a higher level representation of the object combining different 
instances of descriptors of the same object appearing at different views. Those different instances 
should be organized in such a way to allow efficient matching during the detection phase. It generally 
corresponds to a hierarchical representation. 
 
For example, in [3], the authors starts with a collection of template vectors corresponding to block-
wise dominant orientations captured from different views of a learned new object. The templates are 
grouped in clusters of similar templates, and every cluster can be assigned a generic descriptor 
vector (by simple OR operations), so that the template matching can be done efficiently using branch 
and bound in the detection phase. 
 
In [4], a coarse-to-fine contour hierarchy is constructed as a tree, every level of the tree being 
associated to a given resolution (the root represents the coarser resolution). At each level, the set of 
template contours at a given resolution is grouped in a few clusters; every cluster is associated to a 
node, and represented by a prototype, which is (ideally) the median contour of the cluster, i.e. the 
template contour minimizing its mean distance to other templates in the cluster. Clustering and 
choosing the prototypes is performed by minimizing an objective function using simulated annealing.  
 

4.1.3.4 Training Markov Superpixel Fields  

 
In the case of semantic segmentation, labelling is densely performed at the superpixel (region) level, 
and then the knowledge acquired from the training examples must be integrated in the priors of the 
superpixel classification method. Those methods are naturally well adapted to Markov Random 
Fields (MRF) based classification, where the topology of the MRF is given by the Region Adjacency 
Graph (RAG) of the segmentation, and potential functions defined on nodes and edges of the RAG 
are used as probabilistic modelling of the labelling decision, ruling (among others): the relation 
between a superpixel descriptor and its label, or the dependence between the labels of adjacent 
superpixels. 
 
In this case, the learning phase corresponds to the training of the MRF and the construction of the 
potential functions. For example, in [8], the potentials attached to higher order cliques are designed 
from the co-occurrence statistics of labels appearing in adjacent superpixels, obtained from the hand 
segmented training examples. 
 
 



                                         Surveillance imProved sYstem                  

 
 

SPY -  Surveillance imProved System 

DELIVERABLE D4.1.1 V1.0 

Page 

24/74 

 

4.1.4 Context Representation 

 
In many applications of object detection, taking the context into account in the modelling is very 
valuable, both in terms of robustness and computational efficiency. This is particularly true in the SPY 
project, where the camera will be embedded in a car, probably with a constant field of view. We are 
then dealing with street or road scenes, whose variability in terms of illumination and presence of 
objects can be large, but whose geometry and expected background (i.e. road, sky, building…) can 
be roughly predicted in a certain measure.  
 
Such context representation involves global features of the image characterising the scene as a 
whole, but also some relations between the individual object models, in terms of temporal co-
occurrence or spatial organization… 
 

4.1.4.1 Context Modelling in Semantic Segmentation 

 
The semantic segmentation methods necessarily include context modelling, because their purpose is 
to label every location (pixel or superpixel) of the scene, whether it belongs to an interest object or 
not. It is then natural to differentiate various background labels: sky, vegetation, road, etc. that turn 
out useful as context hints for the detection of the interest objects. As said earlier, those methods [7], 
[8] use MRF formulations modelling conditional probabilities linking the values of labelling function 

, where S is the set of superpixels, and C the set of label classes. Let  be the set 
of adjacent pairs of superpixels, such that (S,V) is the graph of adjacency of the segmentation. The 

semantic segmentation principle is to minimise an energy function E linking , S and V, for example:  
 

 
 

The first term relates to the visual appearance of superpixel s: sapp is the value of the visual descriptor 
calculated at s. The second term relates to the probability of co-occurrence of a couple of labels on 
adjacent pixels. This term can model the regularity (by attributing a higher probability to pairs with the 
same label) but also more contextual relationships like the likeliness of two labels to appear side by 
side, that can be learned from  co-occurrence statistics (see Sec. 4.1.3.4). Finally the third term 
refers to the global context of the scene: sloc is the location (coordinates) of the superpixel, and the 
likeliness of a given label to appear at a given location in the image can also be learned from the 

training images. Figure 16 shows an example of the conditional probability fields  

learned from image bases for different labels. It is clear that those measures make sense and can be 
used in other framework than MRFs. 
 

 

Figure 16: Location conditional probability fields associated to different labels, used as 
contextual hints, taken from [7] 
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4.1.4.2 Scene Descriptors  

 
Sometimes the mere location hint discussed in the previous paragraph is not usable because the 
scene presents too much variability. This can occur in our application if the visual environment of the 
vehicle changes significantly, for example from a commercial urban street to a bare countryside road. 
In these cases, the “local” background must be estimated in order to exploit contextual information. 
This can be done by using global scene descriptors, calculated at run-time to improve the object 
detection and localisation. 
 
Such descriptor is used by [13], thanks to a global feature called “gist”. The gist of an image is 
obtained by (1) applying a bank of filters (e.g. Gabor) on the image to compute local responses in 
scale and orientation, (2) cutting the image in small blocks and calculating the average response for 
each scale and orientation and for every block, thus obtaining a vector of dimension , where 

n is the number of scales, m the number of orientations and p the number of blocks, (3) finally the 
dimension of the descriptor is reduced using Principal Component Analysis (PCA). Figure 17 
illustrates the way the gist captures the global organisation of the textural features for two different 
scenes. 
 

 

Figure 17: Illustration of the gist calculated for two images (top), taken from [13]. The bottom 
line shows two synthesis images with the same gist as the image above (obtained by 

iteratively modifying a random image) 

 
The gist is then used as a location prior in a similar manner as the previous subsection, except that 
the conditional probability for a label does not depend only of the coordinates of the pixel (or 
superpixel), but on the value of the gist at this location. Figure 18 shows an example where the value 
of the pixel is multiplied by the conditional probability for four different object labels.  Now the 
conditional density of every label with respect to the gist needs to be learned with the other 
parameters of the world model, which is done in [13] using multinomial regression and expectation 
minimisation (EM) algorithm.  
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Figure 18: Using the gist for location priming of four different object classes (screen, 
keyboard, car, pedestrian). Taken from [13]. 

 

4.1.5 Detection and Localisation 

 
This section is dedicated to the online part of object detection systems, related to the tasks of 
detecting the presence of a known object and localise it in the image at run time. The evaluation of 
the computation cost is critical at this level, so we will particularly pay attention to the strategies that 
have been proposed to make this task as efficient as possible. 
 

4.1.5.1 Model Matching Methods and Measures 

 
Generally the first part of the detection task consists in applying to the image the same operators as 
those used in the object descriptors of the world model. Thus, in techniques where features have 
been selected (e.g. by boosting as in [6]), the detection consists in applying the selected filters and 
thresholds. 
 
In semantic segmentation methods [8], the detection/localisation task corresponds to the optimisation 
part of the MRF using for example Gibbs sampling, to calculate the label fields of minimal energy. 
 
When the object model is made of a collection of local descriptors [2] [10] [11], the detection is 
performed by calculating the corresponding descriptor, either densely or only at salient point 
locations. The matching measure is then obtained by computing the distance between the descriptor 
vector vx calculated at pixel x, and every model descriptor vector vm, which can be simple Euclidean 

distance or Mahalanobis 

distance  , where K is the covariance matrix of the 

descriptor distribution in the world model. When the learning is made off-line, K-1 is pre-calculated 
then the extra cost is negligible. Note that diagonalising the covariance matrix is equivalent to 
performing a PCA (keeping all the dimensions). Once computed, point-wise classification can be 
done by nearest neighbour rule, while object localisation can be made by distance threshold followed 
by centroid calculation. 
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In some cases, the descriptor, or part of it, represents a distribution (e.g. histograms of colour), for 
which the direct bin-to-bin distance may perform poorly for comparison purposes, because of 
distortions due to quantization, light changes, or deformation, that can induce important shifts in the 
histogram domain. Many specific histogram distances have been proposed to address this problem; 
see for example [15]. 
 
In bio-mimetic detection systems, every pixel undergoes a sequence of local processing, grouping 
and matching inspired by the architecture of animal vision. Thus, in [5], the detection task is 
performed in a feed-forward manner using two layers, each layer being the sequence of the 
application of simple cells (S) corresponding to local processing (filtering and matching), and complex 
cells (C) corresponding to max-pooling mechanisms. See Figure 19 for a graphical representation of 
the two-layer-four-stage systems. 
 

 

Figure 19: Filtering layer (S1,C1) and matching layer (S2,C2) in the cortex-like object 
recognition system, taken from [5]. 

 
In the first (filtering) layer, the S1 stage corresponds to the application of the bank of filters (here 
Gabor filters). The C1 stage locally aggregates the output of filters by replacing every pixel value by 
the maximal value of the corresponding output over the neighbouring pixels and adjacent scales. The 
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resolution at this stage may be reduced, and the scales regrouped in bands. This layer normally 
ignores the world model, unless feature selection is performed in the learning phase. In the second 
(matching) layer, the S2 stage corresponds to locally calculating difference between the output of C1 
and a collection of template patches recorded in the learning phase. The C2 stage finally calculates 
the maximum of all S2 values for each template patch. Pixel level classification is obtained using the 
output of C2 through a simple linear classifier trained in the learning phase. 
 
As reported in Section 4.1.2, some methods put particular efforts in the conciseness of the descriptor, 
for real-time purposes. A fortiori, special attention is dedicated to the efficiency of the runtime model 
matching tasks corresponding to their descriptors. In [3], the image is cut in small blocks and 
dominant orientation is calculated for every block like in the model, except that one single dominant 
orientation (or none) is allowed for each block. If there is n possible orientations, every template block 
from the model (resp. every image block at the runtime detection), is coded with an n length binary 
word, whose possibly many (resp. only one or zero) bits have value 1. The template matching is then 
calculated by a simple binary AND between the model and the image binary descriptor (See Figure 
11 for an illustration of dominant orientation template matching). In the case of [4], the object model is 
made of a hierarchy of template contours (see Section 4.1.3.4) whose best instances need to be 
found in the contour map of the current image at runtime. It is then necessary to compute very rapidly 
a matching measure between (small) contour prototypes and the current contour map at a particular 
location. This can be done very efficiently by computing distance transform of the current contour 
map, i.e. the function attributing to each pixel its distance to a contour pixel (see Figure 20 for an 
example), which are calculated very rapidly using constant time scanning procedures. The matching 
measure for a template contour at a given location x is then simply given by the sum of the distance 
transform along the template contour translated at position x.  
 

 

Figure 20: Distance transform of the contour map of the current image for fast calculation of 
the matching measure with a template contour.  

 
 

4.1.5.2 Image Exploration Strategies 

 
To make the runtime detection/localisation task computationally tractable, it is necessary to reduce 
the number of operations performed on the current image whenever possible, by ignoring irrelevant 
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parts of the image and concentrating on most promising regions. Mechanisms to rapidly decide 
whether a zone needs to be further explored or not are then highly desirable. 
 
The first way of optimisation is to exploit the time redundancy and the motion coherence from one 
image to the other. In our context the scene geometry and the motion of the vehicle can be well 
modelled and estimated, so using the localisation information from the last frame is clearly valuable 
to improve the detection in the current frame. Generally those techniques relate to visual tracking, 
which is detailed in another chapter. The time redundancy can also be addressed more specifically 
depending on the detection technique. For example, in semantic segmentation methods using MRF 
framework, overlapping superpixels from two consecutive frames can be linked by a temporal edge 
and attributed a particular energy term, e.g.   (See Section 4.1.4.1). 

 
Another important way to lower the computational cost is to perform partial work on a region in order 
to decide whether this region must be discarded or further investigated. This is frequently done in the 
object detection methods using cascaded computations. For example, [6] apply a cascade of strong 
classifiers, constructed as follows. As seen in Section 4.1.3.2, Adaboost learning algorithm can be 
used to construct from a series of training examples a strong classifier, which is a combination of 
several (possibly many) weak classifiers (i.e. one Haar filter followed by a threshold). As a 
consequence, the best strong classifiers are very long to compute if they are calculated everywhere. 
The idea is then, instead of learning one single complex strong classifier, to learn first a very simple 
strong classifier (i.e. made of one or two weak classifiers), in such a way that the resulting classifier 
has maximal detection rate (and also high false detection rate), and to train a second – more 
complicated – strong classifier, using the false alarms of the previous one as the negative examples, 
and so on, until the desired performance is achieved. At the runtime level, the resulting sequence of 
classifiers is applied so that every classifier is applied on the image regions (windows) selected as 
possible object locations by the previous classifier. At its turn it rejects some regions and selects 
some other ones for further processing (See Figure 21).  
 

 

Figure 21: Runtime application of a cascade of strong classifiers, according to [6]. 

 
Those motion based and content based image exploration mechanisms are highly desirable in a real-
time context and should both be considered in our application. 
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4.2 FEATURE EXTRACTION 

 
This chapter details the state of the art regarding Feature Extraction from video, specifically e.g. 
geometric and photometric invariants. 
 

4.2.1 Feature Extraction Introduction (ASELSAN) 

 
Finding salient points on an image, namely feature extraction, is the basic task for most of the image 
processing and computer vision applications. For instance, reconstruction, detection, recognition and 
pose estimation necessarily require this task. Therefore, feature extraction is considered as a 
performance-critical factor for these applications. 
 
Features are investigated in two main categories: local and global. If the extracted feature represents 
a key point or a local region over the image (or an N-D signal in general), it is simply a local feature. 
On the other hand, if it is calculated using some statistics obtained from the whole signal, the feature 
is global. Recent studies show that due to their performance in complex scenes, local features are 
more robust, hence, usually chosen over the global ones. 
 
For images, the concept of cornerness comes into attention as a principle salient point. Simple 
calculus tells us that, any function can be represented via its derivatives at any point. This means 
that, the behaviour of the signal depends on the behaviour of its derivatives, which is the change in 
that signal. The signal with no change does not carry any information. Thus, for images, the regions 
with high derivatives (i.e. corners and edges) carry the valuable information. Studies [Biedermann 
1987] on the subject show that human visual cognition finds the corners obtained from the silhouettes 
of objects more descriptive than edges. 
 
The basic deliverable of a feature is a key point on the signal. However advanced features provide 
more descriptive information, namely descriptors. Descriptors are the mathematical representations 
of the gray level information (or some other statistical data) of a designated region around the 
extracted key point. Either a texture filter, or a histogram; any type of descriptor necessarily requires 
the position of and the effective region around the key point to be correctly estimated; which 
generally are the basic two deliverables of any feature extraction method.  
 
Studies [Tuytelaars & Mikolajczyk 2007] categorize the performance criteria for feature extraction 
methods in six principle groups: repeatability (or stability), distinctiveness, locality, quantity, accuracy 
and efficiency. Different criteria become important for different applications. For instance, accuracy is 
important for registration tasks, whereas distinctiveness is more important for tasks requiring 
recognition. In addition these criteria show trade-offs between each other. Features with high 
repeatability are expected to show lower locality, where features with high distinctiveness are 
expected to show less efficiency. Thus there’s no perfect feature. The suitable feature is decided in 
accordance with the needs of the application and the hardware. 
 
For certain applications, there is an important and particular relation between the repeatability and 
distinctiveness criteria. Many applications (e.g. recognition) require high level of distinctiveness. 
However, since this distinctiveness is defined over a local region around the key point; it is important 
to extract this effect region invariant to transformations such as rotation, scaling, etc. These types of 
transform invariances are repeatability attributes. The more a feature is invariant to transformations, 
the more repeatable it is. Furthermore, if a feature with no distinctiveness property, can provide this 
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so-called effect region invariant to transformations; an external descriptor, which is not a part of the 
feature vector, can be used to increase distinctiveness. In other words after the key point, and the 
effect region around it are designated; using a descriptor a distinctive mathematical representation 
may be appended to the feature vector. 
 
Another particular issue about feature repeatability is scale invariance. Scale invariance property of a 
feature or descriptor is its ability to obtain the same mathematical representation from the scaled 
and/or sampled (i.e. image with different resolution) version of the image. For certain applications, 
scale invariance is of most importance, such as recognition in real scenes. For scale invariance, a 
scale-space representation of the signal is needed. 
 
One of the famous key point detectors, which attracted great attention in both academic and 
industrial society, is Harris corner detector. Harris is a highly repeatable accurate, and efficient, local 
salient point detector, which provides lots of corners. It has both affine, and scale invariant versions. 
It is mainly preferred for applications which require lots of repeatable corners to be matched to each 
other, such as registration, pose estimation etc. Harris lacks distinctive power, thus it is not generally 
preferred for recognition and detection applications. Since it is very efficient, its FPGA designs are 
very common and simple.  
 
Another famous and relatively newer point detector is the SIFT (scale invariant feature transform). 
SIFT is scale invariant and highly repeatable as well. Since it provides a powerful descriptor, it 
outperforms Harris in terms of distinctiveness. However distinctiveness necessitates computation 
power. The trade-off between distinctive power and efficiency can be clearly seen between SIFT and 
Harris. 
 
There are many other point detectors such as SUSAN, SURF, etc. Not only point detectors, different 
types of features can also be used for different applications. Some studies show that, for infrared 
images, wavelet based features give better results; because there is very low textural information in 
IR. As mentioned above, the type of feature should be decided depending on the application, the 
image and the hardware.   
 

4.2.2 Feature Points, Geometric Invariants (IEF) 

 
Interest points or corners have undoubtedly proved to be powerful features which can be easily 
extracted in every kind of scenes, whether they are structured or textured. 
 
The most relevant methods among the seminal works are the Harris [38] and the KLT detectors 
(Kanade, Lucas and Tomasi [39][40]) which are based on the analysis of Hessian matrices of the 
image in a small neighbourhood around the feature points. 
 
The current trend is to use geometric invariants such as SIFT (Symetric Invariant Feature Transform) 
and its speeded up version SURF (Speeded Up Robust Features).  Initially designed for content 
indexing, the improvement of computer capabilities now allow their use for temporal real-time 
matching, by RANSAC or Kalman Filtering or in the videosurveillance domain [41]. 
 
To some extent, these features are invariant to image scale and rotation, affine distortion, change in 
3D viewpoint, addition of noise, and change in illumination. 
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Due to the informative property of these descriptors, they can also be used for image recognition, via 
machine learning techniques (Adaboost, SVM classifiers). 
 

4.2.3 Region Extraction (IEF) 

 
Segmenting an image or an image sequence consists in partitioning the image into homogeneous 
regions in terms of color (or luminance), texture, depth or motion. The segmentation can also be 
achieved by combining several cues: in video-surveillance applications, the spatio-temporal 
segmentation is the most logical.  
 
Generally speaking, region segmentation methods can be classified into two main classes: 
 

 Global techniques: the features (color, texture, motion) are first classified (for example by K-
means, ISODATA, Mean-shift [42] )  

 Local techniques. The regions are directly extracted in the image domain for example by region 
growing, morphological operators (watershed [43]), cooperation between regions and edges 
[44], or color and texture [45]. 

 

4.2.4 Color Representation and Color Invariance (IEF) 

 
The feature points or regions can be helped with the use of an appropriate color representation, in 
particular color invariants [46] which are robust against shadows and lighting intensity changes. 
 
These colors invariants have been approved on feature points detection and tracking [47], on 
segmentation, shadow removing [48]. 
 
An appropriate choice of the colorspace can be useful to better segment skin [49]. 
 
 

4.3 MOTION DETECTION, TRACKING AND EVENT 
DETECTION 

 
This chapter details the state of the art regarding Motion Detection from video, specifically the 
following aspects: 
 

 Image stabilization 

 Detection of 3D planar surfaces 

 Person tracking 

 Shadow detection 

 Event Detection/Action Detection/Behavior Recognition 
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4.3.1 Motion Detection (ASELSAN)  

 
Motion detection is the segmentation of regions containing moving objects in video sequences. It is 
usually the first step of visual surveillance systems aimed at classifying and tracking motion of 
people, vehicles, etc. The success of subsequent processes depends on the success of this 
detection process. Most visual surveillance systems use stationary cameras to monitor indoor and 
outdoor environments. Outdoor environments tend to be more dynamic than indoor ones with 
distracting motion such as clouds, swaying tree branches, and water ripple. They suffer from gradual 
illumination changes due to the motion of the sun along with small camera displacements due to wind 
[20]. If the surveillance system uses panning cameras, motion detection algorithms need to 
compensate for camera motion.  
 
With the advances in infrared (IR) camera technology, some motion detection systems started using 
IR or IR fused with visible imagery for detection. Namely, IR is considered for an application that 
needs to detect motion in low-light conditions such as night-time driving. IR images are of a much 
lower contrast than visual images due to the much narrower range of emissivity differences. They 
generally have lower spatial resolution, and sensitivity and image intensities of the same object are 
not uniform [34]. They have few distinguishable feature points and limited texture information [33].  
 
Motion detection methods use spatial, temporal or spatio-temporal information to extract regions of 
interest. Some of the most conventional approaches are outlined as follows. 
 

4.3.2 Temporal Differencing (ASELSAN)  

 
Temporal differencing uses pixel-wise differences between several consecutive frames to detect 
motion. Temporal differencing is very adaptive to dynamic environments, but generally does a poor 
job of extracting all the relevant pixels e.g., there may be holes left inside moving entities [22]. 
Connected component analysis could be used to cluster detected areas into motion regions. 
 
Frame differencing is the simplest method that could be used in detection of moving objects. In this 
method, background model is just the previous frame. Moving (running) average [16] is another 
method through that the current background of the video is recursively estimated from past image 
frames using recursive first order Infinite Impulse Response (IIR) filters acting on each pixel of the 
video in a parallel manner. 
 
Yoo and Park [35] use temporal difference as a feature to detect regions of motion. Their novelty is 
using signed differences between frames to match covered and uncovered regions that appear when 
an object moves. They claim that matching these regions can reject false motion due to illumination 
changes since such changes do not produce a pair of signed differences. They use a similarity 
measure to match the regions. The algorithm operates in real-time and it can detect moving objects 
without prior training even when lighting conditions change. However, the authors mention that water 
ripples are detected as moving objects. 
 

4.3.3 Background Subtraction (ASELSAN)  

 
This is the most popular method for motion detection. Background regions are defined as static 
regions with no information of interest and foreground regions are those with motion. Foreground 
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regions could be segmented to extract objects, people, etc. Most background subtraction techniques 
use statistical models and only differ in how these models are chosen. These models could be 
parametric or nonparametric.  Foreground pixels/regions are those that are different than the 
background scene determined through pixel-wise subtraction or thresholding operations. Foreground 
detection could include steps after background detection such as noise removal, morphological 
filtering, etc. Background subtraction techniques include steps related to background modeling, 
model initialization and maintenance.  
 
Pfinder [18] uses a multi-class statistical model for the foreground objects, but the background model 
is a single Gaussian per pixel. The method is designed for indoor scenes. After an initialization period 
during which the room is empty, the system reports good results. There have been no reports on the 
success of this method in outdoor scenes. 
 
Stauffer et al. [21] propose a method in which background is modeled as a mixture of Gaussians for 
each pixel and the model is updated in an iterative manner. In this approach, for each pixel, a mixture 
of K (generally between 3 and 5) Gaussians is assigned. The pixel values that do not match these 
background components are considered as foreground pixels.The parameters of these Gaussians, 
namely mean and variance, and their contribution to the mixture are updated similar to updating in 
[16]. The learning rate can be taken as constant but there are some works that aims at selecting it 
through a formulation properly [29]. This method can compensate some natural movements, such as 
swaying tree branches, waves on the sea surface. To sum up, mixture of Gaussians approach is one 
of the most robust and computationally inexpensive methods in the literature.  
  
Elgammal, et al. [20] propose another statistical background subtraction technique that models the 
background through nonparametric kernel density estimation. Whereas [18] and [21] assume a 
statistical distribution function with parameters that were obtained during the background modeling 
stage, this approach has no underlying assumptions about the data distribution and estimates the 
density function to build the background model. The probability of the current pixel belonging to the 
foreground is estimated with the model constructed using the most recent N samples. The detected 
foreground regions are segmented to detect/track people using a foreground model that is also 
determined through kernel density estimation.  
 
Haritaoğlu proposes a complete real time visual surveillance system for detecting and tracking 
multiple people [19]. It uses statistical background modeling to distinguish people and other moving 
objects. It constructs appearance models for people and can track them after occlusions. It also 
detects and tracks body parts to determine if people are carrying objects or not. The background 
model is initialized using a median filter over 20-40 seconds of video to determine stationary pixels. 
The stationary pixels are then modeled using their minimum and maximum intensity values and the 
maximum intensity difference over N consecutive frames. Foreground pixels are those whose 
intensity differs by more than the maximum frame-to-frame variation over the minimum and the 
maximum values determined in the model. It keeps track of the number of times a pixel is classified 
as background, foreground and the elapsed time since the last time it was foreground to determine 
updates to the model. Foreground pixels go through noise cleaning, morphological filtering and 
connected component analysis to get cleaner foreground regions that form objects/people.  
 
In the eigenbackground subtraction method [31], an eigenspace that models the background is built. 
This eigenspace model describes the range of appearances (e.g., lighting variations over the day, 
weather variations, etc.) that have been observed. The main idea of this method can be described 
as: since moving objects do not appear in the same location in the sample N images, they do not 
have significant contributions to this model. Consequently, the portions of an image containing a 
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moving object cannot be well-described by this eigenspace model, whereas the static portions of the 
image can be accurately described as a sum of the various eigenbasis vectors. That is, the 
eigenspace provides a robust model of the probability distribution function of the background, but not 
for the moving objects. This method has reliable results if there are no significant changes in the 
background, for the reason that the method has no adaptation step. Therefore, this method is not 
suitable for outdoor environments. 
 
Vaswani, et al. [37] uses spatio-temporal variance of pixels to detect foreground regions. The 
background model is based on the maximum spatial intensity differences in the first frame. The 
variances are calculated with a temporal window for each spatial location and compared to the 
variance in the previous frame and to the background model. Those pixels that are above these 
thresholds are considered to be foreground. The algorithm operates in real-time and claims high 
detection rates with low false alarm rates.  
 
Unlike the methods mentioned above [32] is a feature based algorithm that uses IR imagery. The 
novelty of the method is the aggregation of the selected features by fuzzy integrals to detect 
foreground pixels. Their algorithm is independent of the background model chosen. The features that 
are aggravated are the IR intensity and texture similarity measures. IR intensity similarity measure is 
the ratio of the pixel intensity to the value in the background model. Texture similarity measure is the 
ratio between the Local Binary Patterns (LBP) of the current pixel and the background. LBP is a 
texture measure that is robust against illumination changes. It thresholds the eight neighbors of pixel 
using the central pixel value and weighs them. Fuzzy measures are used when the information about 
a source is insufficient to determine which class of measures should be used to classify it. The fuzzy 
integral here aggregates the two sources of information and determines if the pixel is a foreground 
pixel. The method is a real-time method that has comparable results to the well-known Mixture of 
Gaussians method. 
 

4.3.4 Optical Flow (ASELSAN) 

 
Optical flow is a dense field of displacement vectors which defines the translation of each pixel in a 
region. It is computed using the brightness constraint, which assumes brightness constancy of 
corresponding pixels in consecutive frames [30]. Popular techniques for computing dense optical flow 
include methods by Horn and Schunck [30], Lucas and Kanade [31]. 
 
Optical flow based motion detection uses characteristics of flow vectors of moving objects over time 
to detect moving regions in an image sequence. For example, Meyer et al. [26] computes the 
displacement vector field for the extraction of articulated objects. The results are used for gait 
analysis. Optical-flow-based methods can be used to detect independently moving objects even in 
the presence of camera motion. However, most flow computation methods are computationally 
complex and very sensitive to noise, and cannot be applied to video streams in real time without 
specialized hardware. More detailed discussion of optical flow can be found in Barron’s work [28]. 
 

4.3.5 Obstacle Detection: Binocular Versus Monocular Approaches (IEF) 

 
Vision-based autonomous vehicles must face numerous challenges in order to be effective in 
practical areas. Among these lies the detection and localization of independent moving objects, so as 
to track or avoid them. Various approaches have been proposed using various embedded sensors to 
increase the certainty (exteroceptive sensors such as radar and Lidar and proprioceptive such as 
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odometers, accelerometers or gyros). However, most of them may provide imprecise measurements. 
Moreover, an occasional failure could lead to missing data. Finally data availability at time t could 
vary from one sensor to another. Then, a usual idea is to secure cooperation between sensors to 
robustify decisions. That makes sensor fusion a highly active research topic [50, [51]. Besides, many 
studies advocate for rather making the most of “vision” before any sensor fusion. Then one can 
basically distinguish between binocular and monocular approaches. Stereovision based methods 
provide, through calibration, an absolute measurement of a 3D space. Disparity information can be 
used in order to detect, without any other input, potential obstacles [52], [53]. But even if stereovision 
appears widely preferred in this context [54], it is considered as restrictive because of camera 
calibration or/and rectification step(s). Monocular vision is preferred for its several advantages 
including its cost, both economic and energetic, and the wealth of information extracted from 
monocular image sequences like, among others, obstacle motion. In some studies, rather than 
sensor fusion, image processing modules are cooperating.  
 
Recent years have seen a profusion of work on 3D motion, egomotion or structure from motion 
estimation using a moving camera. It was followed by numerous classifications of existing methods 
based on various criteria. A classification commonly accepted groups existing techniques into three 
main categories: discrete, continuous and direct approaches. 
 

 Discrete approaches [55], [56] are based on matching and tracking primitives that are extracted 
from every image in sequences (point, contour lines, corners, etc.). They are usually very 
effective. However, they suffer from a lack of truly reliable and stable features, e.g. time and 
viewpoint invariant. Moreover, in applications where the camera is mounted on a moving 
vehicle, homogeneous zones or linear marking on the ground hamper the extraction of reliable 
primitives. 

 Continuous approaches [57], [58] exploit optical flow. The relationship between the computed 
optical flow and real theoretical 3D motion allows -- through optimization techniques -- to 
estimate the motion parameters and depth at each point. Results are dependent on the quality 
of the computed optical flow.  

 In direct approaches [59], [60] motion is determined directly from the brightness invariance 
constraint without having to calculate explicitly an optical flow. Motion parameters are then 
deduced by conventional optimization approaches.  

 Independent of the classification above, a large group of approaches [59] -- indifferently 
discrete, continuous or direct -- exploits the parallax generated by motion (motion parallax, 
affine motion parallax, plane+parallax). These methods are based on the fact that depth 
discontinuities make it achievable to separate camera rotation from translation. For instance, in 
“Plane+parallax” approaches, knowing the 2D motion of an image region where variations in 
depth are not significant permits to eliminate the camera rotation. Using the obtained residual 
motion parallax, translation can be exhibited easily. 

 
Because on the one hand monocular methods lack the exact knowledge of objects depth and can 
only determine the exact position of a given object up to a scale factor and on the other hand the 
information provided by both cues (binocular and monocular) is complementary, then a current trend 
is to make those collaborate, in order to exploit motion analysis and scene structure. For instance, 
the past decade has seen many attempts to achieve a useful collaboration in the domain of obstacle 
detection [61], [62] or in the field of ego-motion recovery (odometry) and pathfinding [63], [64]. Some 
authors, such as [65] have tried to estimate the egomotion of a stereo-rig and then compute a 3D-
displacement field due to this ego-motion, in order to identify dynamic objects. They use the 
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predicted displacement field only to discriminate between static and dynamic objects; stereo-vision is 
then used to extract the different targets. In [66], the consistency of every feature point with the 
extracted ego-motion is checked through the use of a robust correlation technique. Information from 
stereo and motion is used to extract the egomotion of the vehicle. Known defects of this estimation 
are exploited to detect independent-moving obstacles. This method allows an early and reliable 
detection, even for objects partially occluded. 
 

4.3.6 Detection of 3D Planar Surfaces (IEF) 

 
Planes are important geometric features and can be used in a wide range of vision tasks like scene 
reconstruction, path planning and robot navigation. Homographies arise from perspective images 
because either the camera motion is restricted to pure rotation around the camera center, or the 
motion may be arbitrary, but the scene structure is restricted to a 3D plane. Both situations have 
been extensively exploited in computer vision. Homographies induced by the camera motion have for 
example been used for mosaïcing and super-resolution. The strong constraint imposed by scene 
planes has been used mainly for structure and/or motion recovery. Homographies allow to linearize 
the motion recovery and to perform measurements on scene planes in spite of perspective distortion. 
They also allow reconstruction of non-planar scenes, which can be described by a collection of 
planes together with the deviations from these planes (‘plane-to-parallax’ approaches). If the camera 
motion has a translational component, detecting homographies between images is equivalent to 
detecting scene planes, and, conversely, known scene planes enable the transfer of features from 
one image to the other by applying the corresponding homography. Several approaches have been 
proposed for detecting 3D planes including segmentation of point clouds based on fuzzy clustering 
methods [67] or Hough Transform in 3D point clouds [68]. In [69], a set of match pairs of interest 
points is obtained. An algorithm was developed to cluster interest points belonging to the same plane 
based on the reprojection error of the affine homography. From the calculated homographies, the 
planar flow is computed for each image pixel. To detect planes with an arbitrary position and 
orientation, in [70], a method which does establish dense correspondences is presented. A Ransac-
scheme is applied to instantiate homographies and detects planar regions in the set of corresponding 
points, which are delineated by region-growing. Finally, in [71], a Hough-like frame called “c-velocity” 
supports a surface detection from an image sequence, without calibration. A vehicle’s environment 
considered as a set of 3D planes can then be reconstructed exploiting iso-velocity curves bound to 
an estimated optical flow. 
 

4.3.7 Object and Feature Tracking (IEF) 

 
Tracking objects or features encounters various difficulties, such as the clutter of the environment, 
the non-rigid motion, the photometric and geometric variations, the partial the imperfections in the 
camera, etc.  We distinguish three main types of methods: detection-prediction, local feature points 
tracking, global tracking. 
 
Detection –prediction. In most video-surveillance systems, the camera is motionless and perfectly 
calibrated w.r.t the observed scene. In that context, the classical approach is to detect the moving 
objects by background subtraction,  the trajectories of these objects are then constructed using 
Kalman Filtering [72] or particle filters. 
 
To some extent, such approaches can be extended to a mobile camera, by egomotion 
compensation. In that case, the objects are detected if and only if their motion if different enough 
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from the egomotion. When available, stereovision can provide detections whatever the motion of the 
objects or the camera. 
 
When the object detection can not be performed constantly in each frame (either because of the time 
and resources costs of the detector or because the object has a same motion as the dominant 
motion) then a temporal tracking or matching strategy is required. 
 
Feature points tracking. The object can be seen as a collection of feature points (SIFT, SURF, KLT). 
Therefore, tracking the object consists for example in a block matching method, a Kalman filtering or 
a SSD tracking depending on the nature of the features. Such local methods take comprehensively 
the spatial information into account. Although time-effective, they usually fail when non-rigid objects 
are considered.  
 
Global tracking. The global approaches, mean-shift [73, 74] to begin with, represent the target with a 
global statistical representation, mainly based on color or texture. A large number of extensions has 
been proposed, they differ mainly by the statistical distribution and on the similarity function. Some 
authors have improved the procedure either by introducing an objet/background classification [75] or 
by combining mean-shift with local approaches [76] or with Kalman Filtering or particle filtering, in 
order to deal with severe occlusions. 
 
Unfortunately, classical histograms are not always discriminative, since they do not preserve spatial 
information. 
 
Several propositions have been made to address that issue by proposing the spatiogram [76] and the 
correlogram [77]. In the former method, each bin of the histogram is weighed by the mean and 
covariance of the locations of the corresponding pixels. In the latter, color correlations are considered 
for several directions. In [78], the Color Connectedness Degree has also improved the tracking 
performances. 
 
The Covariance trackers have recently emerged [79]. They use the covariance matrix of features as 
a compact and discriminant spatio-colorimetric representation of the target. 
 

4.3.8 Shadow Detection (CogVis)  

 
Current State-of-the-Art people trackers often use the tracking-by-detection approach, meaning that 
the steps of object detection and tracking are not separated, but combined. This provides the 
possibility to make use of further information provided by object detection algorithm, e.g. the authors 
of [80] does not only rely on the result of the object detection algorithm, but make use of the 
underlying probability map to enhance the robustness of their algorithm. For people detection, the 
Histograms of oriented gradients [81] and cluster boosted trees [3] are widely used (e.g. [80], [83], 
[86]). Furthermore, appearance models are also widely used (e.g.  [84], [85], [86], [87]) to describe 
the persons’ appearance.  This enhances the robustness as it is possible to correctly identify people 
after full occlusions.  
 
Shadow detection is an issue in many computer vision applications. Detecting and object in a scene 
is often established by shape matching or blob comparison. When a detected blob represents the 
desired object and its corresponding shadow and the whole blob is then used for finding the best 
finding match e.g. within a database, the system will return wrong or inaccurate results. In [88] a 
survey on problems related to shadow detection is presented as well as solutions for some of them. 
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Additionally, an approach for a robust but user guided shadow detection is shown. In [89] a pixel-
based statistical shadow detection approach is presented to model moving cast shadows of 
nonuniform and varying intensity. The used models are learned using a Gaussian Mixture Model, 
which can also deal with complex scenes (e.g. varying lighting conditions) and prevent shadow 
detections in regions, where shadows cannot occur. An online learning mechanism for detecting the 
shadow within an image is shown in [90]. It combines a learning and a training phase. After the 
determination of the moving object a shadow likelihood is calculated and updates after each frame. 
 
The purpose of event detection is to be able to detect various events in image sequences such as a 
robbery in bank foyers or other conspicuous situations. The input of event detection algorithms is a 
database of events and the output is the classification of the current situation in the image sequence. 
In [91] dynamic events are classified with the help of trajectories from a vision based tracking 
algorithm. Event detection in crowds is a challenging task due to overlaps of persons. Shandong 
et.al. present a method for anomaly detection, where people in crowds are tracked using crowd flow 
modeling [92]. In crowds, particle tracking is used to find trajectories of people which is later used in 
order to detect events. 
 

4.3.9 Event Detection and Behavior Recognition (Multitel)  

 
Practically speaking, very few scientific literature exist on the specific task of behavior recognition 
and event detection from embedded camera, and available ones are dedicated to police applications 
and very recent. For example, [93, 94] propose a method for automatic detection of specific abnormal 
events during police traffic stop, like opening door, person running out or officer falling down. This 
method use the recording cameras already installed in many police cars. Algorithms developed for 
surveillance systems [95] could also be applied here to detect abnormal events. This kind of system 
could be used to automatically detect critical events, like officer aggression, and perform appropriate 
action, for example notify headquarters for help. 
 
The traffic stop scenario presents several advantages : it is a critical time during which many 
abnormal events can occur, the camera is static and close to the observed scene, and the system 
can be manually triggered when the officer leave the vehicle to avoid to many false alarms. 
Extending the system to other scenarios, and in particular to the case of moving vehicle, is probably 
unattainable at the current state of the art. 
 

4.4 VEHICLE EMBEDDED VIDEO ANALYSIS 

 
This chapter details the state of the art regarding Vehicle Embedded Video Analysis, specifically the 
following aspects: 
 

 Academic/commercial applications for embedded video analysis (from active/passive driver 
assistance systems to video surveillance) 

 Interesting/used technologies in this context (laser, stereo, etc...) 

 Main initiatives/projects currently ongoing (DARPA, google driverless vehicle...) 

 Specific applications related to police forces (LPR, etc.) 

 Hardware constraints on image analysis algorithms 
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4.4.1 Academic and Commercial Applications for Embedded Video 
Analysis 

4.4.1.1 Pedestrian Detection (Multitel)  

 
Automatic pedestrian detection in images and videos is a very active research topic in computer 
vision. Accurate pedestrian detection is key to a number of important applications, such as 
automotive safety, robotics, video surveillance and human machine interfaces, among others. 
Despite many improves have been made in this field over the last years, it still remains a challenging 
problem. The main difficulty is the huge variability of pedestrian appearance arising from changing 
pose, clothing, lighting and point of view. Inter-person occlusions, high background variability and/or 
small resolution images make the problem even harder in many real world scenarios. 
 
Some approaches based on background subtraction have been proposed (see [96]), but these 
methods suffer from a high sensitivity to environment, are limited to low density of persons and are 
not usable with moving camera. The vast majority of recent works use learning approaches with 
corresponding large training sets to build a model of pedestrian appearance. This model distinguish 
whether an image region contains a pedestrian or not and is scanned on the images to detect people 
regardless of their position and size.  
 
These techniques have two main processing steps: feature extraction and classification. The feature 
extraction task extract image features from the visual content, and the classification task use the 
obtained features in a classification framework to detect the pedestrians. The aim of the feature 
extraction step is to extract higher-level information from raw pixel data to facilitate the task of the 
classifier. Two different types of classifiers can be used: discriminative classifiers and generative 
classifiers.  
 
Generative classifiers build a model of appearance of the object to be detected, constructed from 
examples of that object. The feature used is generally ( [97, 98]) the global shape, extracted by an 
edge detector, which is relatively insensitive to illumination variations and clothing. The variability due 
to the pose and orientation of people is modeled by the generative classifier. Some other works use 
an Implicit Shape Model([99, 100]), which is based on a codebook of characteristic local 
appearances and a model of their spatial distribution. Generative approaches, however, are less 
common than discriminative approaches. 
 
Discriminative classifiers are trained using both positive and negative examples to determine the best 
boundary between these two sets. The classification methods used are mainly:  
 
Cascade of Adaboost classifiers Adaboost is the most widely used method in this field [101-105]. 
The principle of this method is to build a strong classifier from a set of weak classifiers, which are 
typically a decision-tree formed from one or more feature. Adaboost is often used as a cascade of 
classifiers, a technique first proposed by [101] that permits to achieve a computation time compatible 
with real-time applications.  
 
This approach is based on the finding that a large majority of tested windows are negative. Instead of 
applying a monolithic classifier on all the windows, one constructs a sequence of classifiers of 
increasing complexity that eliminate gradually the negative windows while retaining almost all the 
positive windows. In this way, the full classifier is applied only to a small minority of windows.  
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Support Vector Machine (SVM) SVMs are also widely used for pedestrian detection [106, 107]. This 
studies use linear SVM ; indeed, although some work [106, 108] suggest a slight improvement in 
performance can be achieved with more complex kernel functions, it comes at the cost of a 
significant increase in computing time.  
 
Neural network Some works [109-112] have proposed the use of neural networks for classification 
task. In these works, no explicit feature extraction step is involved : the special structure of the neural 
networks ([113]) allow to use pixel values as input. The feature extraction is done inside the network, 
and is thus tuned during the training to be most discriminative.  
 
Methods based on a discriminative classifier are numerous and use a wide variety of features. The 
most common features are:  
 
Haar Filter These filters have been used by [101], which was the first detection person method 
compatible with real-time. Of very simple shape, they have the advantage of being extremely fast to 
compute using integral images. They have been improved by [104], which uses combinations of 
these filters on multiple frames to describe the movement.  
 
Histograms of oriented gradient (HOG) [106] show very good performances of this type of feature 
for person detection. These descriptors represent the intensity distribution of the gradient depending 
on the orientation. They are therefore well suited to describe the shape of people. 
 
Local Binary Pattern (LBP) Originally intended for the description of texture, these features were 
used by [114], [107] and [115] for person detection. LBP mainly describe the textures of the object, 
and are therefore complementary with features based on shape, as Haar or HOG.  
 
Covariance Described in [103], the feature consists of the covariance matrix of several low-level 
descriptors, mainly related to the gradient. Covariance matrices not belonging to a classical vector 
space, the classification method must be adapted to work in a Riemannian space. [116] reduces the 
computation time by several optimizations and manages a real-time system with good performance, 
combined with background subtraction algorithm.  
 
Color The majority of current features do not use color, which is not considered strong enough, 
because of the great variability due to clothing. However, some studies show that adding it to other 
features can improve performances. [117] adds information to the HOG, and shows that it provides a 
performance gain. [105] also tests its descriptors on the LUV color space, and shows that it provides 
much more information than grayscale only.  
 
Motion A first approach to take into account the movement is background extraction, only applicable 
in case of fixed cameras. [116] uses probability map and the foreground as a template to further 
increase performance and reduce the computing time of his method. Another approach is to exploit 
directly the specific movements of people. [118] uses a frequency analysis to detect periodic motions 
of human walking. [104] apply combinations of Haar descriptors on several consecutive images to 
model the movement and reduce the false alarm rate of the detector. [106] proposes to use the 
optical flow, and develop a version of HOG based on it.  
 
A combination of different types of descriptors can also be used [107, 119–121], and brings 
significant performance improvement.  
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When available, depth is an important cue for person detection that can greatly improve 
performances of the detector. It can be used in a preprocessing step to rapidly discard irrelevant 
regions of the image [109, 111, 122], or in the detector as an additional feature [121, 123]. The use of 
depth require of course additional sensor (generally stereo camera), and processing power to 
compute dense depth map from stereo images. 
 
Several studies have been made to standardize procedures to assess performances and compare 
these methods with each other [119, 124–126]. Some extensive surveys [96, 127, 128] are also 
available. These works show the overall prevalence of methods based on the HOG feature and the 
value of combining different features and cues (intensity, motion and depth) to improve 
performances. They show that if the best methods happen to good performance on high-quality 
images, they fail in the case of more realistic scenarios, with occlusions, variable quality images and 
highly variable background. 
 
 In addition to the detector itself, [128] also review the problems of candidate generation and tracking. 
These two steps have shown to be indispensable to achieve good performances in real systems. 
Candidate generation extract the regions of interest from the image to be sent to the detector, 
avoiding as many background regions as possible, instead of the classical exhaustive scanning 
approach. This approach is used especially by [111] and [129], which use stereo information to 
discard irrelevant regions from the image. The tracking step follow detected pedestrians over time 
and is mainly used to reduce false detection rate [111, 130]. 
 
Finally, some studies have tried to setup a complete system in the context of Pedestrian Protection 
System. The aim of these systems is to predict possible collision with a pedestrian, to warn the 
driver, and to brake automatically in urgent situation to avoid collision. This is of course a critical 
application, which requires very high robustness and low reaction time.  
 
The European Commission-funded research project PROTECTOR (2000-2003) [110, 111] was one 
of the first attempts. The system developed is based on a stereo-camera, and consists of a cascade 
of five modules: a stereo-based candidate generation module, a shape-based generative detector, a 
neural-network detector, a stereo-based verification module and a tracking module. In real urban 
traffic conditions, the overall system reaches a detection rate of 62–100% at the cost of 0.3–5 false 
classifications per minute (depending on the metric considered).  
 
Another system has been developed by Mobileye [130]. It use a single camera, and consist of a 
cascade of four modules: an attention-based candidate generation module, a multi-part discriminative 
detector, a multi-frame approval module that track the pedestrians detected and analyses further 
their trajectory, and a range measurement module. Reported performance is, for good conditions, a 
detection rate of 90% for less than 2 false alarms per minute. The system has been integrated in 
some new Volvo cars, in combination with radar, in the first automatic pedestrian avoidance system.  
 
However, all these systems still suffer from important limitations: they are limited to daytime, good 
weather conditions, and detect accurately only close and non-occluded pedestrians. 
 

4.4.1.2 Vehicle Detection and Traffic Classification (Multitel/ACIC)  

 
On-road vehicle detection is an active field of research, because of its important applications in 
automotive safety and driverless vehicles. A survey of vision-based methods can be found in 
[131].Most of these works report good performances, but are limited to specific conditions (rear or 
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front view, highway, ...), and the lack of realistic test data and benchmark makes the evaluation of 
their performance in real conditions difficult. 
 
 A method based on stereo camera [132] was used in driverless vehicle ARGO to detect and track 
the preceding vehicle. A vehicle detection algorithm is implemented in MobilEye products, for their 
forward collision warning system, and is integrated in combination with a radar system in some new 
Volvo cars. However, most of the current vehicle detection systems used in automotive security or in 
driverless vehicle rely on radar or laser sensor, for robustness reasons. 
 
Last, the relative speed of surrounding vehicles can also be measured using a camera fixed on the 
front of a bus operating on its reserved lane, and the traffic conditions can then be classified in real-
time into different categories (“fluid”, “congestion”…) using an odometer and/or GPS data [133].  
 
Overview of techniques and trends for on-board detection of surrounding vehicles and 
obstacles 
 
This overview is inspired by the paper of Sun et al. [143], which we believe is a complete and clear 
overview of the state-of-the-art in the field.  In particular, we re-use some of their proposed 
terminology. The interested reader may refer to that paper for more details. 
 
The two steps of vehicle detection 
 
Since processing the full images would be too expensive in terms of computing time and prevents 
from achieving real-time performances, two basic steps are often covered by today’s methods: 

1. Hypothesis generation, i.e. the detection of candidates regions in the images where 
vehicles are potentially present 

2. Hypothesis verification, i.e. verifying that the pre-detected regions effectively include 
vehicles. 

There might off course be strong overlap of these two steps that can even be merged in some cases.  
 
 
Hypothesis Generation  
 
Knowledge-based methods 
 
First way to generate hypothetical vehicle regions exploits a priori knowledge on the vehicles and the 
visual scene. Typical examples of a priori knowledge include symmetry (man-made objects present 
symmetry), colour (road and lanes have typical colours so that vehicles can be segmented from the 
background), shadow (that is often to be observed under the vehicles), corners (a car observed from 
rear or front present 4 typical corners), vertical and horizontal edges (cars present particular 
constellations of edges), texture patterns and vehicle lights (for night detection).  All these features 
have advantages and disadvantages but the edges have proven to be the most promising cue for 
hypothesizing vehicle presence and methods exist to speed up their detection and interpretation, 
including multi-scale approaches [144].  The main drawback of edges-based approach relies in the 
number of parameters that could affect the system performance and robustness. 
 
Stereo-vision-based methods 
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There are two ways to exploit stereo images, i.e. acquired with two close and horizontally aligned 
cameras. First, the map of the pixel difference between the left and right images, named the disparity 
map, can be constructed as far as the calibration parameters of the stereo rig are known. The 
disparity map once computed can be transposed into a 3D map of the visual scene so that obstacles 
within a depth of interest can be detected. The main disadvantage of this approach relies in the 
complexity for computing the correspondence between left and right images’ pixels. Solutions have 
been proposed for this method, such as associating a local feature extractor, but this remain a real 
issue in the presence of vibrations and irregular movement of the host vehicle.  
 
Another way to exploit stereo images is to use the Inverse Perspective mapping (IPM) [145].  This 
refers to a projection of the image points toward the horizontal plane through a centre of projection 
located between the image and the horizontal planes. The IPM results in a new image including all 
the projections on the horizontal plane.  Assuming a horizontal flat road this transform would project 
the road onto itself, while objects above the ground would be distorted on the resulting image.  The 
difference between the IPM transform of the right and left images should ideally present triangles 
corresponding to the borders of the objects.  The detection then consists in identifying these distorted 
triangles, which is not a trivial task.  
 
Rigs of more than two cameras have also been proposed, providing a richer image information with 
the drawback of higher costs and more complex pixel correspondence computation. 
 
Motion-based methods 
 
While the two knowledge-based and stereo-based methods exploit features discriminating the 
vehicles from the background, motion-based methods analyse the relative motion to be observed in 
the visual scene. Typically, approaching or overtaking vehicles should have a motion pattern different 
from the background.  The relative motion can be obtained by calculation of the optical flow,  i.e. the 
computation of a motion field from the intensity field through temporal and spatial derivatives. 
However, a reliable estimation of the optical flow with a moving-camera is not an easy task and pretty 
the consuming. 
 
 “Sparse optical flow” can improve the performances. It consists in employing additional image 
features information (corners, colour, local minima and maxima, etc). Though this provide a sparse 
motion information, it is sufficient to detect potential presence of vehicles.  Moreover, the fusion of the 
information makes this approach more robust to noise.   
 
From a general point of view, motion-based methods are definitely promising. However, they suffer 
from several factors, the displacement between consecutive frames (too low frame rate may affect 
the computation of motion if the host vehicle does moves too fast), the lack of textures (too 
homogeneous regions, e.g. the road, can affect the derivative computation for motion calculation) 
and the shocks and vibrations of the vehicle introducing noise.  Image stabilization techniques have 
been proposed to address that issue [146]. 
 
 
Hypothesis verification  
 
Template-based methods 
 
The idea of template-based methods is to assess the presence of vehicles by estimating the 
correlation between the hypothetical vehicles and templates. Templates include for instance a “U 
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shape’ expected for rear/front silhouette of vehicles, pronounced symmetry, pairs of headlights   or 
other a priori knowledge about the vehicles shapes and appearance. The weakness of template-
based methods is obviously due to the extreme variability in vehicle appearance consequent to the 
various angles of views, illumination changes and types of vehicles. 
 
Appearance-based methods 
 
Appearance-based methods consists a two class classification task to conclude whether the 
candidate region correspond to a vehicle or not. Starting from a training set, a classifier (such as 
based on Neural Networks, Support Vectors Machines or Bayesian) is trained and tested on the 
candidate regions.  The classifier relies on a description of the regions based on features that might 
be either local (to a region) of global. Classical features include for instance Haar-types functions.  
Traditional feature selection techniques have been used for the classification training, such as 
Principal Component Analysis (PCA) and others. 
 
The key challenge in this classification task is the constitution of a representative training set that 
must support the extreme in-class variability of the vehicle class.   
 
Tracking 
 
Exploiting the temporal coherence between the video frames can help predicting the position of 
vehicles in the frames [146]. This is why tracking is ever more used for detecting vehicles and 
obstacles. The majority of approaches use a detect-then-track approach, i.e. detect vehicles with 
traditional techniques and then follow them over the next images.  The advantage is obviously an 
improved robustness with the drawback of higher complexity. However, we expect tracking to get 
more and more importance in tomorrow’s approaches for on-board obstacles detection. 
 
Expected advances 
 
In [143], Sun et al. also discuss possible advances toward improvement of today’s vehicle detection 
techniques. Among them, progressed in the customisation of the algorithms in view of fulfilling the 
requirements of each specific functionality, the combination of multiple cues and more advanced 
feature selection techniques in the classification tasks. 
 
Expected progresses also covers the improvement of sensors, in terms of dynamic range and 
resolution, the fusion of multiple sensors, such as acoustic + video or exploiting infrared, software 
and hardware improvements and the ability for the processing unit to autonomously detects its own 
failure (e.g. excessive false alarm rate) preventing the system to become inconvenient for the driver. 
 

4.4.1.3 Automatic License Plate Recognition (Multitel)  

 
Automatic License Plate Recognition is now a relatively well solved problem in computer vision, and 
is used in many commercial products [MU 134–137]. A survey of methods can be found in [138]. 
These methods impose some constrains on image capture in resolution, angle of view and contrast, 
but these constrains can be reasonably satisfied with carefully designed system. Under these 
constrains, the reported performances are quite good, and sufficient for daily use in police car. The 
commercial products use generally infrared camera and illuminator to avoid illumination problems 
and operate at any time of the day.  
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Mobile ALPR systems have the ability to quickly scan a large number of license plates that can be 
automatically compared with police databases of stolen vehicles, prohibited or uninsured drivers, etc. 
They are now widely used in some country and have been shown to improve police efficiency [139]. 
 

4.4.1.4 Other applications (ACIC)  

 
Image processing activities for automotive safety or intelligent vehicles cover other. Among them are: 
 

 Lane detection for lane departure and drowsy driver warning systems [140]. 

 Car tracking or following with extraction of measures [141]. 

 Bicycle detection 

 Obstacle detection other than pedestrians, vehicles… 

 Automatic parking 

 Adaptive cruise control based on vehicles/obstacle detections. 

 Night vision 

 Traffic sign recognition 

 Intelligent headlight control. 

 
We have to keep in mind that most commercial applications use several sensors at once rather than 
only video processing. Most often, the sensors are video sensors in the visual domain, lasers and 
infrared sensors. 
 
While some of these activities are clearly not relevant for SPY, some may be of interest for the safety 
of Police patrols (e.g. night vision and obstacle detection in poor lightning conditions). 
 

4.4.1.5 Police Specific Applications (ACIC)  

 

 Automatic number plate recognition (ANPR). This system uses cameras to observe the number 
plates of all vehicles passing or being passed by the police car, and alerts the driver or user to 
any cars which are on a 'watch list' as being stolen, used in crime, or having not paid vehicle 
duty. 

 Speed recognition device. Some police cars are fitted with devices to measure the speed of 
vehicles being followed, such as ProViDa, usually through a system of following the vehicle 
between two points a set distance apart. This is separate to any radar gun device which is likely 
to be handheld, and not attached to the vehicle. 

 Car following. This system allows to get an optimal video of a vehicle that is purchased by a 
police car. 

 Surveillance. Those systems typically just record videos. However, more intelligent systems 
could be used for tracking criminals activities with unmarked vehicles. There is a very high 
demand for such systems being able to optimize special forces human resources with state of 
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the art video analytics systems but with with the constraint of being easy to deploy by non-
experts. 

 
As an exemple, the ProVida system provides ANPR, speed recognition and surveillance 
functionalities [142].  
 

4.4.2 Hardware Constraints on Image Analysis Algorithms (EOLANE)  

 
Electronic systems in general and video systems in particular have to fit its deployment environment. 
A system is designed and packaged with very different ways depending on whether it is located in 
labs, in a dedicated room with available air-conditioned, in an industrial plant or if it is operating in a 
vehicle such as car, train or drone. 
 

4.4.2.1 Environmental Constraints  

 
When a video system is embedded in a vehicle, the available volume space is usually low because 
most of the place is reserved to the core system, such as the Control and Command System of a 
train for example. Standard solutions based on COTS devices are rarely compliant with the allocated 
space and mechanical engineers have to do utmost to define packages ready to be installed where it 
is planned. 
 
The low volume does not make easy the air-cooling because little air can be fanned and draining 
ways are much reduced. Conduction-cooling can be an expensive but possible solution, but fans 
induce noise whose level should be controlled, especially when passengers are on board. Due to 
this, the choice of the components is falling on ones with low energy consumption to reduce heat 
emanation. Another mechanical topic, other than the packaging, is related to the resilience to shocks 
and vibrations. Again in this case, solutions based on COTS devices are rarely compliant to these 
requirements and specific adaptations are needed. Moreover, the remaining available volume is 
generally airless and bad located, near heat sources like engines, or under the roof. 
 
The source of energy is an additional constraint. Sometimes the device must be autonomous; it is 
then powered by wind or solar energy. In other case, the available power is limited. For example, 
more and more electronic devices are installed inside police cars and batteries are not enough strong 
to power these devices and automotive devices: when lights are put on, the battery can be down! 
Embedded systems must therefore be careful with the energy: the choice of processor depends also 
on these criteria. 
 
Finally, the list of environmental constraints would not be full whether EMC and ESD are not 
mentioned, which imply specific protections having consequences upon the size and the weight of 
the device.  
 

4.4.2.2 Microprocessor Market 

 
On one hand, the environmental constraints listed above imply that the processor used in an 
embedded video system shall be very careful of energy and thermal characteristics. On an other 
hand, the integration of a widely use microprocessor may have advantageous effect on the price of 



                                         Surveillance imProved sYstem                  

 
 

SPY -  Surveillance imProved System 

DELIVERABLE D4.1.1 V1.0 

Page 

48/74 

 

the chip. The correlation of these two criteria leads to the Mobile Internet Devices (MID) market, such 
as mobile phone and netbooks. These devices are based on two different microprocessor 
architectures: the ARM Cortex-A8 series and the Intel Atom N330. 
 
Some studies have been done to compare these two microprocessors family from an architectural 
and benchmarking point of view [147]. The basic benchmarking results show that the Cortex-A8 
provides much more significant power savings than the Intel Atom‘s. On the other hand, if the Cortex-
A8 increases its clock speed to 1.5GHz, it can achieve similar performance to the Intel Atom as both 
chips provide approximately the same performance per MHz. 
 
This type of microprocessor matches with the requirements of embedded video system and delivers 
more than enough power for a basic IP camera. When introducing additional features, such as video 
processing, algorithms will not have available a process power equivalent to a quad core i7 from Intel 
or any processor of this type, and have therefore to be careful with the necessary power. 
 

 

4.5 DECISION MAKING IN DISTRIBUTED MULTI -SENSOR 
SURVEILLANCE SYSTEMS 

 
In this chapter the State of the Art regarding automated decision making in networked multi-sensor 
surveillance systems is detailed, also regarding the use of positioning. 
 
In modern surveillance systems for public safety, real-time distributed architecture is required to 
transmit sensor data immediately for deduction. Awareness and intelligence is applied to address the 
automatic deduction. Video surveillance is thoroughly used in public safety and the usage of wireless 
networks in the field is growing. Surveillance personnel often patrol in surveyed areas and their 
precise location must be known to exploit their benefit to the fullest [148]. 
 

4.5.1 Multi-Sensor Surveillance (VTT) 

 
In current surveillance systems, data are collected by distributed sources such as sensors, and 
typically transmitted to a remote control center. Multisensor systems can capitalize from processing 
either the same type or different type of information collected by sensors, e.g., video cameras and 
microphones, of the same monitored area. Appropriate processing techniques and new sensors 
offering real-time information associated to different scene characteristics can assist both to improve 
the size of monitored environments and to enhance performances of alarm detection in regions 
monitored by multiple sensors [149]. 
 
As an example, improving smart cameras with additional sensors could transform them into a high-
performance multisensor system. By combining visual, acoustic, tactile, or location-based 
information, the smart cameras become more sensitive and can transmit results that are more 
precise. This makes the results more applicable widely [150]. 
 
In its current generation, the technology revolves around wide-area surveillance systems. This results 
in the advantages of the collection of more accurate information by combing different types of 
sensors and in the distribution of the information. Difficulties lie in the efficient integration and 
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communication of information, establishment of design methodologies, plus moving and multisensor 
platforms [150]. 
 

4.5.2 Information Adaption, Data Fusion and Information Fusion (VTT)  

 
In contemporary surveillance systems, in which multiple asynchronous and miscellaneous sensors 
are used, the adaption of the information acquired from them to derive the events from the 
environment is an important and challenging research problem. Information adaption refers to the 
process of combining the sensor and nonsensor information using the context and past experience. 
The issue of information adaption is vital, because when information is acquired from multiple 
sources, adapted information offers more precise inferences of the environment than individual 
sources [161]. 
 
Data fusion techniques can be used to enhance the estimation of performance and system 
robustness by exploiting the redundancy offered by multiple sensors observing the same scene. With 
recent advancements in camera and processing technology, data fusion is being considered for 
video-based systems. Intelligent sensors, which are equipped with microprocessors to execute 
distributed data processing and computation, are available and can decrease the computational 
burden of a central processing node [160]. 
 
Blasch and Plano [162] state that “data fusion” is a term used to refer to the bottom-level, data-driven 
fusion. “Information fusion” refers to processing of already-fused data, such as from primary sensors 
or sources, into meaningful and preferably relevant information to another part of the system, human 
or not [162]. 
 

 

Figure 22: Simple example of a basic architecture [153]. 

 
Figure 22 illustrates a simple architecture for information fusion. The nodes scan the environment 
periodically and transmit a signal. The received signal is first processed by a preprocessor to extract 
significant characteristics from the environment. The preprocessors are responsible for quantifying 
how much the environment is different from the steady state. The information fusion function then 
deducts if there is an intruder present or not [153]. 
 
Data fusion from multiple cameras involving the same objects is a main challenge in multicamera 
surveillance systems and influences the optimal data combination of different sources. It is required 
to estimate the reliability of the available sensors and processes to combine complementary 
information in regions where there are multiple views to solve dilemmas of specific sensors, such as 
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occlusions, overlaps, and shadows. Some traditional benefits, in addition to extended spatial 
coverage, are the enhancements in accuracy with the combination of covariance reduction, improved 
robustness by the identification of malfunctioning sensors, and enhanced continuity with 
complementary detections [163]. 
 
Typically, surveillance systems are composed of numerous sensors to acquire data from each target 
in the environment. These systems encounter two types of dilemmas, which are 1) the fusion of data 
which addresses the combination of data from distinct sources in an optimal manner, and 2) the 
management of multiple sensors, which addresses the optimization of the global management of the 
system through the application of individual operations in every sensor [164]. 
 
Information adaption is a challenging task, because of 1) the diversity and asynchrony of sensors, 2) 
the disagreement or agreement of media streams, and 3) the confidence regarding the media 
streams. There is an issue on how to fuse individual information to establish comprehensive 
information. These are items of importance and essential challenges [165]. 
 

4.5.3 Information-Decision Fusion Engine (C2Tech) 

 
In modern surveillance systems, information coming from several sensors has to be fused in order to 
overcome the uncertainty in the observed area. The main purpose of fusion is to provide an overall 
picture of the information collected by different platforms to classify/identify the targets and to show 
the locations and movements of all entities. Multisensor data fusion is an evolving technology, 
concerning the problem of how to fuse data from multiple sensors in order to make a more accurate 
estimation of the environment.  
 
The Multisensor Information Fusion engines, take feeds of data from the sensors, run pre-existing 
fusion algorithms to mine the data and analyse the input to generate an operational picture. The 
engine must be capable to assign default labels applied to sensors supplying real time data feeds 
and must be combine evidence to determine platform’s position, velocity, direction, and identity 
parameters.  
 
A rule based engine, which is defined during run-time, is feasible. The user should apply any rule 
defined through the user interface, should define new rules using the existing predicates on its library 
and should add the new statements to library. 
 
The execution process on the system should be customized as listed below. 
 

 Rule execution order can be changed. 

 New rules can be added. 

 New predicates can be added. 

 Required predicate queries can be defined. 

 New database can be used. 

 
In the case where multiple sensors are used, information fusion engine should correlate the data 
about the same real world object from these different sensors according to the pre-defined common 
data fields. 
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Network-centric fusion requires that information is pre-aligned to a uniform model (or can be rapidly 
aligned) so that all data sets are self-synchronized. For this purpose information fusion engine should 
wait for the inputs in a standardized way. Although the system should be capable of parsing different 
filetypes and querying different database management systems, data should be pre-aligned and 
indexed. Each data field should be clearly defined with its structure, data type, metrics, etc... 
 
Open Geospatial Consortium (OGC) is an international not for profit voluntary industry consensus 
standards organization that provides a forum and proven processes for the collaborative 
development of free and publicly available interface specifications (open standards).  
 
OGC provides standards for data fusion as well. One can consider Information Fusion as a decision 
fusion process.  According to OGC, decision fusion focuses on client environments for analysts and 
decision makers to visualize, analyse, and edit data into fusion products for an understanding of a 
situation in context. 
 
 Decision fusion includes the ability to fuse derived data and information with processes, policies, and 
constraints. Collaboration with other analysts is done using social networking services and 
collaboration tools that are location enabled. 
 
The objectives for fusion in this category include:  
 
1. Discovery of data (static and dynamic) resources that meet a user’s immediate requirements and 

to make those resources part of a fusion process under the control of the decision maker or 
analyst.    

2. Retrieval of real-time or time-series data in standard encodings that provide the ability to fuse the 
data into useable information based upon the users uncertainty of the measurement and 
parameters needed to process the data.  

3. Determination of the quality and validity of the data and fusion products produced from the data.   
4. Ability to fuse derived data and information with processes, policies, and constraint information as 

set by the data/information owners (i.e., Concept of operations) and decision services processing 
nodes.  

5. Ability to present the derived information in a spatial client application (e.g., SLD, SE, W3D) 
including portrayal of maps and 3D visualization.   

6. Ability to collaborate with other decision makers and analysts using social networking services 
and collaboration tools that are location enabled.   

7. Documents that capture an analysis result and allows for distribution to others for viewing the 
same context. 

 
According to OGC, fusion can be categorized as sensor, object/feature and decision fusion. 
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Figure 23 : Categories of Fusion 

 
Sensor Fusion: ranging from sensor measurements of various observable properties to well 
characterized observations including uncertainties.  Fusion processes involve merging of multiple 
sensor measurements of the same phenomena (i.e., events of feature of interest) into a combined 
observation; and analysis of the measurement signature.  
 
Object/Feature Fusion: includes processing of observations into higher order semantic features and 
feature processing.  Object/feature fusion improves understanding of the operational situation and 
assessment of potential threats and impacts to identify, classify, associate and aggregate entities of 
interest.  Object/feature fusion processes include generalization and conflation of features.    
 
Decision Fusion: focuses on client environments for analysts and decision makers to visualize, 
analyze, and edit data into fusion products for an understanding of a situation in context. Decision 
fusion includes the ability to fuse derived data and information with processes, policies, and 
constraints. Collaboration with other analysts is done using social networking services and 
collaboration tools that are location enabled. 
 
Decision fusion actually compounds other two fusion categories. It is client based and more 
convenient for visualization. So, decision fusion would be the best alternative for the fusion process. 
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Figure 24 : ER Model of Fusion Categories 

 
 
Different approaches were offered on how to model a fusion process. Some of them are stated 
below: 
 
JDL DATA FUSION MODEL: 
 
One of the most widely used frameworks is the JDL Data Fusion Framework. The Joint Directors of 
Laboratories (JDL) data fusion sub-panel within the US Department of Defence originally defined this 
system in the early years of data fusion. This framework was developed to aid the developments in 
military applications.  Here are the levels at which data fusion could be undertaken: 
 

 Level 1, object refinement, attempts to locate and identify objects. For this purpose a global 
picture of the situation is reported by fusing the attributes of an object from multiple sources. 
The steps included at this stage are: Data alignment, prediction of entity’s attributes (i.e. 
position, speed, type of damage, alert status, etc.), association of data to entities, and 
refinement of entity’s identity. 

 Level 2, situation assessment, attempts to construct a picture from incomplete information 
provided by level 1, that is, to relate the reconstructed entity with an observed event (e.g. 
aircraft flying over hostile territory). 

 Level 3, threat assessment, interprets the results from level 2 in terms of the possible 
opportunities for operation. It analyses the advantages and disadvantages of taking one course 
of action over another. 
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THOMOPOULOS ARCHITECTURE 
 
Thomopoulos posed architecture for data fusion consisting of three modules, each integrating data at 
different levels or modules to integrate the data, namely:  

 Signal level fusion, where data correlation takes place through learning due to the lack of a 
mathematical model describing the phenomenon being measured.  

 Evidence level fusion, where data is combined at different levels of inference based on a 
statistical model and the assessment required by the user (e.g. decision making or hypothesis 
testing).  

 Dynamics level fusion, where the fusion of data is done with the aid of an existing mathematical 
model.  

 
BEHAVIOURAL KNOWLEDGE BASED DATA FUSION MODEL  
 
A feature vector is first extracted from the raw data. This vector is then aligned and associated to 
defined features. Fusion is then undertaken at the sensor attribute and data analysis levels. The final 
step is composed of a set of behavioural rules, which can be extracted in terms of the final 
representation of the fused output. Rather than assuming the blackboard architecture typically found 
in knowledge-based systems, this process model uses a hierarchical approach containing three 
levels of representation:  
 

 The lowest level contains, for each sensor, a vector space with coordinate dimensions and 
measured parameters. 

 The next level extracts relevant features from these vectors, and attaches labels to them. 

 The third level contains a set of formalisms about the world model that relate feature vectors to 
events. 

 
Today the most used model in security applications is JDL processing model. It is more convenient to 
decision fusion since it interprets the results and directly helps to make decisions.  
 
Possible technologies to use with decision fusion are stated in table below: 
 

Web Services  Means to connect producers and 
consumers of resources (data and 
services), e.g., SOAP and REST  

Security  Means to enable authentication, 
authorization, confidentiality, and integrity 
of resources and interconnections  

Workflow  Standardized means for automation of 
business processes and event processing  

Grid computing  High performance distributed computing 
and very large datasets  

Cloud computing  Software as a Service (SaaS) and 
Infrastructure as a Service (IaaS)  

Metadata  ISO19115, UncertML  

Discovery  CSW, ebRIM, SOA  

Portrayal  ISO19117, Styled Layer Descriptor (SLD) 
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and Symbol Encoding (SE)  

Application schema  GML, profiles, and subsetting tools  

Data quality / uncertainty modeling and 
representations:  

UncertML, SensorML, O&M, ISO 19115 
and 19115 part 2. ISO 19113, 19114, 
19138 provide quality requirements  

Data integration/conflation:  Conflation rules, WCPS, WPS, WFS-G, 
OLS Geocoder,  

Spatial-Temporal-Semantic analytics:  O&M, SensorML, UncertML, Event-
PatternML, OWL, WPS  

Visualizing, linking, organizing, sharing:  GML, CityGML, X3D ISO/IEC 19775, 
VRML, GeoRSS, KML, LOF, OWS, etc  

Automation:  WPS, WCPS, WfCS, Wf-XML, XPDL, 
BPEL  

Grid and Cloud computing  Open Grid Forum and cloud standards by 
other organization  

 
 
To enable fusion, one should have certain essential infrastructure capabilities such as: 
 

 Scalable to massive data volumes and complex processing  

 Streaming and caching   

 Managed and hosted (distributed, off-premise)  

 Automated and manage processing and workflows  

 Reliable and available  

 Security in distributed information systems  

 Distributed, virtualized nodes made accessible and interconnected via open Web services and 
standards-based grid and cloud-computing infrastructures  

 Scalable, reliable, cost-effective storage, network and computing capabilities for enabling 
fusion. 

 
References: [166, 167] 
 

4.5.4 Distributed Intelligence (VTT)  

 
The current generation surveillance systems use distributed intelligence functionality. An important 
design issue is to determine the granularity at which the tasks can be distributed based on available 
computational resources, network bandwidth, and task requirements. The distribution of intelligence 
can be achieved by the dynamic partition of all the logical processing tasks, including event 
recognition and communications. The dynamic task allocation dilemma is studied through the usage 
of a computational complexity model for representation and communication tasks [149]. 
 
A surveillance task can be separated into four phases, which are 1) event detection, 2) event 
representation, 3) event recognition, and 4) event query. The detection phase addresses multisource 
spatiotemporal data fusion for efficient and reliable extraction of motion trajectories from videos. The 
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representation phase revises raw trajectory data to construct hierarchical, invariant, and adequate 
representations of the motion events. The recognition phase handles event recognition and 
classification. The query component indexes and retrieves videos that match some query criteria 
[151]. 
 
The key to security is situation awareness. Awareness requires information, which spans across 
multiple scales of time and space. A security analyst must keep track of “who are the people and 
vehicles in a space” (identity tracking), “where are the people in a space” (location tracking), and 
“what are the people/vehicles/objects in a space doing” (activity tracking). The analyst must use 
historical content to interpret this data. Smart video surveillance systems are capable of enhancing 
situational awareness over multiple scales of time and space. Currently, the component technologies 
are evolving in isolation. For instance, face recognition technology handles the identity-tracking 
challenge, while restricting the subject to be in front of the camera, and intelligent video surveillance 
technologies offer activity detection capabilities to video streams while disregarding the identity 
tracking challenge. To offer comprehensive, nonintrusive situation awareness, it is crucial to address 
the challenge of multiscale, spatiotemporal tracking [152]. 
 
The automatic capability to learn and adjust to altering scene conditions and the learning of statistical 
models of normal event patterns are growing issues in surveillance systems. The learning system 
offers a mechanism to flag potentially anomalous events through the discovery of the normal patterns 
of activity and flagging the least probable ones [149]. 
 
Due to the availability of more advanced and powerful communications, sensors, and processing 
units, the architectural choice in the current generation surveillance systems can potentially become 
extremely variable and flexibly customized to acquire a desired performance level. The system 
architecture represents a key factor. For instance, different levels of distributed intelligence can result 
in preattentive detection methods either closer to the sensors or deployed at different levels in a 
computational processing hierarchy. Another source of variability results from the usage of 
heterogeneous networks, either wireless or wired, and transmission modalities both in means of 
source and channel coding and in means of multiuser access techniques. Temporal and spatial 
coding scalability can be extremely productive for reducing the quantity of information to be 
transmitted by every camera depending on the intelligence level of the camera itself. Multiple access 
techniques are a fundamental tool to allow a significant amount of sensors to share a communication 
channel in the most efficient and robust way [149]. 
 

4.5.5 Mobile Surveillance and Positioning (VTT, Roger-GPS) 

 
Currently, the development of an automated surveillance system based on mobile multifunctional 
robots is an active research area. Mobility and multifunctionality are generically adopted to reduce 
the amount of sensors required to cover a given region. Mobile surveillance units such as mobile 
robots can be organized in teams, which results in intelligent distributed surveillance over 
considerable areas. Several worldwide projects attempt to develop completely or semiautonomous 
mobile security systems [154]. 
 
Examples of mobile surveillance unit solutions include the iBot platform, which uses camera 
equipped mobile robots that move on a planned path. The robots can be remotely controlled by a 
centralized controller server in response to live video images they capture [155]. In another example 
Liu et al. present an unmanned water vehicle (UWV), which performs automatic maritime visual 
surveillance. The UWV mobile platform is equipped with a Global Positioning System (GPS) device 
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and a high resolution 360 degree omnicamera. Targets are detected with a saliency-based model 
and adaptively tracked with through selective features. Each target is geo-registered to a longitude 
and latitude coordinate. The target geo-location and appearance information is then transmitted to 
the fusion sensor, where the target location and image is displayed on a map [156]. 
 
Despite GPS being a sophisticated solution to the location discovery process, it has multiple network 
dilemmas. First, GPS is expensive both in terms of hardware and power requirements. Second, GPS 
requires line-of-sight between the receiver and the satellites. It does not function well when 
obstructions, such as buildings, block the direct “view” of the satellites. Locations can be calculated 
by trilateration. For a trilateration to be successful, a node needs to have at least three neighbors 
who already are aware of their positions [157]. 
 
The analysis and fusion of different sensor information requires mapping observations to a common 
coordinate system to achieve situational awareness and scene comprehension. Availability of 
mapping capabilities enables critical operational tasks, such as the fusion of multiple target 
measurements across the network, deduction of the relative size and speed of the target, and the 
assignment of tasks to Pan, Tilt, Zoom (PTZ) and mobile sensors. This presents the need for 
automated and efficient geo-registration mechanism for all sensors. For instance, target observations 
from multiple sensors may be mapped to a geodetic coordinate system and then displayed on a map-
based interface [158]. 
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5. CONTEXT AND KNOWLEDGE MANAGEMENT 
FEASIBILITY ANALYSIS 

 
In this chapter, the feasibility of the planned SPY context and knowledge management features and 
design are analyzed against the current state of the art. 
 

5.1 FEASIBILITY ANALYSIS PROCESS 

 
Considering the SPY framework system specification, the feasibility of the SPY context and 
knowledge management system should be investigated. The level of feasibility is determined by 
analyzing the state of the art data presented in chapter 4 against the planned SPY framework design, 
as presented in e.g. the WP3 system specification output. 
 
The analysis will consider the technical aspects presented in chapter 4: different techniques and 
features of video and image processing related to surveillance, as well as decision making in a 
distributed surveillance system including exploitation of multiple and multi-modal sensors. 
 
The following viewpoints should be considered in the analysis, regarding all technical sub-sections 
and aspects of the component design: 
 

 Technological feasibility 

 Economical feasibility 

 Operational feasibility 

 Schedule feasibility 

 

5.2 FEASIBILITY ANALYSIS RESULTS 

 
This chapter details the detailed conclusions of feasibility regarding the proposed context and 
knowledge management component design and features, versus the state of the art data. 
 

5.2.1 Feasibility in Image Processing (IEF) 

 
The IEF was an actor of the LOVe project (Logiciel d’Observation des Vulnérables 2006-2009) 
supported by the “Pôle de Compétitivité” System@tic Paris Région.  The aim of the project was to 
develop an embedded in-vehicle system for real-time detection and tracking of pedestrians and 
obstacles. Although largely perfectible, the proposed algorithm based on stereovision has provided 
quite satisfying results. The method relies on: the computation of the depth map, the extraction of 
regions of uniform depth  (by the UV disparity method), the association of the detections to define 
their trajectories. A pedestrian recognition method has been proposed by an other partner (based on 
AdaBoost). Unfortunately, the whole application does not perform in real-time on a single embedded 
architecture. However, in the context of the SPY project, it could be considered that some of the 
algorithms are executed from a central server in the supervisor office.  
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While some of the algorithms proposed by IEF either have to be extended or require development, 
some other algorithms have been applied and tested in other applicative contexts.  Therefore their 
performances in the context of SPY have to be studied. The feasibility depends mainly on: 
 

 the quality of the sensors which could affect object tracking and feature matching. For example, 
the kernel-based methods usually perform exclusively on color images sequences since the 
object is represented by a global histogram, which is not always discriminant enough in grey-
level sequences.  The performances of the feature point matching is sensitive to the local 
acquisition noise.    

 the opportunity to use a binocular sensor. Indeed, when the vehicle is moving, the use of 
stereovision  can hugely facilitate the obstacles detection as well as the motion analysis (for 
stabilization for example).   

 the complexity of the scenarios finally chosen. As an example, IEF has to study the feasibility of 
its tracking algorithm when a group of people is considered and not only one person or object. 

 

5.2.2 Feasibility in Object Detection and Localization (ENSTA)  

 
In Section 4.1, we presented a partial state-of-the-art of the object visual modelling, learning, and 
localizing methods based on video analysis. The selection of the presented works was made on 
feasibility criteria with respect to (1) the mobile context: the camera is moving and embedded in a 
vehicle, and (2) the real-time constraint: the run-time part of the methods, i.e. detection and 
localization, has to be done in real-time in the embedded system. The feasibility analysis in these 
topics is then essentially part of Section 4.1. We simply recall here feasibility criteria and constraints 
that we considered or shall consider in the continuation of the project. 
 

 Real-time detection and localization. The most computationally intensive part of detection 
generally lies in the application of a collection of image filters, which is at the basis of most 
visual representations. Thanks to its high level of regularity, however, this process can be much 
accelerated, using fine grained data parallelism (GPU or vector parallelism extensions), or 
recursion and decomposition adapted to coarse grained parallelism (multi-core CPU). A 
reduction of the number of filters can be done, at the cost of degrading the detection 
performance, generally regarding scale invariance. As emphasized in Section 4.1, another 
important way of improving the real-time performance is to reduce the data support by 
discarding rapidly irrelevant zones, using cascade (Sec. 4.1.5.2) or context hints (Sec. 4.1.4). 

 Video quality. The quality of video images is related to the camera resolution and acquisition 
rate. But a higher quality implies a higher processing power. The embedding within a rapidly 
moving vehicle is another difficulty: motion blurring and illumination variations, among others, 
are expected. These problems may not be redhibitory for object detection, but obviously, have 
to be considered early by (1) using as representative videos as possible in the design of the 
algorithms and (2) using image data from the final system camera in the (off-line) modelling and 
learning phase.  
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5.2.3 Hardware Platform for IP Camera (EOLANE)  

 
The platform supporting the IP camera should take into account the environmental constraints 
described in section 4.4.2.  
 
The iMX51 / 53 processor family designed by Freescale is based on the ARM Cortex-A8 core 
processor and is generally used in MIDs. This family processor is well known from EOLANE and 
designing the SPY camera with this processor allows to take advantage of EOLANE experience on it 
and to limit the risks from a delay point of view. 
 
The SPY camera is running under Linux. Development is done under Open Embedded, with source 
code in C written, therefore no SDK is required. 
 
The iMX51 / 53 processor is dedicated to the multimedia market and includes video, and image 
resources. For this reason, it includes the Neon extension. The Video Processing Unit performs the 
video encoding and decoding by hardware, therefore, emerging compression algorithms cannot be 
integrated. Supported video formats are MPEG-4, H264 and MJPEG. The same video native flow 
CCIR656 (or BT.656) can be encoded simultaneously in multiple formats. That means that it could be 
H264 encoded for recording and MJPEG encoded for analysis for example. A library delivers the 
encoded flow in a standard form. It is reasonable to think that it is enough standard to allow each 
partner to develop its analysis software on its own platform and then perform the integration on the 
EOLANE platform without too much work and source modification. 
 
The minimum configuration is based on iMX51 processor with a capacity of 512Mo for RAM, 512Mo 
for Flash and a processor clock of 800 Mhz. A few sensors (at least 2) can be supported. If required, 
an additional processor board could be added to the system to increase the processing power.  

 

5.2.4 Feasibility in Distributed Multi -Sensor Decision Making (VTT)  

 
For efficient exlpoitation of multiple sensors and data fusion in a multi-modal sensor environment, 
sensor diversity poses a challenge. The openness and adaptability of the context and knowledge 
management component, especially regarding its interfaces, must be given high priority in the 
architectural specification and design phases. This helps ensure the integration and addition of 
different types of sensors is as easy as possible. Sensor integration and information adaptation can 
be further eased by careful definition of common meta-data types for different sensor input. 
Asynchronicity of the sensors and their activity must also be taken into consideration, by finding the 
best solutions for scheduling and parallel processing for processing multiple incoming data types. 
 
A crucial aspect in defining an architecture for the context and knowledge management component is 
the distribution of processing and analysis functionality. Optimal distribution of context management 
capabilities needs to be determined based on the computational power of the mobile surveillance 
units, estimated network bandwidth and other requirements from the SPY use cases. As the SPY 
framework is composed around a wireless network of a potentially large number of mobile sensors, 
network issues are especially important to consider. Performing at least a basic level of context 
analysis and event recognation from raw sensor data already within the mobile unit, instead of 
transmitting all raw data on the network, will help avoid network cognestion issues.   
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Having embedded context analysis and decision making on the mobile surveillance units also makes 
it possible to address the issue of situation awareness by further processing input from different 
detection algorithms usually working in isolation, as described in section 4.5.4.  
 
The applicability of GPS technology for positioning has been demonstrated in the context of modern 
surveillance systems. The technology does however possess technological challenges which need to 
be taken into consideration in the context and knowledge analysis process. Effort should be made to 
maximize the capabilities of positioning and tracking when faced with areas containing potential 
obstructions. A possible way for this would be to enable the position-aware context software to take 
use of e.g. GPS repeaters improving coverage in difficult spaces. 
 
On the other hand, hardware and power requirements of GPS should not be a major issue in the 
SPY project context. As vehicles such as police cars are considered the primary mobile surveillance 
units, ensuring that sufficient processing capabilities and power for tracking are included should be 
fairly easy compared to smaller and more resource-limited mobile units. 
 

 

5.3 FEASIBILITY ANALYSIS CONCLUSIONS 

 
This chapter gives an overall conclusion on the feasibility analysis results, stating the overall 
perceived feasibility of the context and knowledge management component against the current 
surveillance system state of the art. 
 
Performance of complex processing on an embedded system is a potential challenge in several 
aspects of analysis, from image processing algorithms to multi-sensor data fusion. However, the 
networked SPY architecture provides the possibility to distribute processing and to execute certain 
features on the centralized supervisor side instead of embedded sensors on mobile surveillance 
units. Hardware upgrades to the mobile IP camera platform are also possible if processing power 
poses a serious issue. 
 
Distribution of processing over the SPY network may also help increase the feasibility of several 
other aspects such as complex event processing, although network bandwidth and performance also 
provide some limitations. Care should be taken in designing the management components to avoid 
neither embedded processing nor network issues becoming serious bottlenecks. 
 
To ensure the feasibility of video and image algorithms, visual data as representative to the final SPY 
platform as possible should be used already in the design phase. To overcome potential problems 
with hardware constraints, it should be ensured during integration planning that different analysis 
software, algorithms and sensor types are able to operate together on the demonstrator platform. 
Furthermore, several technologies and algorithms have proved to be working on other environments, 
but their feasibility on the SPY platform and scenarios remains to be studied. Factors effecting the 
final feasibility consist of e.g. sensor quality and sensor features. 
 
Feasibility analysis of different context and knowledge management aspects has identified some 
potential challenges, but also methods to avoid and overcome them. Overall, no serious feasibility 
issues have been discovered. 
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