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1. Executive summary 
The data that are illustrated in VISDOM visualizations originate from a number of heterogeneous 
sources, across the DevOps tool chain. In addition, a significant amount of processing is required 
before it can be used in the visualizations implemented by VISDOM. The goal of WP2 is to deliver 
the data to the visualization techniques and tools (WP3), based on the requirements and use cases 
that have been defined in WP1. Task 2.3 focuses on data analysis and metrics and complements 
the other tasks in WP2 that focus on techniques and methods to acquire (Task 2.1), and model 
(Task 2.2) data from software project repositories and product artifacts. Task 2.3 results in two 
deliverables: D2.3.1 (the current deliverable) which focuses on examples of data analysis, and 
D2.3.2 which focuses on data metrics.  
 
One of the core ideas behind VISDOM is to analyse the data from a number of heterogeneous 
sources in order for them to be effectively visualised in dashboards. Furthermore, in WP1 we have 
defined three different use cases, where each one focuses on a different aspect or application 
domain (software quality, teaching and Software as a Service - SaaS), and hence tools and 
corresponding data. Therefore, in this deliverable, we will describe for each use case, examples of 
customized analysis approaches for its respective data. Accordingly, this deliverable is organized 
according to the three use cases. The first use case that focuses on Software Quality is more 
comprehensive than the other two as it comprises a number of different aspects: technical debt, 
runtime performance and product quality. Each one of these three aspects is elaborated within a 
different subsection.  
 
The five analysis examples are developed and presented independently in this deliverable. 
However, there is a number of common aspects across the use cases; for example technical debt is 
complementary to product quality, while they both can be used in the SaaS use case and the 
Teaching use case. Such synergy and the corresponding integration between the analysis tools are 
planned as future work within WP3 (see Section 4). 
 
The rest of this deliverable is structured as follows. Section 2 presents examples of data fetching 
and modelling. This has two purposes: first, it links this deliverable to Tasks 2.1 and 2.2 that 
concern data fetching and modelling, as analysis is based on fetching and modelling; second it acts 
as background knowledge to facilitate understanding of the data analysis models presented in this 
deliverable. Section 3 is the core of this deliverable and elaborates on the data analysis examples. 
As aforementioned, the examples are categorized according to the three use cases of the VISDOM 
project. Five examples are discussed in detail: three for the quality use case and two for the 
teaching and SaaS use cases. Finally, Section 4 concludes this deliverable and briefly outlines 
current and future work. 
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2. Data fetching and modelling 
Data analysis can proceed as soon as data are fetched (Task 2.1) and properly modelled (Task 2.2). 
Deliverable D2.1.1 has elaborated on the state of the art on data fetchers (requirements and 
architecture) for different DevOps tools and tool-chains. We have implemented a number of data 
fetchers for each of the use cases investigated in this project. Deliverable D2.2.1 is currently work 
in progress and contains documentations of the data models used in the respective use cases. 
There are currently a number of data models that focus on different aspects of the DevOps tool 
chain, such as models on technical debt or runtime qualities. 
 
In the following sub-sections we provide two examples on both the data fetching and modelling 
for the Quality Use Case. These act as a precursor of the deliverable D2.2.1 and are meant to 
facilitate the comprehension of the data analysis examples presented in the current deliverable. 
Particularly, we show an example for Self-Admitted Technical Debt in Issue Trackers and a second 
example for the Product Quality; in these two examples, data are fetched from Issue Trackers, 
Static Code Analysis tools and Continuous Integration tools. 

a. Technical Debt Data Fetching and Data Model 

Technical debt (TD) refers to taking shortcuts, either deliberately or inadvertently, to achieve 
short-term goals, which might negatively influence the maintenance and evolution of software in 
the long term [1]. A part of technical debt is declared as such by the developers themselves; for 
example when developers state in source code comments, that something is not right and should 
be fixed. This has been termed “Self-Admitted Technical Debt” (SATD) [2]. In this example we work 
on analysing the types of SATD in issue tracking systems. The next sub-sections elaborate on how 
the relevant data are fetched and modelled while Section 3.a will elaborate on the actual analysis. 

i. Collecting data from Issue Trackers  

To collect issue data, we looked into Apache Java projects since they are of high quality and 
supported by mature communities. To select Apache projects pertinent to our study goal, we set 
the following criteria: 

 Both the issue tracking project and the source code repository are publicly available and 
well-maintained. 

 They have at least 1,000,000 source lines of code (SLOC) and 10,000 issues in the issue 
tracker. This is to ensure sufficient complexity. 

 Source code commits involve their associated issue keys within their comments. This is 
important to support linking commits (in the source code repository) with issues (in the 
issue tracker). 

 They are commonly used in other self-admitted technical debt studies [3]. This allows us to 
compare the results between our study and other self-admitted technical debt studies. 

Based on these criteria, we selected Hadoop1 and Camel2. Both projects were studied for self-
admitted technical debt [3], were developed in Java, used Git as a source code repository and 
JIRA3 as an issue tracker. We analysed the latest released versions on Jan 16, 2020. Table 2.a.I. 
shows some details for the two projects. The number of Java files and SLOC are calculated using 

                                                      
1 https://hadoop.apache.org 

2 https://camel.apache.org 

3 https://jira.apache.org 
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the LOC tool4. The number of contributors is obtained from GitHub. We used the JIRA Python 
package to extract all Hadoop and Camel issues from the online server and stored them in a local 
database; then we counted the number of issues. 
 

TABLE 2.a.I.  

DETAILS OF CHOSEN PROJECTS. 

Project # Java files SLOC # Contributors # Issues # Filtered issues 

Hadoop 10,918 1,700,501 259 16,808 6,685 

Camel 17,585 1,196,790 583 14,411 12,259 

 

ii. Filtering issues 

To ensure that we study issues with a complete life cycle, we applied two filtering criteria: 
1. Issue status: Since we are aiming at studying technical debt items that were resolved, we 

focus on issues that are done or closed. Thus, we removed all issues with status Open or 
Pending Closed. 

2. Availability of issue key in commits: Although some issues have their status set to Resolved 
and developers commented that the patches are successfully committed to the 
repositories, we cannot find the related commits in Git. This is mostly because developers 
did not include the issue key in the corresponding commit messages. We also exclude 
these issues, since we need the commit information to be able to answer the research 
question on debt repayment. 

The final number of issues after filtering is listed in the rightmost column of Table 2.a.I. 

iii. Linking issues with commits 

In order to determine how software engineers actually resolve technical debt, we have to capture 
the code commits associated with an issue. This information is needed to determine the software 
developers responsible for repaying technical debt and the time for this repayment. 
 
Since in the previous step, we ensured that the commit messages contain the related issue keys, 
we use those keys to link issues with commits. In practice, we first output the Git commit log, and 
match the issue key by applying a regular expression to the commit log. Then all matched commits 
(including commit date, commit message, and commit author) are inserted into the issue holding 
the issue key ordered by time, and then the issue with commit information is stored in a local 
database. 

iv. Data model for Self-Admitted Technical Debt in issues 

We have used an existing framework from Alves et al. [4] to model the Technical Debt types. This 
framework provides basic types of technical debt, with high-level definitions and a list of 
indicators per type. Table 2.a.II presents the indicators for each Technical Debt type, as well as 
their definitions. 
 

TABLE 2.a.II. 

DATA MODEL OF TECHNICAL DEBT TYPES AND CORRESPONDING INDICATORS (ADAPTED FROM [4]). 

                                                      
4 https://github.com/cgag/loc 
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Type Indicator Definition 

Architecture Debt 
Violation of modularity 

Because shortcuts were taken, multiple modules became inter-dependent, while 

they should be independent. 

Using obsolete technology Architecturally-significant technology has become obsolete. 

Build Debt 

Under- or over-declared 

dependencies 

Under-declared dependencies: dependencies in upstream libraries are not declared 
and rely on dependencies in lower level libraries. 
Over-declared dependencies: unneeded dependencies are declared. 

Poor Deployment Practice 
The quality of deployment is low that compile flags or build targets are not well 

organised. 

Code Debt 

Complex code 
Code has accidental complexity and requires extra refactoring action to reduce this 

complexity. 

Dead code Code is no longer used and needs to be removed. 

Duplicated code Code that occurs more than once instead of as a single reusable function. 

Low-quality code 
Code quality is low, for example because it is unreadable, inconsistent, or violating 

coding conventions. 

Multi-thread correctness 
Thread-safe code is not correct and may potentially result in synchronisation 

problems or efficiency problems. 

Slow algorithm A non-optimal algorithm is utilised that runs slowly. 

Defect Debt Uncorrected known defects Defects are found by developers but ignored or deferred to be fixed. 

Design Debt Non-optimal decisions Non-optimal design decisions are adopted. 

Documentation Debt 

Outdated documentation 
A function or class is added, removed, or modified in the system, but the 

documentation has not been updated to reflect the change. 

Low-quality documentation 
The documentation has been updated reflecting the changes in the system, but 

quality of updated documentation is low. 

Requirements Debt 

Requirement partially 

implemented 
Requirements are implemented, but some are not fully implemented. 

Non-functional requirements 

not fully satisfied 

Non-functional requirements (e.g. availability, capacity, concurrency, extensibility), 

as described by scenarios, are not fully satisfied. 

Test Debt 

Expensive tests 
Tests are expensive, resulting in slowing down testing activities. Extra refactoring 

actions are needed to simplify tests. 

Lack of tests A function is added, but no tests are added to cover the new function. 

Low coverage Only part of the source code is executed during testing. 

 

b. Product Quality Data Fetching and Data Model 

In order to analyse the product quality of a software system, the data is fetched from the 
following data sources: GitLab5 (issues), SonarQube6 (code quality), and Jenkins7 (test execution 
results). 

i. Collecting data from Static Analysis Tool 

To collect software static analysis, we used a concrete project from Experis. Concretely, we collect 
data from the SonarQube tool, which provides continuous inspection of the source code quality 
and security, providing a set of metrics that can be used as part of the product quality assessment. 
Table 2.b.I includes the metrics fetched from SonarQube tool. 
 

TABLE 2.b.I.  

SONARQUBE FETCHED DATA FOR EXPERIS USE CASE 

Metric ID Metric Name Type Description 
SonarQube 

Domain 

classes Classes INT Total number of classes Size 

comment_lines Comment Lines INT Number of comment lines Size 

                                                      
5 https://about.gitlab.com/ 
6 https://www.sonarqube.org/ 
7 https://www.jenkins.io/ 
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comment_lines_density Comments (%) PERCENT 
Comments balanced by ncloc + comment 

lines 
Size 

directories Directories INT Number of directories Size 

lines Lines INT Number of lines Size 

files Files INT Number of files Size 

functions functions INT Number of functions Size 

ncloc Lines of Code INT Non commenting lines of code Size 

complexity Cyclomatic Complexity INT Cyclomatic complexity Complexity 

duplicated_blocks Duplicated Blocks INT Number of duplicated blocks Duplications 

duplicated_files Duplicated Files INT Number of duplicate files Duplications 

duplicated_lines_density Duplicated Lines (%) PERCENT Duplicated lines balanced by statements Duplications 

function_complexity Complexity / Function FLOAT Complexity average by function Complexity 

open_issues Open Issues INT Number of open issues Issues 

 

ii. Data model for Product Quality 

For the assessment of product quality, we defined a set of indicators aggregated in a 3-level 
quality model [5] (see Fig. 2.b.I). Each quality model level is providing quality assessment at 
different levels: 

 Quality metrics: a metric defines how the quality of a specific attribute of an entity is 
measured, it provides a means to quantify factors that characterize this entity (or a related 
one).  

 Quality factors: a quality factor constitutes a property of the software product. These 
quality factors can be assessing a quality related to the software product or software 
development process. They are computed as an aggregation of quality metrics using a 
weighted average. For example, “Testing Status” or “Code Quality” as product quality 
factors, and “Productivity” or “Performance” as process quality factors. 

 Strategic Indicators: a strategic indicator is an aspect that a company considers relevant for 
the decision-making process during the software process development. They are computed 
as an aggregation of quality factors using an average or a weighted average. For example, 
time-to-market, maintenance cost, customer satisfaction. 

 
Fig. 2.b.I shows the proof-of-concept data model defined for the Experis case. This initial quality 
model combines information from all the sources (GitLab, SonarQube, and Jenkins) to define the 
strategic indicator “Product Quality”. All the indicators are computed using an average of the 
lower level of the model. This strategic indicator includes product quality factors covering the 
DevOps life cycle: 

 Issues quality in terms of being well-defined in the backlog (plan) 

 Code quality in terms of source code quality (code) 

 Testing status in terms of performance and test success (test & build) 

 Software stability in terms of number of open bugs (monitor) 
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Fig. 2.b.I. Product Quality Data Model 
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3. Data analysis examples per use case 
The next sub-sections elaborate on the data analysis examples for each use case (quality, teaching, 
Software as a Service - SaaS). As aforementioned, the quality use case is further decomposed into 
three aspects: Technical Debt, Product Quality, and Runtime Performance (respectively 
subsections 3.a., 3.b and 3.c). 

a. Quality Use Case: Technical Debt 

In this example we analyse the types of self-admitted technical debt in issue tracking systems, and 
determine how software engineers identify and resolve them.  
 

1) What types of technical debt are reported in issue trackers? 
We found eight types of technical debt in issue trackers: architecture, build, code, defect, design, 
documentation, requirement, and test debt. For each type we found one or more indicators (see 
data model in Section 2.a.iv). In the following paragraphs, we report on the associated indicators 
for each type, also providing a quote from actual issues to exemplify each indicator. 

● Architecture debt: problems that are architecturally significant, i.e. they are hard to 

change. Most of the debt in this type relates to the indicator Violation of Modularity.  

“It would be good if these were moved into their own module....” - [Camel-4543]8 

Some architecture debt is caused by Using Obsolete Technology.  

“The camel-atom component is using an ancient incubator version of abdera which 
will make it hard to work with camel-cxf.” - [Camel-4132] 

● Build debt: issues that make building (i.e. source code compilation to artifacts) harder or 

more time-consuming. Most of the identified build debt is caused by Over- or Under-

Declared Dependencies. 

“Avoid the redundant direct dependency on log4j by the components.” - [Camel-
4331] 

The rest of build debt is caused by Poor Deployment Practice.  

“Rationalize the way architecture-specific sub-components are built with ant in 
branch-1. This is a matter of maintainability and understandability, and therefore 
robustness under future changes in build.xml.” - [Hadoop-8364] 

● Code debt: issues in source code, which negatively influence the maintenance of software. 

Most of the code debt is caused by Low-Quality Code. 

“This will lead to very unmaintainable code. We absolutely do not want to have 
nested retries for different contexts.” - [Hadoop-3198] 

A few code debt items result from Slow Algorithm.  

“#query() does O(N) calls LinkedList#get() in a loop, rather than using an iterator. This 
makes query O(Nˆ2), rather than O(N).” - [Hadoop- 8866] 

Multi-Thread Correctness is another factor causing code debt.  

                                                      
8

 https://jira.apache.org/jira/browse/CAMEL-4543 
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“EnsureInitialized() forced many frequently called methods to unconditionally acquire 
the class lock.” - [Hadoop- 9748] 

The rest of the code debt is caused by Dead Code, Duplicated Code, and Complex 
Code.  

“As we don’t use the CxfSoap component any more, it’s time to clean it up.” - [Camel-
2523] 

“I am concerned about the code duplication this brings.” - [Hadoop- 6381] 

“...can be simplified to the following so there aren’t so many return statements to 
track.” - [Hadoop-10169] 

● Defect debt: known defects that are deferred to be fixed. All defect debt items are caused 

by Uncorrected Known Defects. 

“This works in 2.12.x onwards. Hunting this down on 2.11.x is low priority. End users 
is encourage to upgrade if they really need this.” - [Camel-6735] 

● Design debt: shortcuts or non-optimal decisions taken in detailed design. All design debt 

results from Non-Optimal Decisions. 

“Instead of passing a long[] you should pass a struct that implements Writable.” - 
[Hadoop-481] 

● Documentation debt: when the software is modified, the documentation is not updated to 

reflect the changes or the quality of updated documentation is low. Most of this type of 

debt is caused by Outdated Documentation. 

“The maven reports is just getting to old and intermixed with 1.x and trunk releases.” 
- [Camel-1846] 

The second indicator is Low-Quality Documentation.  

“I agree to improve documentation to make it clear that...” - [Hadoop-12672] 
● Requirement debt: when the requirements specification is not in line with the actual 

implementation. Some requirement debt is caused by Requirements Partially 

Implemented. 

“The only feature which we don’t support is correlated message groups. That requires 
a bit more work and also may complicated...” - [Camel-1669] 

Another common cause concerns Non-Functional Requirements Not Being Fully 
Satisfied. In the example below, concurrency is not fully satisfied.  

“Definition requires the implementations for its interfaces should be thread-safe. 
HarFsInputStream doesn’t implement these interfaces with tread-safe, this JIRA is to 
fix this.” - [Camel-5587] 

● Test debt: shortcuts or non-optimal decisions taken in testing that negatively affect 

maintainability. Most test debt is caused by Lack of Tests. 

“There are no XQuery specific tests.” - [Camel-201] 

The other major cause of test debt is Low Coverage.  
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“Some of the test code doesn’t check for correct error codes to correspond with the 
wrapped exception type.” - [Hadoop-11103] 

Finally, some test debt results from Expensive Tests. 

“I see recent hadoop-hdfs test runs have been taking 2.5 hours. This one (new patch) 
was 45 minutes.” - [Hadoop-11670] 

 
Table 3.a.I. presents an overview of technical debt types and indicators in the examined issues. We 
observe that code, documentation, and test debt are the three most common types (with 38.8%, 
21.7%, and 18.4% respectively). Furthermore, the three most common indicators are Low-quality 
Code, Lack of Tests, and Outdated Documentation.  
 

TABLE 3.a.I. 

TYPES AND INDICATORS OF TECHNICAL DEBT. 

Type Indicator # # % 

Architecture debt 
Violation of modularity 8 

10 6.6 
Using obsolete technology 2 

Build debt 
Over- or under-declared dependencies 5 

6 3.9 
Poor deployment practice 1 

Code debt 

Complex code 2 

59 38.8 

Dead code 12 

Duplicated code 6 

Low-quality code 36 

Multi-thread correctness 1 

Slow algorithm 2 

Defect debt Uncorrected known defects 4 4 2.6 

Design debt Non-optimal decisions 8 8 5.3 

Documentation debt 
Low-quality documentation 16 

33 21.7 
Outdated documentation 17 

Requirements debt 
Requirement partially implemented 3 

4 2.6 
Non-functional requirements not being fully satisfied 1 

Test debt 

Expensive tests 1 

28 18.4 Lack of tests 20 

Low coverage 7 

 

Finally, since we annotated technical debt on the sentence level (instead of the issue level), an 
issue may contain more than one type of technical debt. Table 3.a.II. presents how many issues 
contain zero, one or more types of technical debt in issues. As we can see, 24 out of 117 issues 
(20%) that contain technical debt, contain more than one type. This validates our choice to 
analyse issues at the level of sentences; if we had performed the analysis at the level of issues, we 
would have missed the additional technical debt types per issue. 
 

TABLE 3.a.II. 

NUMBERS OF TYPES OF TECHNICAL DEBT IN ISSUES. 

Issue description # Issues % Issues 

Does not contain technical debt 383 76.6 

Contains one type of technical debt 93 18.6 

Contains two types of technical debt 21 4.2 

Contains three types of technical debt 2 0.4 

Contains four types of technical debt 1 0.2 
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2) When do software engineers identify technical debt? 

We observed three distinct cases of technical debt being identified in issue trackers: 
1. Identifying technical debt before creating an issue (i.e. debt is the reason for creating the 

issue): When developers spot an existing technical debt item in the system, they report it in 

an issue tracker to be resolved. For instance, a developer found low-quality code, which 
complicates debugging; thus, he/she created a new issue: 

 

“If the user doesn’t setup the right camel context for the context component. The exception 
we got is misleading, we need to throw more meaningful exception for it.” - [Camel-5714] 

 

2. Identifying technical debt during code review: As explained in Section III, software 

engineers perform code reviews by creating and reviewing code patches in issue trackers. 

When a code reviewer identifies technical debt items in a code patch, he/she discusses it 

with other developers to determine, if the identified technical debt should be resolved or 

committed to the system. For example, during a code review, a developer found that a 

shortcut was taken. Thus, he/she commented on a patch: 

 

“The patch looks good to me... It would be better if we can add an upper limit for the size of 

the GSet.” - [Hadoop-9763] 

 

3. Identifying technical debt after a patch is committed: Technical debt can exist in a patch 

but go undetected through the code review; after the patch is committed, a developer may 

notice the debt in the commit and report it. For instance, after a command patch is 

committed to the repository, a developer noticed that documentation is not updated 

accordingly: 

 

“We need to update the documentation with the new command.” - [Camel-8101] 
 

TABLE 3.a.III. 

TECHNICAL DEBT IDENTIFICATION CASES. 

Project # Identified 
Case 1 Case 2 Case 3 

# % # % # % 

Hadoop 101 41 40.6 57 56.4 3 3.0 

Camel 51 27 52.9 13 25.5 11 21.6 

Total 152 68 44.7 70 46.1 14 9.2 

 
To gain a better understanding of how technical debt is identified, Table 3.a.III. presents the count 
of technical debt items for the three aforementioned cases. Clearly, the first and second cases 
represent the majority (44.7% and 46.1% respectively) in these projects. Compared with Camel, 
there is 30.9% more debt introduced in Hadoop with the second case and 18.6% less debt 
introduced with the third case. This means that more technical debt is identified during code 
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reviews (on patches) than after the patch is committed in the system in Hadoop compared with 
Camel. 
 
Moreover, we also investigate who reported the debt: the developers who created it in the first 
place or those who discovered it. Since technical debt identified in the first case already exists in 
the system, information on who created it is not contained in issue trackers; thus, such 
information is obtained only for technical debt identified in the second and third cases. Table 
3.a.IV. presents an overview on who reported the technical debt. We find that on average most of 
the debt is reported by other developers (i.e. 86.9%), and a small part is self-reported (reported by 
those that created it). Camel has a higher percentage of self-reported debt than Hadoop, but the 
vast majority of its debt is still reported by others (i.e. 70.8% versus 29.2%). This may mean that 
most developers create technical debt unintentionally. 
 

TABLE 3.a.IV. 

TECHNICAL DEBT REPORTERS. 

Project 
Reported by creators Reported by others 

# % # % 

Hadoop 4 6.7 56 93.3 

Camel 7 29.2 17 70.8 

Total 11 13.1 73 86.9 

 
3) How do software engineers resolve technical debt within issues? 

We first analyse how much technical debt is paid off. Table 3.a.V. presents the amounts and 
percentages of technical debt items that are identified and resolved. We can see that most of the 
identified technical debt is actually resolved in both Hadoop and Camel (i.e. 71.3% and 72.5%, 
respectively). This indicates that, when technical debt is reported in issue trackers, it will likely be 
resolved. In other words, most software developers are conscious of the importance of paying off 
technical debt items. 

TABLE 3.a.V. 

AMOUNT OF TECHNICAL DEBT THAT WAS REPAID. 

Project # Identified # Repaid % Repaid % Remaining 

Hadoop 101 72 71.3 28.7 

Camel 51 37 72.5 27.5 

Total 152 109 71.7 28.3 

 
The next question we answer is who repays technical debt. As shown in Table 3.a.VI., we 
distinguish between developers who create technical debt, those who identify it and other 
developers who participate in resolving it. We can see that most of the technical debt is repaid by 
those who identified it (i.e. 47.7%), and those who created it (i.e. 44.0%); while only 8.3% debt is 
resolved by other developers. This shows that developers take the responsibility to pay off most of 
the technical debt they identified or created themselves. 
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TABLE 3.a.VI. 

WHO REPAID TECHNICAL DEBT. 

Project # Repaid 
# Repaid by 

Creators Identifiers Others 

# % # % # % 

Hadoop 72 36 50.0 33 45.8 3 4.2 

Camel 37 12 32.4 19 51.4 6 16.2 

Total 109 48 44.0 52 47.7 9 8.3 

 
The final question that we answer is how long it takes to fix technical debt. Fig. 3.a.I shows the 
mean times, the median times, and the time distributions of technical debt repayment for the two 
projects. With a visual inspection, we see that the time spent to fix technical debt in Hadoop and 
Camel varies. We also observe that after the technical debt is reported (point zero in the y axis), 
most of the fixes happened in a short time compared to the average (67.0% of the debt is repaid in 
the first 100 hours). 
 

 
Fig. 3.a.I. The time distribution of technical debt repayment in issue trackers. 

Furthermore, we compare the time spent on resolving technical debt by different developers. 
More specifically, we compare repayment time distributions between pairs of developers (e.g. 
between creators and identifiers) using the Mann-Whitney test [6] and Cliff’s delta [7] to 
determine the significance level and the effect size of the differences. The result is demonstrated 
in Table 3.a.VII. There are notable differences between Hadoop and Camel. In Hadoop, the 
repayment time of identifiers and others is longer than creators with statistical significance (p-
values are 0.031 and 0.028 respectively). Moreover, the time difference between identifiers and 
others is at the margin of statistical significance (p-value is 0.080). According to the effect size, we 
observe that the difference between creators and identifiers is small, while the difference 
between identifiers and others is large. Thus, technical debt in Hadoop is paid back the quickest by 
creators, followed with a small margin by identifiers, followed with a large margin by others. In 
Camel, the situation is different as none of the time differences is statistically significant. We only 
observe that the repayment time of others is much longer (on average) than creators and 
identifiers. 
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TABLE 3.a.VII. 

REPAYMENT TIME COMPARISON BETWEEN DIFFERENT DEVELOPERS. 

Project 
Average time spent on debt repayment (h) 

p-value Cliff’s delta 
Creators Identifiers 

Hadoop 128.0 1510.8 0.031 -0.303 (small) 

Camel 174.5 142.3 0.935 0.021 (negligible) 

 Identifiers Others   

Hadoop 128.0 5730.3 0.028 -0.777 (large) 

Camel 174.5 3104.3 0.851 -0.069 (negligible) 

 Identifiers Others   

Hadoop 1510.8 5730.3 0.080 -0.626 (large) 

Camel 142.3 3104.3 0.463 -0.210 (small) 

 

b. Quality Use Case: Product Quality 

The product quality data is continuously fetched and the quality model (see Section 2.b.ii) is used 
to continuously assess product quality in order to visualise quality. The software analytics tool Q-
Rapids [8], is used in this section to illustrate the analysis results. 
 
All the quality model indicators are computed to be interpreted as a bad/good quality, so the 
results of the analysis are values for each one between 0 and 1, with 0 being interpreted as the 
worst quality values and 1 the best quality. In order to support decision-makers, the quantitative 
assessment (values from 0 to 1) are classified as categories to provide a qualitative assessment 
(from bad to good). In the proof of concept, all the indicators (metrics, factors, and strategic 
indicators) have been classified in three equally distributed categories: Bad, [0, 0.33); Neutral, 
[0.33, 0.66); Good, [0.66, 1]. 
 
As a proof-of-concept, we analysed two pilot projects: PHE and PHE_server, which belong to a 
single product called PHE. It consists of a mobile application aimed at improving the welfare state 
in the workplace. PHE contains the development related to the mobile application, while 
PHE_server contains the database and the intelligence offered by the application, meaning that it 
is related to the operation phase. The tools used by the development team, which are used to 
collect the raw data, are: GitLab, SonarQube, and Jenkins. The product quality model described in 
Section 2.b (Fig. 2.b.I) has been customised for each project to fit with the produced data. Fig. 3.b.I 
shows the visual representation of the instance of the project quality model applied to project PHE 
on July 31st, 2020. For the Product Quality strategic indicators, we implemented metrics related to 
Code Quality factor (Comment Ratio and Duplication Density) and some metrics related to the 
development process (Software Readiness strategic indicator). Fig 3.b.II shows the quality 
visualization for project PHE at the level of strategic indicators. Both indicators quality assessment 
correspond to the neutral zone. 
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Fig. 3.b.I.PHE project Quality Assessment. 

 
Fig. 3.b.II.PHE Quality Assessment Visualization. 

Q-Rapids includes views for the different levels in the quality model to allow decision-makers to 
understand the assessment. Fig. 3.b.III shows the different views to understand Product Quality 
strategic indicator assessment. Fig  3.b.III (a) shows that there is only one factor impacting Product 
Quality (Code Quality), and its assessment is 0.44 (neutral zone); (b) shows that Code Quality 
Factor is impacted by two metrics (Comment Ratio and Duplication Density), this chart allows to 
see that the problematic metric is related to commented code, duplication is quite good; (c) 
visualises metrics independently. 
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(a) Detailed Product Quality strategic indicator 

 
 

(b) Detailed Code Quality factor 

 
 (c) Code Quality metrics 

Fig. 3.b.III.PHE Product Quality assessment rationale. 

Fig 3.b.IV includes the textual view for metrics, including information about the metric description 
and the assessment computation. 
 

 
Fig. 3.b.IV. Description of metrics used. 
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c. Quality Use Case: Runtime Performance 

Performance of software (more specifically the ability to perform specific tasks within a bounded 
time) is an example of a runtime (non-functional) quality. In this specific example we consider the 
performance of the different algorithms that make up the image processing pipeline of a 
professional production printer at CPP. 
 
These image processing algorithms consume a lot of processing power and have to keep up with 
the printer speed in real time. The algorithms are developed in two stages. First, software is 
written to offline test new print modes and image processing algorithms in the image processing 
pipeline. In this stage, the images to be printed are processed offline and the resulting jetting 
sequences are fed into a printer or a printer simulation to see their effects in prints. In the second 
stage, the algorithms are moved to the inline software that performs the image processing in real 
time. This is the same code, but optimizations can be added. This is accomplished by the use of the 
language Halide that makes an explicit difference between the algorithm and the way it may be 
optimized: one can change the “execution schedule” without touching the algorithm. In both 
cases the performance of the different algorithms in the pipeline is logged. In the inline case this is 
part of the “functional logging” that continuously logs the status of machine parts, for example by 
means of sensor values. 
 
In the DevOps cycle, a number of regression tests are performed each time a new build is made.  
With respect to image processing, this also includes making a number of virtual test prints with 
the embedded software connected to a software-in-the-loop (SIL) simulation of the printer.  
 
In that case, the performance is as it would be in a real machine. The image processing related log 
files from the regression tests for each build are copied to a permanent storage area for further 
analysis.  
 
Because the regression tests may run on different hardware platforms (they are executed on a 
test park of different hardware), performance results may depend upon the processor hardware 
of the test engine. A correction has to be applied to account for such differences. 
 
Finally, the trends (for the consecutive builds) for the different print modes (the image pipeline 
and thus performance may differ per print mode family) are visualized via Jupyter (Python) 
notebooks, together with annotations for known changes in the software. 
 
Fig. 3.c.I illustrates an example of the performance visualization for a specific print mode. Clearly 
visible is the performance degradation starting at build 7996. Note that some data only started to 
be available from build 7920. 
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Fig. 3.c.I. Performance for a specific print mode. 

The horizontal axis denotes the build number (based on last 4 digits), and the vertical axis the 
scaled execution time in microseconds. The execution time is scaled per hardware type to make 
execution times comparable.  
 
Within the diagram a separate scatter plot is generated for each combination of [processing step, 
hardware type]. Each colour represents a different image processing step. Each marker shape 
represents a specific hardware type (i.e. the CPU type of the test host that ran the regression test). 
 
The texts for the two build highlight markers that show the relation to the TFS (Team Foundation 
Server) item that has been created after the detection of this degradation are: 

 7992: TFS 300703(bug): Performance degradation for [jetFreq:50000 yRes:1125 bpp:8 
bppOut:1 htm:1 colR:5 colS:2, HalideType=3] 

 8034: TFS 300703(bug): Fixed 

d. Software as a Service (SaaS) Use Case  

i. Background 

Roadmap is a strategic planning tool that lays out the features planned for the software. It is a 
very common tool in the software development toolbox. On one hand, it facilitates the discussion 
on what features, technologies, etc the investments should be put on and on the other hand, it 
provides a big picture for the development team and other stakeholders. 
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There are a plethora of existing roadmapping tools available already, for example ProductPlan [9], 
Aha! [10], Wrike [11] and Roadmunk [12] to name just a few. These tools offer usually a Gantt 
chart view to what will be implemented in the product and when. While this is very useful, the 
tools fail to communicate why something is valuable and why it should be done at the certain 
moment. By gathering data from individuals and from various project management tools and 
processing, analysing and combining this data, we could create roadmap visualizations that are 
based on the data and are living: if the data changes, the roadmap adjusts accordingly to maximize 
the produced end user value based on the current situation. 

ii. Goal 

In international SaaS use case the goal is to create a roadmap visualization that facilitates the 
discussions on what needs to be done next from business perspective as well as from the technical 
point of view. To do that, we need to gather data on the roadmap level features, technical debt 
paybacks, improvements, etc., value them by stakeholders, create a synthesis of this data and 
visualize it in a way that helps to facilitate the discussion on the correct order of things in the 
roadmap. 
 
From the resulting visualization, one should be able to tell when a certain customer will receive 
the new feature he or she has requested. The business owner should be able to tell based on the 
visualization what would be the optimal way to organize the roadmap to provide the best end 
user value according to the estimates of the stakeholders and how the currently selected roadmap 
differs from the optimal one. Sometimes, it is just necessary to deviate from the optimal roadmap, 
to allow payback of technical debt to keep the development speed on a good level or it just is 
more efficient to implement some features together, although the optimal way to produce end 
user value would indicate that only one of those features should be implemented now. 

iii. Data model 

In order to create such a tool, we have analysed what data are needed to produce useful 
visualizations of the roadmap for various stakeholders. Fig. 3.d.I illustrates the initial data model. 
In the centre, is the concept of task. Task in this context needs to be thought in a broad sense. It 
can be a feature request, technological improvement, need for architectural refactoring, etc. Tasks 
have dependencies to other tasks. The most obvious way a task is dependent on each other is that 
one task needs to be implemented before the second one can be realized. However, there might 
be other relationships between tasks, too. Task can be a composition of other tasks or have some 
other relationship.  
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Fig. 3.d.I Initial data model for roadmapper tool based on the analysis. Note that roadmap segment concept is 

missing from this ER diagram. 

We model different stakeholders as users of the system. These users have groups they belong to 
and the group defines their perspective to task ratings. Groups can be Product owner, developers, 
designers, account directors (or customer representatives), for example. Groups can be divided 
into two categories: business and development. These categories define from which point of view 
the user creates ratings for the task. Business category users create ratings on how important it is 
to get the feature done rapidly from a business perspective. Development category users rate 
tasks according to how hard they are to implement. From these two perspectives we can say that 
tasks with high business value and easy to implement could be done first. Or second, if we want to 
focus on high business value tasks that are hard to implement first. 
 
Tasks belong to a roadmap and their ratings allow the system to organize them in an optimal 
order. The data model figure (Fig. 3.d.I) is missing a concept of the roadmap segment and it 
models a part of the roadmap. Segment is a group of tasks that needs to be or is beneficial to 
implement together. 
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In addition, user groups can have weights. This is particularly useful for account directors as it 
allows business owners to play around with the importance of accounts. We can weigh the ratings 
of certain accounts based on the perceived customer value. Then we can answer questions like 
“How would our roadmap change, if this certain customer turns out to be more important than we 
currently think?” or “How would our roadmap change, if the significance of this customer 
decreases?”. 

iv. Integrations 

The description in the previous section focused on the minimum functionality for the roadmap 
visualization tool so that it is still useful. However, the real value of the approach lies in the 
integrations to other systems and data sources. 
 
First and foremost is integration to project management systems such as JIRA, so that the tasks 
can be imported from and exported to the project management system. Export functionality is 
less critical. For this we need to implement a data fetcher and convert the data to fit the data 
model presented earlier. VISDOM data fetchers could do this. 
 
In addition to JIRA, integrations to tools that provide code quality data could be useful. We could 
have a stakeholder view that would annotate the tasks on one dimension about technical debt, 
code smells and such data and order them according to urgency regarding these criteria. 

v. Visualizations 

From the data model we can visualize the roadmap data for example as depicted in Fig. 3.d.II and 
Fig. 3.d.III. In Fig. 3.d.II, a dashboard of potential roadmap visualization is shown. Heatmap shows 
an overview of business value and development effort ratings of the tasks. Planner plot visualizes 
the created user value of the currently selected order of the tasks and completion meter shows 
the percentage of completion of the current roadmap. 
 

 
Fig. 3.d.II Possible dashboard of Roadmap visualization. 

Fig. 3.d.III shows a project planner view where roadmap milestones are presented in a Gantt chart. 
This view helps in discussion when a certain feature or set of features is ready to ship. 
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Fig. 3.d.III. Traditional Gantt chart view of the roadmap. 

e. Teaching Use Case  

i. Background 

Visualizations have been used as part of software engineering teaching for decades. However, 
visualizations have been mainly targeted at the level of code, that is, to visualize the structure of 
software, rather than help in understanding the software development process. Our study on 
state-of-the-art solutions for visualizations in teaching [13] revealed only few approaches utilizing 
visualizations for process and project management. The majority of these approaches were based 
on Gantt charts, often used as part of a game-like simulator, providing students means to learn 
key concepts of project management, such as scheduling and resource allocation. However, none 
of the approaches we found used real data.  
 
Another common way to visualize software process in teaching was to use burndown charts to 
track the progress of Scrum projects. These charts were usually quite simplified, as real-time 
approaches only concentrated on one-dimensional data, while more complicated approaches only 
provided analyses in a retrospective manner. 
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To summarize, the state-of-the-art study showed that 1) there are only few approaches using 
visualizations to teach software project and process management, 2) the existing approaches 
mainly use one view for students and teachers alike to show progress in a simplified manner, and 
3) existing approaches use fairly standard charts and very limited real data.  

ii. User study – needs for analysis 

To identify visualization needs in teaching software engineering, we conducted interviews with 10 
academics in the field of software engineering, teaching topics such as programming, software 
engineering processes, testing, software architecture, and software project management. While 
the discussions covered a wide range of software engineering topics and the teaching was aimed 
at both Bachelor’s and Master’s levels, the following critical needs could be found nearly 
unanimously in the interviews: 

1) Need to see how students progress during the course 

Teachers strongly brought up the need for visualizations on students’ progress. They particularly 
desired a way to easily notice students who are starting to fall behind and are in need of extra 
support. Visualization of progress was also desired on various levels: on the level of an individual 
course and on the level of a whole study program. The teachers further felt a particular need for 
notifications on students who get stuck on automatically assessed assignments. 

2) Need to see what topics are difficult to grasp 

Along with being able to see how students progressed, teachers wanted visualizations on what are 
the topics that are difficult to grasp, thus creating bottlenecks for the course. On a more detailed 
level, there was a need to see the success/failure rates per topic, task or exercise.  

3) Need to see how much effort students use for the given tasks 

Finally, teachers needed to see how much effort students use. Effort estimations on coursework 
are based often on feedback given after courses, and they aren’t very accurate. It would be highly 
valuable to see analyses on actual effort used, to better plan the coursework and to also 
communicate to students how much time and effort they should be prepared to invest in the 
course. 
Additionally, the following needs were mentioned by some interviewees: visualizing work 
distribution within groups/between students, visualizing the pace at which groups start work on 
their projects (related to students’ progress), visualization on code and how much code is 
rewritten during the course, monitoring the completion of different submissions. 

iii. Requirements for analysis  

1) Overview and background 

Based on our user study, we focused on the three most critical needs and began to construct 
requirements for a visualization demo based on them. We treated each need as a use case and 
created scenarios around it to drive development of the visualization. Due to time constraints the 
current demo is built around one of these use cases: Monitoring/visualizing students’ progress.  
As teachers want to see how students are progressing, they need a visualization showing: 

 The current “status” of each student 

 Average status of completion 
o Simply viewing how one student is progressing may not show if they are falling 

behind. Comparing a student’s progress to how the rest of the students are 

progressing will more easily help showing the ones in need of support. 
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 Expected status of completion 

o Based on history data from previous implementations, we can calculate how a 

student should be progressing at any given time in relation to a certain outcome 

(grade). 

 Highlighting of students that are significantly below average 

The “status” of a student is a multi-dimensional concept, calculated using several elements of data 
from various sources. In the current implementation for our teaching use case, “status” consists of 
the number of collected points and completed exercises per each course week and cumulatively 
up to each week, and the number of submissions and commits per each exercise. However, more 
elements can be added in the future. How a student progresses on a course is combination of the 
aforementioned elements, whose comprehensive investigation requires effective visualizations. 
Moreover, the most accurate information on progress can be obtained by comparing a student’s 
status (or some elements of it) to what the status should be (“expected status”) at a given point of 
time to ensure passing the course and achieving desired learning outcomes. That is, a student’s 
status needs to be compared to the average student on the course, or to the expected progression 
based on history data to get a sense whether a student’s status is “progressing nicely” or “falling 
behind”. Visualizations, in turn, are used to show how students’ statuses evolve over time and 
how different students’ progress relate to each other.  
 
Data mining and analysing available data to unearth a multi-dimensional value such as “status” is 
non-trivial. To get the most comprehensive picture of factors affecting a student’s progress, we 
need to identify all relevant data sources and items and find relationships between them. While 
we are not using very complicated analytics in calculating values or processing the data (apart 
from calculations regarding history data), analytics are vital to form meaningful visualizations 
containing (analysed) data from a multitude of sources. Our use case demonstrates how manual 
analyses based on visualizations can provide much valuable information.  
 
In our case, real live data currently comes from two data sources: GitLab code repositories and a 
MOOC-styled learning management system, Plussa.  Teachers publish materials, weekly exercise 
assignments and give points using Plussa. Students have their own git-repositories that are hosted 
in Tampere University's instance of GitLab, and weekly programming exercises are submitted for 
automatic grading by submitting the repository url in Plussa, once an exercise is finished. Both 
GitLab and Plussa provide a simple, authorization-based RESTful API to the data saved in the 
systems. The data collected by Plussa includes course name, participants, exercises, submissions 
and collected points. GitLab API provides data about its users, repositories and commits. 
 
However, only half of the course grade consists of collected exercise points, while the other half is 
made up of an exam that is taken and graded in a separate system. Thus, actual course grades are 
not yet available for use in the current visualization demo, as we cannot currently access data 
from the exam system. For this reason, course grades are projected from the collected exercise 
point data, and the estimates are used for testing the concepts of our analyses and visualizations 
that are based on history data. In the future, we plan to incorporate predictive analytics based in 
history data on grades from previous years in order to catch students early on who need more 
support to achieve the desired learning outcomes. 



      
 29.09.2020 
 

 26/36 

2) Stakeholder interests 

There are three main stakeholder interests: 

 The teaching assistant (TA) will want to check the status at certain intervals in real time 
during the course, and needs to see a visualization of the students’ progress, and 
particularly some kind of highlighting of students who seem to be falling behind at that 
time.  

 The responsible teacher might also check students’ progress during the course, but he/she 
will be even more interested in examining the data and visualizations in retrospect – who 
were falling behind in the beginning / middle but were able to catch up, were they given 
support (i.e. did support work) or not (were the students just busy in the beginning or had 
some kind of epiphany and caught up on their own), and how accurately could predict 
difficulties in the end based on falling behind in the beginning. The responsible teacher 
would also be interested in larger trends and need visualizations on differences between 
study years. 

 A student might be interested to see how he/she is progressing compared to the average 
student taking the course. A student can also see what kind of grade can be expected 
based on the current progression.  

3) Scenarios 

We constructed six scenarios to portray the different stakeholder interests. All scenarios depend 
on the following data, mined from code repositories (GitLab) and the task submission system 
(Plussa): 

1. Number of completed tasks on a given week  
2. Number of points gathered on a given week   
3. Number of completed tasks cumulatively up to a given week  
4. Number of points acquired cumulatively up to a given week  
5. Number of commits per each submitted task per given week  
6. Average number of commits per task up to a given week  
7. Number of commits cumulatively up to a given week  
8. History data from previous implementation on course  

a. Grades of students from previous implementation  
b. Number of tasks, points and commits from students at each given time point 

 
Table 3.e.I lists the scenarios, the views they are linked to, and the data analyses required for each 
scenario. As listed, Scenario 6 additionally requires data from other courses in the study program. 
How the data is shown to different stakeholders and what kind of analyses are provided differs 
between scenarios and is presented in different views. 
 

Table 3.e.I Scenarios for “Monitor student progress” requirement in Teaching use case. 

 Scenario 1 
Check 
current 
status 

Scenario 2 
Receive 
notifications 
of those 
falling 
behind 

Scenario 3 
Check 
progress 
over time 

Scenario 4 
Compare 
progress 
with results 

Scenario 5 
Compare 
own status 
to others’ 

Scenario 6 
Compare 
course 
progress to 
other 
courses 

View Status view Status view Progress 
view 

Results view Student 
view 

Course 
view 
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Stakeholders Responsible 
teacher, TA 

Responsible 
teacher, TA 

Responsible 
teacher 

Responsible 
teacher 

Student Responsible 
teacher 

Real 
time 
data 
analyses 

For 
individuals  

Cumulative 
points from 
tasks, 
commits/tas
k, number of  
submission 
attempts, 
and 
completed 
tasks  
 

Finding 
those below 
certain 
threshold 

Evolution of 
status over 
time, 
comparison 
of status to 
expected 
status over 
time 

Correlation 
between 
grade and 
progress 
over time (in 
relation to 
expected)  

Cumulative 
points from 
tasks, 
commits/ta
sk and 
number of 
completed 
tasks 

Status as 
calculated 
from 
available 
data in 
relation to 
expected 
progress for 
all available 
courses 

For group Average 
points, 
completed 
tasks and 
number of 
commits/tas
ks 

Percentiles 
(showing 
how many 
are currently 
below 
selected 
threshold)  

Evolution of 
average over 
time 

Correlation 
between 
grade and 
progress for 
selection of 
individuals, 
evolution of 
group status 
over time 

Average 
points, 
completed 
tasks and 
number of 
commits/ta
sks 

Average 
statuses for 
all available 
courses 

History data analyses Relating 
grade data 
history and 
expected 
progress at a 
given time 
point  

Thresholds 
for 
minimum 
expected 

Evolution of 
progress 
thresholds 
over time, 
evolution of 
“expected 
level of 
completion” 
over time 

Comparing 
grade 
distribution 
against 
previous 
implementat
ions 

Relating 
grade data 
history and 
expected 
progress at 
a given 
time point 

Expected 
progress 
thresholds 
for all 
available 
courses 

 

iv. Analyses provided by visualization demo 

The current version of the visualization demo implements the status view and the progress view 
from the perspective of the responsible teacher or the teaching assistant. Both views provide 
visual analysis scenarios as described in Table 3.e.I. Both in the status view and the progress view, 
the main visualization component can be displayed in four different modes: the point mode, the 
exercise mode, the submission mode and the commit mode. Each of these modes represents a 
dimension of the student’s status. 
 
Fig. 3.e.I illustrates the status view in point mode, where each student is represented by a bar. 
Student bars are coloured according to how many points the student has received, and the bars 
are ordered by points accumulated over the course. The user may select to display a horizontal 
reference line for the average of collected points. Similarly, a vertical reference line for separating 
students that fall below a customizable threshold, is available. Fig. 3.e.I shows all gathered points 
from the first course week, as well the average accumulation of points (dotted horizontal line), 
and a threshold for students with a completion rate of less than 10 percent of maximum points 
(blue vertical line). 
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Fig. 3.e.I. A screen capture from the status view. 

As the course progresses, the teacher can also use the point mode to inspect either any of the past 
or the ongoing course week to see how many points students receive each week, while also seeing 
the accumulation of received and missed points, coloured in red and dark green. This is illustrated 
in Fig. 3.e.II. 
 

 
Fig. 3.e.II. Status view in point mode showing students’ statuses on the sixth week of the ongoing course. 
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Fig. 3.e.III demonstrates the submission mode of the status view on the fourth course week. 
Exercise number 4 stands out visually, having relatively many white, dark green and red entries in 
comparison with the other exercises of the week. White entries symbolize a student not having 
made a submission to the exercise, red entries symbolize failed exercises and green shades passed 
exercises, a darker shade marking several re-submissions. 
 

 
Fig. 3.e.III: Status view in the submission mode. Week number 4 seems to feature 5 exercises, with the fourth 

exercise visually standing out. 

A quick look into the exercise details tells that the visually deviating exercise is a project, generally 
meant to be a broader, more difficult and comprehensive task than normal weekly exercises. 
Inspecting the same week in the commit mode, as shown in Fig. 3.e.IV, gives visual feedback to 
suspect the project to be more laborious than the other exercises on the same week, since the 
darker shades of blue signify a higher count of git commits made in the files submitted in the 
exercise. 
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Fig. 3.e.IV: Status view in commit mode.  

In contrast to the status view displaying student statuses one week at a time, the progress view 
displays the chosen aspect of a student’s status for a given time span, demonstrated in Fig. 3.e.V. 
The view consists of two visualizations, the first of which showing how many points students 
received each week and the second one showing the accumulation of points over the course. The 
view allows the teacher to inspect the evolution of students’ statuses on the course over time. The 
starting and ending points of the timeline are selectable via a slider, allowing a zoomable overview 
over the course. 
 

 
Fig. 3.e.V: The progress view in point mode, showing how many points each student has received during the 

course. 

The teacher may select a subset of students and reference lines to inspect how the status of a 
certain group of students evolves in relation to other students or the average student, and which 
grade(s) the selected students may expect, based on history data. For example, Fig. 3.e.VI shows a 
student status line in purple, the average student in grey and six green reference lines showing the 
expected progress on the course based on history data. 
 
The reference lines are calculated from the average of collected points among students that have 
received the same grade on the previous course implementation. The approach aims at providing 
an estimation on how a status evolves when it is about to result in a certain grade. As the 
expected lines reflect averages from history data, falling below or rising above them during the 
current course implementation does not guarantee any certain grade. However, some 
characteristics can be attributed to different student groups based on their progress profiles. 
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Fig. 3.e.VI: Inspecting the evolution of a student statuses in progress view. Cumulative weekly points suggest 

that based on history data, the student is expected to receive grade 2. 

Some of the grade group characteristics can be found by inspecting Fig. 3.e.VII and Fig. 3.e.VIII. Fig. 
3.e.VII shows a selection of students, whose accumulated points reside between the expected 
lines for grade 2 or 3. Fig. 3.e.VIII shows a selection of students that are likely to receive grade 5. 
Comparison of the two groups shows visible difference in the amount of variation on when and 
how much points are received. Students likely to receive grade 2 or 3 may have started working on 
the course later and even skipped exercises altogether on some week, whereas students going for 
the top grade are receiving high points throughout the course.  
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Fig. 3.e.VII: Selected student group consists of students that have received total of points that leaves them 
between the average point sum of grade 2 and 3. 

 

 
Fig. 3.e.VIII: Progress of students that have accumulated enough points to likely receive grade 5. 
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Fig. 3.e.IX shows the average commit counts for each grade, which provides a few interesting 
notions. The cumulative commits chart shows that students having received grade 0 seem to have 
stopped working on the course around the fourth course week on average, since until then, the 
zero reference line seems to remain close to the rest of the reference lines, and after that not to 
rise at all. Perhaps coincidentally, the first project exercise of the course is on the fourth course 
week, as noted previously. 
 
Furthermore, there seems to be little difference in the commit count profiles of students that have 
received grade 1 or 2, since the average commit counts remain very close to each other for the 
whole course. The same phenomenon seems to exist between students that have received grades 
3 or 4. In contrast, the grade 5 students are separated from the rest by keeping a high commit 
count up until the end of the course. 

 

 
Fig. 3.e.IX: Grade-wise average commit counts from the previous course implementation. 

In addition, a certain kind of a quick workload estimate for the course can be made from the 
cumulative commit counts shown in Fig. 3.e.IX. By the end of the course, students having merely 
passed the course, have made about half the number of commits made by the students that 
received grade 5. This trend seems to exist throughout the course, according to the weekly 
commits graph in the same figure. Similarly, the average student from the current course 
implementation (shown in grey) seems to remain between the average commit accumulation of 
students that have received grade 2 or 3. A loose interpretation of the fact could be that the 
average student seems to get about average grades.  
 
Despite being still work-in-progress, the current demo provides already some visual insights into 
the visualization needs recognized in the teacher interviews. Provided insights include views into 
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the current student status and average status of completion, and these are available in both 
implemented views, as well as the expected status of completion and highlighting students falling 
behind with the course work. While visualizations do not provide definitive answers, they highlight 
interesting patterns in the data. When patterns are recognized, they can be formed into 
preliminary hypotheses, which can then be confirmed or refuted by hypothesis testing methods. 
Next steps in the development work include implementing views for students and teaching 
assistants, as well as novel type of visualizations for student status. 
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4. Conclusions 
This deliverable first made a link between data analysis (the objective of Task 2.3) and data 
fetching (the objective of Task 2.1) as well as data modelling (the objective of Task 2.2). To achieve 
that, it provided examples of acquiring data from a number of different sources, such as issue 
trackers (Jira, GitLab), commit messages (Git), quality metrics (SonarQube), and testing 
environments (Jenkins). It also demonstrated two data models: one for Technical Debt and a 
second for Product Quality, both being currently developed in the context of the Quality Use Case. 
The core part of the deliverable, subsequently provided five extensive examples of data analysis 
organized according to the three project use cases (Quality, SaaS, Teaching). Especially the Quality 
use case was further divided into technical debt, runtime performance and product quality. The 
range of analysis examples demonstrates the breadth of data that can be analysed and visualized 
in a DevOps environment. It also highlights the customization of analysis that can be performed in 
order to serve different goals and address different stakeholder concerns.  
 
As a next step, we are working towards the integration of the different tools into the VISDOM 
toolchain and subsequently the visualization of the analysis results in the envisioned dashboards. 
While the five analysis examples that were presented in this deliverable were developed 
independently of each other, there are opportunities of integrating the analysis across the 
corresponding tools. For example, the data and corresponding analysis from the quality use case 
(especially regarding Technical Debt and Product Quality) can be integrated in both the SaaS use 
case and the Teaching use case. Within WP3 we will explore such synergies between the use 
cases, and where possible implement integration of the tools developed for the individual use 
cases. Finally, the goal of this deliverable was to present some examples of analysis, while we plan 
to develop further analysis tools during the rest of the project. For example in the case of the 
Technical Debt part of the Quality use case, we are currently integrating a number of different 
data sources (issues, pull requests, commit messages, source code comments and code reviews) 
to automatically detect self-admitted technical debt using machine learning techniques. 
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