

 v 1.01 30.09.2020

 1/10

VISDOM reference architecture
Deliverable 2.5.1

Version history

Version Date Author Notes
0.1 12.02.2020 Kari Systä (TAU) Initial draft based on discussions with Mika

Koivuluoma, Markus Kelanti, and Henri
Bomström.

0.2 24.02.2020 Kari Systä (TAU) Responses to comments from Outi Sievi-Korte
0.3 09.03.2020 Kari Systä (TAU) Solved all comments from Outi, added a few lines

about security, privacy and access control
0.4 04.05.2020 Kari Systä (TAU) More about dashboard composition
0.5 10.05.2020 Kari Systä (TAU) Added more text to intro to explain the purpose

and scope.
0.6 12.05.2020 Outi Sievi-Korte

(TAU)
Added text on micro-frontends.

0.7 18.05.2020 Kari Systä Small bug fixes
0.8 19.05.2020 Kari Systä Notes from the plenary/workshop
0.9 25.05.2020 Kari Systä Further notes from plenary/workshop
0.91 08.09.2020 Kari Systä Towards deliverable 2.5.1
0.92 10.09.2020 Henri Bomström Dashboard architecture description.
0.93 13.09.2020 Vivian Lunnikivi Several small fixes and comments
0.94 13.09.2020 Kari Systä Responses to comments
0.95 14.09.2020 Henri Bomström Multiple fixes based on comments.
0.96 15.09.2020 Henri Bomström Revisited sections 2.2, 2.4, and 3.
0.97 16.09.2020 Henri Bomström Revisited section 2 and fixed inconsistencies.
1.00 21.09.2020 Kari Systä Checked latest changed, moved version to 1.0,
1.01 30.09.2020 Kari Systä Responses to review comments

1 Introduction
This document describes the top-level reference architecture of VISDOM. The purpose of
this document is to

• provide a reference architecture for the research and technical work,

• recognize exploitable or standardizable components and interfaces, and

• act as a basis for research prototypes.
It should be noted that this technical reference architecture is assumed not to be
implemented as such in each partner specific implementation.
The description is rather abstract in that many details are to be solved during the project.
The idea is to describe the requirements and high-level concepts. The work will continue
with analysis, more detailed designs and pilots. It is assumed that a new version of this
document will be written during the last year of the project.

 v 1.01 30.09.2020

 2/10

1.1 Business requirements

The proposed and developed architecture should support the overall goals of the VISDOM
project. In particular, the following requirements should be supported by the architecture:

• The architecture shall support stakeholder and company specific dashboards that
are composed of new visualizations developed in VISDOM project.

• The visualizations are usually based on several data sources (e.g. software
engineering tools) and hence provide synthesized and abstracted views. The
mainstream software engineering tools include visualizations about their data, one
the main innovations of VISDOM is to combine data from several tools.

• The architecture shall support zooming-in/investigating the problems. This means
that the users can investigate the original reason behind the interesting detail
discovered from the visualization. This means that the “zooming in” needs access
to all data used in the visualizations.

• The architecture shall support a large and extendible set of data sources (SW
engineering tools). This means that it should be possible to dynamically add new
tools as data sources.

• The architecture shall support all activities in DevOps development. This means
that stakeholders interested in business, management, development, technology,
deployment, hosting and operation should be supported. Furthermore, tools and
data sources related to all these aspects can be used.

• The architecture shall support research and development in the VISDOM project.
This means that we can test and demonstrate integrations with external and
internal components in an agile way.

• The architecture shall support use of industry and de-facto standards.

• The architecture shall support exploitation of the results. This means that
developed ideas and components can exploited in several context individually or
together.

1.2 Architecture as described in the full project proposal

The technology value chain, as specified in the VISDOM Full Project Proposal (FPP), is
depicted in the Figure 1:

 v 1.01 30.09.2020

 3/10

Figure 1 Technology value chain of the VISDOM project

The components in Figure 1, re-drawn from the FPP Figure 4, are the following:

• Data sources are the different development tools, databases and repositories
used in software engineering. In VISDOM we develop methods and tools (open
source by default) for collecting data from a variety of existing sources. We will
also create a framework and instructions for developers who want to integrate new
data sources.
Architecture note: the data sources are external to VISDOM and we are dependent
on the interface and data formats supported by the tools.

• The data management system includes ways to unify, merge, link and store the
input data for effective visualizations and possible further processing. The data
models and analysis methods will be realized as running software and included in
the prototype implementation, making it possible to use the resulting metrics even
without visualization.
Architecture note: the data management system is the most challenging part of the
architecture and thus it is the main topic of this document.

• The project produces a set of evaluated and piloted designs of visualizations.
The designs include implementation guides, guidelines for users and requirements
for the data management solution.
Architecture notes: the designs can be accompanied with reusable reference
implementations but can also support independent implementations on the same
data.

• For the visualizations, we also develop reference implementations that can be
used as components in various dashboards.

The project creates a configurable dashboard concept that can display different content
and views to different stakeholders. We will also create prototype dashboards for the
pilots, and the companies may exploit these dashboards by integrating them in their
current and future development support tools. A dashboard is not necessarily just for
direct presentation of data, but it can also include diagnostics tool and help the
stakeholders to investigate possible problems in their projects.

 v 1.01 30.09.2020

 4/10

2 The VISDOM architecture
This section describes the general architecture specified during the first 12 months of the
project. The provided architecture is a high-level design that will eventually lead to the
final architecture with more detail and empirical validation. The presented reference
architecture is aimed to result in slightly different real-world implementations for individual
cases. Thus, we also specify possible implementation related issues and points of
consideration as a part of the solution to highlight a need for customization per each
unique case. One of the most important aspects for consideration includes the
centralization of different components in the architecture. For example, to avoid having
single monolithic components that handle each and every situation and need, the actual
implementation may feature multiple customized versions of the components deployed in
parallel. As an example, a real-world implementation of the architecture may utilize one or
more data management systems to match the specific needs of certain teams while
having a single data management system serve other users. As a final note, the
remaining open questions have been marked with a research question (RQ) tag within the
text.
The overall architecture is comprised of three main elements: data management,
visualizations, and dashboards. First, the data management system is responsible for
providing a unified interface for data access and facilitates dynamically adding new tools
as data sources. Second, visualizations represent generic components that offer
advanced functionality, such as zooming in to the problem root causes, and can be
configured based on stakeholder needs and the underlying dashboard. Lastly, the
dashboard composer is responsible for matching visualizations to user needs with
customizable views. The composer decouples visualization logic from the dashboard
itself, allowing the architecture to support both stakeholder and company specific
dashboards that can support all activities in DevOps development.

2.1 Data architecture

The data management system fetches data from various tools used in software
engineering and provides a uniform data interface for visualizations to consume. The
following figure describes the general idea of the data architecture.

Figure 2 Data architecture

 v 1.01 30.09.2020

 5/10

This data management architecture has been developed in a brainstorming meeting, and
we have noticed similarities with data architecture used in Q-Rapids project
(https://www.q-rapids.eu). RQ0: how does this architecture compare to research state of
the art?
The components of the data architecture are data sources, data fetchers, raw data, data
adapters, data links, and data broker.

• Data sources are typically SW engineering tools that produce data, but our
system is flexible for other types of data sources, too. In particular, various
analysis tools can compose new data items, composites and derivates, based on
existing raw data items. The VISDOM project aims to develop such tools and
enable the use of external tools. The architecture shall support both push and pull
paradigm for data retrieval, but the actual reading from the data sources is done
with data fetchers.

• Data fetchers are responsible for transferring data from data sources to the data
management system. These fetchers may be called both by the data management
system in a pull approach and by data sources in a push approach.
However, the data fetcher architecture has two open research questions:
RQ1: Should data fetchers filter out obviously erroneous data or is it up to data
adapters?
RQ2: The mixture of push and pull approaches increases complexity, which in turn
sets a requirement to carefully design update cycles. We need to consider
performance, synchronization of data, and possible real-time properties like in real-
time BI1. More analysis and detailed design are required.

• Raw data represents unmodified data as it is received from tools. Using raw data
instead of pre-filtered data provides better support for advanced visualization
operations, such as zooming in, stated in business requirements. Additionally, this
approach allows for data storage in the original tool itself.

• Data adapters implement a two-way adaptation. Firstly, it provides visualizations a
uniform data model regardless of the data source. As an example, the data
adapter may facilitate visualization for similar "ticket" data regardless of it being
fetched from Jira or Trello. Secondly, data adapters may provide different data for
different types of visualizations. However, there is an open research question
concerning the data adapters:
RQ3: can this approach be implemented without performance problems?
Naturally, some caching for optimization should be enabled.

• Data links are used to link semantically connected data together. As an example,
a content management system (CMS) commit may be linked with a ticket,
repository, developers etc. Data links can be created automatically when new data
is received or created as a result from various analysis tools.

• Data broker serves as a directory for the data, adapters and related metadata. It
provides a query interface available to all components in the system. The data
broker supports a publish-subscribe model where system components can
subscribe to change notifications and receiving new data. The data broker has an
open research question.
RQ4: the boundary between data broker and adapter is still a bit unclear – most
probably the API provided by the data management system should be uniform.

1 See e.g., https://en.wikipedia.org/wiki/Real-time_business_intelligence

 v 1.01 30.09.2020

 6/10

2.2 Visualizations

Conventional visualizations often present a single viewpoint to the underlying data. More
advanced visualizations, such as the electrocardiogram (ECK/EKG), are pieces of code
that define or create concrete visualizations from one or several data sources. These
visualizations represent generic software components that are not limited to displaying
data but may also include functionalities related to interactivity, for example zooming in on
and investigating details, which allow the user to search for the root causes of various
issues. Additionally, these visualizations can be configured for specific stakeholder needs
and preferences, certain dashboard usage via for example certain color schemes, and for
various logical data sources and adapters. The logical data sources may represent for
example an issue management system without specifying a concrete tool like Jira. The
correct adapter for each logical data source can be found with the query functionality
provided by the data broker. These advanced features and forms of interaction should
conform to a common specification for translating visualization outputs to a unified
viewpoint.
From an architectural viewpoint, individual visualizations are treated as black boxes that
each handle their own data retrieval, processing, and presentation. However, their outputs
are optimized for dashboard usage and may be controlled by the dashboard composer.
This approach lends itself well to features from the micro-frontend paradigm – the
development of small, independent applications working together to create a larger
frontend – where each team is responsible for the development of a micro-frontend from
back to front. Thus, each team controls all required code, the building and deploying of
their micro-frontend, and are not in any way reliant on the deployment schedule of other
teams and their micro-frontends. Each team can thus also choose the technologies they
need for their specific micro-frontend. However, each implementation of the reference
architecture must weigh how heavily they invest towards the micro-frontend pattern as
separating development activities with a micro-frontend-oriented approach may impose
bottlenecks for data management.
There are several possible architectural considerations for utilizing a more-or-less
centralized data management system. First, all new data sources would need to be
compatible with the data management system. Unless modifications are allowed to the
unified data model, the underlying data model must be defined once and for all for
everyone at the very beginning and enforce its usage without modifications. In the latter
case it might become problematic to isolate such modifications according to autonomous
teams or specific micro-frontends. Second, the current depiction of the data broker
suggests a system-wide uniform component that all micro-frontends would need to use.
For independence of micro-frontends, there would need to be as many brokers as there
are micro-frontends, which does not seem sensible, or there would need to be one unified
data broker, which would serve all micro-frontends. In the case of one unified data broker
we need to consider responsibility of developing the data broker - if we need to modify
data broker along with addition of data sources, and addition of data sources translates to
new micro-frontends to accommodate the new data sources, then the data broker needs
to be modifiable by every micro-frontend team, which goes against the philosophy. Finally,
it would be sensible to re-use data fetchers with very similar data sources even though
they can be done independently per team in cases where micro-frontends are
implemented based on individual data sources or tools. Moreover, the concept of push
and pull approaches for data management workflows must be considered in relation to
micro-frontends. Whichever approach is selected, the data fetchers, linkers, and adapters
must also be implemented accordingly.
One possible solution to the centralization issue of data management may be addressed
by dividing development teams or specific micro-frontends into collectives that focus in

 v 1.01 30.09.2020

 7/10

specific visualization concepts or domains, and thus utilize a narrower selection of tools.
This approach may utilize both different data models and a customized version of the data
broker to serve a larger collection of visualizations without imposing restrictions on the
whole organization. To reiterate, each implementation of the reference architecture must
weigh how heavily they invest towards the micro-frontend pattern depending on how
loosely individual visualizations can be coupled and whether it imposes restrictions on the
data management system. This leaves an open research question RQ5: To which extent
does the micro-frontend pattern hinder advanced visualization functions and data
management?

2.3 Dashboards

The dashboards designed for different roles, needs and stakeholders are a key concept in
VISDOM. A dashboard consists of one or more visualizations that together constitute a
view that answers the visualization needs of the user. The proposed dashboard solution
must be generic enough to support all activities in DevOps development in both
stakeholder and company specific dashboards. This can be achieved by decoupling
visualization logic from the dashboard itself. This approach provides the benefit of
allowing dashboards to suit all stakeholder needs without imposing limitations on what is
being visualized and allows customization for both stakeholder and company specific
dashboards. Additionally, this approach supports both research and development
activities by providing a common platform for deploying visualization services between
development teams in an agile way.
The dashboard design is shown in the following figure. The leftmost boxes in yellow
represent data retrieved through the previously described data management system. On
their right, individual visualizations in red are implemented as visualization services by
various teams, organizations and other entities interested in specific visualization
concepts or domains. The dashboard composer in blue allows services to register their
available visualizations for use within the dashboard composer. The composer provides a
mechanism for selecting visualizations based on the current user’s role, tasks, and other
suitable factors. This approach makes it possible to provide a default dashboard based on
stakeholder information, customize the provided views based on personal needs, and to
create a feedback loop on collecting stakeholder information through dashboard usage.
This data can be used to provide more accurate default dashboards, recommend
visualizations for tasks, and to determine which visualizations are used in practice.

 v 1.01 30.09.2020

 8/10

Figure 3 The dashboard composer architecture.

Composer creates a default dashboard from its registered applications, based on the
stakeholder’s role. Users may also customize and create new dashboard views that
address their individual visualization needs. The composer consists of the following
subcomponents, depicted in blue in figure 3, and their roles within the system are as
follows:

• Service information is stored in the composer as a basis for creating varying
views in the dashboard. Visualization services are provided by teams,
organizations or other entities that focus on visualizing a specific concept or
domain. Each service registers their available visualizations to the dashboard
composer according to a shared specification. This specification contains
metadata about the visualization’s purpose, which is used to match available
visualizations to the current dashboard user’s needs, tasks and role. To put it
simply, service information represents a collection of individual visualizations that
can be used in the composer – including the metadata about what they visualize
and how.

• View information is stored in the composer to represent groups of visualizations
for a specific interest, task or other suitable concept for building individual
dashboard views. In essence, view information includes a selection of
visualizations, preconfigured perspectives, and layout information. These
configurations are then rendered as individual dashboard views. Finally, users may
configure new views to their dashboards based on their interests and tasks.

• Stakeholder information is stored in the composer as a basis for offering
preconfigured views based on role and for improving existing preconfigured views.
Stakeholder information includes an initial set of assumptions and educated
guesses on which visualizations are relevant for different stakeholders, and an
accumulated collection of dashboard usage data. The collected usage data helps
to understand which visualizations remain relevant in daily usage and which roles
and tasks are supported by visualizations.

• View logic implements the necessary functionality for combining the available
visualization services to the user’s needs while considering the available
stakeholder information. The view logic component facilitates the creation,

 v 1.01 30.09.2020

 9/10

management, and rendering of individual view configurations, and houses the logic
used in selecting views and visualization perspectives for different roles.

• Layout logic implements the necessary functionality for producing a coherent
layout for the dashboard in terms of laying out individual visualizations on a grid
and providing a responsive display for screens of varying size. Views may contain
information for content layout and visualization metadata may request specific
element sizes in the dashboard but eventually the layout logic is responsible for
determining the correct presentation for the current view.

• Visualization control logic implements the necessary functionality for inter-
visualization communication and relaying of events, such as changes in
visualization perspective, to all the visualizations present in the current view. RQ6:
how to handle situations where different visualizations in a dashboard should work
simultaneously, for instance scroll to the same position in time,

2.4 Security and privacy concerns

Security and privacy are essential aspects for architectural consideration as the proposed
system might allow unethical or illegal tracking of stakeholders and other malicious
activities if left unchecked. Features such as access control might be omitted for research
prototypes but should still be considered in the overarching architecture. The key aspects
for further consideration include access control in the form of authentication and
authorization, and anonymization of data. These issues present a need for some kind of
access federation system that provides a cross-domain solution for bridging access rights.
Alternatively, future versions of the architecture may offer alternative solutions for working
around this issue by deploying multiple data management systems for specific uses. This
approach will depend on the degree of centralization for each implementation of the
reference architecture.
This leads to the following requirements:

• The data management system, including both data fetchers and adapters, shall
include an anonymizing service. RQ7: where should the anonymization service
be?

• The data management system shall include a user/access-token federation
system. RQ8: specification and design of the federation system. One of our earlier
studies2 may be used as a starting point.

• The data adapters need to implement some kind of “cross-domain” solution that
bridges access rights. RQ9: specification and design of the cross-domain system.

3 Standardizable components and interfaces
This section summarizes both the exploitable software components that can be utilized
either independently or together, and the standardizable components that be pushed
relevant standards for industry-scale interoperability. The previously introduced data
fetchers, adapters, linkers, and visualizations form a baseline selection of the exploitable
software components. Each of these components must addressed based on their
structure, general behavior, and interfaces in order to present a unified architectural

2 Anna Ruokonen, Otto Hylli, Kari Systä, Samuel Lahtinen, Service Composition for End-Users, 13th Symposium of
Programming Languages and Software Tools (SPLST’13), Szeged, Hungary, 2013

 v 1.01 30.09.2020

 10/10

solution. This architectural proposal is aimed to support both research and development in
the VISDOM project.
Data fetchers represent a link between the VISDOM data platform and external data
sources. The fetchers present an opportunity for creating a standardized software
component where the data fetching strategies are implemented in a way that a) allow the
creation of new data fetchers for tool vendors and independent collaborators, and b)
supports the underlying data management architecture with a clear interface towards
VISDOM elements. This includes specifying the strategy on when and how data fetching
occurs and whether caching is implemented for performance reasons. The interface for
the fetchers is another aspect for a standardized interface that corresponds to the
requirements specified by the data adapter components.
Data adapters are responsible for providing visualizations a uniform data model
regardless of the data source and for providing different data for varying types of
visualizations. Data adapters are the key in combining data from several sources for
VISDOM related visualizations. Thus, the adapters present a suitable opportunity for
standardization on both interface and component levels. The interface for providing
visualizations a uniform data model regardless of the data source may be specified in a
form of a generic description that aids implementation and integration efforts. On a
component level, the component’s internal behavior may be suitable for standardization
as it operates towards both raw data access and visualization related logic. Moreover, the
solution should accommodate for the required workflows in data management, such as
the push and pull approaches.
Data linkers are used to link semantically connected data together. In order to reach this
goal in practice, the production of new data linkers must be as flexible as possible and the
interface towards data storage is well defined. Currently, the interface is assumed to
resemble, or be similar to, the data fetchers and linkers described previously.
Visualizations represent a more free-form selection of software components that may
greatly vary between implementations depending on their intentions. However, each of the
visualizations must still adhere to a common specification that allows the dashboard
composer to control them in order to assume a uniform perspective within the dashboard.
This requires both a common behavioral mode for software components that can be
extended for individual implementations, and a uniform interface for the communication
between visualizations and the dashboard composer. Furthermore, the visualizations
must be able to communicate their capabilities and intent to the dashboard composer in
order to be matched against specific user needs. This is a key requirement for supporting
all DevOps activities for both stakeholder and company specific dashboards that are
composed of new visualizations developed in VISDOM project.

