)4

eXcellence InVariant Testing

IT. NITEAZ

Project References

Project Acronym XIVT

Project Title eXcellence In Variant Testing
Project Number 17039

Project Start Date November 1, 2018 Project Duration 36 months

Project Manager Gunnar Widforss, Bombardier Transportation, Sweden
Website https://www.xivt.org/

Document References

Work package WP3: Testing of Configurable Products
Deliverable D3.2.b: Tool for assessment of test suite quality

Deliverable type Software (SW)

Dissemination . Date_ & Feb 1, 2021
level Public Version
V1.1
Mapped tasks T3.2 Test case instantiation and distribution of testing efforts amongst

variants

1. Executive Summary

This deliverable includes the description of the tool “TSQA” for assessing the quality of test
suites, which was developed and extended in the XIVT project in the scope of WP3. Author of
the initial version of the tool is Dr. H. Lackner at Fraunhofer FOKUS, revisions have been done
by BA T. Sikatzki and Prof. Dr. H. Schlingloff, Fraunhofer FOKUS.

2. Access Information

XIVT project has its repository on Gitlab at: https://gitlab.com/xivt

The tools are accessible at https://gitlab.com/xivt/itea
with username: ITEA3XIVT
and password: 20222018XIVT

3. Tool Description
QATS — The Quality Assessor for Test Suites

1. Overview of the functionality

QATS uses mutation operators on the domain model to mimic development faults in product
models to assess the fault detection capability of a test suite. By using mutating operators on
the domain model and the test suite configurations QATS returns a set of product model
mutants and generates product mutants based on these models. At last, the tests are executed
on the created product mutants and a mutation score will be generated based on the number of
killed domain model mutants.

2. System Requirements and Installation

The Eclipse IDE distribution that is provided can only be used with a Windows system at the
moment. It is required to have Java 8 installed before you run Eclipse. Also make sure that, in
the “eclipse.ini” which is located in the Eclipse directory, the correct path of your “javaw.exe” is
set. See the picture below

— VI
C:/Program Files/Java/jdkl.8.0 271/bin/javaw.exe

For the first execution you can use one of the “SamplingStudy” directories as your workspace in
Eclipse. Each of the directories in the workspace contains different variants of the given product
line.

= Workspace Launcher X

Select a workspace

Eclipse stores your projects in a folder called a workspace,
Choose a workspace folder to use for this session,

(LTS Users) Test' Documents\Workspaces(1)\Sampling] igES w Browse..,

b Copy Settings

@ Cance

3. Basic Tool Usage, Input and Output
3.1 Input

As input you need a UML model of the product line as well as the correlated feature model and
feature mapping. You also need to provide the test suite under test, the feature configurations
for each product variant and the UML model for the product variants.

First you will want to initialize the test case mapping by right-clicking on the testsuite.xml you
provide. Our example test suite was created by conformiq therefore the example test suites are
called TestSuite.conformiqg and can be found in the “testsuites” directory.

4 TestSuite.conformigtc ¥ Delete Delete
_| mutation_results.txt Remove from Context Ctrl+Alt+Shift+ Down
s result.testcasemapping : e
. : : Mark as Landmark Ctrl+ Alt+Shift+Up
o) umlbridge.jar _
e.hub.mut.tm.step.small.ur Build Path 2
B g Refactor Alt+Shift+T »
B testscripts :
#h JRE System Library [JavaS| 3 Import..
i, Referenced Libraries iy Export..
A JUnit4 # Refresh F5
2 META-INF ”))
5 productlinemodel Assign Working Sets...
= AbstractVariants Debug As %
= Feature Mappi
I._ eature Mapping s 5
= Feature Model
(= mutants Team }
= Test Suites Compare With 3
= UML Model Replace With »
= Variants E Discovery 5
% productmodels =
2. testsuites g Paste o
[4 mapping.testcasemag Initialize Testcase Mapping
l&l TestSuite.conformiatc Initialize Testcase Mapping For PC

mformigte - de.hub.mut.tm Properties Alt+Enter

As the next step you need to add the variants to the test case mapping. Right click on the test
case mapping and select “Add Configurations” then choose the directory that includes your
variants.

4 mapping.testcasemapping
4 TestSuite.conformigtc
mutation_results.tct

result.testcasermnapping

voicLe

Remove from Context

Mark as Landmark

[el Ll

Ctrl+Alt+ Shift+ Down

Ctrl+ Alt+Shift+ Up

. . Build Path b
umlbridge.jar
hub.mut.tm.step.small.uml Refactor Alt+5hift+T >
e g4y Import...
testscripts -
JRE System Library [JavaSe-1.7] &2 Fepor.
Referenced Libraries 45 Refresh F5
et 4 Assign Working Sets...
META-INF
productlinemodel Debug As ?
= AbstractVariants Run As 3
= Feature Mappi
|___ eature Mapping Team 3
= Feature Model _
E= mutants Compare With ¥
= Test Suites Replace With b
= UML Model '3 Discovery »
= Variants xs_:l Paste Chrl+V

productmodels
testsuites

Add Cenfigurations

This will set up the test case mapping so you can run the mutation analysis on it. This will
create the mutants and a “testcasemapping.result”. In some cases the test suite will then be
executed automatically in other cases you will need to run the mutation analysis directly on the
“testcasemapping.result” file. This will generate the “mutation_results.txt” that includes the
mutation score.

= META-INF

(= preductiinemodel Run Mutation Analysis

AUL U uUr gL ‘

= productmodels Initialize Testcase Mapping For PC

v [testsuites

4 mapping.testcasemapping Properties

Alt+Enter ‘

w [~ testsuites

L4 mapping.testcasemapping
4! TestSuite.conformigtc
mutation_results.txt
result.testcasemapping

£ [

4. User Manual

For the mutation we are using multiple mutation operators. We provide mutation operators
which operate on the UML model, as well as operators which alter the feature mappings. By
right-clicking on the project you can select “properties” and select the operators that should be
used for the given project.

= Properties for de.hub.mut.tm.step.small.uml O X
type filter text Model Mutation System &S v -
Resource
Builders UML Mutation Operators
Java Build Path Delete Transition
Java Code Style Copy Transition Target
Java Compiler Delete Effect
javadEditEr E Change Transition Effect
avadoc Location
Meodel Mutation Systemn Dele: hoga
oclL Copy Trigger
Papyrus Delete Guard
Project References Change Guard
RT-Tester Mapping Model Mutation Operators
fuconglll =
WikiText [Delete Mapped Element
] Copy Mapped Element
[] Change Feature Value
] Swap Feature

Restore Defaults Apply

[y

5. Mutation Operators

5.1. UML Operators

Delete Transition — Deletes a transition in the UML model

Copy Transition Target — Changes the target of a transition by copying the target state of
another transition in the Model

Delete Effect — Deletes a random effect of a transition

Change Transition Effect — not yet implemented

Delete Trigger — Deletes a random trigger from a transition

Copy Trigger — Adds another trigger from the same region to a random transition
Delete Guard — Deletes a guard from a random transition

Change Guard — Changes the guard of a random transition (flip booleans, invert arithmetic
operators...)

5.2. Feature Mapping Operators
Delete Mapping — Deletes a mapping
Delete Mapped Element — delete the UML element of a mapping

Copy Mapped Element — Similar to Copy Trigger. Adds a UML element from the subsequent
mapping to a mapping.

Change Feature Value — Flips the feature value of a feature in a mapping

Swap Feature — Swaps mapped behavior between two mappings

6. Examples

We already have pre-generated results for three systems. An Alarm System, a Ticket Machine
and an ecommerce Shop. These also come with example test suites so you can get an idea of
how QATS works.

