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1. Executive Summary

This deliverable includes the description of the tool “TSQA” for assessing the quality of test
suites, which was developed and extended in the XIVT project in the scope of WP3. Author of
the initial version of the tool is Dr. H. Lackner at Fraunhofer FOKUS, revisions have been done
by BA T. Sikatzki and Prof. Dr. H. Schlingloff, Fraunhofer FOKUS.

2. Access Information

XIVT project has its repository on Gitlab at: https://gitlab.com/xivt

The tools are accessible at https://gitlab.com/xivt/itea
with username: ITEA3XIVT
and password: 20222018XIVT

3. Tool Description
QATS — The Quality Assessor for Test Suites

1. Overview of the functionality

QATS uses mutation operators on the domain model to mimic development faults in product
models to assess the fault detection capability of a test suite. By using mutating operators on
the domain model and the test suite configurations QATS returns a set of product model
mutants and generates product mutants based on these models. At last, the tests are executed
on the created product mutants and a mutation score will be generated based on the number of
killed domain model mutants.

2. System Requirements and Installation

The Eclipse IDE distribution that is provided can only be used with a Windows system at the
moment. It is required to have Java 8 installed before you run Eclipse. Also make sure that, in
the “eclipse.ini” which is located in the Eclipse directory, the correct path of your “javaw.exe” is
set. See the picture below

— VI
C:/Program Files/Java/jdkl.8.0 271/bin/javaw.exe

For the first execution you can use one of the “SamplingStudy” directories as your workspace in
Eclipse. Each of the directories in the workspace contains different variants of the given product
line.
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3. Basic Tool Usage, Input and Output
3.1 Input

As input you need a UML model of the product line as well as the correlated feature model and
feature mapping. You also need to provide the test suite under test, the feature configurations
for each product variant and the UML model for the product variants.

First you will want to initialize the test case mapping by right-clicking on the testsuite.xml you
provide. Our example test suite was created by conformiq therefore the example test suites are
called TestSuite.conformiqg and can be found in the “testsuites” directory.
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As the next step you need to add the variants to the test case mapping. Right click on the test
case mapping and select “Add Configurations” then choose the directory that includes your
variants.
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This will set up the test case mapping so you can run the mutation analysis on it. This will
create the mutants and a “testcasemapping.result”. In some cases the test suite will then be
executed automatically in other cases you will need to run the mutation analysis directly on the
“testcasemapping.result” file. This will generate the “mutation_results.txt” that includes the
mutation score.
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4. User Manual

For the mutation we are using multiple mutation operators. We provide mutation operators
which operate on the UML model, as well as operators which alter the feature mappings. By
right-clicking on the project you can select “properties” and select the operators that should be
used for the given project.
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5. Mutation Operators

5.1. UML Operators

Delete Transition — Deletes a transition in the UML model

Copy Transition Target — Changes the target of a transition by copying the target state of
another transition in the Model

Delete Effect — Deletes a random effect of a transition

Change Transition Effect — not yet implemented

Delete Trigger — Deletes a random trigger from a transition

Copy Trigger — Adds another trigger from the same region to a random transition
Delete Guard — Deletes a guard from a random transition

Change Guard — Changes the guard of a random transition (flip booleans, invert arithmetic
operators...)



5.2. Feature Mapping Operators
Delete Mapping — Deletes a mapping
Delete Mapped Element — delete the UML element of a mapping

Copy Mapped Element — Similar to Copy Trigger. Adds a UML element from the subsequent
mapping to a mapping.

Change Feature Value — Flips the feature value of a feature in a mapping

Swap Feature — Swaps mapped behavior between two mappings

6. Examples

We already have pre-generated results for three systems. An Alarm System, a Ticket Machine
and an ecommerce Shop. These also come with example test suites so you can get an idea of
how QATS works.



