
ITEA 3 Call 4: Smart Engineering
D3.5.2 Report on the methodology for theconstruction of testing models, finalversion

Project ReferencesPROJECT ACRONYM XIVTPROJECT TITLE EXCELLENCE IN VARIANT TESTINGPROJECT NUMBER 17039PROJECT START DATE NOVEMBER 1, 2018 PROJECT DURATION 36 MONTHSPROJECTMANAGER GUNNAR WIDFORSS, BOMBARDIER TRANSPORTATION, SWEDENWEBSITE HTTPS://WWW.XIVT.ORG/
Document ReferencesWORK PACKAGE WP 3: TESTING OF CONFIGURABLE PRODUCTS

TASK T3.1: REQUIREMENTS-BASED VARIABILITY MODELLING AND ABSTRACT TEST
CASE GENERATIONVERSION V 2.0 OCT 31ST, 2020DELIVERABLE TYPE R (REPORT)DISSEMINATION LEVEL PUBLIC

Version History
Date Description Version Level
Nov 30,2019

Report on the methodology for the construction of testing modelsfor variant and configurable products, Tools (e.g. Eclipse plugins)for modelling variability for testing and generation of abstract testcases from variability models – initial version (T3.1)
V1.0 Confidential

Oct 30,2020 Product line viewpoint (section 4.2) enhanced and adapted to theXIVT toolchain, including BVR examples V2.0 Public

D3.5.2 Report on the methodology for the construction of testing models

CONFIDENTIAL 2 V1.0

Summary
This report presents an approach for the automatic generation of abstract test case suites from productline models, which represent collections of systems related by shared features and development history.A custom extension of SPES XT provides the conceptual framework for describing product lines; theuse of UML diagrams for model artefacts allows automatic product realization, analysis and simulation,enabling the generation of abstract test suites as a set of UML Testing Profile (UTP) diagrams. Eclipse isproposed as implementation basis, due to the availability of libraries and plugins supporting variabilitymodelling and the design and manipulation of UML artefacts.

D3.5.2 Report on the methodology for the construction of testing models

CONFIDENTIAL 3 V1.0

Table of Contents
1. Introduction...4
2. RelatedWork...4
3. Running Example ... 5
4. Process Overview...6
4.1. Product Viewpoint ..6
4.2. Product Line Viewpoint..7

4.2.1 Feature model...7
4.2.2 Domain...7
4.2.2 Resolutions...9
4.2.2 Realizations..9

4.3. Test Viewpoint .. 10
5. Test Suite Generation...11
5.1. Variant Selection...11
5.2. Coverage Criteria..12
5.3. Variant Selection Algorithm...13

7. Conclusions..16
8. References..17
Appendix A - Tool Releases...19
BeVR...19

D3.5.2 Report on the methodology for the construction of testing models

CONFIDENTIAL 4 V1.0

1. Introduction
Task T3.1 of XIVT Working Package 3 (WP3) is concerned with “extending existing methods forvariability modelling such that feature models, base models, scenario models and threat and intrusionmodels are connected and allow the derivation of abstract test cases. Together with the definition ofsuitable meta-models, a methodology will be developed to formulate testing requirements from the usecases in these testing models” [XVT19, p. 88]. In other words, the objective is to design and implementan automated process to generate abstract test case suites from project specifications composed of:

● Product linemodel, describing a product baseline, its context and potential variants;● Product instances, specifying actual product variants and their configurations.
A common conceptual and technological basis encompassing all artefacts and processing tasks is apractical requirement for effective process implementation. Moreover, automation is only possible ifproject documents follow a well-defined and unambiguous format that enables mechanicalmanipulation, and capture all the information necessary for test case generation. It must also bepossible to describe all procedures in precise and objective terms that can be converted to computeralgorithms.
Software Platform Embedded Systems (SPES) is a comprehensive framework for modelling projectdomain, requirements and architecture [SPE12]. Its extended version SPES XT includes facilities formanaging product lines [SPE16, p. 197]. A set of custom extensions to SPES XT is proposed as theconceptual basis for project models.
SPES artefacts can be instantiated in the Unified Modelling Language (UML) 2.0 [UML08], making it anatural choice of common notation. UML is a mature modelling language, widely known and supportedby a number of software projects, including transformation tools [UML19]. Additionally, the UML TestingProfile (UTP) extends UML to cover test concepts, enabling both project and test models to sharecommon notation elements and structure [UTP08].
Many current UML software projects are developed in the context of the Eclipse Project [ECL19].Noticeable among them are the UML2 library, part of the Model Development Tools (MDT) project[MDT19]; Papyrus, a MDT/UML2-based extendible graphical design editor [PAP18]; and the Query /View / Transform (QVT) implementations released by the Model to Model Transformation (MMT) project[MMT19]. These constitute the proposed foundations for implementing the test generation system.
The remainder of this report is structured as follows. The next section reviews existing approaches toautomatic test generation from product line models, their features and shortcomings. The proposedproduct, variant and test models are then described, followed by the test case generation procedure andimplementation guidelines. The report closes with a discussion on perspectives for the next projectstages.
2. Related Work
The State-of-the-art report on requirements-based variability modelling and abstract test casegeneration — published as part of task T3.1 — provides a survey of current product line modelling andtest generation methods. In the terms of that report, the method described here follows an hybridapproach: it uses a custom language (BVR) to perform feature modelling, UML for system architectureand behaviour modelling, and a variety of rule-based techniques to generate test suites from UMLmodels.

D3.5.2 Report on the methodology for the construction of testing models

CONFIDENTIAL 5 V1.0

3. Running Example
Automated Guided Vehicles (AGV’s) are autonomous mobile systems often employed in industrialplants to transport goods around assembly lines, storage depots, delivery areas and so on [AGV06].Traditionally, AGV’s rely on rudimentary navigation systems requiring extensive environment retrofittingfor the installation of guiding wires or location beacons. More recently, sophisticated navigation stacksbased on Simultaneous Localization and Mapping (SLAM) and rich sensors such as depth cameras andLiDAR’s (laser-based range sensors) have been promoted as a more robust approach, simplifyingdeployment while also enabling automatic handling of unplanned occurrences such as unexpectedobstacles [AGV19].
A product line of SLAM-based AGV’s can comprise a wide diversity of variants both in software andhardware features. A number of SLAM software packages are available today, each with its particularstrengths and sensory requirements. Among them RTAB-Map is characteristic of the vision-basedapproach for pose registration, extracting features from visual data provided by stereo or Time-of-Flight(ToF) cameras to identify different locations across an environment. In contrast, range-based GoogleCartographer trades more accurate localization for stricter requirements on the quality of its input depthdata, all but mandating LiDAR as the main sensor solution. Both benefit from additional sensors such asInertial Measurement Units (IMU’s) and wheel encoders that provide rough estimates of the unit’scurrent location relative to its start point. Furthermore, environment and application requirements maydemand a particular drive technology — e.g. a differential or holonomic base for added maneuverability,or a tricycle drive for extra torque. Figure 1 below illustrates the differences between driveconfigurations.

(a) (b) (c)
Figure 1. Mobile drive configurations. (a) In a differential drive, a pair of powered wheels can independently turn at different ratesand even in opposite directions, causing the robot to move straight, turn or spin in place. A secondary pair of loose wheels isusually employed to keep the robot level. (b) In a holonomic drive, sets of independently-powered wheels allow the robot to movein arbitrary directions regardless of its heading orientation (the arrangement shown in the figure is just one of several ways toachieve that effect). (c) In a tricycle drive, a pair of fixed hind wheels powered by the same motor push the robot forward orbackward, while a turning, non-powered front wheel provides direction (alternatively, the front wheel can be powered, with loosehind wheels just providing support).

D3.5.2 Report on the methodology for the construction of testing models

CONFIDENTIAL 6 V1.0

Figure 2. Abstract test case generation workflow.

4. Process Overview
The proposed test case generation process follows a multi-step workflow. Starting from a set of projectdocuments, a model editor is used to generate a product line model that encodes relevant informationabout the product family. This is passed to a product generator that instantiates specific product modelsas guided by test metrics. Finally, a test suite generator instantiates a test case suite for each product.See Figure 2 for an illustration.
In the SPES XT modelling framework, a viewpoint is "a pattern or template that can be used to developindividual views on a system (and its environment)" in order "to separate the various concerns ofdifferent stakeholders during the engineering process". "Typically, the specification of a viewpointdefines that viewpoint in terms of its syntax, semantics, and pragmatics by providing, among otherthings, the name of the viewpoint, the corresponding stakeholder concerns, the viewpoint language(probably given by a metamodel), and techniques that can be used during the construction and analysisof the corresponding view" [SPE12, p. 36].
Accordingly, the models used to describe products, product lines and test case suites are defined ascustom SPES viewpoints, inheriting the concepts of the basic framework and extending them to suittheir respective purposes. The next sections will elaborate on each one of those.
4.1. Product Viewpoint
The product viewpoint describes a product model that captures precise specifications across threeaspects:

 The product domain, which allows identification of test components;
 The product architecture, which allows selection of Systems Under Test (SUT's);
 The product behaviour, which allows derivation of test cases.

In the product viewpoint, the domain is represented by a Use Case diagram. Its purpose is to cataloguethe entities that interact with the system (providing inputs and/or receiving its outputs) and the userfunctions [SPE12, p. 40] that implement such interactions.
Product architecture is represented by a Class diagram. It records the logical components that realizethe functionalities provided by the user functions [SPE12, p. 41], as well as their relationships. This isalso where intra-product variability is described through class inheritance relationships and objectattributes.

D3.5.2 Report on the methodology for the construction of testing models

CONFIDENTIAL 7 V1.0

Finally, product behaviour is represented by Sequence diagrams detailing how each user function isrealized by message exchanges between system classes. These are the main input to the testgeneration process.
4.2. Product Line Viewpoint
Whereas the product viewpoint describes the domain, architecture and behaviour of a single systeminstance, the product line viewpoint represents a family of systems in terms of feature changes(additions, removals and modifications) across a shared development history. Conceived as anapplication of Δ-modelling [VAR10], it's composed of four parts, Feature model, Domain, Resolutionsand Realizations.
4.2.1 Feature model
A feature model describes the entire product line in terms of abstract functional characteristics(features), their optionality and interdependence / exclusion relations.
Feature models are described in the BeVR language using the State machine diagram. The BeVRlanguage in loosely based on the BVR language [BVR14]. The BVR tool bundle [BVR15] [BVR18] is anOpen Source implementation of the BVR language as a set of Eclipse IDE plugins. It integrates toPapyrus, an Eclipse UML editor [PAP18] allowing UML models to be used as realization artefacts.Together they already provide most of the features required from the model editor and productgenerator. However development of the BVR tool bundle has fallen behind the rest of the Eclipseecosystem (notably Papyrus); it’s also somewhat unpolished, and misses a couple relevant features —for example, adding artefacts to the core model without removing existing parts in the process.
To overcome these shortcomings, in BeVR tool, we have redesigned the variability modelling languagein a free XML format which makes it easy for receiving human inputs. In this version, EclipseModeling Framework (EMF) has been dropped for a more human-friendly style. Also, a feature hasbeen added which enable adding an artifact to the variant without the need to replacing existing parts. Inaddition, bidding process of domain artifact to the features is also simplified.
Features can be added, edited or removed and those are needed in all variance can be marked asRequired (Figure 3). Constraints can be specified in a simple logic language for features in terms of sub-features. As the changes are made in the visual page, the BeVR model is written and updated in theplain-text file.
4.2.2 Domain
Domain describes the artifacts that are going to be manipulated. It includes the Core model whichrepresents the minimum common set of features and Δ-models describing delta (Δ) artifacts added tothe core model to generate variance. An example of core and Δ-models for SLAM-AGV product areillustrated in Figure 4 and 5. The core product is described in UML as specified in the Product Viewpoint.Figure 4 shows the SLAM-AGV core product illustrated in state diagram.

D3.5.2 Report on the methodology for the construction of testing models

CONFIDENTIAL 8 V1.0

a. Visual edit feature b. BeVR model in the plain-text file
Figure 3. Adding features in feature editor (a) and BeVR model generated in plain text file for the SLAM-AGV product line (b).

Figure 4. The core model represents the minimum set of common features across the product line for the SLAM-AGV productline, represented in a Papyrus Model.

Figure 5. The model contains dummy states ‘delta 1’ and ‘delta 2’ which are used to define transition to the core model.
Starting state represented by an idle state from the idle state the AGV can either map the environment oruse the map for sub localization and then proceed to driven navigation and so on to different states.
The Δ-models (Figure 5) contains some optional features (states) that can be added to introduce avariance. The core and Δ-models are combined in the BeVR Model. Deltas are represented by BeVRfragment substitutions, which bind a placement (a collection of core model parts) to a replacement (acollection of delta parts) and the feature it realizes.

D3.5.2 Report on the methodology for the construction of testing models

CONFIDENTIAL 9 V1.0

4.2.2 Resolutions
Resolutions are instances of the feature models that represent a specific product. When creating aresolution, features that are required are automatically added to the model. While creating newresolutions, additional features can be marked asRequired (see Figure 6).
In this example, “goal driver” resolution requires features that are automatically included (Figure 6a).While for creating a new resolution for “teach and repeat”, new features need to be added as shown in(Figure 6b).

a. b.Figure 6. Creating resolutions for the proposed product line.

4.2.2 Realizations
Realizations bind specific resolutions to the domain artifact. In the realization editor resolutions arespecified for selected features (Figure 7). Delta states from the Δ-models are linked to states in the coremodel connecting source and target transitions.
The new BeVR model showing the variance with respect to the core model is depicted in Figure 8. Thenew states and transitions can be observed under region group.

gFigure 7. Specifying states and transition mapping from Δ-models to core model product realization involves creating thevariance.

D3.5.2 Report on the methodology for the construction of testing models

CONFIDENTIAL 10 V1.0

Figure 8. Comparing the new BeVR model shows the variance with respect to the core model. The BeVR model showingstates and transitions that were added.

4.3. Test Viewpoint
The test viewpoint specifies an abstract test suite for an associated product, and is composed of:

 An architecture presenting the set of test contexts used to collect individual test cases, the testcomponents that simulate external actors, the data pools that enable retrieval of required datato reproduce specific scenarios, and the product's Systems Under Test (SUT's) — i.e. thelogical components that are to be exercised by the test cases;
 The test cases proper, describing the sequences of interactions among SUT's, test componentsand data pools that constitute tests, as well as expected results.

The architecture and test cases are represented as UML Testing Profile (UTP) diagrams. Specifically,the architecture is recorded as a Class diagram, whereas individual test cases are written as Sequencediagrams.

D3.5.2 Report on the methodology for the construction of testing models

CONFIDENTIAL 11 V1.0

5. Test Suite Generation
A test suite can be generated by mechanically transforming a product model [AMT09]. Algorithm 1below describes a procedure for performing such a transformation.
Create a Test Suite
For each Actor in the Product Model:Create a Test Component in the Test Suite
For each Use Case in the Product Model:Create a Test Context in the Test Suite
For each Sequence diagram Si in the Product Model:Add a Test Case Ti in the Test Context TXu of the corresponding Use CaseCreate a Sequence diagram TSi in the Test SuiteCopy all non-Actor lifelines and exchanged messages from Si to TSiMark all lifelines copied into TSi with the <<SUT>> stereotype
For each Actor lifeline Aij in Si:Add a lifeline for the corresponding Test Component TAij in TSi
Create a Data Pool DPi in the Test SuiteFor each message Mij from an Actor Aij to a lifeline SUTik in Si:For each parameter Pijk in Mij:Create a data selection operation for Pijk in DPiAdd to TSi a call from TAij to DPi retrieving a value for PijkAdd to TSi a Mij exchange from TAij to SUTik set up with the given Pijk
For each message or return value sent to TAij in TSi:Create a validation action in TXuAdd to TSi a validation action call for the message or return valueAlgorithm 1. Converting a product model into a test suite.

In short, the algorithm above applies the following set of simple rules:
 Each Use Case is transformed into a Test Context;
 Each Actor is transformed into a Test Component;
 For each Sequence diagram, a corresponding Test Case is created, containing all lifelines andmessage exchanges in the original diagram, with the following changes:o Every Actor is replaced with the corresponding Test Component;o For messages sent from a Test Component to the SUT, any parameter values areretrieved from a data pool created for this particular test case;o Return values and messages sent from the SUT to a Test Component are passed to acorresponding validation action.

5.1. Variant Selection
Given a test suite, the order in which it is executed has influence on certain quality measures like earlyerror detection or requirement coverage. So, in the same way, given a list of variants to test, it is ofinterest in which order to test them in order to optimize the above properties. Also, time for testing islimited and it often might only be feasible to test a subset of all possible variants. So achieving highcoverage with this subset is necessary.

D3.5.2 Report on the methodology for the construction of testing models

CONFIDENTIAL 12 V1.0

In the following, we will explicate solutions for the situation where a set of variants is fixed and has to beprioritized for testing. Note that this differs from the approach to generate variants from a feature modelfor testing purpose.
If the latter variant generation approach is chosen and a test suite generation algorithm is implemented,a selection of product models must be instantiated from the product line model. For the generation ofvariants for testing purposes, methods for, e.g., achieving combinatorial coverage can be adopted fromtheir original application area of input configurations, as done in [SPT11], [SPT13]. These methods arethoroughly studied and widely implemented, see e.g. [DPP17]. Nonetheless, in most applications, theexisting variants only form a small subset of the possible configurations of the product model. Toimplement this fact in the model, a variety of constraints would necessarily have to be set for the model.These constraints don’t stem from actual restrictions of the product, but rather from exteriorcircumstances that are difficult to foresee. The logic of the model is therefore affected. Furthermore, toomany constraints are often a crucial obstacle for the effectiveness of the corresponding algorithms.
We will take the approach of deriving variants first, and then prioritizing them as explicated in thefollowing. First, we will elaborate on the testing goals in terms of coverage criteria.
5.2. Coverage Criteria
In order to give an algorithm for variant selection, the coverage goal of the test suite has to be chosen inorder to appropriately adapt the algorithm. For error detecting, combinatorial, in particular pairwisetesting has proven to be effective, see, e.g., [COM11], and the case studies [COM04] and [COM16], asthe majority of errors arises from features or the interaction of two features. Furthermore, it was shownthat in certain circumstances, the presence as well as the absence of features can affect the behavior ofother features [VAB14]. For the different modelling approaches described above (feature vs. deltamodelling), different potential coverage criteria arise from these considerations.
In terms of feature models, the following approaches to coverage can be taken:

 Combinatorial coverage for features (simple, pairwise, etc.);
 Combinatorial occurrence coverage for features (also simple, pairwise etc.). This means thatthe absence of a feature is assessed like an alternative feature, as it can affect the behavior ofother features [VAB14];
 A mixed approach is also feasible, where the absence of a feature is weighted in a different way(possibly less impacting) than the presence of a feature.

In terms of Δ-models, these criteria are equivalent to the following approaches to coverage:
 Delta coverage without taking removal deltas into account.
 Delta coverage with taking removal deltas into account.
 As in feature coverage, a mixed approach is feasible, where removal deltas are weighted in adifferent way.

A natural goal for industrial application is requirement coverage. This presumes that requirements arestated globally, i.e., are not phrased for a specific variant but for the feature model itself. That meansparticularly that requirements have to be explicitely linked to features, describing the functionality of afeature or the interaction of a system of features.
If these prerequisites are met, a more elaborate algorithm is necessary for accomplishing requirementcoverage, as requirements can be linked to varying numbers of features, possibly with specificparameter values as an input.

D3.5.2 Report on the methodology for the construction of testing models

CONFIDENTIAL 13 V1.0

5.3. Variant Selection Algorithm
Note again that by the line of arguments in 5.1, we are not considering generation of variants from amodel for testing purposes, but rather selection/prioritization of variants from a given set of alreadygenerated variants. Given a set of variants chosen from the feature model, possibly represented by acore model and Δ-models, there are several ways to prioritize them according to the above coveragegoals. A natural approach is to consider the set of objects to cover (features, deltas, pairs,requirements...) and choose the variant that covers the most objects, then the one that covers the mostadditional objects etc., in order to ensure the hightest possible coverage after each additionally testedvariant. This is the approach that we will choose for now. The method can be refined by weighting theobjects according to their “importance” to test them, as done in [PIT06] for pairwise coverage. In thearticle, furthermore, constraints for pairs are modelled by negative weights.
It should be mentioned here that to avoid scalability issues for higher levels of combinatorial coverage, afeasible concept to variant selection and prioritization is a similarity based approach as described in[DPP17] or [SBP14]: Variants that differ in many features are heuristically prone to give a better level ofthe desired coverage than similar ones. To measure the distance between variants, there are differentmeasures at hand (Hamming, Jacquard, Dice, etc.). Examples, evaluations and references can befound in [SDM18]. In the delta based prioritization algorithm in [DPP14], the Hamming distance isapplied.
As elaborated earlier, here, a greedy algorithm for variant selection will be implemented that covers themaximal additional number of objects (features, deltas, pairs) in each step, i.e., for each newly selectedvariant. That is, given the case the test suite is aborted at any step, for time or other reasons, thecorresponding coverage reached is as high as possible. Algorithm 2 below provides a pseudocodedescription of the procedure.
Select a subset of a list of variants for testing purposes/prioritize the list.## Notes:# * V1,...,Vn denotes the variants derived from the product model.# * S1,...,Sn denote the sets of target objects covered by these variants,# e.g. S1 is the set of features or pairs covered by V1.# * S=S1∪...∪Sn is the set of all objects to be covered.## Arguments:# * V=[V1,...,Vn] list of variants#SELECT_VARIANTS(V):# Initialize the set of already tested objects and an empty list.Stested=∅Vnew=[]
Until Stested=S do:
Select the variant Vk that gives the most new/not yet tested objects.k=argmaxi=1,...,n|Si∩(S\Stested)|
Add the variant Vk to the (end of the) new list of prioritized variants# and add the newly covered objects to the set Stested.Vnew=Vnew+VkStested=Stested∪Sk

If S=Stested, and not all variants are in Vnew yet, either output the# shorter list, or add the remaining variants to Vnew (possibly in an# order determined by similarity.
RETURN Vnew Algorithm 2. Selecting products for test.

D3.5.2 Report on the methodology for the construction of testing models

CONFIDENTIAL 14 V1.0

Note that this algorithm is a variant of an algorithm that appears in the literature several times, e.g. in[DPP17] and [SBP14]. It varies in the way that the distance of the not-yet tested variants to the set oftested variants is measured: Instead of taking the maximum of the distances of a new variant to allalready tested variants, or summing these distances up, we take a set-based approach. Thefeatures/deltas etc. of the already tested variants are gathered in a set and the distance to this set ismeasured. This is a natural approach for reaching the coverage goal. However, for, e.g., pairwise orhigher combinatorial coverage, this becomes more expensive, as sets of pairs of features have to bemanaged and checked.
Another issue here is that the algorithm stops if the desired coverage is reached. A resolution herewould be to go on with similarity-based algorithms as in [SBP14] as soon as the initial coverage goal isreached. The distance of a variant to the already tested set is computed by taking the minimum over alldistances, or summing up the distances. Therefore, the distance of a variant to the already tested setonly becomes 0 when the variant is already contained in the set. More and more variants can be addedthat are heuristically most unsimilar to the set and therefore extend the error-detecting properties of thetest suite.
Note that the above algorithm is in the most general form and applicable for any of the coverage criteriain 5.2. Objects to be covered can be absent/present features, pairs, deltas, or requirements. We will giveto concrete examples below.
For the two coverage goals feature/delta coverage, the distance measure |𝑆𝑗 ∩ (𝑆∖𝑆𝑡𝑒𝑠𝑡𝑒𝑑) specifies as
follows:

1. Feature coverage: Let 𝑆 = 𝐹(𝑃𝐿) be the set of all possible features in the product line. Let 𝑆𝑡𝑒𝑠𝑡𝑒𝑑 =
 𝐹(𝑃𝑡𝑒𝑠𝑡𝑒𝑑) be the set of all features that are contained in already tested products, and 𝑆𝑗 = 𝐹(𝑃𝑗)
be the features of the product 𝑃𝑗. Then, the corresponding metrics are:

a. |(𝐹(𝑃𝐿)∖𝐹(𝑃𝑡𝑒𝑠𝑡𝑒𝑑)) ∩ 𝐹(𝑃𝑗)|b. | (𝐹(𝑃𝐿)∖𝐹(𝑃𝑡𝑒𝑠𝑡𝑒𝑑)) ∩ 𝐹(𝑃𝑗)| + | (𝐹(𝑃𝐿)∖𝐹(𝑃𝑗)) ∩ 𝐹(𝑃𝑡𝑒𝑠𝑡𝑒𝑑)|
c. (1 − 𝛼)| (𝐹(𝑃𝐿)∖𝐹(𝑃𝑡𝑒𝑠𝑡𝑒𝑑)) ∩ 𝐹(𝑃𝑗)| + 𝛼| (𝐹(𝑃𝐿)∖𝐹(𝑃𝑗)) ∩ 𝐹(𝑃𝑡𝑒𝑠𝑡𝑒𝑑)|

Note that b. is just the Hamming distance.
2. Delta coverage: Let 𝐷𝑎𝑑𝑑(𝑃𝐿), 𝐷𝑚𝑜𝑑(𝑃𝐿), 𝐷𝑟𝑒𝑚(𝑃𝐿) be the sets of addition, modification and

removal deltas in the product line, and correspondingly for the already tested products 𝑃𝑡𝑒𝑠𝑡𝑒𝑑 or
a product 𝑃𝑗. Then, the corresponding metrics are:

a. |𝐷𝑎𝑑𝑑(𝑃𝐿)∖𝐷𝑎𝑑𝑑(𝑃𝑡𝑒𝑠𝑡𝑒𝑑) ∩ 𝐷𝑎𝑑𝑑(𝑃𝑗)| +
|𝐷𝑚𝑜𝑑(𝑃𝐿)∖𝐷𝑚𝑜𝑑(𝑃𝑡𝑒𝑠𝑡𝑒𝑑) ∩ 𝐷𝑚𝑜𝑑(𝑃𝑗)|b. |𝐷𝑎𝑑𝑑(𝑃𝐿)∖𝐷𝑎𝑑𝑑(𝑃𝑡𝑒𝑠𝑡𝑒𝑑) ∩ 𝐷𝑎𝑑𝑑(𝑃𝑗)| +
|𝐷𝑚𝑜𝑑(𝑃𝐿)∖𝐷𝑚𝑜𝑑(𝑃𝑡𝑒𝑠𝑡𝑒𝑑) ∩ 𝐷𝑚𝑜𝑑(𝑃𝑗)| +

|𝐷𝑟𝑒𝑚(𝑃𝐿)∖𝐷𝑟𝑒𝑚(𝑃𝑡𝑒𝑠𝑡𝑒𝑑) ∩ 𝐷𝑟𝑒𝑚(𝑃𝑗)|c. (1 − 𝛼)|𝐷𝑎𝑑𝑑(𝑃𝐿)∖𝐷𝑎𝑑𝑑(𝑃𝑡𝑒𝑠𝑡𝑒𝑑) ∩ 𝐷𝑎𝑑𝑑(𝑃𝑗)| +
(1 − 𝛼)|𝐷𝑚𝑜𝑑(𝑃𝐿)∖𝐷𝑚𝑜𝑑(𝑃𝑡𝑒𝑠𝑡𝑒𝑑) ∩ 𝐷𝑚𝑜𝑑(𝑃𝑗)| +

 𝛼|𝐷𝑟𝑒𝑚(𝑃𝐿)∖𝐷𝑟𝑒𝑚(𝑃𝑡𝑒𝑠𝑡𝑒𝑑) ∩ 𝐷𝑟𝑒𝑚(𝑃𝑗)|
3. Requirement coverage: For requirement coverage, one could consider a set S that consists ofsubsets of features that are linked to requirements. For each requirement, one identifies thefeature/s that have to be present in order to test that requirement. As the sets can be of varioussize, and other factors can be relevant for requirement coverage, we do not further elaboratethis for now.

D3.5.2 Report on the methodology for the construction of testing models

CONFIDENTIAL 15 V1.0

Evaluations of the efficiency of the algorithm with respect to reducing testing efforts can be found inD3.5.1.
6. Implementation
As mentioned in the overview section, the proposed test case generation process can be implementedas a set of three tools:

 Amodel editor for creating the Product Line Model (PLM);
 A product generator that instantiates Product Models from a PLM;
 A test suite generator that produces a Test Suite from an individual Product Model.

As the names suggest, the model editor is a user-facing application that requires input from a humanoperator, while the product and test suite generators are automatic tools that only require an input model(and possibly configuration parameters) to work. Accordingly, the first tool will require a relativelyelaborate GUI interface, while the latter two can be implemented as command-line tools or plugins witha comparatively simple interface.
Test suite generation will require extensive manipulation of product models. The UML2 library (part ofthe Model Development Tools project [MDT19]) enables programmatic access to UML project filescreated in Papyrus, while the Query / View / Transform (QVT) implementations released by the Model toModel Transformation project [MMT19] can be used to simplify the implementation of the test casegeneration process outlined in Algorithm 1.
It goes without saying that as the language of implementation of most of the above components, Javawill be used to write the model generators and any code customizations that might be required by themodel editor.

D3.5.2 Report on the methodology for the construction of testing models

CONFIDENTIAL 16 V1.0

7. Conclusions
This report proposed a methodology for automatically generating a suite of abstract test cases for aproduct line — a family of artefacts related by shared features and development history. Thepresentation was roughly divided in three parts: definition of models for product lines and test suites,techniques for automatic generation of abstract test cases, and considerations on implementation.
Theoretical concepts are built upon the SPES XT methodology. Custom Product Line, Product andTesting viewpoints were defined, providing the notation for modelling product lines, individual productsand abstract test suites respectively. The Product Line viewpoint is largely an application of the BeVRlanguage, while the Product and Testing viewpoints are built upon UML and the UML Testing Profile(UTP).
An algorithm for automatic generation of test cases through transformation of UML models was thenpresented, followed by a discussion on criteria for test coverage determination. Different options forvariant selection were presented and contrasted, from heuristic to optimal. An argument was made foran optimal approach that is flexible enough to allow different coverage criteria to be used according tothe needs of specific projects.
Finally, implementation was considered. A summary outline of the system architecture was given, andexisting tools and libraries that can be used as basis for realizing it are presented. A case was made forimplementing the tool suite in Java as a set of Eclipse IDE plugins, following the example of otherprojects in the area of variability modelling.
As this report was mostly concerned with the theoretical side of the proposed automatic test generationmethod, following activities must concentrate on implementation. The initial discussion developed heremust be complemented by a more detailed analysis of system requirements and architecture,identification of shortcomings in existing tools, implementation of missing features and experimentalevaluation. In particular, since increased productivity is a central objective in the XIVT project, the matterof user friendliness is expected to become increasingly important as we move from design intoimplementation and then deployment.

D3.5.2 Report on the methodology for the construction of testing models

CONFIDENTIAL 17 V1.0

8. References
[AGV06] Vis, Iris FA. "Survey of research in the design and control of automated guided vehiclesystems." European Journal of Operational Research 170.3 (2006): 677-709.
[AGV19] Weng, Jian-Fu, and Kuo-Lan Su. "Development of a SLAM based automated guided vehicle."Journal of Intelligent & Fuzzy Systems 36.2 (2019): 1245-1257.
[AMT09] Lamancha, Beatriz Pérez, et al. "Automated model-based testing using the UML testing profileand QVT." Proceedings of the 6th International Workshop on Model-Driven Engineering, Verificationand Validation. 2009.
[BVR14] Haugen, Øystein, and Ommund Øgård. "BVR – better variability results." InternationalConference on System Analysis and Modeling. Springer, Cham, 2014.
[BVR15] Vasilevskiy, Anatoly, et al. "The BVR tool bundle to support product line engineering."Proceedings of the 19th International Conference on Software Product Line. 2015.
[BVR18] “SINTEF-9012 / bvr.” SINTEF-9012, 22 January 2020,https://github.com/SINTEF-9012/bvr.
[COM04] Kuhn, D. Richard, Dolores R. Wallace, and Albert M. Gallo Jr. “Software Fault Interaction andImplications for Software Testing”. IEEE Transactions on Software Engineering 30(6), pp. 418-421.2004.
[COM11] Nie, Changhai, and Hareton Leung. “A Survey of Combinatorial Testing,” ACMComput. Surv.,vol. 43, no. 2, pp. 11:1–11:29. 2011.
[COM16] Rogstad, Erik, and Lionel Briand. “Cost-effective strategies for the regression testing ofdatabase applications: Case study and lessons learned”. J. Systems and Software 113, pp. 257-274.2016.
[DPP17] Al-Hajjaji, Mustafa, et al. "Delta-oriented product prioritization for similarity-based product-linetesting." 2017 IEEE/ACM 2nd International Workshop on Variability and Complexity in Software Design(VACE). IEEE, 2017.
[ECL19] “Eclipse (software).”Wikipedia, 21 August 2019,https://en.wikipedia.org/wiki/Eclipse_(software).
[GTC12] Johansen, Martin Fagereng, Øystein Haugen, and Franck Fleurey. "An algorithm forgenerating t-wise covering arrays from large feature models." Proceedings of the 16th InternationalSoftware Product Line Conference-Volume 1. 2012.
[MDT19] “Model Development Tools (MDT).” Eclipse Foundation, 21 August 2019,https://www.eclipse.org/modeling/mdt/.
[MMT19] “Model to Model Transformation (MMT).” Eclipse Foundation, 21 August 2019,https://www.eclipse.org/mmt/.
[PAP18] “Eclipse Papyrus.” Eclipse Foundation, 21 August 2019,https://www.eclipse.org/papyrus/index.php.
[PIT06] Bryce, Renée, and Charles J. Colbourn. ”Prioritized interaction testing for pair-wise coveragewith seeding and constraints” Inf. Softw. Technol. 48 (10), pp. 960–970. 2006.

D3.5.2 Report on the methodology for the construction of testing models

CONFIDENTIAL 18 V1.0

[SBP14] Henard, Christopher, et al. "Bypassing the combinatorial explosion: Using similarity to generateand prioritize t-wise test configurations for software product lines." IEEE Transactions on SoftwareEngineering 40.7 (2014): 650-670.
[SDM18] Halim, Shahliza Abd, Dayang Norhayati Abang Jawawi, and Muhammad Sahak. “Similaritydistance measure and prioritization algorithm for test case prioritization in software product line testing.”Journal of Information and Communication Technology, 18(1), pp. 57-75. 2018.
[SPE12] Pohl, Klaus, et al., eds. Model-based engineering of embedded systems: The SPES 2020methodology. Springer Science & Business Media, 2012.
[SPE16] Pohl, Klaus, et al. "Advanced model-based engineering of embedded systems." AdvancedModel-Based Engineering of Embedded Systems. Springer, Cham, 2016. 3-9.
[SPT11] Hervieu, Aymeric, Benoit Baudry, and Arnaud Gotlieb, “PACOGEN: Automatic Generation ofPairwise Test Configurations from Feature Models”. 2011 IEEE 22nd International Symposium onSoftware Reliability Engineering, Hiroshima, Japan, pp. 120–129. 2011.
[SPT13] Marijan, Dusica, Arnaud Gotlieb, Sagar Sen, and Aymeric Hervieu, “Practical pairwise testingfor software product lines”. Proceedings of the 17th International Software Product Line Conference,Tokyo, Japan, pp. 227-235. 2013.
[UML08] Miles, Russ, and Kim Hamilton. Learning UML 2.0. " O'Reilly Media, Inc.", 2006.
[UML19] “List of Unified Modeling Language Tools.”Wikipedia, 21 August 2019,https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools.
[UTP08] Baker, Paul, et al. Model-driven testing: Using the UML testing profile. Springer Science &Business Media, 2007.
[VAB14] Abal, Iago, Claus Brabrand, and Andrzej Wasowski. "42 variability bugs in the linux kernel: aqualitative analysis." Proceedings of the 29th ACM/IEEE international conference on Automatedsoftware engineering. 2014.
[VAR10] Schaefer, Ina. "Variability Modelling for Model-Driven Development of Software ProductLines." VaMoS 10 (2010): 85-92.
[XVT19] XIVT Project Consortium, “XIVT Full Project Proposal Annex.” 03 August 2019.

D3.5.2 Report on the methodology for the construction of testing models

CONFIDENTIAL 19 V1.0

Appendix A - Tool Releases
Tool releases are hosted at https://gitlab.com/xivt/itea. Repositories can be accessed using thefollowing credentials:

 Username: ITEA3XIVT
 Password: 20222018XIVT

See the next sections for further details.
BeVR
https://gitlab.com/xivt/itea/bevr
BeVR (pronounced "beaver") is a fork of the original Base Variability Resolution (BVR) tool set. It is a setof plug-ins for Eclipse that implements and supports the BVR language. It enables feature modelling,resolution and realization of UML products.

