VI

IT

© N ITEAZ

eXcellence InVariant Testing

ITEA 3 Call 4: Smart Engineering

D3.5.2 Report on the methodology for the
construction of testing models, final

version
Project References
PROJECT ACRONYM XIVT
PROJECT TITLE EXCELLENCE IN VARIANT TESTING
PROJECT NUMBER 17039

PROJECT START DATE

NOVEMBER 1, 2018 | PROJECT DURATION | 36 MONTHS

PROJECT MANAGER

GUNNAR WIDFORSS, BOMBARDIER TRANSPORTATION, SWEDEN

WEBSITE

HTTPS://WWW.XIVT.ORG/

Document References

WORK PACKAGE

WP 3: TESTING OF CONFIGURABLE PRODUCTS

T3.1: REQUIREMENTS-BASED VARIABILITY MODELLING AND ABSTRACT TEST

TASK CASE GENERATION
VERSION V2.0 | OcT315, 2020
DELIVERABLE TYPE R (REPORT)
DISSEMINATION LEVEL PuBLIC

Version History

Date Description

Version | Level

Nov 30,

Report on the methodology for the construction of testing models
for variant and configurable products, Tools (e.g. Eclipse plugins)
2019 | for modelling variability for testing and generation of abstract test
cases from variability models — initial version (T3.1)

V1.0 Confidential

Oct 30,

Product line viewpoint (section 4.2) enhanced and adapted to the
2020 | XIVT toolchain, including BVR examples

V2.0 Public

i<

ece||gngg|nianamfesnng D3.5.2 Report on the methodology for the construction of testing models

Summary

This report presents an approach for the automatic generation of abstract test case suites from product
line models, which represent collections of systems related by shared features and development history.
A custom extension of SPES XT provides the conceptual framework for describing product lines; the
use of UML diagrams for model artefacts allows automatic product realization, analysis and simulation,
enabling the generation of abstract test suites as a set of UML Testing Profile (UTP) diagrams. Eclipse is
proposed as implementation basis, due to the availability of libraries and plugins supporting variability
modelling and the design and manipulation of UML artefacts.

CONFIDENTIAL 2 V1.0

YIVT,
e-xge||EnEg|nianamﬂgsnng D3.5.2 Report on the methodology for the construction of testing models

Table of Contents

1. INtrodUucCtion..... ... 4
2. Related WOrK......c..ooiieeiiirieiiirnecssrsmass s s s s s s s s s s s s s nmas s s s mmsnnens 4
3. Running EXample........cooiiiiiciiircscirsessssrsss s rs s s s s s n s 5
4. ProCess OVEeIVI@W.......ccciiieeeuiiiiiricnnsserssnessss s s sssmnsss s s s s snmnssssssssnnnsssnns 6
4.1. Product Viewpoint ... rrsssss s s s snms e s 6
4.2. Product Line Viewpoint........ccoeciiiiiiiirrccceccss e rss s s s s s 7
4.2 1 Feature MOEl........coouuiiieeie e 7
4.2.2 DOMAIN ...t e e e eaaa 7
4.2.2 RESOIULIONS ... oo e 9
4.2.2RealizationS...........oiiiiiiiiiiiee e 9

4.3. Test Viewpoint ... s 10
5. Test Suite Generation.............oo e 11
5.1.Variant Selection......... i e 1
5.2. Coverage Criteria.......ccccuummmmmmmmnnnnssssssssssssssss s s s s s s s s s s s s s s s s ss s e 12
5.3. Variant Selection Algorithm............ccommimiii, 13
0 o 4 U3 [V = o 4 =3O 16
8. ReferenCes..... oot e 17
Appendix A -Tool Releases..........cccciimimeciiiimecinirecr e 19
7Y 19

CONFIDENTIAL 3 V1.0

eceIIEnnglnga[ian[I-es[ing D3.5.2 Report on the methodology for the construction of testing models

i<

1. Introduction

Task T3.1 of XIVT Working Package 3 (WP3) is concerned with “extending existing methods for
variability modelling such that feature models, base models, scenario models and threat and intrusion
models are connected and allow the derivation of abstract test cases. Together with the definition of
suitable meta-models, a methodology will be developed to formulate testing requirements from the use
cases in these testing models” [XVT19, p. 88]. In other words, the objective is to design and implement
an automated process to generate abstract test case suites from project specifications composed of:

e Product line model, describing a product baseline, its context and potential variants;
e Productinstances, specifying actual product variants and their configurations.

A common conceptual and technological basis encompassing all artefacts and processing tasks is a
practical requirement for effective process implementation. Moreover, automation is only possible if
project documents follow a well-defined and unambiguous format that enables mechanical
manipulation, and capture all the information necessary for test case generation. It must also be
possible to describe all procedures in precise and objective terms that can be converted to computer
algorithms.

Software Platform Embedded Systems (SPES) is a comprehensive framework for modelling project
domain, requirements and architecture [SPE12]. Its extended version SPES XT includes facilities for
managing product lines [SPE16, p. 197]. A set of custom extensions to SPES XT is proposed as the
conceptual basis for project models.

SPES artefacts can be instantiated in the Unified Modelling Language (UML) 2.0 [UMLO8], making it a
natural choice of common notation. UML is a mature modelling language, widely known and supported
by a number of software projects, including transformation tools [UML19]. Additionally, the UML Testing
Profile (UTP) extends UML to cover test concepts, enabling both project and test models to share
common notation elements and structure [UTPO08].

Many current UML software projects are developed in the context of the Eclipse Project [ECL19].
Noticeable among them are the UML2 library, part of the Model Development Tools (MDT) project
[MDT19]; Papyrus, a MDT/UML2-based extendible graphical design editor [PAP18]; and the Query /
View / Transform (QVT) implementations released by the Model to Model Transformation (MMT) project
[MMT19]. These constitute the proposed foundations for implementing the test generation system.

The remainder of this report is structured as follows. The next section reviews existing approaches to
automatic test generation from product line models, their features and shortcomings. The proposed
product, variant and test models are then described, followed by the test case generation procedure and
implementation guidelines. The report closes with a discussion on perspectives for the next project
stages.

2. Related Work

The State-of-the-art report on requirements-based variability modelling and abstract test case
generation — published as part of task T3.1 — provides a survey of current product line modelling and
test generation methods. In the terms of that report, the method described here follows an hybrid
approach: it uses a custom language (BVR) to perform feature modelling, UML for system architecture
and behaviour modelling, and a variety of rule-based techniques to generate test suites from UML
models.

CONFIDENTIAL 4 V1.0

YIVT,
J(cmﬁn&mianamfesnn D3.5.2 Report on the methodology for the construction of testing models

3. Running Example

Automated Guided Vehicles (AGV’s) are autonomous mobile systems often employed in industrial
plants to transport goods around assembly lines, storage depots, delivery areas and so on [AGVO06].
Traditionally, AGV’s rely on rudimentary navigation systems requiring extensive environment retrofitting
for the installation of guiding wires or location beacons. More recently, sophisticated navigation stacks
based on Simultaneous Localization and Mapping (SLAM) and rich sensors such as depth cameras and
LiDAR'’s (laser-based range sensors) have been promoted as a more robust approach, simplifying
deployment while also enabling automatic handling of unplanned occurrences such as unexpected
obstacles [AGV19].

A product line of SLAM-based AGV'’s can comprise a wide diversity of variants both in software and
hardware features. A number of SLAM software packages are available today, each with its particular
strengths and sensory requirements. Among them RTAB-Map is characteristic of the vision-based
approach for pose registration, extracting features from visual data provided by stereo or Time-of-Flight
(ToF) cameras to identify different locations across an environment. In contrast, range-based Google
Cartographer trades more accurate localization for stricter requirements on the quality of its input depth
data, all but mandating LiDAR as the main sensor solution. Both benefit from additional sensors such as
Inertial Measurement Units (IMU’s) and wheel encoders that provide rough estimates of the unit’s
current location relative to its start point. Furthermore, environment and application requirements may
demand a particular drive technology — e.g. a differential or holonomic base for added maneuverability,
or a ftricycle drive for extra torque. Figure 1 below illustrates the differences between drive
configurations.

e) (D <) /@QDN

o
oy) ey coy (Ummimm)y)
(b) (c)

(a)

Figure 1. Mobile drive configurations. (a) In a differential drive, a pair of powered wheels can independently turn at different rates
and even in opposite directions, causing the robot to move straight, turn or spin in place. A secondary pair of loose wheels is
usually employed to keep the robot level. (b) In a holonomic drive, sets of independently-powered wheels allow the robot to move
in arbitrary directions regardless of its heading orientation (the arrangement shown in the figure is just one of several ways to
achieve that effect). (c) In a tricycle drive, a pair of fixed hind wheels powered by the same motor push the robot forward or
backward, while a turning, non-powered front wheel provides direction (alternatively, the front wheel can be powered, with loose
hind wheels just providing support).

CONFIDENTIAL 5 V1.0

YIVT,
eleellence I Variant Testing D3.5.2 Report on the methodology for the construction of testing models
)) e)) (@
Zg?:jl?;tents Product line Product éssséiﬁttteeﬁ
model (BVR) model (UML) (UTP)
. Product Test suite
ety generator generator

Figure 2. Abstract test case generation workflow.

4. Process Overview

The proposed test case generation process follows a multi-step workflow. Starting from a set of project
documents, a model editor is used to generate a product line model that encodes relevant information
about the product family. This is passed to a product generator that instantiates specific product models
as guided by test metrics. Finally, a fest suite generator instantiates a test case suite for each product.
See Figure 2 for an illustration.

In the SPES XT modelling framework, a viewpoint is "a pattern or template that can be used to develop
individual views on a system (and its environment)" in order "to separate the various concerns of
different stakeholders during the engineering process". "Typically, the specification of a viewpoint
defines that viewpoint in terms of its syntax, semantics, and pragmatics by providing, among other
things, the name of the viewpoint, the corresponding stakeholder concerns, the viewpoint language
(probably given by a metamodel), and techniques that can be used during the construction and analysis
of the corresponding view" [SPE12, p. 36].

Accordingly, the models used to describe products, product lines and test case suites are defined as
custom SPES viewpoints, inheriting the concepts of the basic framework and extending them to suit
their respective purposes. The next sections will elaborate on each one of those.

4.1. Product Viewpoint

The product viewpoint describes a product model that captures precise specifications across three
aspects:

e The product domain, which allows identification of test components;
e The product architecture, which allows selection of Systems Under Test (SUT's);
¢ The product behaviour, which allows derivation of test cases.

In the product viewpoint, the domain is represented by a Use Case diagram. Its purpose is to catalogue
the entities that interact with the system (providing inputs and/or receiving its outputs) and the user
functions [SPE12, p. 40] that implement such interactions.

Product architecture is represented by a Class diagram. It records the logical components that realize
the functionalities provided by the user functions [SPE12, p. 41], as well as their relationships. This is
also where intra-product variability is described through class inheritance relationships and object
attributes.

CONFIDENTIAL 6 V1.0

ece||gngg|nianamfesnng D3.5.2 Report on the methodology for the construction of testing models

i<

Finally, product behaviour is represented by Sequence diagrams detailing how each user function is
realized by message exchanges between system classes. These are the main input to the test
generation process.

4.2. Product Line Viewpoint

Whereas the product viewpoint describes the domain, architecture and behaviour of a single system
instance, the product line viewpoint represents a family of systems in terms of feature changes
(additions, removals and modifications) across a shared development history. Conceived as an
application of A-modelling [VAR10], it's composed of four parts, Feature model, Domain, Resolutions
and Realizations.

4.2.1 Feature model

A feature model describes the entire product line in terms of abstract functional characteristics
(features), their optionality and interdependence / exclusion relations.

Feature models are described in the BeVR language using the State machine diagram. The BeVR
language in loosely based on the BVR language [BVR14]. The BVR tool bundle [BVR15] [BVR18] is an
Open Source implementation of the BVR language as a set of Eclipse IDE plugins. It integrates to
Papyrus, an Eclipse UML editor [PAP18] allowing UML models to be used as realization artefacts.
Together they already provide most of the features required from the model editor and product
generator. However development of the BVR tool bundle has fallen behind the rest of the Eclipse
ecosystem (notably Papyrus); it's also somewhat unpolished, and misses a couple relevant features —
for example, adding artefacts to the core model without removing existing parts in the process.

To overcome these shortcomings, in BeVR tool, we have redesigned the variability modelling language
in a free XML format which makes it easy for receiving human inputs. In this version, Eclipse
Modeling Framework (EMF) has been dropped for a more human-friendly style. Also, a feature has
been added which enable adding an artifact to the variant without the need to replacing existing parts. In
addition, bidding process of domain artifact to the features is also simplified.

Features can be added, edited or removed and those are needed in all variance can be marked as
Required (Figure 3). Constraints can be specified in a simple logic language for features in terms of sub-
features. As the changes are made in the visual page, the BeVR model is written and updated in the
plain-text file.

4.2.2 Domain

Domain describes the artifacts that are going to be manipulated. It includes the Core model which
represents the minimum common set of features and A-models describing delta (A) artifacts added to
the core model to generate variance. An example of core and A-models for SLAM-AGV product are
illustrated in Figure 4 and 5. The core product is described in UML as specified in the Product Viewpoint.
Figure 4 shows the SLAM-AGYV core product illustrated in state diagram.

CONFIDENTIAL 7 V1.0

YIVT,

eleellence I Variant Testing D3.5.2 Report on the methodology for the construction of testing models

~? core.di ~? deltas.di A modelbevr =

<feature name="obstacle_avoidance"/>

<feature name="driving"/>
“Icoredi D deltasdi & *modelbevr <feature name="set_goal"/>
</feature>
Add| Edit | Remove esaTiEions
Feature Required _Constraints <resolution label="teach and repeat” name="teach_and_repeat”>
v SLAM true <feature name="slam">
TocaEmton s <feature name="localization"/s
mapping true </;:i:‘;:f name="mapping”/>
v navigation true R
Oimd”vo‘dan(e o <feature name="navigation">
driving false <feature name="obstacle_avoidance"/>
<feature name="teach"/>
= Ben WA Ecit Feature X <feature name="repeat"/>
repeat false
tgoal fal Name: navigation </feature>
setgon oke </resolution>
kabel: </resolutions>

Constraints: | teach == repeat and not (set_goal == teach)| <realizations translator="classpath:uml_state_machine.xslt">
Requwed— <realization Feature:"naviEatiun/driving”)
<add after="_8RdVUNDzEeqj7KFKxV3p2g">

<1i>_yZoWQNciEeqzkIFn934Piw</1i>
<1i>_3¢ZskNciEeqzkIFn934Pjw</1i>

</add>

<add after="_H1AKoNDsEeqj7KFKxV3p2g">
<1i>_s7ggsNciEeqzkIFn934Pjw</1i>

</add>

OK Cancel

<change from="_TcBcUNcnEeqzkIFn934Pjw" name="source” to="_GzZ2oNDfEeqj7/KFKxV3p2g"/>
<change from="_TcBcUNcnEeqzkIFn934Pjw" name="target” to="_GzZ2oNDfEeqj7KFKxV3p2g"/>
</realization>
<realization feature="navigation/teach">
<remove>__n2NANDpEeqj7KFKxV3p2g</remove>

<remove>_DkH2MNDqEeq7KFKxV3p2g</ remove>
<remove>_6e0BoNDpEeqj7KFKxV3p2g</remove>

Domain | Features |Resolutions | Realizations | model.bevr

a. Visual edit feature b. BeVR model in the plain-text file

Figure 3. Adding features in feature editor (a) and BeVR model generated in plain text file for the SLAM-AGV product line (b).

startup shutdown
idle load map localiza... set goal naviga...
clear map reached goal
top mappini start mapping obstacle cleared obstacle detected

mapping blocked o — evading
path cleared

Figure 4. The core model represents the minimum set of common features across the product line for the SLAM-AGV product
line, represented in a Papyrus Model.

AGV

delta 1 teach route

teaching

save route

repeat route repeati.

finished route

delta 2) Start driving WI"Q
stop driving

Figure 5. The model contains dummy states ‘delta 1’ and ‘delta 2’ which are used to define transition to the core model.

Starting state represented by an idle state from the idle state the AGV can either map the environment or
use the map for sub localization and then proceed to driven navigation and so on to different states.

The A-models (Figure 5) contains some optional features (states) that can be added to introduce a
variance. The core and A-models are combined in the BeVR Model. Deltas are represented by BeVR

fragment substitutions, which bind a placement (a collection of core model parts) to a replacement (a
collection of delta parts) and the feature it realizes.

CONFIDENTIAL 8 V1.0

YIVT,
e'muEnEE Iniﬁ]{iamﬂasling D3.5.2 Report on the methodology for the construction of testing models

4.2.2 Resolutions

Resolutions are instances of the feature models that represent a specific product. When creating a
resolution, features that are required are automatically added to the model. While creating new
resolutions, additional features can be marked as Required (see Figure 6).

In this example, “goal driver” resolution requires features that are automatically included (Figure 6a).
While for creating a new resolution for “teach and repeat”, new features need to be added as shown in
(Figure 6b).

~? coredi ~2 deltas.di # *model.bevr 2 > core.di 2 deltasdi & *model.bevr &3
goal driven teach and repeat
Feature Included Feature Included
~ SLAM true v SLAM true
localization true localization true
mapping true mapping true
 pavigation true v navigation true
obstacle avoidance true obstacle avoidance true
driving false driving false
teach false teach true
repeat false repeat true
set goal false set goal false
Domain | Features | Resolutions | Realizations | model.bevr Domain Features | Resolutions | Realizations | model.bevr
a b

Figure 6. Creating resolutions for the proposed product line.

4.2.2 Realizations

Realizations bind specific resolutions to the domain artifact. In the realization editor resolutions are
specified for selected features (Figure 7). Delta states from the A-models are linked to states in the core
model connecting source and target transitions.

The new BeVR model showing the variance with respect to the core model is depicted in Figure 8. The
new states and transitions can be observed under region group.

“? coredi ~? deltasdi * *model.bevr 2
Feature Required Constraints
SLAM true
v navigation e teach == repeat and not (set_goal == teach)
obstacle avoidance._frue
driving 1 Create "Change” Operation X
teach
Tepeat Attribute: target v | Direction: | from deltas to core v
set goal Core
Name Type ~
\ofal»&?uon uml:State
navigation umi:State
evading uml:State
blocked uml:State =
Deltas
New "Add” Operation
B | Name Type L)

Remove set_goal: uml:T: stop_driving uml:Transition
Remove reached_goal: u

start_driving uml:Transition
Remove navigation: umi

Add teach_route: uml:Trs et umi:State

Add save_route: umlTra teaching umi:State -
Add repeat_route: umLT|

Add finished_route; umi:} OK | | Cancel

Add teaching: uml:State

Add repeating: uml:State

Change source from navigation: umi:State to repeating: uml:State
Change target from navigation: uml:State to repeating: uml:State
Change source from delta_1: uml:State to localization: uml:State

Domain Features Resolutions Realizations model.bevr

q
9

Figure 7. Specifying states and transition mapping from A-models to core model product realization involves creating the
variance.

CONFIDENTIAL 9 V1.0

YIVT,

eleellence I Variant Testing D3.5.2 Report on the methodology for the construction of testing models
~? core.di ~? deltas.di 4 model.bevr &) core.um| = #] goal_drivenuml &

~ @] platform:/resource/SLAM-AGV/core.uml
v~ 2 <Model> core
%4 <Package Import> UML Primitive Types
w (& <State Machine> AGV
v (D <Region> Region1
% <Transition>
@ <Transition> start_mapping
@ <Transition> stop_mapping
@ <Transition>
@ <Transition> load_map
@ <Transition> clear_map
@ <Transition> set_goal
@ <Transition> reached_goal
@ <Transition> obstacle_detected
P <Transition> obstacle_cleared
& <Transition> path_blocked
@ <Transition> path_cleared
® <Pseudostate> startup
@ <State> idle
@ <State> mapping
@ <Final State> shutdown
@ <State> localization
& <State> navigation
& <State> evading
& <State> blocked
24 <Profile Application> ActionLanguage
#] pathmap://UML_LIBRARIES/UMLPrimitiveTypes.library.uml
#] pathmap://UML_PROFILES/Ecare.profileuml

~ @ platform:/resource/SLAM-AGV/goal_driven.uml
~ B <Model> core
72 <Package Import> UML Primitive Types
~ [<State Machine> AGV
v @ <Region> Region1
¥ <Transition>
) <Transition> start_mapping

g

<Transition> stop_mapping
<Transition>

<Transition> load_map
<Transition> clear_map
<Transition> set_goal
<Transition> redshed_goal
<Transition> obstacle_detected
<Transition> obstacle_cleared
<Transition> path_blocked
<Transition> path_cleared
<Transition> stop_driving
<Transition> start_driving
<Pseudostate> startup

@ <State> idle

40 <0 0 @ @ 0@ D 0 D 0 D 4

& <State> mapping

@ <Final State> shutdown
@ <State> localization
@ <State> navigation

@ <State> evading

& <State> blocked

& <State> driving

Figure 8. Comparing the new BeVR model shows the variance with respect to the core model. The BeVR model showing
states and transitions that were added.

4.3. Test Viewpoint

The test viewpoint specifies an abstract test suite for an associated product, and is composed of:

e An architecture presenting the set of test contexts used to collect individual test cases, the test
components that simulate external actors, the data pools that enable retrieval of required data
to reproduce specific scenarios, and the product's Systems Under Test (SUT's) — i.e. the
logical components that are to be exercised by the test cases;

e The test cases proper, describing the sequences of interactions among SUT's, test components
and data pools that constitute tests, as well as expected results.

The architecture and test cases are represented as UML Testing Profile (UTP) diagrams. Specifically,
the architecture is recorded as a Class diagram, whereas individual test cases are written as Sequence

diagrams.

CONFIDENTIAL 10 V1.0

ece||gngg|nianamfesnng D3.5.2 Report on the methodology for the construction of testing models

i<

5. Test Suite Generation

A test suite can be generated by mechanically transforming a product model [AMT09]. Algorithm 1
below describes a procedure for performing such a transformation.

Create a Test Suite

For each Actor in the Product Model:
Create a Test Component in the Test Suite

For each Use Case in the Product Model:
Create a Test Context in the Test Suite

For each Sequence diagram S; in the Product Model:
Add a Test Case T; in the Test Context TX, of the corresponding Use Case
Create a Sequence diagram TS; in the Test Suite
Copy all non-Actor lifelines and exchanged messages from S; to TS;
Mark all lifelines copied into TS; with the <<SUT>> stereotype

For each Actor lifeline A;5 in S;:
Add a lifeline for the corresponding Test Component TA;jy in TS;

Create a Data Pool DP; in the Test Suite
For each message M;; from an Actor A;y to a lifeline SUTix in S;:
For each parameter P;s5x in M;5:
Create a data selection operation for P;jx in DP;
Add to TS; a call from TA;; to DP; retrieving a value for P;jx
Add to TS; a M;y exchange from TA;; to SUT;y set up with the given P;j

For each message or return value sent to TAj;; in TS;:
Create a validation action in TX,
Add to TS; a validation action call for the message or return value
Algorithm 1. Converting a product model into a test suite.

In short, the algorithm above applies the following set of simple rules:

¢ Each Use Case is transformed into a Test Context;
e Each Actor is transformed into a Test Component;
e For each Sequence diagram, a corresponding Test Case is created, containing all lifelines and
message exchanges in the original diagram, with the following changes:
o Every Actoris replaced with the corresponding Test Component;
o For messages sent from a Test Component to the SUT, any parameter values are
retrieved from a data pool created for this particular test case;
o Return values and messages sent from the SUT to a Test Component are passed to a
corresponding validation action.

5.1. Variant Selection

Given a test suite, the order in which it is executed has influence on certain quality measures like early
error detection or requirement coverage. So, in the same way, given a list of variants to test, it is of
interest in which order to test them in order to optimize the above properties. Also, time for testing is
limited and it often might only be feasible to test a subset of all possible variants. So achieving high
coverage with this subset is necessary.

CONFIDENTIAL 11 V1.0

ece||gngg|nianamfesnng D3.5.2 Report on the methodology for the construction of testing models

i<

In the following, we will explicate solutions for the situation where a set of variants is fixed and has to be
prioritized for testing. Note that this differs from the approach to generate variants from a feature model
for testing purpose.

If the latter variant generation approach is chosen and a test suite generation algorithm is implemented,
a selection of product models must be instantiated from the product line model. For the generation of
variants for testing purposes, methods for, e.g., achieving combinatorial coverage can be adopted from
their original application area of input configurations, as done in [SPT11], [SPT13]. These methods are
thoroughly studied and widely implemented, see e.g. [DPP17]. Nonetheless, in most applications, the
existing variants only form a small subset of the possible configurations of the product model. To
implement this fact in the model, a variety of constraints would necessarily have to be set for the model.
These constraints don’t stem from actual restrictions of the product, but rather from exterior
circumstances that are difficult to foresee. The logic of the model is therefore affected. Furthermore, too
many constraints are often a crucial obstacle for the effectiveness of the corresponding algorithms.

We will take the approach of deriving variants first, and then prioritizing them as explicated in the
following. First, we will elaborate on the testing goals in terms of coverage criteria.

5.2. Coverage Criteria

In order to give an algorithm for variant selection, the coverage goal of the test suite has to be chosen in
order to appropriately adapt the algorithm. For error detecting, combinatorial, in particular pairwise
testing has proven to be effective, see, e.g., [COM11], and the case studies [COMO04] and [COM16], as
the majority of errors arises from features or the interaction of two features. Furthermore, it was shown
that in certain circumstances, the presence as well as the absence of features can affect the behavior of
other features [VAB14]. For the different modelling approaches described above (feature vs. delta
modelling), different potential coverage criteria arise from these considerations.

In terms of feature models, the following approaches to coverage can be taken:

¢ Combinatorial coverage for features (simple, pairwise, etc.);

e Combinatorial occurrence coverage for features (also simple, pairwise etc.). This means that
the absence of a feature is assessed like an alternative feature, as it can affect the behavior of
other features [VAB14];

e A mixed approach is also feasible, where the absence of a feature is weighted in a different way
(possibly less impacting) than the presence of a feature.

In terms of A-models, these criteria are equivalent to the following approaches to coverage:

¢ Delta coverage without taking removal deltas into account.

¢ Delta coverage with taking removal deltas into account.

e As in feature coverage, a mixed approach is feasible, where removal deltas are weighted in a
different way.

A natural goal for industrial application is requirement coverage. This presumes that requirements are
stated globally, i.e., are not phrased for a specific variant but for the feature model itself. That means
particularly that requirements have to be explicitely linked to features, describing the functionality of a
feature or the interaction of a system of features.

If these prerequisites are met, a more elaborate algorithm is necessary for accomplishing requirement
coverage, as requirements can be linked to varying numbers of features, possibly with specific
parameter values as an input.

CONFIDENTIAL 12 V1.0

VIVT

2z = =@
eleellence I Variant Testing D3.5.2 Report on the methodology for the construction of testing models

5.3. Variant Selection Algorithm

Note again that by the line of arguments in 5.1, we are not considering generation of variants from a
model for testing purposes, but rather selection/prioritization of variants from a given set of already
generated variants. Given a set of variants chosen from the feature model, possibly represented by a
core model and A-models, there are several ways to prioritize them according to the above coverage
goals. A natural approach is to consider the set of objects to cover (features, deltas, pairs,
requirements...) and choose the variant that covers the most objects, then the one that covers the most
additional objects etc., in order to ensure the hightest possible coverage after each additionally tested
variant. This is the approach that we will choose for now. The method can be refined by weighting the
objects according to their “importance” to test them, as done in [PITO6] for pairwise coverage. In the
article, furthermore, constraints for pairs are modelled by negative weights.

It should be mentioned here that to avoid scalability issues for higher levels of combinatorial coverage, a
feasible concept to variant selection and prioritization is a similarity based approach as described in
[DPP17] or [SBP14]: Variants that differ in many features are heuristically prone to give a better level of
the desired coverage than similar ones. To measure the distance between variants, there are different
measures at hand (Hamming, Jacquard, Dice, etc.). Examples, evaluations and references can be
found in [SDM18]. In the delta based prioritization algorithm in [DPP14], the Hamming distance is
applied.

As elaborated earlier, here, a greedy algorithm for variant selection will be implemented that covers the
maximal additional number of objects (features, deltas, pairs) in each step, i.e., for each newly selected
variant. That is, given the case the test suite is aborted at any step, for time or other reasons, the
corresponding coverage reached is as high as possible. Algorithm 2 below provides a pseudocode
description of the procedure.

Select a subset of a 1list of variants for testing purposes/prioritize the list.

#
#
Notes:

* Vy,...,V, denotes the variants derived from the product model.

* S1,...,S, denote the sets of target objects covered by these variants,
e.g. S; 1s the set of features or pairs covered by V;.

* S=35;U...US, is the set of all objects to be covered.

#
#
#
#
S

Arguments:
* V=[Vi, ...,V,] list of variants

ELECT VARIANTS (V) :

Initialize the set of already tested objects and an empty list.
Stested:®

Vinew= [

Until Stesteq=S do:

Select the variant Vi that gives the most new/not yet tested objects.
k:argmaxi=l n | Sim (S\Stested) ‘
Add the variant Vk to the (end of the) new list of prioritized variants
and add the newly covered objects to the set Siesteq-
Vnew:vnew+vk
Stested=stestedUSk
If S=Siesteqr and not all variants are in V.., yet, either output the
shorter list, or add the remaining variants to V.., (possibly in an

order determined by similarity.

RETURN V,ey

Algorithm 2. Selecting products for test.

CONFIDENTIAL 13 V1.0

ece||gngg|nianamfesnng D3.5.2 Report on the methodology for the construction of testing models

i<

Note that this algorithm is a variant of an algorithm that appears in the literature several times, e.g. in
[DPP17] and [SBP14]. It varies in the way that the distance of the not-yet tested variants to the set of
tested variants is measured: Instead of taking the maximum of the distances of a new variant to all
already tested variants, or summing these distances up, we take a set-based approach. The
features/deltas etc. of the already tested variants are gathered in a set and the distance to this set is
measured. This is a natural approach for reaching the coverage goal. However, for, e.g., pairwise or
higher combinatorial coverage, this becomes more expensive, as sets of pairs of features have to be
managed and checked.

Another issue here is that the algorithm stops if the desired coverage is reached. A resolution here
would be to go on with similarity-based algorithms as in [SBP14] as soon as the initial coverage goal is
reached. The distance of a variant to the already tested set is computed by taking the minimum over all
distances, or summing up the distances. Therefore, the distance of a variant to the already tested set
only becomes 0 when the variant is already contained in the set. More and more variants can be added
that are heuristically most unsimilar to the set and therefore extend the error-detecting properties of the
test suite.

Note that the above algorithm is in the most general form and applicable for any of the coverage criteria
in 5.2. Objects to be covered can be absent/present features, pairs, deltas, or requirements. We will give
to concrete examples below.

For the two coverage goals feature/delta coverage, the distance measure |Sj N (5N S;5104) SPECIfiES as

follows:

1. Feature coverage: Let S = F(PL) be the set of all possible features in the productline. Let S,,,,; =
F(Pyg04) be the set of all features that are contained in already tested products, and S; = F(P))
be the features of the product P;. Then, the corresponding metrics are:

a. [(F(PL)NF(Pygs100)) N E(P))
b. [(F(PL)NE(Presteq)) N E(P)I+ | (F(PL)NE(P))) N F(Pesteq)l
. (L=)l (F(PL)NF(Pyesteq) NEP))| + al (F(PL)NE(P))) N F(Pesteq)l

Note that b. is just the Hamming distance.

2. Delta coverage: Let D, 4,(PL), D,,,;(PL), D, (PL) be the sets of addition, modification and
removal deltas in the product line, and correspondingly for the already tested products P,,,; or
a product P]-. Then, the corresponding metrics are:
a. |Dadd(PL)\Dadd(Ptested) N Dadd(Pj)l +
D 110a (PLYND 104 (Presteq) N Do (P
b. 1D (PL)ND g (Pestea) N Doaga(Pj)l +
D (PL)\Dmod(Ptested) n Dmod(Pj)l +
|Drem(PL)\Drem(Ptested) N Drem(Pj)|
c. (1 - a)lDadd(PL)\Dadd(Ptested) N Dadd(Pj)l +
(1 - a)leod(PL)\Dmad(Ptested) n Dmod(Pj)| +
alDrem(PL)\Drem(Ptested) N Drem(P]‘)l
3. Requirement coverage: For requirement coverage, one could consider a set S that consists of
subsets of features that are linked to requirements. For each requirement, one identifies the
feature/s that have to be present in order to test that requirement. As the sets can be of various
size, and other factors can be relevant for requirement coverage, we do not further elaborate
this for now.

mod

CONFIDENTIAL 14 V1.0

ece||gngg|nianamfesnng D3.5.2 Report on the methodology for the construction of testing models

i<

Evaluations of the efficiency of the algorithm with respect to reducing testing efforts can be found in
D3.5.1.

6. Implementation

As mentioned in the overview section, the proposed test case generation process can be implemented
as a set of three tools:

e A model editorfor creating the Product Line Model (PLM);
e A product generator that instantiates Product Models from a PLM;
e Atest suite generator that produces a Test Suite from an individual Product Model.

As the names suggest, the model editor is a user-facing application that requires input from a human
operator, while the product and test suite generators are automatic tools that only require an input model
(and possibly configuration parameters) to work. Accordingly, the first tool will require a relatively
elaborate GUI interface, while the latter two can be implemented as command-line tools or plugins with
a comparatively simple interface.

Test suite generation will require extensive manipulation of product models. The UML2 library (part of
the Model Development Tools project [MDT19]) enables programmatic access to UML project files
created in Papyrus, while the Query / View / Transform (QVT) implementations released by the Model to
Model Transformation project [MMT19] can be used to simplify the implementation of the test case
generation process outlined in Algorithm 1.

It goes without saying that as the language of implementation of most of the above components, Java
will be used to write the model generators and any code customizations that might be required by the
model editor.

CONFIDENTIAL 15 V1.0

ece||gnng|nianamfesnn D3.5.2 Report on the methodology for the construction of testing models

i<

7. Conclusions

This report proposed a methodology for automatically generating a suite of abstract test cases for a
product line — a family of artefacts related by shared features and development history. The
presentation was roughly divided in three parts: definition of models for product lines and test suites,
techniques for automatic generation of abstract test cases, and considerations on implementation.

Theoretical concepts are built upon the SPES XT methodology. Custom Product Line, Product and
Testing viewpoints were defined, providing the notation for modelling product lines, individual products
and abstract test suites respectively. The Product Line viewpoint is largely an application of the BeVR
language, while the Product and Testing viewpoints are built upon UML and the UML Testing Profile
(UTP).

An algorithm for automatic generation of test cases through transformation of UML models was then
presented, followed by a discussion on criteria for test coverage determination. Different options for
variant selection were presented and contrasted, from heuristic to optimal. An argument was made for
an optimal approach that is flexible enough to allow different coverage criteria to be used according to
the needs of specific projects.

Finally, implementation was considered. A summary outline of the system architecture was given, and
existing tools and libraries that can be used as basis for realizing it are presented. A case was made for
implementing the tool suite in Java as a set of Eclipse IDE plugins, following the example of other
projects in the area of variability modelling.

As this report was mostly concerned with the theoretical side of the proposed automatic test generation
method, following activities must concentrate on implementation. The initial discussion developed here
must be complemented by a more detailed analysis of system requirements and architecture,
identification of shortcomings in existing tools, implementation of missing features and experimental
evaluation. In particular, since increased productivity is a central objective in the XIVT project, the matter
of user friendliness is expected to become increasingly important as we move from design into
implementation and then deployment.

CONFIDENTIAL 16 V1.0

YIVT,

eXcellence In Variant Testin D3.5.2 Report on the methodology for the construction of testing models

8. References

[AGVO06] Vis, Iris FA. "Survey of research in the design and control of automated guided vehicle
systems." European Journal of Operational Research 170.3 (2006): 677-709.

[AGV19] Weng, Jian-Fu, and Kuo-Lan Su. "Development of a SLAM based automated guided vehicle."
Journal of Intelligent & Fuzzy Systems 36.2 (2019): 1245-1257.

[AMTO09] Lamancha, Beatriz Pérez, et al. "Automated model-based testing using the UML testing profile
and QVT." Proceedings of the 6th International Workshop on Model-Driven Engineering, Verification
and Validation. 2009.

[BVR14] Haugen, dystein, and Ommund dgard. "BVR — better variability results." International
Conference on System Analysis and Modeling. Springer, Cham, 2014.

[BVR15] Vasilevskiy, Anatoly, et al. "The BVR tool bundle to support product line engineering."
Proceedings of the 19th International Conference on Software Product Line. 2015.

[BVR18]“SINTEF-9012/bvr.” SINTEF-9012, 22 January 2020,
https://github.com/SINTEF-9012/bvr.

[COMO04] Kuhn, D. Richard, Dolores R. Wallace, and Albert M. Gallo Jr. “Software Fault Interaction and
Implications for Software Testing”. IEEE Transactions on Software Engineering 30(6), pp. 418-421.
2004.

[COM11] Nie, Changhai, and Hareton Leung. “A Survey of Combinatorial Testing,” ACM Comput. Surv.,
vol. 43, no. 2, pp. 11:1-11:29. 2011.

[COM16] Rogstad, Erik, and Lionel Briand. “Cost-effective strategies for the regression testing of
database applications: Case study and lessons learned”. J. Systems and Software 113, pp. 257-274.
2016.

[DPP17] Al-Hajjaji, Mustafa, et al. "Delta-oriented product prioritization for similarity-based product-line
testing." 2017 IEEE/ACM 2nd International Workshop on Variability and Complexity in Software Design
(VACE). IEEE, 2017.

[ECL19] “Eclipse (software).” Wikipedia, 21 August 2019,
https://en.wikipedia.org/wiki/Eclipse_(software).

[GTC12] Johansen, Martin Fagereng, Qystein Haugen, and Franck Fleurey. "An algorithm for
generating t-wise covering arrays from large feature models." Proceedings of the 16th International
Software Product Line Conference-Volume 1.2012.

[MDT19] “Model Development Tools (MDT).” Eclipse Foundation, 21 August 2019,
https://www.eclipse.org/modeling/mdt/.

[MMT19] “Model to Model Transformation (MMT).” Eclipse Foundation, 21 August 2019,
https://www.eclipse.org/mmt/.

[PAP18] “Eclipse Papyrus.” Eclipse Foundation, 21 August 2019,
https://www.eclipse.org/papyrus/index.php.

[PITO6] Bryce, Renée, and Charles J. Colbourn. "Prioritized interaction testing for pair-wise coverage
with seeding and constraints” Inf. Softw. Technol. 48 (10), pp. 960-970. 2006.

CONFIDENTIAL 17 V1.0

YIVT,

eleellence I Variant Testing D3.5.2 Report on the methodology for the construction of testing models

[SBP14] Henard, Christopher, et al. "Bypassing the combinatorial explosion: Using similarity to generate
and prioritize t-wise test configurations for software product lines." IEEE Transactions on Software
Engineering 40.7 (2014): 650-670.

[SDM18] Halim, Shahliza Abd, Dayang Norhayati Abang Jawawi, and Muhammad Sahak. “Similarity
distance measure and prioritization algorithm for test case prioritization in software product line testing.”
Journal of Information and Communication Technology, 18(1), pp. 57-75. 2018.

[SPE12] Pohl, Klaus, et al., eds. Model-based engineering of embedded systems: The SPES 2020
methodology. Springer Science & Business Media, 2012.

[SPE16] Pohl, Klaus, et al. "Advanced model-based engineering of embedded systems." Advanced
Model-Based Engineering of Embedded Systems. Springer, Cham, 2016. 3-9.

[SPT11] Hervieu, Aymeric, Benoit Baudry, and Arnaud Gotlieb, “PACOGEN: Automatic Generation of
Pairwise Test Configurations from Feature Models”. 2011 IEEE 22nd International Symposium on
Software Reliability Engineering, Hiroshima, Japan, pp. 120-129. 2011.

[SPT13] Marijan, Dusica, Arnaud Gotlieb, Sagar Sen, and Aymeric Hervieu, “Practical pairwise testing
for software product lines”. Proceedings of the 17th International Software Product Line Conference,
Tokyo, Japan, pp. 227-235.2013.

[UMLO8] Miles, Russ, and Kim Hamilton. Learning UML 2.0." O'Reilly Media, Inc.", 2006.

[UML19] “List of Unified Modeling Language Tools.” Wikipedia, 21 August 2019,
https://en.wikipedia.org/wiki/List_of Unified Modeling_Language_tools.

[UTPO8] Baker, Paul, et al. Model-driven testing: Using the UML testing profile. Springer Science &
Business Media, 2007.

[VAB14] Abal, lago, Claus Brabrand, and Andrzej Wasowski. "42 variability bugs in the linux kernel: a
qualitative analysis." Proceedings of the 29th ACM/IEEE international conference on Automated
software engineering. 2014.

[VAR10] Schaefer, Ina. "Variability Modelling for Model-Driven Development of Software Product
Lines." VaMoS 10 (2010): 85-92.

[XVT19] XIVT Project Consortium, “XIVT Full Project Proposal Annex.” 03 August 2019.

CONFIDENTIAL 18 V1.0

i<

ece||gnng|nianamfesnn D3.5.2 Report on the methodology for the construction of testing models

Appendix A - Tool Releases

Tool releases are hosted at https://gitlab.com/xivt/itea. Repositories can be accessed using the
following credentials:

e Username: ITEA3XIVT
e Password: 20222018XIVT

See the next sections for further details.

BeVR

https://gitlab.com/xivt/itea/bevr

BeVR (pronounced "beaver") is a fork of the original Base Variability Resolution (BVR) tool set. It is a set
of plug-ins for Eclipse that implements and supports the BVR language. It enables feature modelling,
resolution and realization of UML products.

CONFIDENTIAL 19 V1.0

