
ITEA 3 Call 4: Smart Engineering
D3.6 Test Execution Framework

Project ReferencesPROJECT ACRONYM XIVTPROJECT TITLE EXCELLENCE IN VARIANT TESTINGPROJECT NUMBER 17039PROJECT START DATE NOVEMBER 1, 2018 PROJECT DURATION 36 MONTHSPROJECTMANAGER GUNNAR WIDFORSS, BOMBARDIER TRANSPORTATION, SWEDENWEBSITE HTTPS://WWW.XIVT.ORG/
Document ReferencesWORK PACKAGE WP 3: TESTING OF CONFIGURABLE PRODUCTSTASK T3.3: TEST EXECUTION FRAMEWORKVERSION V 1.0 OCT 31ST, 2020DELIVERABLE TYPE R (REPORT)DISSEMINATION LEVEL SOFTWARE: CO (CONFIDENTIAL) ONLY FOR MEMBERS OF THECONSORTIUM.DOCUMENTATION: PUBLIC

D3.6 Test Execution Framework

CONFIDENTIAL 2 V1.0

Summary
Building on results from previous and ongoing projects as well as on publicly availablesolutions, a test execution framework is being developed, in which test cases for variants canbe executed both in software-in-the-loop (simulated distributed software systems) andhardware-in-the-loop (embedded controllers). In this document, an overview of the targeteduse cases is given and the installation and use of the test execution framework is explained.

D3.6 Test Execution Framework

CONFIDENTIAL 3 V1.0

Table of Contents
1. Introduction .. 4
1.1. Targeted Use Cases...4

1.1.1. FFT CUBE Demonstrator / FOKUS Robotics Demonstrator...........4
1.1.2. Advanced Driver Assistance Systems: Pedestrian DetectionSystem.. 5
1.1.3. Propulsion and Controls (PPC)...5
1.1.4. Raw Map Data in Autonomous Vehicles...6

1.2. Existing Solutions..7
1.3. Definitions, Acronyms, Abbreviations...11

2. Technical and User Documentation...12
2.1. Installation ..12
2.2. Writing Test Cases...13
2.3. Executing Test Cases..15
2.4. Using catkin_manager...16

3. References..18
Appendix A - Tool Releases..18

D3.6 Test Execution Framework

CONFIDENTIAL 4 V1.0

1. Introduction
Building on results from previous and ongoing projects as well as on publicly availablesolutions such as, e.g., the Robot Framework for test automation and RPA, the RobotOperating System ROS, the Gazebo simulator and others, a test execution framework is beingdeveloped, in which test cases for variant and configurable robotic applications can beexecuted both in software-in-the-loop (simulated distributed software systems) and hardware-in-the-loop (embedded controllers).
The development of the test execution framework follows an incremental approach. In its initialversion, the requirements are mostly taken from a single selected use case. However, thedesign is carried out with generalization and extensibility in mind. During the furtherdevelopment, requirements from other use cases and desirable tool integrations are taken intoaccount.
In the following sections, an overview of the targeted use cases is given and another existingsolution for test execution in a similar but slightly different context, developed by a projectpartner, is presented.
1.1. Targeted Use Cases
1.1.1. FFT CUBE Demonstrator / FOKUS Robotics Demonstrator
FFT’s Test Process for new components is right now not complete and good as possible. Thefirst step for each usage of a new component in a new production cell, like electric drive, is thatFFT orders one real hardware. With the added documentation a signal trace is designed. Thenext step would be to create a PLC block for the component. After the implementation the PLCblock will be tested against the hardware component on the construction side or in thetechnology lab of FFT. If changes are needed they are directly implemented. The goal is thatthe component can work properly like described in the documentation of the componentmanufacturer. After this test on component level, tests are performed in combination with othercomponents, like a total turntable that’s installed on the electric rotary drive. Each componentcan be replaced by a similar one from another manufacturer. But there are no regression testsperformed for old variants. Therefore it is possible that some errors will occur later on whenthere is a replacement and these are not taken into account at all.
The FOKUS Robotics Demonstrator is an effort to make the challenges from the FFT CUBEDemonstrator use case more tangible for research by providing a downscaled version. This isachieved through the use of affordable hardware and open-source software. Thedemonstrator will enable researchers and solution providers to work on the underlyingchallenges of the use case without taking into account many of the technicalities involved inworking with industrial robots. In order to ensure the applicability of the results to the actual usecase, the demonstrator is being developed in close collaboration with the original use caseprovider.

D3.6 Test Execution Framework

CONFIDENTIAL 5 V1.0

1.1.2. Advanced Driver Assistance Systems: Pedestrian DetectionSystem
The test execution aspect of this use case is still in its early stages. Testing is performedentirely manual and as of now, there is no formal testing process specified.
1.1.3. Propulsion and Controls (PPC)
Testing at Bombardier is performed in three different phases and at four different levels asshown in Figure BTTest. In order to achieve a Safety Integrity Level (SIL) 2 compliance for thepropulsion software, testing on some test levels has to conform to the EN50128 or EN50657standard for development of rail control software. Note that the restrictions placed on the testprocess only apply to some levels and not all. Specifically, the standard applies to hardware-software integration, software integration, and components.

Figure BTTest: Testing at Bombardier’s Propulsion Control Team
The developed artifacts for the derived products (Simulink models) are tested in-house in threedifferent phases. If an artifact has any hardware/environment dependencies, a plant model iscreated to simulate the required behavior of the hardware/environment. The artifact is the firsttested in a Model-In-the-Loop (MIL) environment inside Simulink. Embedded Coder is thenused to generate C/C++ code from the Simulink model. The generated code is then tested in aSoftware-In-the-Loop (SIL) environment. For safety-critical components, the generated codeis also subjected to code reviews. The reviewed code is deployed on the target processor for aProcessor-In-the-Loop (PIL) testing.
All the tests are created as Simulink Test Harnesses and are managed and executed viaSimulink Test Manager. In execution, independent test cases are executed in parallel and

D3.6 Test Execution Framework

CONFIDENTIAL 6 V1.0

coverage is recorded. Finally, test coverage reports are generated containing coveragereports for the software and requirement.
These phases are performed on four different levels. First (unit level), the library is tested, andthe source code is reviewed. Then the components (created from combining the sub-setelements) are subjected to all phases of the testing. Thirdly, the components are integrated ina way that serves a system function. The integrated components are tested in all three phasesfor integration errors. Lastly, the propulsion system is tested in all three phases at the systemlevel. In addition, a final Hardware-In-the-Loop (HIL) testing is performed off-site. Note that theSPL itself is only tested at the BT subset level and partially at the component level.Components that are integration dependent are only tested in the derived products.
1.1.4. Raw Map Data in Autonomous Vehicles
The overall testing process is depicted in Figure 1. It is verification against the original mapdatabase. We need to verify the database in the compressed form represents the original datawe’ve got from the supplier. The reason for this verification is due to missing data (some areasmight not be mapped, e.g. due to Occlusion), having new construction zones, newly addedroads, etc. The supplier provides High-definition map data by utilizing a very accurate andexpensive set of sensors every three months; however, they are planning to provide thedatabase monthly.
After receiving the map database from a supplier which have a very large size, GMcompresses the database. This process takes 2 weeks. Then GM needs to verify thecompressed database against the original database (First testing phase). This testingverification process takes another two weeks to fully (%100) verify the database (using thebrute-force algorithm). In this testing process, the map routes are selected to verify thedatabase can be considered as test cases.

Figure 1. Overall system setup representing two testing phases.
Current testingmethod

1. Driving a real car and testing the map database
2. Simulating the car driving around and checking the map database

Current testing (linked) limitations

D3.6 Test Execution Framework

CONFIDENTIAL 7 V1.0

1. Testing was performed on the HW module and limited to real-time testing. There is acertain bandwidth limit that the HW module can consume and process the input data(road segment).
2. There is no intelligence in the current process of map coverage. Test engineers aredoing is a brute-force algorithm. They select a random road in the database and drivein mostly straight lines until they reach the end of the road and keep doing that untilreaching an appropriate level of coverage.

1.2. Existing Solutions
At ifak, a tool for test execution has been developed which is integrated in ifak’s model-basedtesting tool chain. It connects the previous steps of test generation, test management and testprioritization with the System Under Test (SUT). Test execution enables the tool chain toconnect to different systems and execute the generated test cases.
The execution of the generated test cases is enabled via a protocol-independent interface forconnecting the test tool used to the SUT as hardware or software. Since these interfaces areoften very heterogeneous, especially in industrial automation, a protocol-independent way toconnect the test suite, a test adapter, is required. This adapter abstracts the communicationprocess from the test system and provides it with a uniform interface. Using variouscommunication protocols such as OPC UA or Modbus, the internal test communication fromand to the SUT is realized. For the SUT, the test scenario therefore does not differ from theintegration into a real environment. The SUT is exposed to specific communication conditionsand scenarios just like in a real environment without any special preparation.
Therefore, a test adapter was designed, which allows to break down the essential features of atest execution to a common set of actions with a common language. In combination with aconfiguration that maps the system specifics, the communication with the different SUTs canbe realized and the test tool chain can be completed.

Figure ifakTestExecutor: The modular test adapter as link between test system and SUT
The test execution procedure is shown in the Figure ifakTestExecutor. The tool chain for testautomation comprises a test system in which the test cases to be executed are defined. For theexecution of the test cases and thus for the communication with the SUT the modular testadapter is used. The test system communicates with the test adapter via a clearly definedcommunication protocol. This is the protocol standard MQTT defined by OASIS in version 5.0

D3.6 Test Execution Framework

CONFIDENTIAL 8 V1.0

[OA19]. Based on a configuration, the test adapter is then able to transform the test step sentout by the test system into a format and communication protocol (e.g. OPC UA, Modbus, UDP)that is understandable for the SUT. Conversely, the test adapter can also receive messagesfrom the SUT and forward them to the test system.
In order to realize a uniform language for test execution, essentially every sub-step of testexecution must be mapped to a common language element. These sub-steps basicallyperform an atomic action on the system under test. Such sub-steps are for example "Readsensor value X", "move to position Y" or "Stop".
If such test steps are considered in detail, an action that a system must perform can bemapped to three types of actions as part of a test execution. Executing a function, readingvalues and writing values. Although the respective steps required to do this are heterogeneousand complex, this part of the execution is transparent to the test tool chain. Reducing the chainto these three basic functions considerably simplifies communication on the test generationside, since the tool chain only needs to know these operations.

Figure Example 1: Example test execution
By mapping to these basic actions the basic communication with the SUT can be realized.However, some additional elements are necessary to make test generation independent fromtest execution. For example, a test on which a component should perform a certain actionrequires a time X. This time depends on the components and can vary depending on hardwareor software control. This cannot be solved trivially by a simple general configuration and alanguage that can essentially read, write and execute. Although a test case can be generated,which writes the value X into register X1, the test case should also check afterwards, whetherthe target action has been executed successfully. In the theoretical view, this function would besufficient to execute test cases. However, physical systems often need time to perform certainactions. This time is rarely exactly predictable and often deliberately variable. Furthermore,these time intervals are test system specific and have to be mapped differently in the test casefrom system to system.

D3.6 Test Execution Framework

CONFIDENTIAL 9 V1.0

Figure Example 2: Example OPC-UA Code
To illustrate the problem, the above example is used again. We write the value X into a registerX1, which shall trigger a move command. Then it shall be checked, if the position is reached. Ifthe value of the position-register would be checked directly after the move-command, it wouldnearly always fail, because the SUT is still in motion. To map this physical behavior, furtherelements like a timeout and expected values are required. Looking at the test case in terms ofcontent, it would specify something like: "The SUT must have reached the target position Xafter n seconds after a move command at position X". The test adapter can map exactly this.After writing a value X, an expected value and a timeout can be specified during reading. Theadapter will then periodically check the value or wait for a value change, depending on theprotocol behind it. If it reaches this value within the n seconds, it will be reported back. If it doesnot reach it, the last known incorrect value is returned. The following graphics show thedifferent communication scenarios. Primarily the three basic scenarios Read, Write, Executeare shown. The action for reading can be configured with timeouts and the expected value tobe able to map different scenarios. Either a direct response from the SUT can be expectedwithout timeouts, in which case the current value is returned. If the test case expects an eventto occur within a time period, timeout and expected value are specified. The write andexecution actions do not expect any further parameters, because it can be assumed that writeactions and executions can occur at any time, or a test case normally does not expect to set avalue. Although there may be test cases which require the checking of the value when setting,this would have to be mapped explicitly by setting and then checking or reading, since only thesuccessful execution of the write command does not explicitly indicate the successful setting ofa value. Especially for communication tests this cannot be assumed.

D3.6 Test Execution Framework

CONFIDENTIAL 10 V1.0

Figure Example 3: Example test execution

D3.6 Test Execution Framework

CONFIDENTIAL 11 V1.0

1.3. Definitions, Acronyms, Abbreviations
MQTT, Message Queuing Telemetry Transport, an open OASIS and ISO standard(ISO/IEC 20922) lightweight, publish-subscribe network protocol that transports messagesbetween devices. See https://mqtt.org/
PLC, Programmable Logic Controller
ROS, Robot Operation System, “The Robot Operating System (ROS) is a flexibleframework for writing robot software. It is a collection of tools, libraries, and conventionsthat aim to simplify the task of creating complex and robust robot behavior across a widevariety of robotic platforms.” See https://www.ros.org/about-ros/
ROS-Industrial, “ROS-Industrial is an open-source project that extends the advancedcapabilities of ROS software to industrial relevant hardware and applications.” Seehttps://rosindustrial.org/
ROSin Project, See https://www.rosin-project.eu/
RPA, Robotic Process Automation
SPL, Software Product Line
SUT, System under test, aka. test item

D3.6 Test Execution Framework

CONFIDENTIAL 12 V1.0
1 Available from https://github.com/robotframework/robotframework/blob/master/INSTALL.rst

2. Technical and User Documentation
The implementation of the test execution framework is based on the Robot Framework. TheRobot Framework is a widely adopted open-source automation framework for test automationas well as RPA. It is domain and language agnostic and allows for extension through plugins.
The central component of the test execution framework is a plugin that provides generickeywords for interaction with ROS and Gazebo based robotics applications. These generickeywords can then be combined into use case specific keywords or directly be used in writingtest cases.
2.1. Installation
The installation is tested to work with Ubuntu 18.04, Python 3, ROS Melodic and Gazebo 9.In order to install the test execution framework, the following steps are needed.
Create a working directory for your project:
~$ mkdir example_project && cd example_project
Optional: Create and activate a virtual Python environment inside your working directory:
example_project$ python3 -m venv .venvexample_project$ source .venv/bin/activate
Install Robot Framework. For more detail, see also the Robot Framework Installationinstructions1:
(.venv) example_project$ pip install robotframework
Download and install the text execution framework from GitLab:
(.venv) example_project$ git clone \> git@gitlab.com:xivt/itea/test-execution-framework.git(.venv) example_project$ pip install \> ./test-execution-framework/robot-ros-gazebo-library
Optional: Install catkin_manager from GitLab:
(.venv) example_project$ pip install \> ./test-execution-framework/catkin_manager/
The installation is now complete.

D3.6 Test Execution Framework

CONFIDENTIAL 13 V1.0
2 Available at https://robotframework.org/robotframework/3.2.2/RobotFrameworkUserGuide.html

2.2. Writing Test Cases
In the following, we are giving a brief introduction on writing test cases with the RobotFramework in general and the ROS and Gazebo specific keywords in particular. For a detailedintroduction to writing test cases with the Robot Framework, please refer to section 2 of theRobot Framework User Guide2.
Test suites and test cases for the Robot Framework can be written in different formats. For thisintroduction, we chose the so-called space separated format. A simple test suite may consistof a single file containing one or more test cases and each test case consists of a series ofkeywords. Keywords serve as an abstraction for underlying functionality, which eitherstimulates the SUT or verifies responses from or properties of the SUT. Besides a set of basickeywords available from the Robot Framework itself, most keywords are provided by third-party plugins serving as keyword libraries.
An example test suite using the ROS and Gazebo specific keywords may look like this:
*** Settings ***Documentation An example test suiteLibrary RobotRosGazeboLibrary.Keywords
*** Test Cases ***Test Handover[Setup] Connect on port 9090Launch xivt_robotics_demo focus_cube.launchVerify link robot1::base_link at 0 0 0Verify model object at 0.3 0 0Run test_move test_case_1Wait for 45Verify model object at 0.3 0.63 0[Teardown] Disconnect from ROS
The following keywords are available:
Connect on port PORT: Establishes a connection with the ROS master node. This is requiredbefore any other ROS specific keyword can be used.
Launch ROS_PACKAGE LAUNCH_FILE: Launches a launch file from the specified ROSpackage using roslaunch.
Run ROS_PACKAGE EXECUTABLE: Runs an executable from the specified ROS packageusing rosrun.
Verify model MODEL_NAME at X Y Z: Compares the actual (simulated) position of a modelwith the specified expected position. Fails if the deviation is above a certain threshold. In thecontext of ROS and Gazebo, robots and other objects are represented as models. Thiskeyword is especially useful to test for the position of a model as a whole. An obvious

D3.6 Test Execution Framework

CONFIDENTIAL 14 V1.0

application would be for example to test for the position of a movable object which is beingmanipulated by a robotic arm.
Verify link LINK_NAME at X Y Z: Compares the actual (simulated) position of a link with thespecified expected position. Fails if the deviation is above a certain threshold. In the context ofROS and Gazebo, models of robots and other objects consist of links and joints. This keywordis especially useful to test for the position of a part of a robot in contrast to the robot as a whole.An obvious application would be for example to test for the so-called tool center point (TCP)link, which serves as a point of reference for the path planning of a robots end effector.
Wait for DURATION: Pauses the execution of the test script for the specified duration basedon simulation time.
Disconnect from ROS: Disconnects from the ROS master node and stops all runningprocesses that were previously started using the “Launch” or “Run” keyword.

D3.6 Test Execution Framework

CONFIDENTIAL 15 V1.0

2.3. Executing Test Cases
In the following, we assume you have a catkin workspace inside your working directory:
example_project/ # working directory.venv/ ... # virtual Python environmentcatkin_ws/ # catkin workspacesrc/example_package/ # your ROS packagelaunch/example.launch # your launch file...test-execution-framework/ ... # downloaded from GitLabexample.robot # your test suite
The followings three steps each need to be executed in a separate terminal window.
Launch the simulation:
example_project$ cd catkin_ws/example_project/catkin_ws$ source /opt/ros/$ROS_DISTRO/setup.bashexample_project/catkin_ws$ source devel/setup.bashexample_project/catkin_ws$ roslaunch example_package example.launch
Start ROS bridge server:
example_project$ cd catkin_ws/example_project/catkin_ws$ source /opt/ros/$ROS_DISTRO/setup.bashexample_project/catkin_ws$ source devel/setup.bashexample_project/catkin_ws$ roslaunch rosbridge_server \> rosbridge_websocket.launch
Run the test suite:
example_project$ source .venv/bin/activate(.venv) example_project$ robot example.robot

D3.6 Test Execution Framework

CONFIDENTIAL 16 V1.0

2.4. Using catkin_manager
The catkin_manager tool is an optional addition to the test execution framework, designed tosolve a challenge in dependency management. When working with ROS packages fromdifferent sources, the catkin workspace quickly becomes a mess. Some possible reasons forthis are:

 Working with different forks of a package results in name clashes
 Heterogeneity of repository structures, e.g.

 one package per repository
 multiple packages per repository
 repositories containing their own catkin workspace
 etc.

Also, using the same packages in different catkin workspaces requires to have a copy of thecode in each of them, leading to code duplication.
Instead of cloning repositories into the catkin workspace, we suggest to create symbolic linksfrom the catkin workspace to the location of the respective ROS packages. Thecatkin_manager tool supports the management of such links.
The tool expects a file named ros_packages.yaml inside the catkin workspace:
catkin_ws/build/devel/src/ros_packages.yaml
The file contains a mapping between package names to file system locations:
packages:xivt_robotics_demo: ../ros-packages/xivt_robotics_demopresent_other_location: ../../examples/present_other_locationrequired_but_missing: ../../examples/required_but_missing
The tool is then used as follows.
To print information about the packages listed in ros_packages.yaml and the respective
links:
(.venv) catkin_ws$ catkin_manager info[Installed] present_not_required[Different] present_other_location[Missing] required_but_missing[OK] xivt_robotics_demo(.venv) catkin_ws$ catkin_manager.py info --verbose[Installed] present_not_required -> ../../examples/present_not_required[Different] present_other_location-> ../../examples_other/present_other_location

D3.6 Test Execution Framework

CONFIDENTIAL 17 V1.0

[Missing] required_but_missing -> ../../examples/required_but_missing[OK] xivt_robotics_demo -> ../ros-packages/xivt_robotics_demo
To create the links as specified in ros_packages.yaml:
(.venv) catkin_ws$ catkin_manager linkln -s ../../examples/present_other_location present_other_locationln -s ../../examples/required_but_missing required_but_missing
To also remove links that are not specifed in ros_packages.yaml:
(.venv) catkin_ws$ catkin_manager link -dln -s ../../examples/present_other_location present_other_locationln -s ../../examples/required_but_missing required_but_missingrm present_not_required

D3.6 Test Execution Framework

CONFIDENTIAL 18 V1.0

3. References
[XVT19] XIVT Project Consortium, “XIVT Full Project Proposal Annex.” 03 August 2019.
[OA19] OASIS: MQTT Version 5.0, 2019.

Appendix A - Tool Releases
Tool releases are hosted at https://gitlab.com/xivt/itea. Repositories can be accessed usingthe following credentials:

 Username: ITEA3XIVT
 Password: 20222018XIVT

