

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Consortium Confidential © 2020 IVVES Consortium Page 1 of 54

IVVES
Industrial-grade Verification and Validation of Evolving Systems

Labelled in ITEA3, a EUREKA cluster, Call 5

ITEA3 Project Number 18022

D3.2 Validation methods and techniques for evolving
systems considering use case requirements (version 1)

Due date of deliverable: December 30th 2020
Actual date of submission: December 21th 2020

Start date of project: 1 October 2019 Duration: 39 months
Organisation name of lead contractor for this
deliverable:

CRIM

Author(s): Omer Nguena-Timo, Alexandre Petrenko (CRIM, CAN), Matvey Pashkovskiy
(F-Secure, FIN), Jesús Arce (KEYLAND, ESP), Paul Derckx (Philips, NLD),
Mahshid Helali Moghadam, Ali Sedaghatbaf (RISE, SWE), Juan Leandro
Sánchez (SII CONCATEL/NETCHECK, ESP), Elio Saltalamacchia (SII
CONCATEL, ESP), Almira Pillay, Tia Nikolic (Sogeti, NLD), Pekka Aho (The
Open University of The Netherlands, NLD), Tommi Mikkonen, Eero Kauhanen,
Jukka K. Nurminen (University of Helsinki, FIN)

Status: Draft
Version number: V1.0
Submission
Date:

21-December-2020

Doc reference: IVVES_Deliverable_D3.2_Validation_methods_and_techniques
_V1.0.docx

Work Pack./
Task:

WP3
T3.1, T3.2, T3.3

Description:
(max 5 lines)

The document presents validation problems identified in use cases,
anticipated contributions, and initial solutions.

Nature:  R=Report,  P=Prototype,  D=Demonstrator,  O=Other
Dissemination
Level:

PU Public X
PP Restricted to other programme participants
RE Restricted to a group specified by the consortium
CO Confidential, only for members of the consortium

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 2 of 54

DOCUMENT HISTORY
Release Date Reason of change Status Distribution

V0.1 15/11/2020 Text review Draft Amongst partners

V0.2 17/12/2020 Review Draft Lead contractor

V1.0 21/12/2020 Approved by PMT, submitted to ITEA3 Final ITEA Office

Website

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 3 of 54

Table of Contents

Glossary .. 5

1. Executive summary ... 6

2. Introduction ... 7

3. Test generation and test prioritization for fault detection 9

3.1. Scriptless E2E test generation for ES with coverage analysis 9
3.1.1. State of the art ... 9
3.1.2. Anticipated contribution ... 10
3.1.3. Claimed novelty .. 11

3.2. Machine learning-assisted automated performance testing 12
3.2.1. Performance testing ... 12
3.2.2. Active deep learning-assisted performance testing ... 13
3.2.3. Reinforcement learning-assisted performance testing ... 15

3.3. Test generation and prioritization for ESG-investment .. 17
3.3.1. State of the Art .. 19
3.3.2. Anticipated contribution ... 20
3.3.3. Claimed novelty .. 20

3.4. Coverage-based tests prioritization .. 20
3.4.1. State of the art ... 21
3.4.2. Anticipated contribution ... 21
3.4.3. Claimed novelty .. 24
3.4.4. Evaluation of the approach ... 24

4. Oracle mining .. 26

4.1. Introduction ... 26

4.2. State of the art and anticipated contribution ... 26

4.3. Proposed approach .. 27

4.4. Claimed novelty .. 29

5. Automating test verdict generation via Model Learning 31

5.1. State of the art ... 31

5.2. Anticipated contribution .. 31

5.3. Claimed novelty .. 32

6. Conformal prediction for edge applications .. 33

6.1. Introduction ... 33
6.1.1. Technical description ... 34
6.1.2. Example ... 35

6.2. State of the art and anticipated contribution ... 36

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 4 of 54

6.3. Claimed novelty .. 37

7. Code defect risk prediction .. 38

7.1. Introduction ... 38

7.2. Anticipated contribution .. 38

7.3. Proposed approach .. 39
7.3.1. Code coverage: static code analysis ... 39
7.3.2. DevOps pipeline: integrating code coverage tools .. 41
7.3.3. Traceability: version control and defects ... 42
7.3.4. Machine learning: predicting code quality ... 42

7.4. Claimed novelty .. 44

8. Unsupervised anomaly detection for visual inspection in industrial
environments ... 46

8.1. State of the art ... 47

8.2. Anticipated contribution .. 47

8.3. Claimed novelty .. 48

9. References .. 49

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 5 of 54

Glossary

Abbreviation / acronym Description

FSM Finite State Machine
RL Reinforcement Learning
ML Machine Learning
NLP Natural Language Processing
CI Continuous Integration
ESG Environmental, Social and Governance
GUI Graphical User Interface
AI Artificial Intelligence
TA Test Automation
SUT System Under Test
E2E End-to-end

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 6 of 54

1. Executive summary

This document (D3.2) concerns initial validation methods and techniques for complex

evolving systems in project use cases. The state of the art of the validation techniques for

evolving systems appears in deliverable D3.1 referenced in this document. The document

presents problems identified in use cases, anticipated contributions, and initial solutions. Further

work, to be reported in upcoming D3.3 and D3.4, includes the elaboration of the anticipated

contributions, enhancement of initial methods and tool development.

 The document includes six sections corresponding to problems identified in validating

complex evolving systems from IVVES partners. These problems meet the objectives of the

three tasks of WP3, namely ML-based testing, testing under uncertainties, testing and

monitoring. Each section provides an introduction to problems, anticipated contributions,

approaches and claimed novelties.

Claimed novelties are methods or improvement of tools based on state-of-the-art

techniques; they cover the three main stages for the continuous quality assurance process

presented in D3.1. Claimed novelties in ML-based testing include scriptless GUI testing based

on model inference, performance testing based on active deep learning and reinforcement

learning, ML-based code quality prediction and an implementation of an efficient version of

conformal prediction suitable for edge applications. The claimed novelty in testing under

uncertainties is an approach for resolving uncertainties which can occur in generating tests from

requirement documents. The claimed novelties in testing and monitoring include test

prioritization based on code changes tracking in a version control system and continuous ML-

based online monitoring for anomaly identification in AI systems.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 7 of 54

2. Introduction

Complex evolving systems need adequate methods and tools to ensure their quality. In a

previous deliverable, D3.1, we studied existing validation methods and techniques applicable to

evolving systems. The goal of that study was to better understand the methods and techniques

and foresee their applicability in use cases from IVVES industrial partners.

In this deliverable we present validation methods and techniques which we have been

developing or anticipating to adapt to the use cases. We selected existing validation methods and

techniques we plan to adapt and implement in existing tools developed by partners. We also

propose new approaches to solve problems we identified in addressing the use cases.

The anticipated validation methods and techniques cover the design, the development and

testing, and the operation phase in the continuous quality assurance process presented in D3.1.

In the design phase, we address the oracle mining problem, which amounts to building

specifications useful to judge observations produced by executions of systems under automated

testing. The problem is non-obvious especially if the data source for building the specification is

requirement documents or logs of execution traces of a legacy version of the system. The

anticipated contribution (see Section 4) is a novel semi-automated procedure to assist an expert

in choosing a proper oracle from a set of potential oracles compactly presented by an imprecise

oracle that can be built with NLP techniques.

In the development and test phases, we address test generation and prioritization problems.

We propose testing techniques based on reinforcement learning and active deep learning for the

performance analysis of ES (see Section 3.2) and the prediction of risky parts of code of ES (see

Section 7). Performance is a quality characteristic which describes the time and resource bound

aspects of a system’s behavior. Systems can be executed with adequate tests to estimate the

bound aspects, in particular after changes in the systems. We may have several performance

measures and each test case may target a different measure. For example, we may have test cases

to verify response time requirements, and also test cases that verify throughput requirements.

Here, we consider each measure as a class in machine learning terminology and by classification,

we mean labelling test cases with the measures that they verify and we employ ML to realize it.

We also anticipate developing and implementing a coverage-based test generation technique

for enhancing a GUI testing tool (Section 3.1), yet another ML-based test prioritization

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 8 of 54

technique for an ESG-investment system (Section 3.3) and a coverage-based test prioritization

technique suitable for continuous integration with version control systems (section 3.4). In the

latter case, the idea is to map test cases to code modules utilizing coverage reports and/or errors

stack trace analysis and the claimed novelty is the adaptation of this idea to an industrial context.

We advocate using conformal predictive models for developing critical systems; indeed,

conformal prediction allows us to devise more rigorous verification techniques for the systems.

We propose an implementation of conformal predication that scales on edge applications

(Section 6).

We also address the automation of test verdict production in a testing tool for GUI (Section

5). We propose leveraging finite state machine inference (passive learning) to build the

specification of an application from logs and later use the built specification to judge

observations made during the execution of the systems with test inputs.

In the operation phase, we anticipate developing an online monitoring system for anomaly

detection in visual inspection systems deployed in a real industrial environment (Section 8). To

the best of our knowledge, such a system needed by the partners does not yet exist.

The document is organized as follows. The next section presents our progress in the field of

test generation and test prioritization. In Section 4, we present our progress on oracle mining

from imprecise oracles. Section 5 suggests leveraging machine learning to automate the

generation of test verdicts in an existing tool. Our implementation of conformal prediction able

to run on edge applications is discussed in Section 6. In Section 7, we present an ML-based

approach we anticipate to develop and apply for code defect risk prediction. In Section 8, we

present our anticipated ML-based online monitoring approach for anomaly identification in AI

systems.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 9 of 54

3. Test generation and test prioritization for fault detection

3.1. Scriptless E2E test generation for ES with coverage analysis

Building a test automation pipeline of complex evolving systems (ES) is an elaborate task,

especially on the end-to-end (E2E) level. One of the main challenges is the fact that the resulting

test suites are difficult to maintain. We plan to address this challenge by applying both, non-ML

and ML techniques to generate test suites with a high coverage level. Techniques,

methodologies, and tools are needed to be able to:

 generate test cases automatically with a good level of interpretability for

o different stages of test automation (TA);

o different types of applications: standalone, web, and mobile applications;

 reuse generated test suites and inferred application models to optimize TA in terms of

time and coverage.

3.1.1. State of the art

Traditionally, software test automation is based on scripts (pre-defined test sequences with test

oracle checks) that are either automatically generated from models or written by a human. In

scriptless test automation, the test sequences are generated dynamically during the execution,

usually one step at a time, based on automatically detected available interactions that the end

user could perform, or events from the environment. The execution of the action includes

waiting for the reaction from the system under test (SUT). Figure 3.1 depicts the process of

scriptless testing at a high level.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 10 of 54

Figure 3.1: Scriptless testing process.

The action selection often involves some level of randomness, and therefore scriptless GUI

testing is often called random or monkey testing. One of the research directions for trying to

make monkey testing tools smarter has been using AI and machine learning for improving action

selection. Usually, some kind of model inference approach has to be used for the learning

process. Often, the reward or fitness functions have been connected to increased GUI or code

coverage [7], [8]. This kind of strategy usually rewards visiting (i.e., covering) all GUI states at

least once. However, visiting all GUI states does not mean that all paths or combinations of paths

have been visited.

 In IVVES project, we aim to investigate combinatorial coverage for improving action

selection after all GUI states have been visited. One of the options is using n-switch coverage. In

1976, Pimont and Rault [13] introduced a criterion for covering pairs of edges called switch

coverage. In 1978, Chow [14] generalized this and defined n-switch edge coverage for a specific

graph. With a switch cover-tree, we can detect all possible n-switch walks for one vertex. We

have to calculate an n-switch cover-tree of all vertices to be able to calculate the n-switch edge

coverage of a particular walk. The n-switch edge coverage criterion is about the percentage of

walks with length n+1 that a test set covered. This calculation can speed up knowing the cover-

tree property that if we cover an n-switch walk, we also cover all lower n-switch walks. So, a

100% 0-switch coverage of the graph means that we visit every edge in the graph at least once.

A 100% 1-switch coverage means we walk all possible back-tracking walks with 2 edges from

all vertices at least once.

Inferring state models during automated GUI exploration has been researched with

various approaches, for example, GUITAM [9], GUI Driver [10], and Crawljax [11]. However,

automated change detection by comparing inferred models of consequent system versions has

not been widely researched; Murphy tools [12] seems to be the only existing approach in the

literature.

3.1.2. Anticipated contribution

Open source TESTAR tool will be used for scriptless graphical user interface (GUI) test

generation and state model inference in continuous integration (CI) environment for selected

software packages. TESTAR dynamically generates test sequences during the exploration of

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 11 of 54

SUT, one step at a time, based on detected available actions. TESTAR supports model inference

during the automated exploration of the GUI of an application and uses the model for

systematically (but in random order) trying out all the available actions in all the explored states.

 TESTAR can infer state models based on the observed behavior of the system under

testing (SUT) and use the inferred models for optimizing the action selection during test

sequence generation. So far during the IVVES project, we have already demonstrated that

TESTAR is able to automatically explore desktop and web applications of the industrial use case

providers, and infer state models based on the observed SUT behaviour. Currently, we are

improving the configuration of TESTAR and trying to find a suitable level of abstraction for the

model inference. During the project, the state models will be used for reinforcement learning

with various reward functions to improve action selection. Also, we plan to research automated

change detection based on comparing the inferred state model of consequent SUT versions.

 For Windows desktop applications, TESTAR uses Windows accessibility API to access

the GUI information for detecting the state of the SUT and available actions. For web

applications, TESTAR uses Selenium WebDriver. The plan is to extend TESTAR during IVVES

project to support mobile applications by using Appium to connect to a mobile device emulator.

Adding support for testing mobile applications with TESTAR is an important technical

contribution that has been requested by several industrial partners of IVVES. The

implementation effort has been started and the first proof-of-concept implementation has been

demonstrated for the industrial partners of IVVES project.

3.1.3. Claimed novelty

Using inferred state models for machine learning to improve action selection in scriptless GUI

testing has novelty and new publications are expected from the results.

Other novel research directions include using the state models of previous TESTAR runs

to optimize the current GUI exploration, and as a coverage metric to change from exploration

strategy to combinatorial strategy (for example n-switch) after each state and action has been

visited at least once. Also, the use of AI/ML approaches for improving TESTAR action selection

will be researched.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 12 of 54

3.2. Machine learning-assisted automated performance testing

3.2.1. Performance testing

Performance, which is also called efficiency in some taxonomies, is a quality characteristic

which describes the time and resource bound aspects of a system’s behavior and is of great

importance for the success of many products. It’s measured in terms of some metrics like

response time, throughput and resource utilization.

Performance analysis is typically done to measure performance metrics and detect

performance-related issues. Performance issues could be referred as any violation of

performance requirements or any functional problems emerged under special performance-

related conditions such as heavy workload and limited resource availability. Several methods

have been developed to analyze the performance of software products. Generally, these methods

can be categorized into modeling and testing groups. Modeling methods [15, 16, 17, 18, 19] are

mainly based on the performance models extracted from the system model or the source code of

the target system.

However, in performance testing, test cases are applied during the execution the SUT to

find potential scenarios which lead to the emergence of performance issues. Many of the

common performance testing approaches such as techniques based on source code analysis [20],

system model analysis [21, 22], use case-based [23], and behavior-driven [24] design approaches

mostly rely on source code or system models.

Performance testing challenges. Software performance testing to find performance issues upon

new changes mainly occurred within CI/CD practice is always a challenging task. Therefore,

automated performance testing is of importance in this regard and subsequently one of the

primary concrete challenges in software performance testing is generating appropriate test cases

(test scenarios) in an efficient and cost-effective way. Performance test scenarios are intended to

detect performance degradation issues. By detecting performance degradation issues at an early

phase, the changes leading to the degradation is easier to localize and could be actively decided

upon, and consequently the extra cost at the customer side due to degraded system performance

can be avoided.

Currently, the performance test is done manually for many software products. However,

due to the increasing complexity and diversity of the products and the services requested by

customers, the need to automate the performance testing process is highlighted.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 13 of 54

In the manual testing process, several test cases have to be executed upon each change in

the software. Not only, the manual process is time-consuming and laborious, but also it is error-

prone and does not provide any correctness guarantee since it relies on expert knowledge.

On one hand in many cases in order to generate test cases, we usually have a large input

space to explore which makes manual test case generation a time-consuming and laborious task.

On the other hand, we usually do not have any knowledge about the internal structure and

dynamics of the SUT, and the interaction with its public interface is the only way to learn about

the SUT’s performance characteristics. Last but not the least, we usually have a limited test

budget, which means that we are not free to execute a large set of test cases hoping that some of

them will reveal performance defects. Instead, we need to be careful about the test cases that we

select for running on the SUT.

Taking advantage of the recent advances in machine learning, machine learning-assisted

techniques have been used widely for meeting the need for automated performance testing. In

our work, we propose machine learning-assisted approaches which learn from the behavior of

the SUT and data collected from previous tests to generate promising/effective test cases

automatically and efficiently. We propose two approaches based on active deep learning and

reinforcement learning for efficient generation of optimized test cases to analyze the

performance of a control software in a robotic system. The details of the proposed techniques are

presented in the following sections.

3.2.2. Active deep learning-assisted performance testing

Active learning [26] is a kind of supervised learning suitable for situations where data labeling is

expensive or difficult. So, in cases that we do not have access to a large amount of labeled data,

we can iteratively choose small portions of unlabeled data, label them and then update the

classifier with the labeled data. The iteration continues until the accuracy of the classifier reaches

a desirable threshold. Since we can choose only a small number of unlabeled data in each

iteration, it is very important that we follow a strategy for picking the most informative data for

labeling. Uncertainty sampling, query-by-committee and variance reduction [26] are among the

well-known strategies that can be used for this purpose.

Deep learning is a sub-field of machine learning where deep neural networks are used for

supervised, unsupervised or semi-supervised learning purposes. We consider a neural network

deep if its architecture includes multiple layers of neurons. Deep learning has been applied to

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 14 of 54

several domains (e.g., natural language processing, bioinformatics, and machine vision) and has

achieved significant results.

In the proposed method, we apply an active learning sampling strategy to a variant of

generative deep neural networks. We use a generative deep learning model which consists of two

neural networks. The first network is responsible for generating new test cases and the second

one classifies the generated test cases with respect to the satisfaction level of the performance

test objective. For test case generation, we assume that there is a test case template which

becomes executable when supplied by test input data. The responsibility of the generator

network is to generate executable test cases by feeding the template with data samples from the

input space.

Regarding the limited test budget, active learning helps us put less effort into test

execution while acquiring more useful information about the system. Meanwhile, using a

generative model we can automatically generate optimized test cases without putting any manual

effort into it.

Generally, the following steps describe the procedure of test case generation in the

proposed approach:

1. Train the classifier network with the existing test history.

2. Generate new test cases by sampling from the input space (which includes target

position, motion speed and zone, and hardware configuration) by the generator network

3. Classify the generated test cases based on the targeted performance measures, which can

be one of response time, CPU utilization and cycle time in the ABB example.

4. Rank the classified test cases based on the confidence level of the classifier.

5. Regarding the test budget, select the least confident test cases for executing on the SUT

(or labeling in active learning terminology).

6. Use both the confident and executed test cases to update the weights of the classifier

network.

7. Go to step 2 if the generator network cannot generate good test cases. To analyze the

quality of the generated test cases, their distance to the classified test cases is measured.

In this process, the deep model is iteratively updated with knowledge about the SUT until

it becomes ready for generating promising performance test cases automatically. After the

convergence, the generator network is used to generate effective test cases for the performance

test of the system based on a desired performance measure.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 15 of 54

 Applicability to DevOps. In DevOps we are to continuously integrate new changes with the SUT

and deliver it with a high level of quality. In this situation, a part of the test cases which satisfy

the performance test objective for the current version, might not work properly for the next one.

Therefore, the deep model needs to continuously interact with the SUT and learn about its

performance-related behavior. We can easily update the deep model with respect to new

changes. The update procedure includes the following steps:

1. Regarding the test budget, pick the latest test cases applied in testing the previous version

of the SUT.

2. Apply the latest test cases to the new version.

3. Compare the execution results with the results recorded for the previous version.

4. If the results were the same:

Continue using the old generator network to generate test cases for the new version.

Else if the results were different:

a. Update the classifier model with the new execution results.

b. Go to step 2 of the test case generation process and continue the loop until the

generator network can generate good test cases again.

3.2.3. Reinforcement learning-assisted performance testing

Reinforcement learning (RL) [27] is a fundamental machine learning paradigm which is mainly

intended to address decision making problems. Inspired by human’s learning, RLis used to find

the optimal way to make decisions. The learning procedure is quite different from supervised

and unsupervised learning algorithms. The learning is based on continuous interaction between a

smart RL agent and the problem environment which is system under test (SUT) in our research

case. At each step of interaction, the smart test agent observes the status of the environment and

makes a decision. The decision is generating a test case, e.g., based on changing the variables

involved in forming the test case. Then the SUT is tested under the recommended test scenario,

and the test agent receives a reward signal indicating the effectiveness of the recommended test

case. One of the main differences between RL and other learning paradigms is that there is no

supervisor in RL, i.e., the agent just receives a reward signal from the environment, and the

agent goes through the environment based on a sequential decision-making process.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 16 of 54

 With regard to the characteristic of RL, we proposed that if the optimal policy (way) for

accomplishing the intended performance test objective could be learned by a test agent, the

intended test could be done automatically without need to access to source code or

performance/system models. Moreover, once the optimal policy is learned, it can be reused in

further testing situations, for example, regression performance testing of one SUT or

performance testing of SUTs with similar performance sensitivity to resources [28]. Therefore,

the capability of knowledge formation and reusing the gained knowledge in further situations is a

key feature leading to test efficiency improvement. Based on this idea, we have proposed an RL-

assisted performance testing framework that learns the optimal policy to accomplish the intended

test objective without access to system model or source code of SUT. Once it learns, it is able to

reuse the learned policy in further testing cases [28, 29, 30]. The proposed framework consists of

two performance testing tools: SaFReL [31] and RELOAD [28, 32].

SaFReL, as a self-adaptive fuzzy reinforcement learning test agent which generates

performance platform-based test cases, learns how to tune the resource availability to reach an

intended performance breaking point for different types of SUTs with different levels of

sensitivity to resources. It assumes two phases of learning: initial and transfer learning phases.

First, it learns the optimal policy to reach the intended performance breaking point for different

types of SUTs, i.e., CPU-intensive, memory-intensive and disk-intensive software. Once

learning the optimal policy, it replays the learned policy on further similar SUTs. The conducted

experimental evaluation shows that SaFReL can perform efficiently and adaptively on different

software programs., i.e., CPU-intensive, memory-intensive and disk-intensive SUTs running on

various hardware configurations and with different response time requirements. SaFReL

accomplishes the intended test objective, i.e., finding performance breaking point, more

efficiently in comparison to a typical stress testing technique which generates performance test

cases in an exploratory way. SaFReL leads to reduced cost in terms of computation time by

reusing the learned policy upon the SUTs with similar performance sensitivity [31].

RELOAD is an adaptive RL-driven load testing agent which effectively learns how to

tune the load of transactions in the submitted workload to the SUT to accomplish the test

objective (e.g., reaching a certain performance breaking point). It learns the optimal policy to

generate an efficient workload to meet the test objective during an initial learning, then it is able

to reuse the learned policy in later tests, e.g., within a continuous testing context. RELOAD

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 17 of 54

generates a more accurate and efficient workload to accomplish the intended objective compared

with a baseline load testing technique, without access to source code or system models.

Moreover, once it learns, it is able to reuse the learned policy in further situations and keeps the

improved efficiency over later test activities [28, 32]

In our work in IVVES WP3, we extend the notion of RL-assisted performance testing by

developing a smart test agent based on a scalable model-free temporal difference learning

algorithm, i.e., DQN, for conducting performance test on a control software for a robotic arm

belonging to ABB Robotic company. The proposed smart agent learns how to generate the

effective test scenarios which result in undesired performance behavior. The performance

requirements are defined in terms of the associated performance metrics such as resource (CPU)

utilization, and/or response time. Test scenarios are coded as RAPID programs and target

position, motion speed and zone are the primary parameters defining the test scenarios for the

control software. The following figure shows the interaction between the smart test agent and the

test environment for the robotic arm.

3.3. Test generation and prioritization for ESG-investment

The irruption of game-changing innovations and open-source technologies in NLP is changing

the way that companies work with text. Unstructured text is being used as input data for many

industrial domains (i.e., predicting market trends based on sentiment analysis). Data Analytics

companies are curating and collating text information from diverse sources to feed AI models

(Figure 3.2) and provide trends and insights. Its combination with other AI techniques applied to

numerical data is fostering the integration of NLP into regular Data Analysis.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 18 of 54

Figure 3.2 General workflow for NLP-based models to provide trends and insights in finance sector

ESG (Environmental, Social and Governance) investing refers to a class of investing that

is also known as “sustainable investing.” This is an umbrella term for investments that seek

positive returns and long-term impact on society, environment and the performance of the

business. To assess a company (an asset) based on environmental, social, and governance (ESG)

criteria, investors look at a broad range of behaviours to set the ESG score for a given asset.

Figure 3.2: Estimates of assets under management with an ESG mandate. Source: Deutsche Bank.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 19 of 54

The compilation of these scores is based on the analysis of a vast amount of fast changing

alternative data sources, including non-structured information (websites, news, corporate

reporting...) that can’t be processed with traditional keyword searches and manual analysis.

Since ESG investment is a solid trend that is increasingly impacting the market (figure2), the

data sources to analyze are growing fast. Given the vast amount of data and information

available, that analysis can only be reliably carried out with artificial intelligence. New, powerful

AI-based systems are now on scene that can potentially reduce the manual tasks and increase the

efficiency. However, new V&V techniques are required:

 The growth of AI-based analysis of sources, has also impacted the way that companies

communicate with the external audience, being savvier with their wording. This is

causing the appearance of biased content, that must be taken into account before applying

NLP-based techniques -heavily relying on sentiment analysis- to get insights and trends.

Hence, a systematic and continuous analysis of source credibility and content credibility

must be implemented.

 The AI-based systems must continuously adapt to a great variability in sources and

content, that are constantly changing. Information sources evolve, mutate and topics

related to ESG change over time. Hence, test maintenance and prioritization are

challenging.

Added to this, since the outcomes of the evolving systems are insights that may impact

investment decisions, these systems are subject to regtech (regulatory technology) constraints

that must be taken into account.

3.3.1. State of the Art

There are different approaches for test case Reinforcement Learning-based test case

prioritization. Zhaolin, et al. [80], provides a reference for test case prioritization to save

computing resources in Continuous Integration. In [80], a novel reward function is proposed, by

using partial historical information of test cases effectively for fast feedback and cost reduction.

The approach is focusing in reducing the huge cost in terms of time and resource availability

defining the Average Percentage of Historical Failure with time Window (APHFW), as a novel

reinforcement learning reward function, that utilizes a time window to filter recent historical

information to calculate reward value.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 20 of 54

3.3.2. Anticipated contribution

The main technical contribution is supporting testing based on Reinforcement Learning for NLP-

based ESG evolving systems. Specifically, given an ESG-investment-focused ES and a set of

rules defined by an expert for scoring securities with respect to ESG criteria, develop masked

language models.

Figure 3.3: Templating with masked language models. [78]

The RL-based test generation and prioritization is based in a time window-based reward

function that will also take into account the most effective Metamorphic Relations for a given

case. For the selection of effective Metamorphic Relations, the model will initially interact with

the templates generated in WP2 with masked language models (Figure 3.3), and eventually will

control “Plug” operators.

As an outcome, the most effective Metamorphic Relations will be selected to generate the

optimal test cases to execute, taking also into account performance.

3.3.3. Claimed novelty

The novelty relies in the dynamic metamorphic testing for NLP-based ESG evolving systems

based on templates and Knowledge Graphs combined with approaches for test prioritization

based on performance.

3.4. Coverage-based tests prioritization

Complex ES consists of a huge codebase and a big number of test cases covering it. In order to

deliver new functionality with high confidence, a common approach is to run all the tests against

every change in the codebase. That causes high infrastructure costs and delays in the

development process. One of the approaches to solve this problem could be smart test selection

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 21 of 54

and/or prioritization. That could be solved by mapping test cases to code modules utilizing

coverage reports and/or errors stack trace analysis.

Devising techniques and tools for providing a fine-grained mapping between test cases

and code modules are needed.

3.4.1. State of the art

In a large software project, running the full test set can take a long time. In particular, when

working with the modern DevOps style, developers are frequently checking in their

modifications, and the resulting updates are tested and deployed on the fly. Having to wait --

often only for some minutes, but in extreme case hours -- at each check-in slows down

development and is frustrating for developers. Furthermore, it consumes computing resources.

For example, Mozilla estimates each check-in to cost over $25 in Amazon Web Services fees

[33] while Google suggests that their annual continuous integration (CI) system execution is in

millions of dollars [34].

Regression test selection (RTS) has been studied for a long time (see e.g. [35]) but its

importance grows in modern DevOps and MLOps environments. Identifying and rerunning only

the relevant tests after code changes are necessary for productivity and efficient resource use in

CI.

A big part of past RTS studies has focused on Java and other compilable languages, e.g.,

[36]. At present Python and other interpretable languages are increasingly popular. One of the

reasons for that increase of popularity is the growth of MLOps culture where Python plays a key

role along with (Py)Spark framework for data analysis and building of ML models. RTS can

bring even more benefits to MLOps process because testing data transformation logic and model

building are extremely expensive operations. Interpretable languages present new challenges in

terms of language constructs and dynamic operations that are missing from older languages.

3.4.2. Anticipated contribution

Our technique uses Git version control system and Coverage.py for tracking changes in the code.

For the test runner, PyTest is used. The procedure of the technique is as follows: First, an initial

run of all tests is performed. While performing the first run of the tests, a locally stored SQLite

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 22 of 54

database is constructed with the coverage data provided by Coverage.py. The database contains

six tables:

 'source file' which contains the full path to the source file, along with an id

 'test file' which contains the full path to the test file, along with an id

 'test function' which contains the test function name extracted from PyTest and

information about where it's located, such as test file id and start and end line numbers in

that test file

 'test map' which contains information about which test function ran a specific line in a

specific source file

 'new tests' which contains information about newly added tests after the previous run

 'last update hash' which contains information when the database was last updated

Let’s consider a scenario where the tool is used in a developer’s environment (local

machine), see Figure 3.4. After the initial full test suite run, the tool is ready to be used. When

changes are made to the target project's files, the tool checks for changes in the Git working

directory. The tool first constructs a list of changed files according to Git and checks which of

those files are either source code files or test code files in our local database. After the tool has

determined which files are taken into consideration, it checks the Git diff -output for each of

those files. From this 'diff', the tool can determine which lines have changed and which lines

have shifted from their original position. Then the tool can query all the test functions from our

database according to the list of line numbers for the changed lines and run them with PyTest.

No database state updating is performed during this. If a user wishes to make these changes final,

a Git commit operation is required. When the changes are committed, a CI server starts RTS

process shown on the Figure 3.5 by calling the tool: the tool checks whether the current Git

HEAD hash differs from the one that is marked as the last update hash. If so, the tool queries the

changes and tests for those changes almost as before. As a small addition, it does two additional

things. The tool calculates how unchanged lines have shifted in the files and performs a database

update based on this information. It also checks for newly added test functions by checking what

test functions PyTest can find and comparing it to the current state in the database. When the

tests are run after this, new coverage data is collected and inserted into the database.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 23 of 54

Figure 3.4: Usage of RTS tool during development.

Figure 3.5: Usage of RTS tool on CI server.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 24 of 54

3.4.3. Claimed novelty

Pytest-rts aims to be a tool that integrates into the version control system of the project under

development. This allows regression test selection to be performed in a typical workflow where

new features are developed in separate version control branches and a CI-pipeline is configured

to run the tests. Currently, two types of tools are available for regression test selection: code

coverage based and history-based. The current code coverage-based tools, such as Ekstazi and

Pytest-testmon, only work on the developers' local machine by creating a mapping database

completely independent from any version control data. Without the version control data linked to

the mapping database, selecting correct tests between software versions becomes extremely

difficult. The history-based tools, such as ChangeEngine, require data from previous test runs

and the output of such tools can be inaccurate if the data is scarce.

3.4.4. Evaluation of the approach

The proper evaluation of the tool requires a diverse list of Python projects that have a test suite

runnable with PyTest. We collected the following preliminary list of projects for our needs:

flask, rich, pytest, chardet, dateutil, idna, python-rsa, urllib3, and wheel. The difficulty of

choosing the right projects arises from the fact that open-source python projects seem to have

greatly varying ways of handling dependencies and installation of the project for testing. Also,

many projects require specific environments for passing their tests and that is often handled with

tox.

We plan to evaluate the tool in four different ways. For each type of evaluation, we plan

to examine four different metrics as proposed by Rothermel and Harrold:

 Inclusiveness, which measures if the selected tests are able to find the same faults as the

full test set.

 Precision, which measures the ability to only execute relevant tests and avoid the

execution of unnecessary tests.

 Efficiency, which measures the computation cost of the technique.

 Generality, which measures how well the approach is able to deal with different language

constructs and complex code changes.

First, we attempt to use the historical version control data found for open-source python

projects in GitHub. By going through the commits, we attempt to find out how well our tool

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 25 of 54

performs in real-life development scenarios. A difficulty regarding this approach is that projects

might have to change ways of installing dependencies and running the full test suite.

The second way of evaluation is using an approach where a random source code line is

deleted and our system attempts to find the relevant tests. For each iteration of the process, we

can extract the line-level and file-level test sets for the change. Then we can run all the three test

sets (tests for line-level and file-level changes and the full test set for the project) and compare

the PyTest exit codes. The benefit of this approach is that a very large number of iterations can

easily be executed. A drawback is that deletions of single lines are only one of the many possible

ways how changes in a real project happen.

The third way of evaluation is very similar to the random line deletion but here we use

mutation testing approaches instead. By mutating the original code with existing mutation testing

tools, we attempt to produce changes to the code that better reflect real-life scenarios than just

simply deleting a line.

In the fourth type of evaluation, we attempt to use the tool in a development process and

collect data while doing so.

Data from the evaluation could be saved in CSV format or in a relational database. If

CSV format is selected, the files could be stored in a Git repository or as artifacts in GitHub

actions CI storage. If a relational database is picked for storing evaluation results, an external

service could be used for storing the database.

Early evaluation results with random source line deletion indicate situations where the

tool does not operate correctly. These situations include removing:

 a line defining a function. This will possibly also affect the situation when the parameters

or name of the function are changed.

 An import command resulting in missing references.

 A decorator as they are not part of the executing code and thus not seen by py-test

The planned further evaluation of the tool with more realistic examples is expected to

give us a better view of the limitations. This is naturally followed by experiments to improve the

tool. Finally, tighter integration of the tool to the continuous integration process is expected to

solve some issues but, at the same time, bring up new problems.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 26 of 54

4. Oracle mining

4.1. Introduction

Automating the test generation from requirements expressed in ambiguous natural languages is

challenging, even for controlled ones. It can be decomposed into two steps: the automatic

generation of formal specifications and test generation from formal specifications. Formal

specification plays the role of an oracle in testing, i.e., it specifies the relation between the inputs

and the expected outputs. However, constructing formal specifications is a very challenging task.

CS Canada and IVVES industrial partners are facing this challenge in testing (critical) evolving

systems. Requirements describe features and functionalities of systems in terms of constraints

that must hold on variables that represent concepts (e.g., input, outputs, and states) of the

systems. In addition to the variable names, ambiguous words and punctuation marks from the

natural languages (e.g., when, if, after, while, where, and, or, do, make, set, etc.) appear in the

constraints. The ambiguity of the meaning of some words and marks, the usage of multiple

variable names for the same concepts introduce uncertainty in the requirement analysis. For

example, a part of a requirement can be enhanced by connecting it to a new part of the

requirement via the usage of the word "where"; it is not obvious to determine the connected parts

of requirements. The uncertainty leads to various interpretations of each ambiguous part of the

requirements and combinations of the interpretations result in a possible vast number of

plausible specifications. Approaches are needed to choose proper specifications.

4.2. State of the art and anticipated contribution

Most of the approaches to generate precise oracles or tests from requirement documents are fully

automated and aims at producing precise oracles [2, 6, 4, 1, 5]. The direct translation approach

makes correspondence between certain patterns in the modelling language for precise oracles

and their possible representations in natural languages. The machine translation-based approach

uses examples of translated requirements either to infer formal grammar for the requirements or

to train a translation model with ML techniques. The approach in [4] automatically generates a

precise oracle, which is compared to a manually generated precise oracle for validation of the

automatic precise oracle generation procedure. In case the generated oracle is not the expected

one, the approach does not propose another version to the expert.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 27 of 54

Our contribution is a two-steps approach to generate precise oracles, as illustrated in

Figure 4.1. The first step consists in generating imprecise oracles representing a set of plausible

precise oracles (specifications). The second step is mining a precise oracle from the imprecise

one. Mining a precise oracle corresponds to the resolution of uncertainty in the imprecise oracle

in order to choose one of the plausible precise oracles. We suggest involving an expert in

realizing this task.

Figure 4.1: Two-steps approach to generate precise oracles

The next section presents our approach to mining a precise oracle from an imprecise one.

4.3. Proposed approach

In our approach, we represent uncertainty with nondeterministic transitions in a finite state

machine. Finite state machine has been used as a formal model for evolving systems [1] and

used in developing verification and validation techniques for evolving systems such as model-

based testing and model-checking.

We represent a set of plausible precise oracles, called the imprecise oracle, with an input

complete and non-deterministic finite state machine (FSM). A plausible precise oracle is then a

deterministic and input complete submachine of the imprecise one. Each precise oracle produces

a single output sequence in response to an input sequence. A test is nothing else but an input

sequence. Precise oracles are distinguishable if they produce different output sequences for the

same test; otherwise, they are indistinguishable.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 28 of 54

Our approach to assisting an expert in choosing a proper precise oracle from an imprecise

one works as follows:

- Randomly generate a test
- Loop: Determine the outputs which can be produced by the executions of the plausible

precise oracles with the test; this is done by exploring paths of the imprecise oracle
- Ask an expert to choose the expected output; we assume that one of the outputs is

expected.
- Remove from the imprecise oracle the precise ones that do not produce the chosen output

sequence
- If the imprecise oracle contains only indistinguishable precise oracles, then return any

one of the precise oracles as expected and exit
- Else generate a test that distinguishes two precise oracles in it and goto loop

Let us illustrate our contribution. The nondeterministic FSM in Figure 4.2 represents an

imprecise oracle for a system. It has 11 transitions t1, t2 …, t11. Its inputs a and b can represent

a Boolean assertion over variables used in requirements. The outputs are 0 and 1. Uncertainty is

modelled with nondeterministic transitions in states. For example, in state 3, it is uncertain

whether the output is 0 or 1 on input a. The imprecise oracle defines eight plausible precise

oracles. Two of them appear in Figure 4.3.

 Figure 4.2: An imprecise oracle

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 29 of 54

Figure 4.3: Two plausible oracles

The two plausible precise oracles are indistinguishable with test babaab because both

produce output 000100 on the test. For input babaab, the eight precise oracles produce outputs

000100, 000110 and 000000. If the expert judges the output 000100 is expected, the procedure

will generate the test babaaa that distinguishes between the two plausible precise oracles in

Figure 2. The precise oracles produce 000101 and 000100 with the test babaaa. If an expert

chooses 000101 as the expected output, then the leftmost precise specification is the expected

one. Otherwise, a new test is automatically generated, and the expert is invited to estimate the

plausible outputs.

Preliminary evaluation results: A preliminary version of the prototype tool is implemented in

Java and it uses Z3 solver. The objective of the empirical evaluation is scalability. The empirical

evaluation works as follows: We randomly generate an imprecise oracle and select a precise

oracle in it who plays the role of the expert. Preliminary results indicate that the approach might

scale for imprecise oracle with a limited number of states and uncertainties.

4.4. Claimed novelty

Our two-step approach to generating precise oracle is novel and suitable for evolving systems.

We anticipate that it can be easier to automatically generate imprecise oracles without missing

any complex interpretation of the requirements. In addition the proposed procedure for mining

precise is based on the Boolean encoding of the imprecise oracle and constraint resolution. It

avoids a one-by-one enumeration of every precise oracle. It proceeds by building partitions of

the imprecise oracle, which is also a novelty as compared to our previous work [3].

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 30 of 54

Ongoing work includes enhancing a prototype tool for the proposed procedure and lifting

the procedure to extensions of FSM with variables and complex operations on them. The

variables can represent input and output ports of evolving systems on these variables. We are

also investigating the ML/NLP based generation of imprecise specifications for requirement

documents, especially requirements used by the IVVES industrial partners.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 31 of 54

5. Automating test verdict generation via Model Learning

The Oracle problem [1] is the main reason why engineers have to be involved in QA process.

Though it is possible to automatically detect application crashes and situations where SUT

doesn’t respond to commands, most of the defects are logical, for example display of wrong

information or wrong calculations. Traditional testing of a given SUT uses the following basic

types of verdicts, pass, inclusive, and fail, which are made considering the results of test

execution. Considering the testing scenario when several models of an evolving SUT are inferred

during the continuous process of test execution or online testing (monitoring the SUT), one

should use different types of test verdicts, made after the models are compared. In particular,

when one model is declared to be a so-called “reference model” then the detected deviation from

it in another model could be classified either as a “defect” or “extension/enhancement”. The

undetermined change would result in the verdict “undetermined” to be later refined by the

domain expert to a determined one.

5.1. State of the art

The earliest applications of ML to software testing date back to the pioneering work of Budd

[38] and Weyuker [39]. During the 1990s and early 2000s, Inductive Logic Programming (ILP)

was considered as a model learning paradigm for model-based test case generation [40] but it has

been unclear what range of behaviors can be learned by ILP. Recently, alternative modeling and

inference approaches have been considered, such as learning algebraic specifications [41] and

learning decision trees [42]. Not all such approaches automate the important test oracle step (i.e.

test verdict generation) e.g. Briand et al. [43] argues to keep the human in the loop. However,

when test suites are large (e.g. > 1 million test cases) it seems clear that automation of the oracle

step is also necessary. This is currently being tackled by methods such as metamorphic testing.

5.2. Anticipated contribution

Open source TESTAR tool, scriptless GUI testing, and state model inference during automated

GUI exploration are described in “Test prioritization” section.

During this research, we would like to use a classical supervised classification approach

rather than metamorphic testing. Classical supervised classification approach consists of three

steps:

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 32 of 54

1. Data collection;

2. Samples (changes) labeling;

3. ML model training.

Data collection step consists of two parts: model inference for the current application

version and storage of the model. When state models are automatically inferred from new SUT

versions from a CI system, state models of consequent system versions can be automatically

compared to detect changes. Detected changes are then labelled during the labeling step. A semi-

automatic approach could be applied to it. All the changes are marked as

“extension/enhancement” if all the tests in the main TA pipeline passed otherwise changes are

visualized and presented to a QA engineer to identify changes that are defects and are not in the

model.

Training is then performed to infer the ML model which is able to predict the type and

importance of each change based on collected data. ML model training will be performed on

different feature sets from different model levels which may include displayed information and

screenshots of the current SUT screen or page, types of transitions between new and existing

states.

5.3. Claimed novelty

Recently, TESTAR has been extended with the state model inference and proof-of-concept

implementation of model comparison functionality. This new functionality has not been

evaluated in an industrial environment yet. Finding the right set of features for model training

from collected data on state machine changes and using machine learning for predicting the type

and importance of the detected changes is a novel approach pushing the boundaries of the state-

of-the-art.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 33 of 54

6. Conformal prediction for edge applications

6.1. Introduction

Many machine learning systems involve making predictions, through estimating the value of a

dependent variable with an a priori unknown ground truth. Verification of such predictive

systems, in particular when applied in high-risk applications, is crucial. Traditional machine

learning algorithms and means of validation, however, generally lack capabilities for

establishing trustworthy verification. Established common-use validation procedures tend to be

biased, leading to error frequency on production data not corresponding with error frequency on

test data; and, established common-use validation procedures tend to perform verification on a

macroscopic level (per-model) rather than a microscopic level (per-prediction), leading to

difficulties in verification of individual predictions.

The conformal prediction framework offers an alternative method for constructing and

evaluating predictive models that appears better suited than traditional predictive methods in

applications where thorough verification is crucial, [44, Ekkono 2, 46, 47, 48, 49]. Whereas

traditional predictive models output so-called point predictions—a single-valued best-guess

prediction for the value of the dependent variable—conformal predictors output multi-valued

prediction regions that represent a range of likely value assignments for the dependent variable,

constrained by its domain. Any prediction region produced by a conformal predictor comes

associated with a very specific, statistically valid, expectation: that the a priori probability of the

prediction region containing the ground truth value of the dependent variable is fixed and

known. Under these conditions, model and prediction verification becomes straightforward, as

each prediction is guaranteed to contain the correct value of the dependent variable with a user-

specified probability. Figure 6.1 presents the relation between classical training algorithms and

conformal prediction algorithms. Calibration data are used to generate prediction regions

encompassing prediction points.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 34 of 54

Figure 6.1: Relation between classical training algorithms and conformal prediction algorithm

6.1.1. Technical description

Conformal predictors are able to produce predictions on without any knowledge of the shape or

parameterization of the data generating distribution (unlike, e.g., Bayesian methods); the only

requirement is that the observed data sequence is exchangeable (a looser requirement than the

typical i.i.d. assumption). In addition, the conformal prediction framework is model agnostic, in

the sense that it can be applied on top of an arbitrary machine learning algorithm (e.g.,

classification or regression algorithm) and transform the point predictions of the underlying

algorithm into prediction regions that exhibit the expected statistical guarantees.

Given a (calibration) set of instances ሼሺ𝑥௜ ,𝑦௜ሻሽ௜ୀଵ
௡ and a predictive model ℎ, the approach

is to evaluate how good the individual predictions ℎሺ𝑥௜ሻ are. To this end, a non-conformity

function, 𝑓, is introduced and its role is to measure how unexpected is a pair ሺ𝑥௜ , 𝑦௜ሻ. A common

choice for the non-conformity function is simply the absolute difference between the prediction

and the target, i.e., 𝑓ሺ𝑥௜ ,𝑦௜ሻ ൌ |𝑦௜ െ ℎሺ𝑥௜ሻ|.

Applying the non-conformity function on the calibration set will produce an empirical

distribution, against which new data is compared to. For a new data point 𝑥௜, all possible outputs

𝑦∗ are evaluated using the non-conformity function. The prediction region of 𝑥௜ then includes all

outputs 𝑦∗ that together with 𝑥௜ would form a plausible observation in comparison to the

calibration set, or more precisely, those outputs 𝑦∗ that can’t be rejected through a standard

statistical test based on 𝑓ሺ𝑥௜ ,𝑦∗ሻ. Figure 6.2 illustrates the process to compute the prediction

region for an instance 𝑥௜.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 35 of 54

Figure 6.2: Computation of the prediction region

6.1.2. Example

To illustrate the process of conformal prediction we have looked at a dataset consisting of daily

mean temperature from a weather station on mars, taken from NASA website [81]. The aim is to

predict tomorrow’s temperature based on the last few days of data and for that purpose we train a

linear regression model, which can be seen in the left panel of Figure 6.3. It appears that the data

is somewhat noisy and, without model evaluation, the point predictor from the linear regression

gives no insight of how much we trust our predictions.

In the right panel of Figure 6.3, one can see the output of the conformal prediction

algorithm when applied to the linear regression model. The chosen confidence level is 0.1,

meaning that the prediction interval will contain the true value at on average 90% of the

instances. Note that the width of the prediction interval varies with the accuracy of the

underlying model. If error of the underlying model is particularly bad in certain regions, the

prediction interval will be wider in those regions. Note also that the prediction interval is not

necessarily symmetrical around the underlying model. In the first 100 or so days of the test set,

the linear regression output is higher than the target, which will be accounted for by the

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 36 of 54

conformal prediction algorithm. Conformal predictors with this feature are called balanced, see

for example [82].

Figure 6.3: Target and prediction values for temperatures

6.2. State of the art and anticipated contribution

Conformal prediction has been successfully applied to problems in several domains: most

notably that of drug development, see for example [50, 51, 52]. Developing a new

pharmaceutical drug, from initial compound design through clinical testing, can cost as much as

one billion dollars, and discarding non-promising candidates early in the process is key for

economic sustainability. Conformal prediction offers an opportunity to perform statistical

modelling of chemical compounds already in the design stage, and allows for early filtering of

drug candidates of poor efficacy, while simultaneously controlling for false negative rate (i.e.,

limiting the likelihood of erroneously disqualifying efficacious drug candidates).

Pharmaceutical drug development is a rather particular industry, however,it has a high

degree of maturity regarding the use of statistical and predictive modelling. In most other

industrial application areas, with a lesser degree of maturity in statistical modelling, knowledge

and use of conformal predictive systems is substantially rarer. Simultaneously, conformal

predictors, in particular conformal regression models, appear well-suited for applications in a

wide variety of industries, both as a method for providing enriched decision support in human-

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 37 of 54

computer systems and as a trustworthy component in autonomous or semi-autonomous digital or

cyber-physical systems.

6.3. Claimed novelty

Since applications of conformal prediction mostly have been carried out within the

pharmaceutical domain, implementations tend to focus on large scale solutions. Using our

expertise in small scale solutions on the edge, we have implemented an efficient version of

conformal prediction, able to run on edge applications. The implementation supports online re-

calibration of the conformal predictor, to allow for individualized learning, and adapting to

change. The provided implementation of conformal prediction will be further extended to

support fully online training on the edge, without the need to supply any prior training data. We

at Ekkono have spent resources developing our conformal prediction framework partly because

we believe that it has potential to be impactful not just in the pharmaceutical industry but in

many industrial settings were ML in general is applicable.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 38 of 54

7. Code defect risk prediction

7.1. Introduction

Code review in software development is a key step for QA in finding errors that may have been

missed during the development phase and to minimise the risk of bugs or defects in the

production phase. Because code review is a complex task, especially with complex evolving

software products; manual reviews and testing will never find every bug in the source code, so

there is always a margin of code change that will not be checked as thoroughly it should. It has

also been shown that certain parts of source code are more prone to defects than other parts, so

there is a need for an automated, smart approach to recognise project features that are

significantly at risk of defect. A more extensive review of state-of-the-art approaches to code

anomaly detection has been provided in ITEA IVVES D 3.1, paragraph 3.2.1 [53].

We believe that by assessing risk earlier in development and more accurately, QA

activities can be better organised and focused – such as extending code review in risk areas and

effectively prioritising test cases. This will ultimately add value by enhancing the quality of the

software while shortening the delivery/release cycle.

7.2. Anticipated contribution

There are many approaches that study automated code analysis and rate the quality of source

code. Apart from human rating, like peer review and static code analysis (quality analysis of the

code without executing the program), machine learning is the approach that we propose to use.

Machine learning can be used to automatically identify well written or poorly written code based

on a machine learning classification method. In this deliverable, the concept of code defect risk

prediction using a machine learning approach will be explained.

Tools and methods used to collect necessary input data for the code risk prediction ML

model are explained in the next paragraphs. They include:

1. Static code analysis packages and tools, which assess the structural quality aspect

(non-functional requirements evaluated through analysis of the inner code structure); and

2. Code coverage and version control information, which tackle the functional quality

aspect (how well the code fulfils its functional requirements and specifications).

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 39 of 54

In our approach, we use both static code analysis tools’ output and linked bugs and

defects to train the model.

Tools and methods used to collect necessary input data for the code risk prediction ML

model are explained in the next paragraphs and include static code analysis packages and tools,

which tackle the structural quality aspect (non-functional requirements evaluated through

analysis of the inner code structure) and code coverage and version control information, which

tackle the functional quality aspect (how well the code fulfils its functional requirements and

specifications). In our approach, we use both data sources to train the model. To accommodate

this, we suggest a specific DevOps workflow to be used to collect this data in future software

projects (Figure 7.2). Additionally, we include an explainable layer to the model, for transparent

results.

Figure 7.2: Structural and functional code quality data collection steps in the CI/CD workflow for code

quality risk prediction

7.3. Proposed approach

7.3.1. Code coverage: static code analysis

When we evaluate the quality of the source code, we typically want to measure the following

aspects of the system [54]:

1. Reliability: the probability that the system will run without failure.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 40 of 54

2. Maintainability: how easily the software can be maintained relating to the size,

consistency, structure and complexity of the codebase.

3. Testability: how well the software supports testing efforts – how you can control,

observe, isolate, and automate testing.

Along with these metrics, we can use manual code review and static code analysers to

measure the maintainability and understandability of the code.

Static code analysis is a method of evaluating the complexity and possibility of erroneous

code. Code coverage tools give insight into effectiveness of a test suite for an application. These

methods are executed at a granular level and require developer action [55]. Luckily, they are

easily implemented in the development workflow. Please note, the suggested packages and tools

are for Python, but the methods can be applied to any programming language.

We propose using Flake8 [56], a wrapper around PyFlakes, pycodestyle and McCabe

script, with numerous plugins available for static code analysis and code coverage [57], like

Radon [58], Bandit [59], and a popular code coverage tool Coverage.py [60].

Types of static code analysis methods that these packages assess can be classified in the

following way:

1. Code complexity assessment;

2. Raw metrics assessment, including lines of code, comments, blank lines;

3. Halstead metrics assessment, metrics for SW code assessment set in 1977 to evaluate

measurable properties of software [61];

4. Maintainability;

5. Style assessment;

6. Security issues like passwords, use of assert, binding to interfaces, weak cryptography,

SQL injection and others;

7. Code coverage measurements like statement coverage (number of code lines executed by

the test suite and the number that haven’t), function coverage (how many functions have

been ran, reveals dead code), branch coverage (in if statements, have the conditions been

met), and condition coverage (has every Boolean sub-expression within a program been

evaluated to both true and false during the execution of a test suite) [62];

8. Compiler anomaly detection can be considered as one of possible techniques to improve

code quality assessment. Python is an interpreted, not a compiled language, however, it

does contain a compilation part. The code gets compiled to bytecode and stored to a .pyc

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 41 of 54

file to increase the speed of the execution. If the code doesn’t change, the .pyc file

doesn’t change either [63].

7.3.2. DevOps pipeline: integrating code coverage tools

Static code analysis is an efficient way to assess the code that was built locally, before

deployment to other environments. Since the state of the software industry requires quick

deployments from local (feature) branches to develop, master and release ones, it is of crucial

importance to do checks between them and report any commits that may lead to bugs. This can

be done through several Python packages that need to be integrated in the CI/CD flow in order to

accomplish this.

Continuous integration refers to merging code changes frequently to master. For this to

be established, a pipeline configuration tool is used. We propose the use of either:

 Git CI. It relies on a .yml file which creates a pipeline and runs for changes to the code

in the repository. This pipeline has one or more stages that run and can contain one or

more jobs that run in parallel, executed by GitLab running agent [64].

 Jenkins, an open-source, MIT licenced tool with easy configuration [65].

Since we are using either Git CI or Jenkins, we will be focusing on tools that can be

integrated with them:

1. Wily, an application for tracking the complexity of Python code in tests and applications.

Those measures include cyclomatic complexity, Halstead metrics, raw metrics and

maintainability. Wily can be integrated in the CI pipeline and used to compare scripts

between different branches, making it very useful for assessment of code between

environments [66].

2. Flake8, with its plugins [57].

Static code analysis pipeline integration can be used to stop the commit changes from

being pushed to develop, release or master branches in case of risky, flaky code. This is an

immediate effect, and, in case this happens, it is developer’s responsibility to attend to faulty

code. It is good to note that the sensitivity of the pipeline stages can be adjusted, meaning the

project can be configured for most efficient deployment. In case the build succeeds, CI tools will

output a log or xml file with the static code and unit test results. This file is stored locally or fed

into a database for later use in the ML model.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 42 of 54

7.3.3. Traceability: version control and defects

Continuous integration is followed by a continuous delivery pipeline, which ensures quick

deployment into an environment where further testing is done. Usually, testing includes

integration and user acceptance tests. Unlike the continuous integration pipeline, which focuses

on structural and functional changes, where latter is assessed through unit test runs, integration

and user acceptance tests evaluate only the functional aspect of code changes.

Linking defects and bugs to commits depends heavily on the project DevOps

configuration. Jira and Jenkins integration can be used. It is important to make a clear link

between a commit and a reported bug so that this information can be used to train the ML model.

The approach in data collection allows for the possibility of classifying code commits into risky

and non-risky ones, with a possibility of future improvements in the ML model classification

granularity. We aim to classify code changes by types of risk they lead to.

7.3.4. Machine learning: predicting code quality

To improve the assessment of source code quality before testing begins, we propose using a

Random Forest Classifier as an innovative method to detect the probability of faults and thus

determine if the quality of code is risky or not [67]. We will use defects as our objective for our

machine learning outcome.

To predict the probability of defect occurring in a feature, we need to understand where

bugs are introduced. Source code changes and how they are associated to features will be

significant in analysing risk areas. We will predict code risk and thereby probability of

defect, by predicting the features that will be affected by a change in source code or file.

The expected outcome of the algorithm is a distribution of probabilities of the file that effects

different software features. This will quantify the risk of new code changes [68].

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 43 of 54

Figure 7.2: Code defect risk prediction model architecture

Data sources:

To create an algorithm that identifies code risk features we use a dataset that contains:

 File changes associated with features – version control commit metadata, including static

code and code coverage analysis results;

 Defect metadata – identified bugs linked to feature.

Risks [69]:

 Historical defect data: to construct any defect predictor, we need access to historical data.

Oftentimes historical data is not available for new projects which can make successful

prediction challenging. We can mitigate this by using available data from similar

projects.

 Data quality: quality and accessibility can be a constraint to the effectiveness and

accuracy of the model. data traceability will be key to integrating multiple types of data

that will allow us to form statistically significant conclusions about the cause of defects

in different features.

Risk mitigation:

To address the above risks and ensure that we have a robust and high performing code

quality model, we will use public data from open-source projects. This way we will have more

observations of commits linked to bugs, and we can use this data to train our model in

identifying risky features. By using similar open-source projects, we can then apply the model to

new and existing projects that do not have historical data or high data quality.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 44 of 54

Assumptions:

 Workflow is DevOps, with a setup CI/CD pipeline;

 There are change files associated with the code change and the bug fix for a given

feature;

 There should be enough data points to the required level of granularity of the features;

 Automated changes that are generated by automated systems or scripts and not by a

developer should be excluded as they do not represent code changes from a developer.

Model interpretability:

For the software developer to interpret why the model predicted a risk area and likelihood

of defect, we can implement an explainable AI method to understand the results and provide

transparency so that the developer or tester can make better decisions.

Our approach is based on a random forest model which consists of many deep trees. Each

tree is trained using a random selection of features. These models are seen as black-boxes as

each tree can have thousands of nodes, and getting a full understanding of the model’s process

by examining each tree, is not feasible. However, we can turn a random forest algorithm into a

white-box by computing the sum of feature contributions which shows how the features led to

an individual prediction [70]. This is a straightforward and easy to implement method that can

make the model more interpretable. We can run the treeinterpreter (python library) [71]

interpretation algorithm on python’s scikit-learn‘s [72] decision tree and random forest model,

which will explain the local predictions. Thus, the developer or tester will be able to understand

the model’s decision process better and make more effective decisions regarding code and test

coverage.

7.4. Claimed novelty

As industrial systems evolve and become increasingly complex, we need to find new ways to

manage the sustainable growth of development and testing operations. Traditional code coverage

and testing approaches will require large amounts of resource investment to maintain quality.

However, we still would not be able to cover all risks thoroughly. Thus, it’s imperative that we

implement a smart system, in combination with static code analyser and IDE tools, that will

enable us to move toward risk-based testing. By implementing an automated machine learning

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 45 of 54

code risk model, we can more accurately predict the quality of our code and where the high-risk

features are, which will enable the prioritisation of test cases and better allocation of resources.

This will result in compliant development and a more efficient and effective QA cycle. This type

of smart testing pipeline integration tool along with a machine learning model to predict code

quality, has not been seen on the market or rarely implemented into CI pipelines. This is mainly

because of legacy systems, data quality and collection issues and a non-agile way of working.

Most of the tools that claim to predict code risk, are rule-based and do not use machine learning

methods. Our proposed technical solution is a novelty in the software industry and will shift the

way of working towards compliant & quality development.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 46 of 54

8. Unsupervised anomaly detection for visual inspection in
industrial environments

Grupo Antolin holds a 50% shareholding in Keyland. Grupo Antolin is one of the largest

manufacturers of vehicle interiors in the world, and achieved sales amounting to €5,214 million

in 2019. Keyland is an ICT (Information and Communication Technology) provider for the

automotive sector in Spain, being a key partner to generate innovative solutions.

The complexity of car interiors -with surfaces made up of many more layers, with a lot

more choice in colors- is increasing. The greater demand for personalization from end users is

pushing the providers to adapt fast and efficiently to this continuously changing environment.

Optical quality inspection is still one of the common methods to ensure quality control. This is

preventing full automation and integration towards the Industry 4.0 concept. The increasing

variability in colors, shapes, textures, positions, etc. renders the optical inspection impracticable,

which has led this sector to look for automating defect inspection. Artificial intelligence (AI) is

a promising technique for automated inspection.

Grupo Antolin Inspection Operator Grupo Antolin QA Operator

The growing demand for automation in this context, together with the great variability is

stressing ICT providers, that must face a great flexibility. The software must easily evolve and

adapt to different production lines, with shortened lifecycles. This variability makes the

identification of anomalies both in datasets and AI system behavior more challenging.

Continuous online monitoring of AI systems is required to ensure reliability during operation

phases.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 47 of 54

8.1. State of the art

 Anomaly detection is focused on two main common types: outliers and mislabelled data. At this

stage we focus on detection of outliers, both in datasets and in the outcomes of the AI system. A

good reference illustrating the benefits of incorporating anomaly detection into real-world ML

systems is the Out-of-Bag anomaly detection [73]. Its main goal -integrating anomaly detection

as a pre-processing step- is to improve the accuracy of the ML models. This approach could

reduce uncertainty when a new product line must be set up, and changes in textures, colors,

materials… must be faced. Other reference directly focused on image analysis [74], proposes a

method to detect anomalies by directly isolating anomaly pixels from background. Anomaly

detection also has the capability to summarize the status of a complex system with a single

indicator (anomaly score). In this context, Functional Isolation Forest exhibits a great flexibility

in detecting anomalies for a variety of tasks [75].

8.2. Anticipated contribution

KEYLAND is focused in online monitoring of AI systems for automated inspection of car

interiors, exploring techniques for anomaly detection. For this, Isolation Forest is being used.

Isolation Forest [76] is similar to Random Forest. It is based on decision trees. However,

Isolation Forest is an unsupervised learning algorithm that explicitly identifies anomalies, instead

of profiling normal data points. It identifies anomalies or outliers, isolating observations by

randomly selecting a feature and then randomly selecting a split value between the minimum and

maximum values of that selected feature.

Since fully unsupervised learning may not achieve enough reliability due to increasing

variability, we are considering the integration of expert knowledge in the detection algorithms,

remarking occurrences (i.e., unforeseen events, uncommon states or configuration...) as

“relevant”. This is in line with other ongoing works [77], though directly focused on visual

inspection.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 48 of 54

8.3. Claimed novelty

So far, we haven’t identified any solution designed for anomaly detection for visual inspection

systems deployed in a real industrial environment. KEYLAND is focused in generating a

workflow that can be applied in a real, industrial environment. We believe that our contributions

could eventually provide more reliable and trustworthy systems, addressing the challenges

identified for visual inspection in different stages within the automotive sector.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 49 of 54

9. References

[1] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, S. Yoo, “The Oracle Problem in Software
Testing: A Survey” IEEE Transactions on Software Engineering, 2015

[2] I. Buzhinsky, "Formalization of natural language requirements into temporal logics: a
survey," 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki,
Finland, pp. 400-406, 2019.

[3] O. Nguena Timo, Alexandre Petrenko, S. Ramesh, “Using Imprecise Test Oracles Modelled
by FSM”. ICST Workshops, pp. 32-39, 2019.

[4] J. Galvani Greghi, E. Martins, A. Maria Brito, R. Carvalho, “Semi-automatic Generation of
Extended Finite State Machines from Natural Language Standard Documents”, DSN
Workshops, pp. 45-50, 2015.

[5] F. Pudlitz, F. Brokhausen, A. Vogelsang, “Extraction of System States from Natural
Language Requirements” RE 211-222, 2019

[6] C. Gustavo, S. Augusto, “Formal Specification Generation from Requirement Documents”,
Electronic Notes in Theoretical Computer Science. 195. 171-188, 2008.

[7] S. Bauersfeld, T. Vos, “A reinforcement learning approach to automated gui robustness
testing”, In Fast Abstracts of the 4th Symposium on Search-Based Software Engineering
(SSBSE), IEEE, pp. 7–12, 2012.

[8] A. Esparcia-Alcázar, F. Almenar, T. Vos, U. Rueda, “Using genetic programming to evolve
action selection rules in traversal-based automated software testing: results obtained with the
TESTAR tool”, Memetic Computing 10(3): 257-265, 2018.

[9] Y. Miao and X. Yang, “An FSM based GUI Test Automation Model”, the 11th International
Conference on Control, Automation, Robotics and Vision (ICARCV), pp. 120-126, 2010.

[10] P. Aho, N. Menz, T. Räty and I. Schieferdecker, "Automated Java GUI Modeling for Model-
Based Testing Purposes," In Eighth International Conference on Information Technology: New
Generations, pp. 268-273, 2011.

[11] A. Mesbah, A. van Deursen, and S. Lenselink, "Crawling Ajax-Based Web Applications
through Dynamic Analysis of User Interface State Changes”, ACM Trans. Web 6, 1, Article 3
(March 2012), 30 pages. DOI:https://doi.org/10.1145/2109205.2109208

[12] P. Aho, M. Suarez, T. Kanstrén and A. M. Memon, "Murphy Tools: Utilizing Extracted GUI
Models for Industrial Software Testing," Seventh IEEE International Conference on Software
Testing, Verification and Validation Workshops, pp. 343-348, 2014.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 50 of 54

[13] S. Pimont and J. Rault, “A software reliability assessment based on a structural and
behavioral analysis of programs”, In Proc. of the 2nd international conference on Software
engineering (ICSE). IEEE, pp. 486–491, 1976.

[14] T. Chow, “Testing Software Design Modeled by Finite-State Machines”, IEEE Trans. on sw.
eng., vol. SE-4, no. 3, 1978.

[15] V. Cortellessa, A. Di Marco, P. Inverardi, “Model-based software performance analysis”,
Springer Science & Business Media, 2011.

[16] M. Harchol-Balter, “Performance modeling and design of computer systems: queueing
theory in action”, Cambridge University Press, 2013.

[17] K. Kant, M. M. Srinivasan, “Introduction to computer system performance evaluation”,
McGraw-Hill College, 1992.

[18] S. Balsamo, A. Di Marco, P. Inverardi, M. Simeoni, “Model-based performance prediction
in software development: A survey”, IEEE Transactions on Software Engineering, 295-310,
2004.

[19] H. Koziolek, “Performance evaluation of component-based software systems: A survey.
Performance evaluation”, pp. 634-658, 2010.

[20] P. Zhang, S. Elbaum, M. B. Dwyer, “Compositional load test generation for software
pipelines”, In Proceedings of the International Symposium on Software Testing and Analysis pp.
89-99, 2012.

[21] V. Garousi, “A genetic algorithm-based stress test requirements generator tool and its
empirical evaluation”. IEEE Transactions on Software Engineering, 36(6), 778-797, 2010.

[22] M. B. da Silveira, E. D. M. Rodrigues, A. F. Zorzo, L. T. Costa, H. V. Vieira, F. M. de
Oliveira, “Generation of Scripts for Performance Testing Based on UML Models”, In SEKE, pp.
258-263, 2011.

[23] C. Lutteroth, G. Weber, “Modeling a realistic workload for performance testing”. In 12th
International IEEE Enterprise Distributed Object Computing Conference, pp. 149-158, 2008.

[24] H. Schulz, D. Okanović, A. van Hoorn, V. Ferme, C. Pautasso, “Behavior-driven load
testing using contextual knowledge-approach and experiences”, In Proceedings of the
ACM/SPEC International Conference on Performance Engineering, pp. 265-272, 2019.

[25] V. Ferme, C. Pautasso, “A declarative approach for performance tests execution in
continuous software development environments”, In Proceedings of the ACM/SPEC
International Conference on Performance Engineering, pp. 261-272, 2018.

[26] B. Settles, “Active learning literature survey”, University of Wisconsin-Madison Department
of Computer Sciences, 2009.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 51 of 54

[27] R. S. Sutton, A. G. Barto, “Reinforcement learning: An introduction”, MIT press, 2018.

[28] H. M. Moghadam, “Machine Learning-Assisted Performance Assurance”, Licentiate Thesis,
Mälardalen University, 2020.

[29] M. H. Moghadam, M. Saadatmand, M. Borg, M. Bohlin, B. Lisper, “Poster: Performance
Testing Driven by Reinforcement Learning”, In IEEE 13th International Conference on Software
Testing, Validation and Verification (ICST), pp. 402-405, IEEE, 2020,

[30] M. H. Moghadam, “Machine learning-assisted performance testing”. In Proceedings of the
27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 1187-1189, 2019.

[31] M. H. Moghadam, M. Saadatmand, M. Borg, M. Bohlin, B. Lisper, “An Autonomous
Performance Testing Framework using Self-Adaptive Fuzzy Reinforcement Learning”, arXiv
preprint arXiv:1908.06900, 2019.

[32] G. Hamidi, “Reinforcement Learning Assisted Load Test Generation for E-Commerce
Applications”, Master thesis, Mälardalen University, 2020.

[33] J.O’Duinn, The financial cost of a check in (2013). Accessed 2020-08-11.

[34] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage, costs, and benefits of
continuous integration inopen-source projects,” in2016 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, pp. 426–437, 2016.

[35] G. Rothermel and M. J. Harrold, “Analyzing regression test selection techniques” IEEE
Transactions on software engineering, vol. 22, no. 8, pp. 529–551, 1996.

[36] B. G. Ryder, F. Tip, “Change impact analysis for object-oriented programs,” in Proceedings
of the 2001ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and
engineering, pp. 46–53, 2001.

[37] M. Gligoric, L. Eloussi, D. Marinov, “Ekstazi: Lightweight test selection,” in2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, vol. 2. IEEE, pp. 713–716, 2015.

[38] T. A. Budd, D. Angluin, “Two notions of correctness and their relation to testing”, Acta
Informatica 18(1), pp. 31–45, 1982.

[39] E. J. Weyuker, “Assessing test data adequacy through program inference. ACM
Transactions on Programming Languages and Systems (TOPLAS) 5(4), pp. 641–655, 1983.

[40] R.D. King, K.E. Whelan, F.M. Jones, P.G. Reiser, C.H. Bryant, S.H. Muggleton, D.B. Kell,
S.G. Oliver, “Functional genomic hypothesis generation and experimentation by a robot
scientist”, Nature 427(6971): pp. 247–252, 2004.

[41] J. Henkel, A. Diwan, “Discovering algebraic specifications from java classes”, In: European
Conference on Object-Oriented Programming, Springer, pp. 431–456, 2003.�

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 52 of 54

[42] P. Papadopoulos, N. Walkinshaw, “Black-box test generation from inferred models”, In:
Proceedings of the Fourth International Work- shop on Realizing Artificial Intelligence Synergies
in Software Engineering, IEEE Press, pp. 19–24, 2015

[43] L. C. Briand, Y. Labiche, Z. Bawar, N. T. Spido, “Using machine learning to refine category-
partition test specifications and test suites”, Information and Software Technology 51(11): pp.
1551–1564, 2009.

[44] V. Vovk, A. Gammerman, G. Shafer, “Algorithmic learning in a random world”, Springer
Science & Business Media; 2005.

[45] G. Shafer, V. Vovk, “A tutorial on conformal prediction”, Journal of Machine Learning
Research, vol 9, pp. 371-421, 2008.

[46] C. Saunders, A. Gammerman, V. Vovk, “Transduction with confidence and credibility”, pp.
712-726, 1999.

[47] V. Balasubramanian, S.S. Ho, V. Vovk, editors. “Conformal prediction for reliable machine
learning: theory, adaptations and applications”, Newnes, 2014.

[48] U. Johansson, H. Boström, T. Löfström, H. Linusson, “Regression conformal prediction with
random forests”, Machine Learning, vol 97(1-2), pp. 155-76, 2014.

[49] H. Linusson, U. Norinder, H. Boström, U. Johansson, T. Löfström, “On the calibration of
aggregated conformal predictors”, In Conformal and probabilistic prediction and applications,
pp. 154-173, 2017.

[50] J. Alvarsson, S.A. McShane, U. Norinder, O. Spjuth, “Predicting with confidence: Using
conformal prediction in drug discovery”, Journal of Pharmaceutical Sciences, 2020.

[51] N. Bosc, F. Atkinson, E. Felix, A. Gaulton, A. Hersey, A.R. Leach, “Large scale
comparison of QSAR and conformal prediction methods and their applications in drug
discovery”, Journal of cheminformatics, vol 11(1), p. 4, 2019.

[52] M. Eklund, U. Norinder, S. Boyer, L. Carlsson, “The application of conformal prediction to
the drug discovery process”, Annals of Mathematics and Artificial Intelligence, vol 74(1-2), pp.
117-32, 2015.

[53] M. Pashkovisky, et. al, “State of the art of validation methods and techniques for complex
evolving systems,” ITEA, 30-Jun-2020. [Online]. Available: https://itea3.org/project/ivves.html.
[Accessed: 2020].

[54] R. Bellairs, “What Is Code Quality? And How to Improve Code Quality,” Perforce Software,
2019. [Online]. Available: https://www.perforce.com/blog/sca/what-code-quality-and-how-
improve-code-quality. [Accessed: 01-Dec-2020].

[55] A. VanTol. “Python Code Quality: Tools & Best Practices.” Real Python, Real Python, 7
Nov. 2020, realpython.com/python-code-quality/.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 53 of 54

[56] I. S. Cordasco, flake8 Documentation. (2020) [online] Available at: <
https://flake8.pycqa.org/_/downloads/en/latest/pdf/> [Accessed 23 November 2020].

[57] GitHub. 2020. Dmytrolitvinov/Awesome-Flake8-Extensions. [online] Available at:
<https://github.com/DmytroLitvinov/awesome-flake8-extensions> [Accessed 23 November
2020].

[58] Radon.readthedocs.io. 2020. Welcome To Radon’S Documentation! — Radon 4.1.0
Documentation. [online] Available at: <https://radon.readthedocs.io/en/latest/> [Accessed 23
November 2020].

[59] Bandit.readthedocs.io. 2020. Welcome To Bandit’S Developer Documentation! — Bandit
Documentation. [online] Available at: <https://bandit.readthedocs.io/en/latest/> [Accessed 23
November 2020].

[60] Coverage.readthedocs.io. 2020. Coverage.Py — Coverage.Py 5.3 Documentation. [online]
Available at: <https://coverage.readthedocs.io/en/coverage-5.3/> [Accessed 23 November
2020].

[61] M. H. Halstead, “Elements of Software Science”, Elsevier, vol 7, 1977.

[62] K. Pijanowski, “Improve Code Quality Using Test Coverage.” CODE Magazine,
www.codemag.com/article/1701081/Improve-Code-Quality-Using-Test-Coverage.

[63] Docs.python.org. 2020. Py_Compile — Compile Python Source Files — Python 3.9.0
Documentation. [online] Available at: <https://docs.python.org/3/library/py_compile.html>
[Accessed 23 November 2020].

[64] “GitLab CI,” GitLab. [Online]. Available: https://about.gitlab.com/stages-devops-
lifecycle/continuous-integration/. [Accessed: 07-Dec-2020].

[65] Jenkins User Documentation. [Online]. Available: https://www.jenkins.io/doc/. [Accessed:
07-Dec-2020].

[66] Wily. [Online]. Available: https://wily.readthedocs.io/en/latest/. [Accessed: 07-Dec-2020].

[67] M. Madera, R. Tomoń, "A case study on machine learning model for code review expert
system in software engineering", In Federated Conference on Computer Science and
Information Systems (FedCSIS), pp. 1357-1363, 2017.

[68] P. Deep Singh, A. Chug, "Software defect prediction analysis using machine learning
algorithms", In 7th International Conference on Cloud Computing, Data Science & Engineering -
Confluence, pp. 775-781, 2017.

[69] V. Barstad, M. Goodwin, T. Gjøsæter, “Predicting Source Code Quality with Static Analysis
and Machine Learning”, In Norsk IKT-konferanse for forskning og utdanning. 2014.

D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any
party outside the Consortium without the written permission of the Project Coordination Committee, as regulated by the IVVES Consortium
Agreement and the AENEAS Articles of Association and Internal Regulations.

IVVES Confidential © 2020 IVVES Consortium Page 54 of 54

[70] “Interpreting random forests,” Diving into data, 19-Oct-2014. [Online]. Available:
http://blog.datadive.net/interpreting-random-forests/. [Accessed: 01-Dec-2020].

[71] GitHub. 2020. Andosa. [online] Available at <https://github.com/andosa/treeinterpreter

[72] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, E. Duchesnay, “Scikit-learn: Machine Learning in Python”, JMLR 12, pp. 2825-2830,
2011.

[73] E. Klevak, S. Lin, A. Martin, O. Linda, E. Ringger, “Out-Of-Bag Anomaly Detection”, arXiv
preprint arXiv:2009.09358, 2020.

[74] K. Zhang, X. Kang, S. LI, “Isolation Forest for Anomaly Detection in Hyperspectral Images”
In IEEE International Geoscience and Remote Sensing Symposium *(IGARSS), IEEE, pp.
437-440, 2019.

[75] G. Staerman, P. Mozharovskyi, S. Clémençon, F. d'Alché-Buc, “Functional Isolation
Forest”, arXiv preprint arXiv:1904.04573, 2019.

[76] F. T. Liu, K. M. Ting, Z.-H. Zhou, “Isolation forest”, In Eighth IEEE International Conference
on Data Mining, IEEE, pp. 413-422, 2008.

[77] V. Vercruyssen, “Designing Anomaly Detection Algorithms that Exploit Flexible
Supervision”, PhD Thesis, 2020.

[78] M. Tulio Ribeiro, T. Wu, C. Guestrin, S. Singh, “Beyond Accuracy: Behavioral Testing of
NLP Models with CheckList”. arXiv preprint arXiv:2005.04118, 2020.

[79] A. Chan, L. Ma, F. Juefei-Xu, X. Xie, Y. Liu, Y. S. Ong, “Metamorphic relation based
adversarial attacks on differentiable neural computer”. arXiv preprint arXiv:1809.02444, 2018.

[80] WU, Zhaolin, et al., “A Time Window based Reinforcement Learning Reward for Test Case
Prioritization in Continuous Integration”, In Proceedings of the 11th Asia-Pacific Symposium on
Internetware, p. 1-6, 2019.

[81] NASA. [Online]. Available:
https://atmos.nmsu.edu/data_and_services/atmospheres_data/INSIGHT/insight.html.
[Accessed: 15-Dec-2020].

[82] H. Linusson, U. Johansson, T Löfström, “Signed-error conformal regression”, In Pacific-
Asia Conference on Knowledge Discovery and Data Mining, pp. 224-236, Springer, 2014.

