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Glossary 

Abbreviation / acronym Description 

FSM Finite State Machine 
RL Reinforcement Learning 
ML Machine Learning 
NLP Natural Language Processing 
CI Continuous Integration 
ESG Environmental, Social and Governance 
GUI Graphical User Interface 
AI Artificial Intelligence 
TA Test Automation 
SUT System Under Test 
E2E End-to-end 
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1. Executive summary 

This document (D3.2) concerns initial validation methods and techniques for complex 

evolving systems in project use cases. The state of the art of the validation techniques for 

evolving systems appears in deliverable D3.1 referenced in this document.  The document 

presents problems identified in use cases, anticipated contributions, and initial solutions.  Further 

work, to be reported in upcoming D3.3 and D3.4, includes the elaboration of the anticipated 

contributions, enhancement of initial methods and tool development.   

  The document includes six sections corresponding to problems identified in validating 

complex evolving systems from IVVES partners. These problems meet the objectives of the 

three tasks of WP3, namely ML-based testing, testing under uncertainties, testing and 

monitoring.  Each section provides an introduction to problems, anticipated contributions, 

approaches and claimed novelties.   

Claimed novelties are methods or improvement of tools based on state-of-the-art 

techniques; they cover the three main stages for the continuous quality assurance process 

presented in D3.1. Claimed novelties in ML-based testing include scriptless GUI testing based 

on model inference, performance testing based on active deep learning and reinforcement 

learning, ML-based code quality prediction and an implementation of an efficient version of 

conformal prediction suitable for edge applications. The claimed novelty in testing under 

uncertainties is an approach for resolving uncertainties which can occur in generating tests from 

requirement documents. The claimed novelties in testing and monitoring include test 

prioritization based on code changes tracking in a version control system and continuous ML-

based online monitoring for anomaly identification in AI systems.  
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2. Introduction 

Complex evolving systems need adequate methods and tools to ensure their quality. In a 

previous deliverable, D3.1, we studied existing validation methods and techniques applicable to 

evolving systems. The goal of that study was to better understand the methods and techniques 

and foresee their applicability in use cases from IVVES industrial partners.  

 

In this deliverable we present validation methods and techniques which we have been 

developing or anticipating to adapt to the use cases. We selected existing validation methods and 

techniques we plan to adapt and implement in existing tools developed by partners. We also 

propose new approaches to solve problems we identified in addressing the use cases.  

The anticipated validation methods and techniques cover the design, the development and 

testing, and the operation phase in the continuous quality assurance process presented in D3.1.  

In the design phase, we address the oracle mining problem, which amounts to building 

specifications useful to judge observations produced by executions of systems under automated 

testing.  The problem is non-obvious especially if the data source for building the specification is 

requirement documents or logs of execution traces of a legacy version of the system.  The 

anticipated contribution (see Section 4) is a novel semi-automated procedure to assist an expert 

in choosing a proper oracle from a set of potential oracles compactly presented by an imprecise 

oracle that can be built with NLP techniques. 

In the development and test phases, we address test generation and prioritization problems. 

We propose testing techniques based on reinforcement learning and active deep learning for the 

performance analysis of ES (see Section 3.2) and the prediction of risky parts of code of ES (see 

Section 7). Performance is a quality characteristic which describes the time and resource bound 

aspects of a system’s behavior. Systems can be executed with adequate tests to estimate the 

bound aspects, in particular after changes in the systems. We may have several performance 

measures and each test case may target a different measure. For example, we may have test cases 

to verify response time requirements, and also test cases that verify throughput requirements. 

Here, we consider each measure as a class in machine learning terminology and by classification, 

we mean labelling test cases with the measures that they verify and we employ ML to realize it. 

We also anticipate developing and implementing a coverage-based test generation technique 

for enhancing a GUI testing tool (Section 3.1), yet another ML-based test prioritization 
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technique for an ESG-investment system (Section 3.3) and a coverage-based test prioritization 

technique suitable for continuous integration with version control systems (section 3.4).  In the 

latter case, the idea is to map test cases to code modules utilizing coverage reports and/or errors 

stack trace analysis and the claimed novelty is the adaptation of this idea to an industrial context. 

We advocate using conformal predictive models for developing critical systems; indeed, 

conformal prediction allows us to devise more rigorous verification techniques for the systems. 

We propose an implementation of conformal predication that scales on edge applications 

(Section 6).  

We also address the automation of test verdict production in a testing tool for GUI (Section 

5). We propose leveraging finite state machine inference (passive learning) to build the 

specification of an application from logs and later use the built specification to judge 

observations made during the execution of the systems with test inputs.  

In the operation phase, we anticipate developing an online monitoring system for anomaly 

detection in visual inspection systems deployed in a real industrial environment (Section 8). To 

the best of our knowledge, such a system needed by the partners does not yet exist.   

The document is organized as follows. The next section presents our progress in the field of 

test generation and test prioritization. In Section 4, we present our progress on oracle mining 

from imprecise oracles. Section 5 suggests leveraging machine learning to automate the 

generation of test verdicts in an existing tool.  Our implementation of conformal prediction able 

to run on edge applications is discussed in Section 6. In Section 7, we present an ML-based 

approach we anticipate to develop and apply for code defect risk prediction. In Section 8, we 

present our anticipated ML-based online monitoring approach for anomaly identification in AI 

systems. 
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3. Test generation and test prioritization for fault detection 

3.1. Scriptless E2E test generation for ES with coverage analysis 

Building a test automation pipeline of complex evolving systems (ES) is an elaborate task, 

especially on the end-to-end (E2E) level. One of the main challenges is the fact that the resulting 

test suites are difficult to maintain. We plan to address this challenge by applying both, non-ML 

and ML techniques to generate test suites with a high coverage level. Techniques, 

methodologies, and tools are needed to be able to:  

 generate test cases automatically with a good level of interpretability for  

o different stages of test automation (TA);  

o different types of applications: standalone, web, and mobile applications;  

 reuse generated test suites and inferred application models to optimize TA in terms of 

time and coverage. 

3.1.1. State of the art 

Traditionally, software test automation is based on scripts (pre-defined test sequences with test 

oracle checks) that are either automatically generated from models or written by a human. In 

scriptless test automation, the test sequences are generated dynamically during the execution, 

usually one step at a time, based on automatically detected available interactions that the end 

user could perform, or events from the environment. The execution of the action includes 

waiting for the reaction from the system under test (SUT). Figure 3.1 depicts the process of 

scriptless testing at a high level. 

 

 



D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020 
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022 

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any 
party outside  the Consortium without  the written permission of  the Project Coordination Committee, as  regulated by  the  IVVES Consortium 
Agreement and the AENEAS Articles of Association and Internal Regulations. 

IVVES Confidential © 2020 IVVES Consortium Page 10 of 54 

 
Figure 3.1: Scriptless testing process. 

 
The action selection often involves some level of randomness, and therefore scriptless GUI 

testing is often called random or monkey testing. One of the research directions for trying to 

make monkey testing tools smarter has been using AI and machine learning for improving action 

selection. Usually, some kind of model inference approach has to be used for the learning 

process. Often, the reward or fitness functions have been connected to increased GUI or code 

coverage [7], [8]. This kind of strategy usually rewards visiting (i.e., covering) all GUI states at 

least once. However, visiting all GUI states does not mean that all paths or combinations of paths 

have been visited.   

  In IVVES project, we aim to investigate combinatorial coverage for improving action 

selection after all GUI states have been visited. One of the options is using n-switch coverage. In 

1976, Pimont and Rault [13] introduced a criterion for covering pairs of edges called switch 

coverage. In 1978, Chow [14] generalized this and defined n-switch edge coverage for a specific 

graph. With a switch cover-tree, we can detect all possible n-switch walks for one vertex. We 

have to calculate an n-switch cover-tree of all vertices to be able to calculate the n-switch edge 

coverage of a particular walk. The n-switch edge coverage criterion is about the percentage of 

walks with length n+1 that a test set covered. This calculation can speed up knowing the cover-

tree property that if we cover an n-switch walk, we also cover all lower n-switch walks. So, a 

100% 0-switch coverage of the graph means that we visit every edge in the graph at least once. 

A 100% 1-switch coverage means we walk all possible back-tracking walks with 2 edges from 

all vertices at least once.  

Inferring state models during automated GUI exploration has been researched with 

various approaches, for example, GUITAM [9], GUI Driver [10], and Crawljax [11]. However, 

automated change detection by comparing inferred models of consequent system versions has 

not been widely researched; Murphy tools [12] seems to be the only existing approach in the 

literature. 

3.1.2. Anticipated contribution 

Open source TESTAR tool will be used for scriptless graphical user interface (GUI) test 

generation and state model inference in continuous integration (CI) environment for selected 

software packages. TESTAR dynamically generates test sequences during the exploration of 
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SUT, one step at a time, based on detected available actions. TESTAR supports model inference 

during the automated exploration of the GUI of an application and uses the model for 

systematically (but in random order) trying out all the available actions in all the explored states.   

 TESTAR can infer state models based on the observed behavior of the system under 

testing (SUT) and use the inferred models for optimizing the action selection during test 

sequence generation. So far during the IVVES project, we have already demonstrated that 

TESTAR is able to automatically explore desktop and web applications of the industrial use case 

providers, and infer state models based on the observed SUT behaviour. Currently, we are 

improving the configuration of TESTAR and trying to find a suitable level of abstraction for the 

model inference. During the project, the state models will be used for reinforcement learning 

with various reward functions to improve action selection. Also, we plan to research automated 

change detection based on comparing the inferred state model of consequent SUT versions.   

  For Windows desktop applications, TESTAR uses Windows accessibility API to access 

the GUI information for detecting the state of the SUT and available actions. For web 

applications, TESTAR uses Selenium WebDriver. The plan is to extend TESTAR during IVVES 

project to support mobile applications by using Appium to connect to a mobile device emulator. 

Adding support for testing mobile applications with TESTAR is an important technical 

contribution that has been requested by several industrial partners of IVVES. The 

implementation effort has been started and the first proof-of-concept implementation has been 

demonstrated for the industrial partners of IVVES project.  

3.1.3. Claimed novelty 

Using inferred state models for machine learning to improve action selection in scriptless GUI 

testing has novelty and new publications are expected from the results.  

  

Other novel research directions include using the state models of previous TESTAR runs 

to optimize the current GUI exploration, and as a coverage metric to change from exploration 

strategy to combinatorial strategy (for example n-switch) after each state and action has been 

visited at least once. Also, the use of AI/ML approaches for improving TESTAR action selection 

will be researched. 
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3.2. Machine learning-assisted automated performance testing 

3.2.1. Performance testing 

Performance, which is also called efficiency in some taxonomies, is a quality characteristic 

which describes the time and resource bound aspects of a system’s behavior and is of great 

importance for the success of many products. It’s measured in terms of some metrics like 

response time, throughput and resource utilization. 

Performance analysis is typically done to measure performance metrics and detect 

performance-related issues. Performance issues could be referred as any violation of 

performance requirements or any functional problems emerged under special performance-

related conditions such as heavy workload and limited resource availability. Several methods 

have been developed to analyze the performance of software products. Generally, these methods 

can be categorized into modeling and testing groups. Modeling methods [15, 16, 17, 18, 19] are 

mainly based on the performance models extracted from the system model or the source code of 

the target system. 

However, in performance testing, test cases are applied during the execution the SUT to 

find potential scenarios which lead to the emergence of performance issues. Many of the 

common performance testing approaches such as techniques based on source code analysis [20], 

system model analysis [21, 22], use case-based [23], and behavior-driven [24] design approaches 

mostly rely on source code or system models. 

Performance testing challenges. Software performance testing to find performance issues upon 

new changes mainly occurred within CI/CD practice is always a challenging task. Therefore, 

automated performance testing is of importance in this regard and subsequently one of the 

primary concrete challenges in software performance testing is generating appropriate test cases 

(test scenarios) in an efficient and cost-effective way. Performance test scenarios are intended to 

detect performance degradation issues. By detecting performance degradation issues at an early 

phase, the changes leading to the degradation is easier to localize and could be actively decided 

upon, and consequently the extra cost at the customer side due to degraded system performance 

can be avoided. 

Currently, the performance test is done manually for many software products. However, 

due to the increasing complexity and diversity of the products and the services requested by 

customers, the need to automate the performance testing process is highlighted. 
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In the manual testing process, several test cases have to be executed upon each change in 

the software. Not only, the manual process is time-consuming and laborious, but also it is error-

prone and does not provide any correctness guarantee since it relies on expert knowledge. 

On one hand in many cases in order to generate test cases, we usually have a large input 

space to explore which makes manual test case generation a time-consuming and laborious task. 

On the other hand, we usually do not have any knowledge about the internal structure and 

dynamics of the SUT, and the interaction with its public interface is the only way to learn about 

the SUT’s performance characteristics. Last but not the least, we usually have a limited test 

budget, which means that we are not free to execute a large set of test cases hoping that some of 

them will reveal performance defects. Instead, we need to be careful about the test cases that we 

select for running on the SUT. 

Taking advantage of the recent advances in machine learning, machine learning-assisted 

techniques have been used widely for meeting the need for automated performance testing. In 

our work, we propose machine learning-assisted approaches which learn from the behavior of 

the SUT and data collected from previous tests to generate promising/effective test cases 

automatically and efficiently. We propose two approaches based on active deep learning and 

reinforcement learning for efficient generation of optimized test cases to analyze the 

performance of a control software in a robotic system. The details of the proposed techniques are 

presented in the following sections. 

3.2.2. Active deep learning-assisted performance testing 

Active learning [26] is a kind of supervised learning suitable for situations where data labeling is 

expensive or difficult. So, in cases that we do not have access to a large amount of labeled data, 

we can iteratively choose small portions of unlabeled data, label them and then update the 

classifier with the labeled data. The iteration continues until the accuracy of the classifier reaches 

a desirable threshold. Since we can choose only a small number of unlabeled data in each 

iteration, it is very important that we follow a strategy for picking the most informative data for 

labeling. Uncertainty sampling, query-by-committee and variance reduction [26] are among the 

well-known strategies that can be used for this purpose. 

Deep learning is a sub-field of machine learning where deep neural networks are used for 

supervised, unsupervised or semi-supervised learning purposes. We consider a neural network 

deep if its architecture includes multiple layers of neurons. Deep learning has been applied to 
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several domains (e.g., natural language processing, bioinformatics, and machine vision) and has 

achieved significant results.  

In the proposed method, we apply an active learning sampling strategy to a variant of 

generative deep neural networks. We use a generative deep learning model which consists of two 

neural networks. The first network is responsible for generating new test cases and the second 

one classifies the generated test cases with respect to the satisfaction level of the performance 

test objective. For test case generation, we assume that there is a test case template which 

becomes executable when supplied by test input data. The responsibility of the generator 

network is to generate executable test cases by feeding the template with data samples from the 

input space. 

Regarding the limited test budget, active learning helps us put less effort into test 

execution while acquiring more useful information about the system. Meanwhile, using a 

generative model we can automatically generate optimized test cases without putting any manual 

effort into it. 

Generally, the following steps describe the procedure of test case generation in the 

proposed approach: 

1. Train the classifier network with the existing test history. 

2. Generate new test cases by sampling from the input space (which includes target 

position, motion speed and zone, and hardware configuration) by the generator network 

3. Classify the generated test cases based on the targeted performance measures, which can 

be one of response time, CPU utilization and cycle time in the ABB example. 

4. Rank the classified test cases based on the confidence level of the classifier. 

5. Regarding the test budget, select the least confident test cases for executing on the SUT 

(or labeling in active learning terminology). 

6. Use both the confident and executed test cases to update the weights of the classifier 

network. 

7. Go to step 2 if the generator network cannot generate good test cases. To analyze the 

quality of the generated test cases, their distance to the classified test cases is measured. 

In this process, the deep model is iteratively updated with knowledge about the SUT until 

it becomes ready for generating promising performance test cases automatically. After the 

convergence, the generator network is used to generate effective test cases for the performance 

test of the system based on a desired performance measure.  
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 Applicability to DevOps. In DevOps we are to continuously integrate new changes with the SUT 

and deliver it with a high level of quality. In this situation, a part of the test cases which satisfy 

the performance test objective for the current version, might not work properly for the next one. 

Therefore, the deep model needs to continuously interact with the SUT and learn about its 

performance-related behavior. We can easily update the deep model with respect to new 

changes. The update procedure includes the following steps: 

1. Regarding the test budget, pick the latest test cases applied in testing the previous version 

of the SUT. 

2. Apply the latest test cases to the new version. 

3. Compare the execution results with the results recorded for the previous version. 

4. If the results were the same: 

Continue using the old generator network to generate test cases for the new version. 

Else if the results were different: 

a. Update the classifier model with the new execution results. 

b. Go to step 2 of the test case generation process and continue the loop until the 

generator network can generate good test cases again. 

 

3.2.3. Reinforcement learning-assisted performance testing 

Reinforcement learning (RL) [27] is a fundamental machine learning paradigm which is mainly 

intended to address decision making problems. Inspired by human’s learning, RLis used to find 

the optimal way to make decisions. The learning procedure is quite different from supervised 

and unsupervised learning algorithms. The learning is based on continuous interaction between a 

smart RL agent and the problem environment which is system under test (SUT) in our research 

case. At each step of interaction, the smart test agent observes the status of the environment and 

makes a decision. The decision is generating a test case, e.g., based on changing the variables 

involved in forming the test case. Then the SUT is tested under the recommended test scenario, 

and the test agent receives a reward signal indicating the effectiveness of the recommended test 

case. One of the main differences between RL and other learning paradigms is that there is no 

supervisor in RL, i.e., the agent just receives a reward signal from the environment, and the 

agent goes through the environment based on a sequential decision-making process.  



D3.2 – Validation methods and techniques for evolving systems considering use case requirements 21-12-2020 
IVVES_Deliverable_D3.2_Validation_methods_and_techniques _V1.0.docx ITEA3 Project n. 18022 

This document and the information contained are the property of the IVVES Consortium and shall not be copied in any form or disclosed to any 
party outside  the Consortium without  the written permission of  the Project Coordination Committee, as  regulated by  the  IVVES Consortium 
Agreement and the AENEAS Articles of Association and Internal Regulations. 

IVVES Confidential © 2020 IVVES Consortium Page 16 of 54 

 With regard to the characteristic of RL, we proposed that if the optimal policy (way) for 

accomplishing the intended performance test objective could be learned by a test agent, the 

intended test could be done automatically without need to access to source code or 

performance/system models. Moreover, once the optimal policy is learned, it can be reused in 

further testing situations, for example, regression performance testing of one SUT or 

performance testing of SUTs with similar performance sensitivity to resources [28]. Therefore, 

the capability of knowledge formation and reusing the gained knowledge in further situations is a 

key feature leading to test efficiency improvement. Based on this idea, we have proposed an RL-

assisted performance testing framework that learns the optimal policy to accomplish the intended 

test objective without access to system model or source code of SUT. Once it learns, it is able to 

reuse the learned policy in further testing cases [28, 29, 30]. The proposed framework consists of 

two performance testing tools: SaFReL [31] and RELOAD [28, 32].   

SaFReL, as a self-adaptive fuzzy reinforcement learning test agent which generates 

performance platform-based test cases, learns how to tune the resource availability to reach an 

intended performance breaking point for different types of SUTs with different levels of 

sensitivity to resources. It assumes two phases of learning: initial and transfer learning phases. 

First, it learns the optimal policy to reach the intended performance breaking point for different 

types of SUTs, i.e., CPU-intensive, memory-intensive and disk-intensive software. Once 

learning the optimal policy, it replays the learned policy on further similar SUTs. The conducted 

experimental evaluation shows that SaFReL can perform efficiently and adaptively on different 

software programs., i.e., CPU-intensive, memory-intensive and disk-intensive SUTs running on 

various hardware configurations and with different response time requirements. SaFReL 

accomplishes the intended test objective, i.e., finding performance breaking point, more 

efficiently in comparison to a typical stress testing technique which generates performance test 

cases in an exploratory way. SaFReL leads to reduced cost in terms of computation time by 

reusing the learned policy upon the SUTs with similar performance sensitivity [31]. 

 

RELOAD is an adaptive RL-driven load testing agent which effectively learns how to 

tune the load of transactions in the submitted workload to the SUT to accomplish the test 

objective (e.g., reaching a certain performance breaking point). It learns the optimal policy to 

generate an efficient workload to meet the test objective during an initial learning, then it is able 

to reuse the learned policy in later tests, e.g., within a continuous testing context. RELOAD 
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generates a more accurate and efficient workload to accomplish the intended objective compared 

with a baseline load testing technique, without access to source code or system models. 

Moreover, once it learns, it is able to reuse the learned policy in further situations and keeps the 

improved efficiency over later test activities [28, 32] 

In our work in IVVES WP3, we extend the notion of RL-assisted performance testing by 

developing a smart test agent based on a scalable model-free temporal difference learning 

algorithm, i.e., DQN, for conducting performance test on a control software for a robotic arm 

belonging to ABB Robotic company. The proposed smart agent learns how to generate the 

effective test scenarios which result in undesired performance behavior. The performance 

requirements are defined in terms of the associated performance metrics such as resource (CPU) 

utilization, and/or response time. Test scenarios are coded as RAPID programs and target 

position, motion speed and zone are the primary parameters defining the test scenarios for the 

control software. The following figure shows the interaction between the smart test agent and the 

test environment for the robotic arm. 

 

   
  

3.3. Test generation and prioritization for ESG-investment 

The irruption of game-changing innovations and open-source technologies in NLP is changing 

the way that companies work with text. Unstructured text is being used as input data for many 

industrial domains (i.e., predicting market trends based on sentiment analysis). Data Analytics 

companies are curating and collating text information from diverse sources to feed AI models 

(Figure 3.2) and provide trends and insights. Its combination with other AI techniques applied to 

numerical data is fostering the integration of NLP into regular Data Analysis. 
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Figure 3.2 General workflow for NLP-based models to provide trends and insights in finance sector 

 

ESG (Environmental, Social and Governance) investing refers to a class of investing that 

is also known as “sustainable investing.” This is an umbrella term for investments that seek 

positive returns and long-term impact on society, environment and the performance of the 

business. To assess a company (an asset) based on environmental, social, and governance (ESG) 

criteria, investors look at a broad range of behaviours to set the ESG score for a given asset. 

 

 
Figure 3.2: Estimates of assets under management with an ESG mandate. Source: Deutsche Bank. 
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The compilation of these scores is based on the analysis of a vast amount of fast changing 

alternative data sources, including non-structured information (websites, news, corporate 

reporting...) that can’t be processed with traditional keyword searches and manual analysis. 

Since ESG investment is a solid trend that is increasingly impacting the market (figure2), the 

data sources to analyze are growing fast.  Given the vast amount of data and information 

available, that analysis can only be reliably carried out with artificial intelligence. New, powerful 

AI-based systems are now on scene that can potentially reduce the manual tasks and increase the 

efficiency. However, new V&V techniques are required: 

 The growth of AI-based analysis of sources, has also impacted the way that companies 

communicate with the external audience, being savvier with their wording. This is 

causing the appearance of biased content, that must be taken into account before applying 

NLP-based techniques -heavily relying on sentiment analysis- to get insights and trends. 

Hence, a systematic and continuous analysis of source credibility and content credibility 

must be implemented. 

 The AI-based systems must continuously adapt to a great variability in sources and 

content, that are constantly changing. Information sources evolve, mutate and topics 

related to ESG change over time. Hence, test maintenance and prioritization are 

challenging. 

Added to this, since the outcomes of the evolving systems are insights that may impact 

investment decisions, these systems are subject to regtech (regulatory technology) constraints 

that must be taken into account. 

3.3.1. State of the Art 

There are different approaches for test case Reinforcement Learning-based test case 

prioritization. Zhaolin, et al. [80], provides a reference for test case prioritization to save 

computing resources in Continuous Integration. In [80], a novel reward function is proposed, by 

using partial historical information of test cases effectively for fast feedback and cost reduction. 

The approach is focusing in reducing the huge cost in terms of time and resource availability 

defining the Average Percentage of Historical Failure with time Window (APHFW), as a novel 

reinforcement learning reward function, that utilizes a time window to filter recent historical 

information to calculate reward value. 
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3.3.2. Anticipated contribution 

The main technical contribution is supporting testing based on Reinforcement Learning for NLP-

based ESG evolving systems. Specifically, given an ESG-investment-focused ES and a set of 

rules defined by an expert for scoring securities with respect to ESG criteria, develop masked 

language models. 

 

 

Figure 3.3: Templating with masked language models.  [78] 

  

The RL-based test generation and prioritization is based in a time window-based reward 

function that will also take into account the most effective Metamorphic Relations for a given 

case. For the selection of effective Metamorphic Relations, the model will initially interact with 

the templates generated in WP2 with masked language models (Figure 3.3), and eventually will 

control “Plug” operators. 

As an outcome, the most effective Metamorphic Relations will be selected to generate the 

optimal test cases to execute, taking also into account performance.  

3.3.3. Claimed novelty 

The novelty relies in the dynamic metamorphic testing for NLP-based ESG evolving systems 

based on templates and Knowledge Graphs combined with approaches for test prioritization 

based on performance. 

3.4. Coverage-based tests prioritization 

Complex ES consists of a huge codebase and a big number of test cases covering it. In order to 

deliver new functionality with high confidence, a common approach is to run all the tests against 

every change in the codebase. That causes high infrastructure costs and delays in the 

development process. One of the approaches to solve this problem could be smart test selection 
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and/or prioritization. That could be solved by mapping test cases to code modules utilizing 

coverage reports and/or errors stack trace analysis.  

 

Devising techniques and tools for providing a fine-grained mapping between test cases 

and code modules are needed. 

3.4.1. State of the art 

In a large software project, running the full test set can take a long time. In particular, when 

working with the modern DevOps style, developers are frequently checking in their 

modifications, and the resulting updates are tested and deployed on the fly. Having to wait -- 

often only for some minutes, but in extreme case hours -- at each check-in slows down 

development and is frustrating for developers. Furthermore, it consumes computing resources. 

For example, Mozilla estimates each check-in to cost over $25 in Amazon Web Services fees 

[33] while Google suggests that their annual continuous integration (CI) system execution is in 

millions of dollars [34].  

Regression test selection (RTS) has been studied for a long time (see e.g. [35]) but its 

importance grows in modern DevOps and MLOps environments. Identifying and rerunning only 

the relevant tests after code changes are necessary for productivity and efficient resource use in 

CI.  

A big part of past RTS studies has focused on Java and other compilable languages, e.g., 

[36]. At present Python and other interpretable languages are increasingly popular. One of the 

reasons for that increase of popularity is the growth of MLOps culture where Python plays a key 

role along with (Py)Spark framework for data analysis and building of ML models. RTS can 

bring even more benefits to MLOps process because testing data transformation logic and model 

building are extremely expensive operations. Interpretable languages present new challenges in 

terms of language constructs and dynamic operations that are missing from older languages. 

3.4.2. Anticipated contribution 

Our technique uses Git version control system and Coverage.py for tracking changes in the code. 

For the test runner, PyTest is used. The procedure of the technique is as follows: First, an initial 

run of all tests is performed. While performing the first run of the tests, a locally stored SQLite 
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database is constructed with the coverage data provided by Coverage.py. The database contains 

six tables: 

 'source file' which contains the full path to the source file, along with an id 

 'test file' which contains the full path to the test file, along with an id 

 'test function' which contains the test function name extracted from PyTest and 

information about where it's located, such as test file id and start and end line numbers in 

that test file 

 'test map' which contains information about which test function ran a specific line in a 

specific source file 

 'new tests' which contains information about newly added tests after the previous run 

 'last update hash' which contains information when the database was last updated 

Let’s consider a scenario where the tool is used in a developer’s environment (local 

machine), see Figure 3.4. After the initial full test suite run, the tool is ready to be used. When 

changes are made to the target project's files, the tool checks for changes in the Git working 

directory. The tool first constructs a list of changed files according to Git and checks which of 

those files are either source code files or test code files in our local database. After the tool has 

determined which files are taken into consideration, it checks the Git diff -output for each of 

those files. From this 'diff', the tool can determine which lines have changed and which lines 

have shifted from their original position. Then the tool can query all the test functions from our 

database according to the list of line numbers for the changed lines and run them with PyTest. 

No database state updating is performed during this. If a user wishes to make these changes final, 

a Git commit operation is required. When the changes are committed, a CI server starts RTS 

process shown on the Figure 3.5 by calling the tool: the tool checks whether the current Git 

HEAD hash differs from the one that is marked as the last update hash. If so, the tool queries the 

changes and tests for those changes almost as before. As a small addition, it does two additional 

things. The tool calculates how unchanged lines have shifted in the files and performs a database 

update based on this information. It also checks for newly added test functions by checking what 

test functions PyTest can find and comparing it to the current state in the database. When the 

tests are run after this, new coverage data is collected and inserted into the database. 
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Figure 3.4: Usage of RTS tool during development. 

 

 
Figure 3.5: Usage of RTS tool on CI server. 
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3.4.3. Claimed novelty 

Pytest-rts aims to be a tool that integrates into the version control system of the project under 

development. This allows regression test selection to be performed in a typical workflow where 

new features are developed in separate version control branches and a CI-pipeline is configured 

to run the tests. Currently, two types of tools are available for regression test selection: code 

coverage based and history-based. The current code coverage-based tools, such as Ekstazi and 

Pytest-testmon, only work on the developers' local machine by creating a mapping database 

completely independent from any version control data. Without the version control data linked to 

the mapping database, selecting correct tests between software versions becomes extremely 

difficult. The history-based tools, such as ChangeEngine, require data from previous test runs 

and the output of such tools can be inaccurate if the data is scarce. 

3.4.4. Evaluation of the approach 

The proper evaluation of the tool requires a diverse list of Python projects that have a test suite 

runnable with PyTest. We collected the following preliminary list of projects for our needs: 

flask, rich, pytest, chardet, dateutil, idna, python-rsa, urllib3, and wheel. The difficulty of 

choosing the right projects arises from the fact that open-source python projects seem to have 

greatly varying ways of handling dependencies and installation of the project for testing. Also, 

many projects require specific environments for passing their tests and that is often handled with 

tox.  

We plan to evaluate the tool in four different ways. For each type of evaluation, we plan 

to examine four different metrics as proposed by Rothermel and Harrold:  

 Inclusiveness, which measures if the selected tests are able to find the same faults as the 

full test set.  

 Precision, which measures the ability to only execute relevant tests and avoid the 

execution of unnecessary tests.  

 Efficiency, which measures the computation cost of the technique.  

 Generality, which measures how well the approach is able to deal with different language 

constructs and complex code changes.  

First, we attempt to use the historical version control data found for open-source python 

projects in GitHub. By going through the commits, we attempt to find out how well our tool 
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performs in real-life development scenarios. A difficulty regarding this approach is that projects 

might have to change ways of installing dependencies and running the full test suite.  

The second way of evaluation is using an approach where a random source code line is 

deleted and our system attempts to find the relevant tests. For each iteration of the process, we 

can extract the line-level and file-level test sets for the change. Then we can run all the three test 

sets (tests for line-level and file-level changes and the full test set for the project) and compare 

the PyTest exit codes. The benefit of this approach is that a very large number of iterations can 

easily be executed. A drawback is that deletions of single lines are only one of the many possible 

ways how changes in a real project happen.  

The third way of evaluation is very similar to the random line deletion but here we use 

mutation testing approaches instead. By mutating the original code with existing mutation testing 

tools, we attempt to produce changes to the code that better reflect real-life scenarios than just 

simply deleting a line.  

In the fourth type of evaluation, we attempt to use the tool in a development process and 

collect data while doing so.  

Data from the evaluation could be saved in CSV format or in a relational database. If 

CSV format is selected, the files could be stored in a Git repository or as artifacts in GitHub 

actions CI storage. If a relational database is picked for storing evaluation results, an external 

service could be used for storing the database.  

Early evaluation results with random source line deletion indicate situations where the 

tool does not operate correctly. These situations include removing: 

 a line defining a function. This will possibly also affect the situation when the parameters 

or name of the function are changed.  

 An import command resulting in missing references.   

 A decorator as they are not part of the executing code and thus not seen by py-test  

The planned further evaluation of the tool with more realistic examples is expected to 

give us a better view of the limitations. This is naturally followed by experiments to improve the 

tool. Finally, tighter integration of the tool to the continuous integration process is expected to 

solve some issues but, at the same time, bring up new problems. 
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4. Oracle mining 

4.1. Introduction  

Automating the test generation from requirements expressed in ambiguous natural languages is 

challenging, even for controlled ones. It can be decomposed into two steps: the automatic 

generation of formal specifications and test generation from formal specifications.  Formal 

specification plays the role of an oracle in testing, i.e., it specifies the relation between the inputs 

and the expected outputs. However, constructing formal specifications is a very challenging task. 

CS Canada and IVVES industrial partners are facing this challenge in testing (critical) evolving 

systems.  Requirements describe features and functionalities of systems in terms of constraints 

that must hold on variables that represent concepts (e.g., input, outputs, and states) of the 

systems. In addition to the variable names, ambiguous words and punctuation marks from the 

natural languages (e.g., when, if, after, while, where, and, or, do, make, set, etc.) appear in the 

constraints. The ambiguity of the meaning of some words and marks, the usage of multiple 

variable names for the same concepts introduce uncertainty in the requirement analysis. For 

example, a part of a requirement can be enhanced by connecting it to a new part of the 

requirement via the usage of the word "where"; it is not obvious to determine the connected parts 

of requirements. The uncertainty leads to various interpretations of each ambiguous part of the 

requirements and combinations of the interpretations result in a possible vast number of 

plausible specifications. Approaches are needed to choose proper specifications. 

 

4.2. State of the art and anticipated contribution 

Most of the approaches to generate precise oracles or tests from requirement documents are fully 

automated and aims at producing precise oracles [2, 6, 4, 1, 5]. The direct translation approach 

makes correspondence between certain patterns in the modelling language for precise oracles 

and their possible representations in natural languages. The machine translation-based approach 

uses examples of translated requirements either to infer formal grammar for the requirements or 

to train a translation model with ML techniques.  The approach in [4] automatically generates a 

precise oracle, which is compared to a manually generated precise oracle for validation of the 

automatic precise oracle generation procedure.  In case the generated oracle is not the expected 

one, the approach does not propose another version to the expert.   
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Our contribution is a two-steps approach to generate precise oracles, as illustrated in 

Figure 4.1. The first step consists in generating   imprecise oracles representing a set of plausible 

precise oracles (specifications).  The second step is mining a precise oracle from the imprecise 

one. Mining a precise oracle corresponds to the resolution of uncertainty in the imprecise oracle 

in order to choose one of the plausible precise oracles. We suggest involving an expert in 

realizing this task.  

 

 
Figure 4.1: Two-steps approach to generate precise oracles 

 

The next section presents our approach to mining a precise oracle from an imprecise one.    

4.3. Proposed approach 

In our approach, we represent uncertainty with nondeterministic transitions in a finite state 

machine. Finite state machine has been used as a formal model for evolving systems [1] and 

used in developing verification and validation techniques for evolving systems such as model-

based testing and model-checking.  

We represent a set of plausible precise oracles, called the imprecise oracle, with an input 

complete and non-deterministic finite state machine (FSM). A plausible precise oracle is then a 

deterministic and input complete submachine of the imprecise one. Each precise oracle produces 

a single output sequence in response to an input sequence. A test is nothing else but an input 

sequence. Precise oracles are distinguishable if they produce different output sequences for the 

same test; otherwise, they are indistinguishable.  
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Our approach to assisting an expert in choosing a proper precise oracle from an imprecise 

one works as follows: 

- Randomly generate a test 
- Loop: Determine the outputs which can be produced by the executions of the plausible 

precise oracles with the test; this is done by exploring paths of the imprecise oracle 
- Ask an expert to choose the expected output; we assume that one of the outputs is 

expected. 
- Remove from the imprecise oracle the precise ones that do not produce the chosen output 

sequence 
- If the imprecise oracle contains only indistinguishable precise oracles, then return any 

one of the precise oracles as expected and exit 
- Else generate a test that distinguishes two precise oracles in it and goto loop 

   
Let us illustrate our contribution. The nondeterministic FSM in Figure 4.2 represents an 

imprecise oracle for a system. It has 11 transitions t1, t2 …, t11. Its inputs a and b can represent 

a Boolean assertion over variables used in requirements. The outputs are 0 and 1. Uncertainty is 

modelled with nondeterministic transitions in states. For example, in state 3, it is uncertain 

whether the output is 0 or 1 on input a. The imprecise oracle defines eight plausible precise 

oracles. Two of them appear in Figure 4.3. 

 
 
 

 
 Figure 4.2: An imprecise oracle 
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Figure 4.3: Two plausible oracles 
  

The two plausible precise oracles are indistinguishable with test babaab because both 

produce output 000100 on the test. For input babaab, the eight precise oracles produce outputs 

000100, 000110 and 000000. If the expert judges the output 000100 is expected, the procedure 

will generate the test babaaa that distinguishes between the two plausible precise oracles in 

Figure 2. The precise oracles produce 000101 and 000100 with the test babaaa. If an expert 

chooses 000101 as the expected output, then the leftmost precise specification is the expected 

one. Otherwise, a new test is automatically generated, and the expert is invited to estimate the 

plausible outputs. 

 

Preliminary evaluation results: A preliminary version of the prototype tool is implemented in 

Java and it uses Z3 solver. The objective of the empirical evaluation is scalability. The empirical 

evaluation works as follows: We randomly generate an imprecise oracle and select a precise 

oracle in it who plays the role of the expert. Preliminary results indicate that the approach might 

scale for imprecise oracle with a limited number of states and uncertainties.  

4.4. Claimed novelty  

Our two-step approach to generating precise oracle is novel and suitable for evolving systems. 

We anticipate that it can be easier to automatically generate imprecise oracles without missing 

any complex interpretation of the requirements.  In addition the proposed procedure for mining 

precise is based on the Boolean encoding of the imprecise oracle and constraint resolution. It 

avoids a one-by-one enumeration of every precise oracle. It proceeds by building partitions of 

the imprecise oracle, which is also a novelty as compared to our previous work [3].   
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Ongoing work includes enhancing a prototype tool for the proposed procedure and lifting 

the procedure to extensions of FSM with variables and complex operations on them. The 

variables can represent input and output ports of evolving systems on these variables.  We are 

also investigating the ML/NLP based generation of imprecise specifications for requirement 

documents, especially requirements used by the IVVES industrial partners. 
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5. Automating test verdict generation via Model Learning 

The Oracle problem [1] is the main reason why engineers have to be involved in QA process. 

Though it is possible to automatically detect application crashes and situations where SUT 

doesn’t respond to commands, most of the defects are logical, for example display of wrong 

information or wrong calculations. Traditional testing of a given SUT uses the following basic 

types of verdicts, pass, inclusive, and fail, which are made considering the results of test 

execution. Considering the testing scenario when several models of an evolving SUT are inferred 

during the continuous process of test execution or online testing (monitoring the SUT), one 

should use different types of test verdicts, made after the models are compared. In particular, 

when one model is declared to be a so-called “reference model” then the detected deviation from 

it in another model could be classified either as a “defect” or “extension/enhancement”. The 

undetermined change would result in the verdict “undetermined” to be later refined by the 

domain expert to a determined one. 

5.1. State of the art 

The earliest applications of ML to software testing date back to the pioneering work of Budd 

[38] and Weyuker [39]. During the 1990s and early 2000s, Inductive Logic Programming (ILP) 

was considered as a model learning paradigm for model-based test case generation [40] but it has 

been unclear what range of behaviors can be learned by ILP. Recently, alternative modeling and 

inference approaches have been considered, such as learning algebraic specifications [41] and 

learning decision trees [42]. Not all such approaches automate the important test oracle step (i.e. 

test verdict generation) e.g. Briand et al. [43] argues to keep the human in the loop. However, 

when test suites are large (e.g. > 1 million test cases) it seems clear that automation of the oracle 

step is also necessary. This is currently being tackled by methods such as metamorphic testing. 

5.2. Anticipated contribution 

Open source TESTAR tool, scriptless GUI testing, and state model inference during automated 

GUI exploration are described in “Test prioritization” section.  

During this research, we would like to use a classical supervised classification approach 

rather than metamorphic testing. Classical supervised classification approach consists of three 

steps:  
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1. Data collection;  

2. Samples (changes) labeling;  

3. ML model training.  

Data collection step consists of two parts: model inference for the current application 

version and storage of the model. When state models are automatically inferred from new SUT 

versions from a CI system, state models of consequent system versions can be automatically 

compared to detect changes. Detected changes are then labelled during the labeling step. A semi-

automatic approach could be applied to it. All the changes are marked as 

“extension/enhancement” if all the tests in the main TA pipeline passed otherwise changes are 

visualized and presented to a QA engineer to identify changes that are defects and are not in the 

model.  

Training is then performed to infer the ML model which is able to predict the type and 

importance of each change based on collected data. ML model training will be performed on 

different feature sets from different model levels which may include displayed information and 

screenshots of the current SUT screen or page, types of transitions between new and existing 

states. 

5.3. Claimed novelty 

Recently, TESTAR has been extended with the state model inference and proof-of-concept 

implementation of model comparison functionality. This new functionality has not been 

evaluated in an industrial environment yet. Finding the right set of features for model training 

from collected data on state machine changes  and using machine learning for predicting the type 

and importance of the detected changes is a novel approach pushing the boundaries of the state-

of-the-art. 
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6. Conformal prediction for edge applications 

6.1. Introduction 

Many machine learning systems involve making predictions, through estimating the value of a 

dependent variable with an a priori unknown ground truth. Verification of such predictive 

systems, in particular when applied in high-risk applications, is crucial. Traditional machine 

learning algorithms and means of validation, however, generally lack capabilities for 

establishing trustworthy verification. Established common-use validation procedures tend to be 

biased, leading to error frequency on production data not corresponding with error frequency on 

test data; and, established common-use validation procedures tend to perform verification on a 

macroscopic level (per-model) rather than a microscopic level (per-prediction), leading to 

difficulties in verification of individual predictions. 

The conformal prediction framework offers an alternative method for constructing and 

evaluating predictive models that appears better suited than traditional predictive methods in 

applications where thorough verification is crucial, [44, Ekkono 2, 46, 47, 48, 49]. Whereas 

traditional predictive models output so-called point predictions—a single-valued best-guess 

prediction for the value of the dependent variable—conformal predictors output multi-valued 

prediction regions that represent a range of likely value assignments for the dependent variable, 

constrained by its domain. Any prediction region produced by a conformal predictor comes 

associated with a very specific, statistically valid, expectation: that the a priori probability of the 

prediction region containing the ground truth value of the dependent variable is fixed and 

known. Under these conditions, model and prediction verification becomes straightforward, as 

each prediction is guaranteed to contain the correct value of the dependent variable with a user-

specified probability. Figure 6.1 presents the relation between classical training algorithms and 

conformal prediction algorithms. Calibration data are used to generate prediction regions 

encompassing prediction points.   
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Figure 6.1: Relation between classical training algorithms and conformal prediction algorithm 

  

6.1.1.  Technical description 

Conformal predictors are able to produce predictions on without any knowledge of the shape or 

parameterization of the data generating distribution (unlike, e.g., Bayesian methods); the only 

requirement is that the observed data sequence is exchangeable (a looser requirement than the 

typical i.i.d. assumption). In addition, the conformal prediction framework is model agnostic, in 

the sense that it can be applied on top of an arbitrary machine learning algorithm (e.g., 

classification or regression algorithm) and transform the point predictions of the underlying 

algorithm into prediction regions that exhibit the expected statistical guarantees. 

Given a (calibration) set of instances ሼሺ𝑥௜ ,𝑦௜ሻሽ௜ୀଵ
௡  and a predictive model ℎ, the approach 

is to evaluate how good the individual predictions ℎሺ𝑥௜ሻ are. To this end, a non-conformity 

function, 𝑓, is introduced and its role is to measure how unexpected is a  pair ሺ𝑥௜ , 𝑦௜ሻ. A common 

choice for the non-conformity function is simply the absolute difference between the prediction 

and the target, i.e., 𝑓ሺ𝑥௜ ,𝑦௜ሻ ൌ |𝑦௜ െ ℎሺ𝑥௜ሻ|. 

Applying the non-conformity function on the calibration set will produce an empirical 

distribution, against which new data is compared to. For a new data point 𝑥௜, all possible outputs 

𝑦∗ are evaluated using the non-conformity function. The prediction region of 𝑥௜ then includes all 

outputs 𝑦∗ that together with 𝑥௜ would form a plausible observation in comparison to the 

calibration set, or more precisely, those outputs 𝑦∗ that can’t be rejected through a standard 

statistical test based on 𝑓ሺ𝑥௜ ,𝑦∗ሻ. Figure 6.2 illustrates the process to compute the prediction 

region for an instance 𝑥௜. 
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Figure 6.2: Computation of the prediction region 

6.1.2. Example 

To illustrate the process of conformal prediction we have looked at a dataset consisting of daily 

mean temperature from a weather station on mars, taken from NASA website [81]. The aim is to 

predict tomorrow’s temperature based on the last few days of data and for that purpose we train a 

linear regression model, which can be seen in the left panel of Figure 6.3. It appears that the data 

is somewhat noisy and, without model evaluation, the point predictor from the linear regression 

gives no insight of how much we trust our predictions. 

In the right panel of Figure 6.3, one can see the output of the conformal prediction 

algorithm when applied to the linear regression model. The chosen confidence level is 0.1, 

meaning that the prediction interval will contain the true value at on average 90% of the 

instances. Note that the width of the prediction interval varies with the accuracy of the 

underlying model. If error of the underlying model is particularly bad in certain regions, the 

prediction interval will be wider in those regions. Note also that the prediction interval is not 

necessarily symmetrical around the underlying model. In the first 100 or so days of the test set, 

the linear regression output is higher than the target, which will be accounted for by the 
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conformal prediction algorithm. Conformal predictors with this feature are called balanced, see 

for example [82]. 

 

 
Figure 6.3: Target and prediction values for temperatures 

6.2. State of the art and anticipated contribution 

Conformal prediction has been successfully applied to problems in several domains: most 

notably that of drug development, see for example [50, 51, 52]. Developing a new 

pharmaceutical drug, from initial compound design through clinical testing, can cost as much as 

one billion dollars, and discarding non-promising candidates early in the process is key for 

economic sustainability. Conformal prediction offers an opportunity to perform statistical 

modelling of chemical compounds already in the design stage, and allows for early filtering of 

drug candidates of poor efficacy, while simultaneously controlling for false negative rate (i.e., 

limiting the likelihood of erroneously disqualifying efficacious drug candidates). 

Pharmaceutical drug development is a rather particular industry, however,it has a high 

degree of maturity regarding the use of statistical and predictive modelling. In most other 

industrial application areas, with a lesser degree of maturity in statistical modelling, knowledge 

and use of conformal predictive systems is substantially rarer. Simultaneously, conformal 

predictors, in particular conformal regression models, appear well-suited for applications in a 

wide variety of industries, both as a method for providing enriched decision support in human-
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computer systems and as a trustworthy component in autonomous or semi-autonomous digital or 

cyber-physical systems. 

 

6.3. Claimed novelty 

Since applications of conformal prediction mostly have been carried out within the 

pharmaceutical domain, implementations tend to focus on large scale solutions. Using our 

expertise in small scale solutions on the edge, we have implemented an efficient version of 

conformal prediction, able to run on edge applications. The implementation supports online re-

calibration of the conformal predictor, to allow for individualized learning, and adapting to 

change. The provided implementation of conformal prediction will be further extended to 

support fully online training on the edge, without the need to supply any prior training data. We 

at Ekkono have spent resources developing our conformal prediction framework partly because 

we believe that it has potential to be impactful not just in the pharmaceutical industry but in 

many industrial settings were ML in general is applicable.  
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7. Code defect risk prediction 

7.1. Introduction 

Code review in software development is a key step for QA in finding errors that may have been 

missed during the development phase and to minimise the risk of bugs or defects in the 

production phase. Because code review is a complex task, especially with complex evolving 

software products; manual reviews and testing will never find every bug in the source code, so 

there is always a margin of code change that will not be checked as thoroughly it should. It has 

also been shown that certain parts of source code are more prone to defects than other parts, so 

there is a need for an automated, smart approach to recognise project features that are 

significantly at risk of defect. A more extensive review of state-of-the-art approaches to code 

anomaly detection has been provided in ITEA IVVES D 3.1, paragraph 3.2.1 [53]. 

We believe that by assessing risk earlier in development and more accurately, QA 

activities can be better organised and focused – such as extending code review in risk areas and 

effectively prioritising test cases. This will ultimately add value by enhancing the quality of the 

software while shortening the delivery/release cycle.  

7.2. Anticipated contribution  

There are many approaches that study automated code analysis and rate the quality of source 

code. Apart from human rating, like peer review and static code analysis (quality analysis of the 

code without executing the program), machine learning is the approach that we propose to use. 

Machine learning can be used to automatically identify well written or poorly written code based 

on a machine learning classification method. In this deliverable, the concept of code defect risk 

prediction using a machine learning approach will be explained.  

Tools and methods used to collect necessary input data for the code risk prediction ML 

model are explained in the next paragraphs. They include: 

1.  Static code analysis packages and tools, which assess the structural quality aspect 

(non-functional requirements evaluated through analysis of the inner code structure); and  

2. Code coverage and version control information, which tackle the functional quality 

aspect (how well the code fulfils its functional requirements and specifications).  
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In our approach, we use both static code analysis tools’ output and linked bugs and 

defects to train the model.  

Tools and methods used to collect necessary input data for the code risk prediction ML 

model are explained in the next paragraphs and include static code analysis packages and tools, 

which tackle the structural quality aspect (non-functional requirements evaluated through 

analysis of the inner code structure) and code coverage and version control information, which 

tackle the functional quality aspect (how well the code fulfils its functional requirements and 

specifications). In our approach, we use both data sources to train the model. To accommodate 

this, we suggest a specific DevOps workflow to be used to collect this data in future software 

projects (Figure 7.2). Additionally, we include an explainable layer to the model, for transparent 

results.  

 

 
Figure 7.2: Structural and functional code quality data collection steps in the CI/CD workflow for code 

quality risk prediction 

 

7.3. Proposed approach 

7.3.1. Code coverage: static code analysis  

When we evaluate the quality of the source code, we typically want to measure the following 

aspects of the system [54]: 

1. Reliability: the probability that the system will run without failure.  
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2. Maintainability: how easily the software can be maintained relating to the size, 

consistency, structure and complexity of the codebase.  

3. Testability: how well the software supports testing efforts – how you can control, 

observe, isolate, and automate testing.  

Along with these metrics, we can use manual code review and static code analysers to 

measure the maintainability and understandability of the code.  

Static code analysis is a method of evaluating the complexity and possibility of erroneous 

code.  Code coverage tools give insight into effectiveness of a test suite for an application. These 

methods are executed at a granular level and require developer action [55]. Luckily, they are 

easily implemented in the development workflow. Please note, the suggested packages and tools 

are for Python, but the methods can be applied to any programming language. 

We propose using Flake8 [56], a wrapper around PyFlakes, pycodestyle and McCabe 

script, with numerous plugins available for static code analysis and code coverage [57], like 

Radon [58], Bandit [59], and a popular code coverage tool Coverage.py [60]. 

Types of static code analysis methods that these packages assess can be classified in the 

following way: 

1. Code complexity assessment; 

2. Raw metrics assessment, including lines of code, comments, blank lines; 

3. Halstead metrics assessment, metrics for SW code assessment set in 1977 to evaluate 

measurable properties of software [61]; 

4. Maintainability; 

5. Style assessment; 

6. Security issues like passwords, use of assert, binding to interfaces, weak cryptography, 

SQL injection and others; 

7. Code coverage measurements like statement coverage (number of code lines executed by 

the test suite and the number that haven’t), function coverage (how many functions have 

been ran, reveals dead code), branch coverage (in if statements, have the conditions been 

met), and condition coverage (has every Boolean sub-expression within a program been 

evaluated to both true and false during the execution of a test suite) [62]; 

8. Compiler anomaly detection can be considered as one of possible techniques to improve 

code quality assessment. Python is an interpreted, not a compiled language, however, it 

does contain a compilation part. The code gets compiled to bytecode and stored to a .pyc 
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file to increase the speed of the execution. If the code doesn’t change, the .pyc file 

doesn’t change either [63].    

7.3.2. DevOps pipeline: integrating code coverage tools  

Static code analysis is an efficient way to assess the code that was built locally, before 

deployment to other environments. Since the state of the software industry requires quick 

deployments from local (feature) branches to develop, master and release ones, it is of crucial 

importance to do checks between them and report any commits that may lead to bugs. This can 

be done through several Python packages that need to be integrated in the CI/CD flow in order to 

accomplish this.  

Continuous integration refers to merging code changes frequently to master. For this to 

be established, a pipeline configuration tool is used. We propose the use of either: 

 Git CI. It relies on a .yml file which creates a pipeline and runs for changes to the code 

in the repository. This pipeline has one or more stages that run and can contain one or 

more jobs that run in parallel, executed by GitLab running agent [64]. 

 Jenkins, an open-source, MIT licenced tool with easy configuration [65]. 

Since we are using either Git CI or Jenkins, we will be focusing on tools that can be 

integrated with them: 

1. Wily, an application for tracking the complexity of Python code in tests and applications. 

Those measures include cyclomatic complexity, Halstead metrics, raw metrics and 

maintainability. Wily can be integrated in the CI pipeline and used to compare scripts 

between different branches, making it very useful for assessment of code between 

environments [66].  

2. Flake8, with its plugins [57]. 

Static code analysis pipeline integration can be used to stop the commit changes from 

being pushed to develop, release or master branches in case of risky, flaky code. This is an 

immediate effect, and, in case this happens, it is developer’s responsibility to attend to faulty 

code. It is good to note that the sensitivity of the pipeline stages can be adjusted, meaning the 

project can be configured for most efficient deployment. In case the build succeeds, CI tools will 

output a log or xml file with the static code and unit test results. This file is stored locally or fed 

into a database for later use in the ML model. 
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7.3.3. Traceability: version control and defects  

Continuous integration is followed by a continuous delivery pipeline, which ensures quick 

deployment into an environment where further testing is done. Usually, testing includes 

integration and user acceptance tests. Unlike the continuous integration pipeline, which focuses 

on structural and functional changes, where latter is assessed through unit test runs, integration 

and user acceptance tests evaluate only the functional aspect of code changes. 

Linking defects and bugs to commits depends heavily on the project DevOps 

configuration. Jira and Jenkins integration can be used. It is important to make a clear link 

between a commit and a reported bug so that this information can be used to train the ML model. 

The approach in data collection allows for the possibility of classifying code commits into risky 

and non-risky ones, with a possibility of future improvements in the ML model classification 

granularity. We aim to classify code changes by types of risk they lead to. 

7.3.4. Machine learning: predicting code quality 

To improve the assessment of source code quality before testing begins, we propose using a 

Random Forest Classifier as an innovative method to detect the probability of faults and thus 

determine if the quality of code is risky or not [67]. We will use defects as our objective for our 

machine learning outcome.  

To predict the probability of defect occurring in a feature, we need to understand where 

bugs are introduced. Source code changes and how they are associated to features will be 

significant in analysing risk areas. We will predict code risk and thereby probability of 

defect, by predicting the features that will be affected by a change in source code or file. 

The expected outcome of the algorithm is a distribution of probabilities of the file that effects 

different software features. This will quantify the risk of new code changes [68].  
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Figure 7.2: Code defect risk prediction model architecture 

 

Data sources:  

To create an algorithm that identifies code risk features we use a dataset that contains: 

 File changes associated with features – version control commit metadata, including static 

code and code coverage analysis results; 

 Defect metadata – identified bugs linked to feature. 

 

Risks [69]:  

 Historical defect data: to construct any defect predictor, we need access to historical data. 

Oftentimes historical data is not available for new projects which can make successful 

prediction challenging. We can mitigate this by using available data from similar 

projects.  

 Data quality: quality and accessibility can be a constraint to the effectiveness and 

accuracy of the model. data traceability will be key to integrating multiple types of data 

that will allow us to form statistically significant conclusions about the cause of defects 

in different features. 

 

Risk mitigation:  

To address the above risks and ensure that we have a robust and high performing code 

quality model, we will use public data from open-source projects. This way we will have more 

observations of commits linked to bugs, and we can use this data to train our model in 

identifying risky features. By using similar open-source projects, we can then apply the model to 

new and existing projects that do not have historical data or high data quality.  
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Assumptions:  

 Workflow is DevOps, with a setup CI/CD pipeline; 

 There are change files associated with the code change and the bug fix for a given 

feature; 

 There should be enough data points to the required level of granularity of the features; 

 Automated changes that are generated by automated systems or scripts and not by a 

developer should be excluded as they do not represent code changes from a developer. 

Model interpretability:  

For the software developer to interpret why the model predicted a risk area and likelihood 

of defect, we can implement an explainable AI method to understand the results and provide 

transparency so that the developer or tester can make better decisions.  

Our approach is based on a random forest model which consists of many deep trees. Each 

tree is trained using a random selection of features. These models are seen as black-boxes as 

each tree can have thousands of nodes, and getting a full understanding of the model’s process 

by examining each tree, is not feasible. However, we can turn a random forest algorithm into a 

white-box by computing the sum of feature contributions which shows how the features led to 

an individual prediction [70]. This is a straightforward and easy to implement method that can 

make the model more interpretable. We can run the treeinterpreter (python library) [71] 

interpretation algorithm on python’s scikit-learn‘s [72] decision tree and random forest model, 

which will explain the local predictions. Thus, the developer or tester will be able to understand 

the model’s decision process better and make more effective decisions regarding code and test 

coverage.  

 

7.4. Claimed novelty  

As industrial systems evolve and become increasingly complex, we need to find new ways to 

manage the sustainable growth of development and testing operations. Traditional code coverage 

and testing approaches will require large amounts of resource investment to maintain quality. 

However, we still would not be able to cover all risks thoroughly. Thus, it’s imperative that we 

implement a smart system, in combination with static code analyser and IDE tools, that will 

enable us to move toward risk-based testing.  By implementing an automated machine learning 
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code risk model, we can more accurately predict the quality of our code and where the high-risk 

features are, which will enable the prioritisation of test cases and better allocation of resources. 

This will result in compliant development and a more efficient and effective QA cycle. This type 

of smart testing pipeline integration tool along with a machine learning model to predict code 

quality, has not been seen on the market or rarely implemented into CI pipelines. This is mainly 

because of legacy systems, data quality and collection issues and a non-agile way of working. 

Most of the tools that claim to predict code risk, are rule-based and do not use machine learning 

methods. Our proposed technical solution is a novelty in the software industry and will shift the 

way of working towards compliant & quality development.  
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8. Unsupervised anomaly detection for visual inspection in 
industrial environments  

Grupo Antolin holds a 50% shareholding in Keyland. Grupo Antolin is one of the largest 

manufacturers of vehicle interiors in the world, and achieved sales amounting to €5,214 million 

in 2019. Keyland is an ICT (Information and Communication Technology) provider for the 

automotive sector in Spain, being a key partner to generate innovative solutions.  

The complexity of car interiors -with surfaces made up of many more layers, with a lot 

more choice in colors- is increasing. The greater demand for personalization from end users is 

pushing the providers to adapt fast and efficiently to this continuously changing environment. 

Optical quality inspection is still one of the common methods to ensure quality control. This is 

preventing full automation and integration towards the Industry 4.0 concept. The increasing 

variability in colors, shapes, textures, positions, etc. renders the optical inspection impracticable, 

which has led this sector to look for automating defect inspection.  Artificial intelligence (AI) is 

a promising technique for automated inspection.  

  

 
 

Grupo Antolin Inspection Operator Grupo Antolin QA Operator 
  
  

The growing demand for automation in this context, together with the great variability is 

stressing ICT providers, that must face a great flexibility. The software must easily evolve and 

adapt to different production lines, with shortened lifecycles. This variability makes the 

identification of anomalies both in datasets and AI system behavior more challenging. 

Continuous online monitoring of AI systems is required to ensure reliability during operation 

phases.  
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8.1.  State of the art 

 Anomaly detection is focused on two main common types: outliers and mislabelled data. At this 

stage we focus on detection of outliers, both in datasets and in the outcomes of the AI system. A 

good reference illustrating the benefits of incorporating anomaly detection into real-world ML 

systems is the Out-of-Bag anomaly detection [73]. Its main goal -integrating anomaly detection 

as a pre-processing step- is to improve the accuracy of the ML models. This approach could 

reduce uncertainty when a new product line must be set up, and changes in textures, colors, 

materials… must be faced. Other reference directly focused on image analysis [74], proposes a 

method to detect anomalies by directly isolating anomaly pixels from background. Anomaly 

detection also has the capability to summarize the status of a complex system with a single 

indicator (anomaly score). In this context, Functional Isolation Forest exhibits a great flexibility 

in detecting anomalies for a variety of tasks [75].  

8.2.  Anticipated contribution 

KEYLAND is focused in online monitoring of AI systems for automated inspection of car 

interiors, exploring techniques for anomaly detection. For this, Isolation Forest is being used. 

Isolation Forest [76] is similar to Random Forest. It is based on decision trees. However, 

Isolation Forest is an unsupervised learning algorithm that explicitly identifies anomalies, instead 

of profiling normal data points. It identifies anomalies or outliers, isolating observations by 

randomly selecting a feature and then randomly selecting a split value between the minimum and 

maximum values of that selected feature.  

  

Since fully unsupervised learning may not achieve enough reliability due to increasing 

variability, we are considering the integration of expert knowledge in the detection algorithms, 

remarking occurrences (i.e., unforeseen events, uncommon states or configuration...)  as 

“relevant”. This is in line with other ongoing works [77], though directly focused on visual 

inspection.  
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8.3. Claimed novelty 

So far, we haven’t identified any solution designed for anomaly detection for visual inspection 

systems deployed in a real industrial environment. KEYLAND is focused in generating a 

workflow that can be applied in a real, industrial environment.  We believe that our contributions 

could eventually provide more reliable and trustworthy systems, addressing the challenges 

identified for visual inspection in different stages within the automotive sector.  
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