
 

 

ITEA-Project: COMPACT 

ITEA Reference Number: 16018 

Funding Organizations: Austrian Research Promotion Agency FFG 
(project number 863828 and 864769) 

Finnish funding agency for innovation Business Finland 
(Diary Number 3098/31/2017) 

German ministry of education and research (BMBF) 
(reference number: 01IS17028) 

Project Duration: 01.09.2017 until 31.12.2020 

  

Task: T1.4 Technical project baseline and ITEA living roadmap 

T5.1 Demonstrators 

Deliverable D1.5 Final COMPACT contribution to 
ITEA Living Roadmap 

D5.3 State-of-the-Art Update 
Deliverable Type: Report 

Dissemination Level: Public 

Due Date: 31.12.2020 

Date of Creation: 15.12.2020 

  

Involved Partners: ABIX GmbH (ABI) 
Eberhard Karls Universität Tübingen (EKUT) 
FZI Forschungszentrum Informatik (FZI) 
Infineon Technologies AG (IFX) 
Kasper & Oswald GmbH (KAOS) 
Noiseless Imaging Oy (NI) 
OFFIS (OFF) 
Robert Bosch GmbH (RB) 
SparxSystems CE (SSCE) 
Tampere University (TAU) 
Technische Universität München (TUM) 
Universität Paderborn (UPB) 
Visy Oy (VIS) 

  

Deliverable Lead Partner Universität Paderborn (UPB) 
  



Deliverable COMPACT Page 2 
 

D1.5 and D5.3  21.12.2020 

 

Content 

1 Introduction 3 

2 State-of-the-Art Analysis 4 

2.1 Model-Driven Design 4 

2.2 IoT Software Compilation and Optimization 6 

2.3 Ultra-Low Power Software 6 

2.4 IoT Security 7 

2.5 IoT Operating Systems 8 

2.6 GPU Code Generation and Optimization 9 

2.7 IoT Analysis 11 

2.8 Model-Aware Debugging 11 

3 References 13 

4 Appendix A - Table of Acronyms 19 

 



Deliverable COMPACT Page 3 
 

D1.5 and D5.3  21.12.2020 

 

1 Introduction 
The Internet-of-things (IoT) has the potential to improve our lives dramatically. The backbone of 
industry automation, smarter homes, higher energy efficiency, better health care, assistance of 
elderly people and more flexibility in working environments are only some areas that can be im-
agined today and realized tomorrow. The tremendous impact of IoT on our industrial environ-
ments and our private life is a key reason to consider IoT research and developments as important 
pillars in the European Horizon 2020. Impact to our private life are, for instance, in home automa-
tion via so-called IoT edge devices like smart light bulbs which are expected to come almost at 
the same costs as non IoT enabled devices in near future. Another rapidly evolving market is in 
industry automation (Industrial IoT), which is expected to grow dramatically for the next decade 
pushed by several initiatives like the German Industry 4.0 strategy. 

IoT devices with sensors and actuators need electronics to connect that world of “things” with the 
digital world of the Internet. Yet software runs the IoT electronic device hardware. Since IoT de-
vices need to be smart, cheap and capable to run with extremely small amounts of energy – 
known as ultra-thin IoT nodes – IoT software must also be ultra-thin with extremely small memory 
footprints and ultra-low energy consumption. At the same time, software must provide smart func-
tions including real-time computing capabilities, connectivity, security, safety, and remote update 
mechanisms. Recent publications support the claim of ultra-thin – and low cost – IoT devices. So, 
for instance, Walmart calls for sub-1$ IoT sensors [80] and ARM TechCON targets at sub-50cent 
IoT SoCs [81]. 

These constraints put a high pressure on IoT software development. Due to the very limited re-
sources provided by IoT nodes, today’s commonly used design approach to trade-off develop-
ment time with software efficiency is not competitive any longer. Therefore, an industry-wide effort 
in the course of the COMPACT project provided novel solutions for the application-specific and 
customer-oriented realization of ultra-thin IoT nodes with focus on software generation for IoT 
devices with ultra-small memory footprints and ultra-low power consumption. To obtain this goal, 
COMPACT created innovations to automate the software development and configuration flow for 
ultra-constrained IoT nodes. The automation methodology followed the OMG notion of model-
driven architecture (MDA) and applies it to the development of IoT device software. Due to the 
main principles of MDA, COMPACT followed a scalable approach using carefully designed meta-
models and generators for auto generating the required software as its key concept. 

The next chapter provides the current state-of-the-art in areas which were related to the research 
and development activities of the COMPACT project. 



Deliverable COMPACT Page 4 
 

D1.5 and D5.3  21.12.2020 

 

2 State-of-the-Art Analysis 

2.1 Model-Driven Design 

The Object Management Group (OMG), which adopted the UML as a standard, has developed a 
meta-modelling architecture to define the UML. This meta-modelling architecture enables the ex-
tension of the UML with so-called UML profiles. The standard UML profile for Modelling and Anal-
ysis of Real-Time and Embedded systems (MARTE) extends the UML with key notations (non-
functional properties such as time and resources) for real-time computing. MARTE extends UML 
with the capability to model the hardware and software layers (middleware) and interconnections 
that compose an execution platform. Platform components can be described at the same level of 
abstraction as the application, and they may thus also contain timing information along with struc-
tural and behavioural aspects. The allocation model describes the mapping of application func-
tions onto execution platform resources. This enables the optimisation of the software with regard 
to scheduling. However, for optimisation of the embedded software, a more general specification 
of the hardware base line is required, and system level approaches are still insufficiently sup-
ported. 

The Systems Modelling Language (SysML) on the other hand extends UML to offer support for 
modelling hardware (mechanical and electrical). The SysML extends the UML, to model hardware 
aspects such as parallelism, critical regions, or requirement modelling. The language is often 
used in the domain of systems engineering. It widens the UML focus towards software and ena-
bles the modelling of the complete system. It uses blocks to model the parts of the system, instead 
of classes as part of the software. On basis of the system view, SysML provides an interesting 
part in modelling the information basis for the generation of ultra-thin software. However, it still 
lacks aspects such as variability or a detailed conditional architectural specification. 

Other UML profiles exist such as EAST-ADL2 or UPDM. All the UML profiles focus on dedicated 
system or software aspect. In the effort to create a comprehensive data basis for the generation 
of ultra-thin software for IoT devices these approaches have to be unified, and the required parts 
of each approach identified respectively. 

State-of-the-art technology available in a powerful modelling tool like Enterprise Architect by 
SparxSystems (an OMG member) allows the implementation of a new modelling profile, approach 
and best practices that adheres to desired standards while at the same time extending capabilities 
beyond the current confines of UML to address IoT-specific requirements and effectively merge 
the heretofore segregated evolution of software, hardware and firmware. 

When UML comes with code generation, it is typically based on the principles of the Model-Driven 
Architecture (MDA), which has provided significant advances in the design and analysis of em-
bedded software throughout the last years [72]. By providing a domain-specific profile or meta-
model, instead of the source code, MDA offers the benefit to support different generation pro-
cesses and, therefore, to easily adjust to different scenarios or hardware base lines. The influence 
of the underlying hardware baseline is crucial for the quality of the design and the fulfilment of 
requirements in a model-based design process for embedded software, especially if a resource 
efficient ultra-thin design is targeted. Currently, Model-Driven Architecture (MDA) is applied to 
different, vertical domains based on different meta-models, UML profiles, languages, middleware 
and operating systems. 

There has been various work and projects to bring model-driven architecture (MDA) principles to 
the IoT domain. One MDA tool is described in [30]. It offers a graphical domain-specific language 
for design entry and modelling and code generation facilities for IoT standards. It combines the 
different domain views on IoT communication, things and IDs as well as the processing of vast 
amounts of data. Another work in [31] describes a model-driven IoT flow focusing mainly on com-
munication. They propose to specify functionality with IoT-specific DSL formats and map the 
specification on an automata-based platform independent meta-model. Code generators gener-
ate the platform-dependent code. The MDA tool proposed in [32] uses state transition diagrams 
as programming model for design and modelling IoT applications in a platform-independent way. 



Deliverable COMPACT Page 5 
 

D1.5 and D5.3  21.12.2020 

 

Code generators produce the platform dependent code. For commercial solutions, code genera-
tion tools and the MDE design flow from MATLAB/Simulink is widely adopted in industry. [73] 
introduces a SysML profile that addresses heterogeneity within a system of IoT devices and en-
ables model-driven development of IoT applications. The profile is based on the IoT domain ref-
erence model introduced by the IoT-A project [74]. [75] introduces a model-based design process 
using the BIP component language [76] for the analysis of REST-based web services that inte-
grate IoT devices. However, all do not fit the specific needs of very resource-constrained ultra-
thin hardware platforms and the generation of efficient application software for such platforms. 

Within the IoT domain, also variability of software and hardware platforms needs to be considered. 
A large number of variability modeling languages exists for different domains. Approaches like 
the Common Variability Language (CVL) [77], or feature diagrams, which have been introduced 
as part of the Feature-Oriented Domain Analysis (FODA) method [78], use graphical notations. 
Textual variability languages, such as Clafer [79], the INDENICA Variability Modeling Language 
(IVML) [80], or the Textual Variability Specification Language (VSL) [81] promise improved scala-
bility with respect to model size and complexity over purely graphical variability modeling ap-
proaches. 

Besides UML based approaches, other modelling approaches exist used by the industry. IP-
XACT [67] is Accellera Systems Initiative’s specification for documenting Intellectual Property 
(IPs) hardware designs. It enables highly automated design creation and configuration in a tool 
independent and machine-readable manner. Especially in the automotive domain the structural 
view at the hardware baseline level is needed to allow the automated import of IP-XACT compo-
nents as well as the automated generation of virtual prototypes including multicore processors, 
peripheral devices, and reused IP blocks. While this is a detailed specification of the interfaces of 
IP and structural view of an IP-based design, it only contains very abstract inclusion of software 
aspects. Kactus2 [68] is an Open Source EDA tool for creating and editing IP-XACT designs. 
Kactus2 strictly follows the IP-XACT standard and provides RTL synthesis for targeting FPGA 
and ASIC designs. 

ThingML [69] has been applied as a modelling language for embedded and distributed devices. 
ThingML focuses on the Internet of Things [8] domain and targets resource constrained embed-
ded systems such as low power sensor and microcontroller based devices. There exists a model-
driven software engineering tool-chain for ThingML, and code generators for various devices. 
Another widely adopted modelling language for embedded devices is the Architecture Analysis 
and Design Language (AADL) [27]. AADL targets at distributed computing systems with real-time 
requirements. It offers a device class suitable to describe IoT devices, yet it focuses mainly on 
their interaction not on the implementation. Thus, it also does not offer the capabilities required 
for ultra-thin code generation. Another model-based language focusing on data-flow oriented de-
sign is RVC-CAL defined in ISO Standard 23001-4:2011 [28]. RVC-CAL is a high-level data flow 
model-based language that can be considered similar to MATLAB/SIMULINK in the sense that it 
needs to be compiled/synthesized to C or Verilog for implementations. An open source compiler 
"Orcc" exists [29] and offers code generation to a variety of platforms. Code generation ap-
proaches from RVC-CAL to resource constrained devices do exist: a very recent work [70] gen-
erates multi-threaded C code that is not dependent on any external libraries, whereas [71] gen-
erates LLVM bytecode, however intended for a particular “TTA” (Transport Triggered Architec-
ture) type processor architecture. 

This summarizes the main model-based systems engineering (MBSE) tools and trends. During 
the COMPACT project period, the whole MBSE domain developed further, but the key fields 
stayed the same. Many of the actual trends confirm the design decisions taken w.r.t. the IoT-PML. 
Exemplary the further development of the SysML v2 should be mentioned here. Even if the initial 
request for proposal (RFP) was already launched in 2014, parallel to the development of the IoT-
PML, further concretization of the SysML v2 was done. One of the important improvements of the 
SysML should be the improvement of the interoperability. One aspect that should be achieved is 
the „single source of truth” for system design. A similar goal for the design of IoT devices was 
achieved by the IoT-PML that captures both the IoT node hardware, software stack, functional 
and non-functional requirements in a single model and provide therefore a single source of infor-
mation for different code generators. Another similarity between the further development of 
SysML and IoT-PML is the emancipation against the UML. SysML v2 should contain an inde-
pendent meta model, compatible with UML. The IoT-PML of the COMPACT project followed a 



Deliverable COMPACT Page 6 
 

D1.5 and D5.3  21.12.2020 

 

similar development. While the reference implementation is based on the UML and implemented 
as UML profile, the concept of the IoT-PML is independent and can be implemented with an 
independent meta model. 

2.2 IoT Software Compilation and Optimization 

A major driving force for improvements in code size and performance are the two major compilers 
GCC and LLVM that can target embedded devices. Many of their advances can be applied or-
thogonally to the methods developed in COMPACT at no additional integration cost. 

LLVM has released a few major versions since COMPACT has started [100]. However, most of 
the changes are internal and do not affect users significantly. A notable change is that the RISC-
V target is no longer considered experimental and is therefore included in official distributions and 
installation packages. With this change, the developers signal that the target has reached a cer-
tain stability and reliability. The developers have also decided that preliminary extensions can be 
implemented in LLVM before ratification and have already added support for the current drafts of 
the bit-manipulation and vector extensions. Furthermore, LLVM has added a new parallelizable 
JIT Compiler API named “ORCv2”. They also introduced mitigation techniques against the spec-
ulative execution vulnerabilities “Spectre”. 

The GNU Compiler Collection (GCC) gained a few major releases as well, but nothing of particular 
interest for COMPACT [101]. The changes improve language support, diagnostics, compile time 
and code generation. 

In terms of code generation, a new C-like domain specific language for device drivers was pro-
posed, that achieves a reduction of memory consumption, run time and development effort 
through register layout optimization [102]. 

2.3 Ultra-Low Power Software 

There exist various code compression techniques to reduce the instruction memory footprint of 
embedded processors. The basic idea is to store a compressed version of the machine instruc-
tions in memory and decompress them during instruction fetch. In asymmetric compression meth-
ods, the code is compressed in software and decompressed by hardware. There is no need to 
change the CPU or compiler, but an additional HW decompression block is required that may 
penalize performance. The block may either be located before or behind the instruction cache, 
which then either holds decompressed original instructions or the compressed instructions. With 
this, [13] achieved 74% compression ratio for MIPS cores using Huffman codes. Using V2FCC, 
[14] reached 68-84% compression ratio for the VLIW processor TMS320C6x. [15] proposed dic-
tionary-based code-compression. The basic idea is to look for the most used instruction words 
and encode these into the shortest code words. Decompression is relatively simple but the dic-
tionary must be counted as additional hardware overhead. [16] describes bitmask-based code 
compression. It additionally exploits that symbols next to each other in the dictionary are often 
similar by defining a bitmask with position and difference. The field is still actively studied, e.g. 
[17] proposed separated dictionaries recently to improve performance and power use. For com-
mercial solutions, e.g., for IBM’s CodePACK tool a compression ratio above 60% was reported 
for PowerPC [18]. Some compression techniques can also directly be implemented in the com-
piler and do not require hardware modifications [63]. If the hardware can be tailored to a specific 
piece of software, it is also possible to adjust the ISA in order to reduce redundancies [64]. Some 
tools have been developed to explore the code compression design space [65, 66]. 

There exist many ways to reduce the memory footprint by writing efficient source code and ap-
plying source-code-level best practices. These may include stringent use of const declaration on 
constants and look-up tables, careful allocation of stack memory, compressed data structures, or 
use of unions and bit fields. Another way is to generate the source code based on a configuration. 
An example is Infineon’s DAVE Tool that can generate the SW for the XMC controller family. 



Deliverable COMPACT Page 7 
 

D1.5 and D5.3  21.12.2020 

 

The arrival of artificial intelligence (AI) applications to IoT devices has brought considerable chal-
lenges to IoT device memory needs. Convolutional Neural Networks (CNNs) present the cutting-
edge paradigm in AI technologies, but require by default huge amounts of memory to operate. To 
this end, many papers are addressing memory footprint reduction for CNN computation with 
CPUs or accelerators in the recent years. One of the most promising approaches is the binariza-
tion of CNNs, which reduces the memory need of a CNN to 1/30 of the original [86]. Another very 
specific approach utilizing generation for obtaining optimized results is described in [83]. Here, an 
optimized mapping of quadratic programs for embedded is described. 

Another aspect is addressed in [82]. Here, the benefit of heterogeneous multi-core architectures 
for smaller memory footprints is addressed. To generalize these statements, digital blocks can be 
used to reduce memory footprint as well. 

In addition to code compactness, care should be given for efficient data handling. Raw data 
should be processed as early as possible, computing efficiency permitting, to reduce need to 
transmit or store redundant information. The information could also be truncated to remove un-
necessary detail, e.g., noise, above spec accuracy. When performing calculations, efficient algo-
rithms should be used with emphasis on keeping the working set in either local scratch memory 
or in a write-back configured data cache, if present. This recommendation is to avoid spending 
energy on hitting the system memory bus. 

Many small processors include data processing DSP or SIMD extensions, e.g., Xtensa HIFI ex-
tensions, ARM Cortex-M4/M33/M7 DSP extensions, or the upcoming RISC-V V extension. These 
usually are more optimized for data processing than regular computing engines. Using these does 
often require extra programming effort due to restrictions on data types or the need to invoke the 
intrinsics directly, because compilers lack the support to use these automatically. 

Unless the data processing is time-critical, it would be prudent to reduce the clock frequency and 
voltage. Though this would increase the compute time, the overall energy per calculation would 
decrease. However, using this technique does require some hardware support. 

One well known aspect of saving energy while executing embedded software with a real time 
schedule is to use timing slacks to either reduce the execution speed as well as the supply voltage 
(dynamic voltage frequency scaling) or to temporarily disable system components while not 
needed (dynamic power management) [99]. Another aspect to be regarded is the memory sub-
system. One promising approach to improve the energy demand for embedded systems in the 
IoT domain even further is to optimize the memory layout so mostly the lower-power memory 
units a system is providing are utilized. An approach with scheduling in mind is evaluated in [98], 
the authors combine multicore real time application scheduling with an efficient use of local and 
shared memories. A few existing approaches are based on systems using scratchpad memories 
(SPM) [91,92,93,94,97] but a few other papers also take memory systems without scratchpads 
into account for optimization [95,96]. The approach in [91] considers the dynamic copy of instruc-
tion data into (SPM) while execution, while [92] focuses on an optimized mapping of data for 
pipelined streaming applications. In [3] the authors present a mapping scheme for code and data, 
which apparently performs comparable to hardware caches. An efficient mapping of data to a 
hybrid SPM composed of SRAM and non-volatile memory to minimize energy demand is exam-
ined in [97]. A few other approaches don’t use SPM’s, in [94] the authors evaluate an efficient 
mapping of code from flash to RAM memory. A two-dimensional problem is solved by [5] by find-
ing a mapping of code and data to multiple banks of different size while optimizing the amount 
and sizes of memory banks. 

2.4 IoT Security 

In most IoT scenarios, ultra-thin IoT devices communicate with each other and/or some form of 
infrastructure, e.g., servers over the Internet. In this context, IoT security means, ultimately, the 
protection of data against untrusted parties. Commonly, there are three forms of data that need 
to be protected: data in motion, data in use, and data at rest. 



Deliverable COMPACT Page 8 
 

D1.5 and D5.3  21.12.2020 

 

While protecting data in use is an important goal on its own, achieving meaningful results on IoT 
devices is difficult without special processors and memories. This type of hardware is only avail-
able in very high-end solutions and thus unlikely to be used in a typical IoT device. Similarly, 
protecting data at rest in an IoT device has its challenges: protecting sensitive data stored in a 
ROM against invasive attacks requires special memories, which again adds cost. To target the 
largest class of IoT devices – those, which do not have extra security hardware – the focus is on 
protecting data in motion, i.e., data that is transmitted between IoT devices or between an IoT 
device and a server. To this end, two principal modes of attack are assumed: A would-be attacker 
intercepts or eavesdrops on data as it is transmitted to read or modify it. Alternatively, the attacker 
may use public communication interfaces of IoT devices or servers to try to gain knowledge of 
sensitive data. 

Protecting data in motion against the above-mentioned attacker requires strong cryptography to 
assert integrity, confidentiality, and authenticity of data (or a subset of these attributes). Protecting 
interfaces requires ensuring that all program code that handles interactions with the public (i.e., 
the Internet) is free from logic and programming errors which could be exploited. While achieving 
bug-free software is still considered impossible, exposed code can be significantly hardened by 
manual/semi-automatic code reviews. Another class of attack on interfaces that needs to be pre-
vented are so-called side-channel attacks. Consistent with the attacker model outlined above, we 
consider only such channels that can potentially be executed via the Internet, e.g., timing side-
channels. These attacks aim to extract cryptographic secrets to break encrypted communication; 
the best countermeasure is to make sure that all cryptographic code is timing invariant. 

Protecting data in motion over the Internet is commonly achieved via TLS (Transport Layer Se-
curity) [33]. However, for the IoT scenario (where computational power is low) alternatives have 
been developed such as Datagram TLS (DTLS) [34], HIP Diet EXchange (DEX) [35], and minimal 
IKEv2 [36]. All three of them propose the usage of public key cryptography for key agreement and 
entity authentication. Only DTLS optionally defines a symmetric key based key agreement 
scheme. On the other hand, techniques from WSNs (Wireless Sensor Networks) are adapted to 
the context of IoT. As an example, a very low cost symmetric key based solution has been pro-
posed in [37], [38] to secure a home automation system. The solution is based on the SPINS 
scheme [39] and ZigBee symmetric key agreement protocol [40]. 

Protecting public interfaces against the exploitation of software problems has a relatively long 
history, with most the research targeting PC-based systems. Commercial tools such as Klocwork 
[41] or Coverty [42] automatically validate that program code (such as C, C++) conforms to a 
given standard, e.g., MISRA-C. These tools furthermore greatly simplify the manual analysis of 
code. 

The protection of cryptographic code against timing side-channels came into the spotlight after 
an academic attack on the RSA algorithm [43]. Research has been conducted with the goal of 
preventing such attacks; the idea was to write code such that the timing behaviour is independent 
of any sensitive data (e.g., key material). Instead of programming standard algorithms in a specific 
way—thus artificially slowing down already complex algorithms—a new set of cryptographic al-
gorithms was developed which is inherently resistant to timing attacks [44]. Work is now ongoing 
to incorporate these algorithms into standards such as TLS and DTLS. Finally, to ensure that 
code carefully written in C (or C++) is not transformed into non-constant code by the compiler, 
recent work has focused on statistically measuring the timing behaviour of machine code [45]. 

2.5 IoT Operating Systems 

There exists a range of Operating Systems (OS), usually, with real-time capabilities (RTOS), for 
the embedded and IoT domain. These Operating Systems are developed for resource constraint 
devices and usually provide options for feature customizations. For example, TinyOS is an open 
source BSD licensed OS for low power wireless embedded systems such as sensor node-type 
IoT devices [19]. eCos is an embedded operating system supporting a large number of target 
architectures and platforms [24]. It is highly configurable to enable its adaptation for a particular 
application. For example, it can be configured to support the POSIX thread API or to enable/dis-



Deliverable COMPACT Page 9 
 

D1.5 and D5.3  21.12.2020 

 

able support for task pre-emption in the scheduler. Over 200 such, partially inter-dependent, op-
tions are available [25]. A commercial RTOS solution is VxWorks from Intel Windriver [22]. 
VxWorks is a modular OS that can be configured for embedded target devices. The open source 
TinyOS, the embedded operating system eCos as well as the commercial RTOS solution is 
VxWorks experienced less activity during the project period. 

Zephyr OS is an open source RTOS, managed by the Linux foundation. It supports multiple ar-
chitectures and targets connected resource-constrained IoT devices [20]. Zephyr OS showed sig-
nificant development progress during the project period. Not only has it consistently been ex-
tended to support newly released SoCs and peripheral devices, it also increasingly transfers con-
cepts formerly only found in full-fledged operating systems to the embedded domain. These in-
clude support for Memory Protection and Memory Management Units (MPU/MMU), device tree 
based platform configuration, separation between kernel and user space, and support for sym-
metric multiprocessing (SMP). However, the availability and usability of these features varies 
strongly from platform to platform. RIOT OS is another open source project. The RIOT OS runs 
on several platforms including embedded devices and PCs. Its greatest advantage is an easy-to-
use API. It targets power efficiency and has low resource demand [21]. RIOT OS was applied in 
some COMPACT demonstrators. Both operating systems are maintained by an active open-
source community and are interesting solutions. 

A commercial solution focusing on safety-certified, real-time applications, but more on high-per-
formance platforms, is the Nucleus RTOS [23]. During the project period, e.g., 64-bit support for 
multicore system-on-chips was introduced. Another commercial solution is the Maestro from HIP-
PEROS, which provide a tight integration into the Xilinx SDSoC tools. Most recently, ERIKA En-
terprise became popular in the automotive domain. ERIKA Enterprise is an open-source 
OSEK/VDX (AUTOSAR) hard real time OS with 1 - 4KB flash footprint and multi-core and stack 
sharing support. The OS ERIKA Enterprise switch during the project period to ERIKA v3 [85], 
which is a complete rewrite of the kernel code base compared to ERIKA v2. The IoT-focused 
Apache Mynewt operating system is especially notable for its open Bluetooth 5 software stack 
implementation, called NimBLE [88]. However, NimBLE has also been integrated into other op-
erating systems, such as RIOT OS. HIPPEROS Tiny is a minimalist version of the HIPPEROS 
RTOS family designed specifically for IoT devices (Class 1 or Class 2) [26]. Finally, FreeRTOS is 
a real-time operating system for microcontrollers. FreeRTOS experienced an active development 
though out the project duration. Especially with developments around the RISC-V instruction set, 
FreeRTOS provides ports in this direction. 

2.6 GPU Code Generation and Optimization 

Graphics Processing Units (GPUs) are the prevailing programmable accelerator concept for 
speeding up AI applications on IoT devices as well as in mobile computing. NVidia has a strong 
hold of desktop and server GPU hardware for AI related computing. This is mainly due to the 
advanced level of software interfaces it provides for the user. Specifically, the CuDNN middleware 
(and the CUDA compiler architecture) is designed for speeding up computationally intensive AI 
computations. For example, CuDNN offers NVidia hardware optimized implementations of con-
volution and matrix multiplication, which form the majority (>90%) of computing time used by the 
device. Outside the NVidia ecosystem, the OpenCL language is the only competitor. The benefit 
of OpenCL is its larger range of available platforms and vendors, including embedded, desktop 
and cloud enabled hardware. 

Current research on automatic code optimization for GPUs is largely focused on the OpenCL 
programming model [56]. However, due to its generality and device type independence, the com-
mon platform model it presents poses some limitations in exposing the particular features of each 
GPU platform, resulting in multiple vendor specific extensions or several versions of the same 
program, costing extra working hours of programmers [57] [60]. Automatic code optimization is 
therefore essential to lower the cost of using GPU platforms for general computing. 

Research on GPU code optimization focuses on two aspects that significantly differ between plat-
forms: parallelism granularity and the memory model [58]. Jääskeläinen et al. [57] propose an 
optimizing OpenCL kernel compiler. The compiler, which works at the LLVM IR level, starts by 



Deliverable COMPACT Page 10 
 

D1.5 and D5.3  21.12.2020 

 

extracting data parallelism information from the OpenCL kernels in a device independent phase. 
This information is then compiled in a target dependent manner which supports several types of 
fine grained parallel resources, such as SIMD extensions, SIMD data paths and static multi-use. 
Shen et al. [58] focus on code transformations for OpenCL performance portability, which, despite 
being aimed at CPU target platforms, are also of interest when targeting different types of GPU 
architectures. The proposed transformations, which can be applied in an automated way by a 
source to source compiler, include tiling for increased cache-locality, selection between implicit 
and explicit vectorization, adaptation of the memory access patterns depending on the support 
for coalesced memory accesses and work-group size selection for optimal trade-off between 
scheduling overhead and flexibility. Daga et al. [59] identify a series of target specific optimizations 
that can be implemented at compile time which include: mitigation of divergent executing, selec-
tive loop unrolling and automatic vectorization. Divergent execution paths affect different archi-
tectures differently, depending on the total number of cores handled by each single scheduler. 
One proposed method to avoid divergence is to use kernel splitting, separating different branches 
into different kernels. This solution is useful when the conditional value can be determined before 
to the kernel launch, in which case the required branch can be automatically selected by the 
scheduler. Another proposed optimization is loop unrolling that accounts for the target memory 
architecture. Here the authors propose that in some cases, it might be beneficial to leave memory 
accesses vectorized while unrolling only the computational elements. Finally, the use of vector 
types for computation, as opposed to scalar types, can also lead to significant performance gains 
in platforms sporting VLIW architecture, both by increasing the computational unit usage and 
lowering the dynamic instruction count. All these transformations, either at source level or inter-
mediate level can be introduced in an optimizing kernel compiler which is aware of different hard-
ware architectures and transforms the parallel regions accordingly, such as pocl [57]. However, 
combining different optimizations must be done with care, as not all of them are orthogonal [59], 
as, for example, the increase of register pressure might lead to a reduced total number of simul-
taneous threads. Finally, because of its general nature and the problems faced when supporting 
very different GPU architectures, optimizations designed for OpenCL code can be applied to other 
GPU programming models, such as NVIDIA’s CUDA. 

The inconvenience that programming of (embedded) GPUs is done by both the CUDA and the 
OpenCL language is alleviated by Halide [87], a high-level functional language that has a compiler 
that can produce executables for both CUDA and OpenCL enabled devices. Another benefit of 
Halide is that the language decouples the functional description of algorithms from the scheduling 
of the algorithms’ operations, which makes Halide algorithm descriptions very portable, ranging 
from regular CPUs to DSPs and GPUs. 

For computationally heavy AI applications the go-to accelerator is Graphics Processing Units 
(GPUs) due to their availability and high performance. NVidia hardware together its CUDA com-
piler architecture is still one of the most popular and highest performing options for an AI imple-
mentation. In 2017 NVidia released their Deep Learning Accelerator (NVDLA) hardware and soft-
ware architecture as open source [88] making AI implementations more accessible to the public. 

The only contender for NVidia’s ecosystem is the OpenCL language which by design is intended 
for a wider range of hardware devices. Most of the recent GPU code optimization effort is done 
using OpenCL. In 2020 the Khronos OpenCL Working Group released version 3.0 of the OpenCL 
specifications which included new extensions that will improve the support of embedded proces-
sors. Compiler support in LLVM for OpenCL 3.0 is still a work-in-progress. 

Halide is a high-level functional language that can be targeted for different GPU APIs including 
CUDA and OpenCL i.e. the same Halide code can be compiled for either platform. Image pro-
cessing has been one of the key application areas for Halide from the start and AI applications 
are a natural extension of that. Using Halide for deep learning has already been proposed for 
example by Li et al. in [89] which shows Halide implementation to even exceed optimized CUDA 
program in performance while having lower coding effort. 



Deliverable COMPACT Page 11 
 

D1.5 and D5.3  21.12.2020 

 

2.7 IoT Analysis 

The COMPACT analysis framework mainly applies Virtual Prototyping platforms. They provide 
the means to model, simulate, analyse, and verify heterogeneous mixed software/hardware sys-
tem models. In the context of Electronic System Level (ESL) design, the notion of Virtual Proto-
typing mainly refers to the execution of target compiled software binary on hardware models be-
fore the final hardware is available. 

Through the last years, virtual prototyping platforms based on Just-in-Time compilation became 
quite popular as they provide a significantly faster execution speed than cycle-accurate simula-
tors. Popular commercial virtual prototyping environments are the Cadence Virtual System Plat-
form [48], Mentor Graphics Vista [49], Synopsys Virtualizer [50], and Intel Simics [51]. QEMU [52], 
OVP (IMPERAS) [53], and ETISS [103] are freely available platforms with a high stability and 
speed. The latter mainly support the execution and debugging of binary software without Timing 
and power analysis support. The COMPACT project has implemented a time annotation exten-
sion of QEMU (QEMU Timing Analyzer) with aiT (Absint) as a static timing analyzer front-end. 

The different commercial and open source platforms vary in the supported Instruction Set Archi-
tecture and hardware modelling language. The different open source platforms come with differ-
ent license models. 

Besides the execution of target binary code in a simulator, approaches exist that allow timing 
simulations by execution of timing-annotated software directly on the simulation host, often re-
ferred to as source level simulation. This approach is also capable for virtual prototyping and 
offers even faster simulations than binary level simulators with only little less accuracy [61, 62]. 

For analysis of ultra-thin software, other open source and commercial solutions already exist, 
such as Valgrind, mtrace or many others. Not all can handle arbitrary embedded devices, as they 
have usually no understanding of the underlying hardware. 

2.8 Model-Aware Debugging 

Several approaches towards model-level debugging have been proposed and some few com-
mercial CASE tools exist for debugging at the model level. These can be categorized into host 
and target debugging. Host debugging refers to model-level debugging in a simulated environ-
ment while target debugging describes debugging on a target system. Target debugging can fur-
ther be categorized into debugging with gdb facilities and debugging with a proprietary trace com-
munication. 

Some host based debugging approaches are based on model-checking [104] and simulation 
[105, 107, 109, 110]. Matlab/Simulink is one of the commonly used commercial tools for model 
driven software development in the area of embedded system design. It provides debugging at 
the model-level via simulation, as well as debugging the generated code via Software-in-the-Loop 
simulation [109]. Matlab/Simulink also supports real time testing (Rapid Prototyping and Hard-
ware-in-the-Loop) [110]. Another approach discussed in [105] is the Rational Rhapsody. Rhap-
sody generates code with instrumentation from the model and uses its animation feature to vali-
date the model by tracing and simulating the executable model. 

In [107] a target based debugging approach based on generating and instrumenting code for 
different abstraction levels of an embedded system is described. At run-time trace data are col-
lected and mapped back to the model. Debugging is then performed at model-level by visualizing 
the input data. Although this approach provides a mapping of run-time data from the platform to 
the model level, the code instrumentation increases the size of the code and affects the execution 
time in a production code. This approach (as in the Rhapsody approach) is in-efficient for small 
target systems due to limited resources. The target based debugging approach in [106] focuses 
on generating code with model-to-code traceability tags for State-chart models. During debug-
ging, program slicing techniques are used on the generated code to identify a reduced program 
(Slice) responsible for an unwanted behavior. The program slice is then related to State-chart 
using the traceability tags. However, this approach is limited as program slicing will not work 
where there are faults due to errors of omission, for example missing variable initialization etc. 



Deliverable COMPACT Page 12 
 

D1.5 and D5.3  21.12.2020 

 

In the above approaches, debugging of an application on target system with both source-level 
and model-level debugging is not fully supported. [111, 112] addresses the combination of source-
level and model-level debugging of an application running on a target platform using a de-facto 
gdb-like debugger. 



Deliverable COMPACT Page 13 
 

D1.5 and D5.3  21.12.2020 

 

3 References 

[1] Gartner, “Gartner Says the Processing, Sensing and Communications Semiconductor De-
vice Portion of the IoT Is Set for Rapid Growth,” Gartner, 03 11 2014. [Online]. Available: 
http://www.gartner.com/newsroom/id/2895917. [Accessed 23 10 2016]. 

[2] BI Intelligence Estimates, “The importance of SW in IoT,” [Online]. Available: http://blogs-
images.forbes.com/louiscolumbus/files/2015/12/software-BI.jpg. [Accessed 25 10 2016]. 

[3] J. Gubbi, R. Buyya, S. Marusic and M. Palaniswami, “Internet of Things (IoT): A vision, 
architectural elements, and future directions,” Future Generation Computer Systems, vol. 
29, no. 07, p. 1645–1660, 09 2013. 

[4] A. Botta, W. de Donato, V. Persico and A. Pescape, “On the Integration of Cloud Computing 
and Internet of Things,” in FiCloud, 2014. 

[5] W. He, Y. Gongjun and D. X. Li, “Developing Vehicular Data Cloud Services in the IoT 
Environment,” IEEE Trans. Ind. Informatics, vol. 10, no. 2, p. 1587–1595, 05 2014. 

[6] G. Girardin, A. Bonnabel and E. Mounier, “Sensors & Technologies for the Internet of 
Things. Business & Market Trends 2014 – 2024,” Yole Development, May 2014. 

[7] Y. Développement, “2014 TOP 20 MEMS Players Ranking,” 2014. 

[8] European Commission, “The Internet of Things,” European Commission, 14 09 2016. 
[Online]. Available: https://ec.europa.eu/digital-single-market/en/internet-things. [Accessed 
23 10 2016]. 

[9] S. K. Debray, W. Evans, R. Muth and a. B. D. Sutter, “Compiler techniques for code com-
paction,” ACM Transactions on Programming Languages and Systems (TOPLAS), 2000. 

[10] B. D. Bus, B. D. Sutter, L. V. Put, D. Chanet and a. K. D. Bosschere, “Link-time optimization 
of ARM binaries,” Conference on Languages, compilers, and tools for embedded systems 
(LCTES), 2004. 

[11] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong program analysis & 
transformation,” International Symposium on Code Generation and Optimization (CGO), 
2004. 

[12] T. Glek and J. Hubicka, “Optimizing real-world applications with GCC Link Time Optimiza-
tion,” GCC Dev. Summit, 2010. 

[13] A. Wolfe and A. Chanin, “Executing compressed programs on an embedded RISC archi-
tecture,” Proceedings of the 25th annual international symposium on Microarchitecture (MI-
CRO 25), 1992. 

[14] Y. Xie, W. Wolf and H. Lekatsas, “Code compression for embedded VLIW processors using 
variable-to-fixed coding,” IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, May 2006. 

[15] C. Lefurgy, P. Bird, I.-C. Chen and T. Mudge, “Improving code density using compression 
techniques,” Proceedings of the 30th annual ACM/IEEE international symposium on Micro-
architecture (MICRO 30), 1997. 

[16] S.-W. Seong and P. Mishra, “A bitmask-based code compression technique for embedded 
systems,” Proceedings of the 2006 IEEE/ACM international conference on Computer-aided 
design (ICCAD '06), 2006. 

[17] W. Wang and C.-H. Lin, “Code Compression for Embedded Systems Using Separated Dic-
tionaries,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016. 

[18] A. Orpaz and S. Weiss, “A study of CodePack: optimizing embedded code space,” Pro-
ceedings of the tenth international symposium on Hardware/software codesign (CODES 
'02), 2002. 

[19] TinyOS, 2016. [Online]. Available: http://webs.cs.berkeley.edu/tos/. 



Deliverable COMPACT Page 14 
 

D1.5 and D5.3  21.12.2020 

 

[20] Zephyr OS, “Zephyr Project Website,” 2016. [Online]. Available: https://www.zephyrpro-
ject.org. 

[21] RIOT OS, “RiotOS Project Website,” 2016. [Online]. Available: http://www.riot-os.org. 

[22] Intel Windriver, “VxWORKS RTOS,” 2016. [Online]. Available: https://windriver.com/prod-
ucts/vxworks/#VxWorks. 

[23] Mentor, “Nucleus RTOS,” 2016. [Online]. Available: https://www.mentor.com/embedded-
software/nucleus/. 

[24] Ecos OS, “Ecos OS project page,” 2016. [Online]. Available: http://ecos.sourceware.org. 

[25] Ecos OS Options, “Ecos Os Options,” 2016. [Online]. Available: http://ecos.source-
ware.org/fom-serv/ecos/cache/23.html. 

[26] HIPPEROS, “HIPPEROS,” 2016. [Online]. Available: http://www.hipperos.com/. 

[27] AADL, “Architecture Analysis and Design Language,” 2016. [Online]. Available: 
http://www.aadl.info. 

[28] ISO, Information Technology -MPEG Systems Technologies - Part 4: Codec Configuration 
Representation, Std. 23001-4:2011, 2011. 

[29] H. Yviquel, A. Lorence, K. Jerbi, G. Cocherel, A. Sanchez and M. Raulet, “Orcc: Multimedia 
development made easy,” in Proc. 21st ACM Int. Conf. Multimedia, 2013. 

[30] Pramudianto, F., I. R. I. and a. M. Jarke, “Model Driven Development for Internet of Things 
Application Prototyping,” The 25th International Conference on Software Engineering and 
Knowledge Engineering (SEKE), 2013. 

[31] T. Riedel, D. Yordanov, N. Fantana, M. Scholz and C. Decker, “A Model Driven Internet of 
Thing,” Networked Sensing Systems (INSS), 2010. 

[32] C. Prehofer, “From the Internet of Things to Trusted Apps for Things,” IEEE International 
Conference on and IEEE Cyber; Physical and Social Computing, 2013. 

[33] IETF networking working group, “The Transport Layer Security (TLS) Protocol Version 1.2”. 
https://tools.ietf.org/html/rfc5246, accessed: 6.2.2018. 

[34] IETF networking working group, “Datagram Transport Layer Security”. 
https://tools.ietf.org/html/rfc4347, accessed: 6.2.2018. 

[35] R. Moskowitz, “HIP Diet EXchange (DEX),” draft-moskowitz-hip-dex-00 (WiP); IETF, 2012. 

[36] T. Kivinen, “Minimal IKEv2,” draft-kivinen-ipsecme-ikev2-minimal-01(WiP); IETF, 2012. 

[37] R. Smeets, K. Aerts, N. Mentens, D. Singelée, A. Braeken, L. Segers, A. Touhafi, K. Steen-
haut and D. Niccolo, “A cryptographic key management architecture for dynamic 6LowPan 
networks,” Proc. of the 9th ICAI, 2014. 

[38] R. Smeets, K. Aerts, N. Mentens, D. Singelée, A. Braeken, L. Segers, A. Touhafi and K. 
Steenhaut, “Efficient key pre-distribution for 6LoWPAN,” Proc. of the 5th International Con-
ference on Applications and Technologies in Information Security (ATIS), 2014. 

[39] A. Perrig, R. Szewczyk, J. Tygar, V. Wen and D. Culler, “Spins: Security protocols for sensor 
networks,” Wireless Networks, 2002. 

[40] E. Yuksel, H. Nielson and F. Nielson, “ZigBee-2007 Security Essentials,” Proc. Of the 13th 
NordSec, 2008. 

[41] Klocwork, “Klocwork static code analysis”. https://www.klocwork.com/products-ser-
vices/klocwork/static-code-analysis, accessed: 6.2.2018. 

[42] Synopsys, “Static application security testing”. https://www.synopsys.com/software-integ-
rity/security-testing/static-analysis-sast.html, accessed: 6.2.2018. 

[43] P. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other 
Systems”, Advances in Cryptology, Proceedings of Crypto, 1996. 



Deliverable COMPACT Page 15 
 

D1.5 and D5.3  21.12.2020 

 

[44] D J. Bernstein, T. Lange and P. Schwabe, "The security impact of a new cryptographic 
library", Proceedings of LatinCrypt, 2012. 

[45] O. Reparaz, J. Balasch and I. Verbauwhede, “Dude, is my code constant time?”, Proceed-
ings of DATE, 2017. 

[46] K. S. a. R. Poovendran, “A Survey on Mix Networks and Their Secure Applications,” Pro-
ceedings of the IEEE, pp. 2142-2181, 2006. 

[47] S. Mauw, J. H. S. Verschuren and E. P. Vink, “A Formalization of Anonymity and Onion 
Routing,” Computer Security – Esorics, 2004. 

[48] Cadence, “Virtual Prototyping. www.cadence.com/products/sd/virtual_system,” 2016. 

[49] Mentor, “Virtual prototyping. www.mentor.com/esl/ vista/virtualprototyping,” 2016. 

[50] Synopsys, “Virtual Prototyping”. www.synopsys.com/Prototyping/VirtualPrototyping, 2016. 

[51] Intel, “Simics. www.virtutech.com,” 2016. 

[52] QEMU, “Homepage. www.qemu.org,” 2016. 

[53] Imperas, “OVP. www.ovpworld.org,” 2016. 

[54] J. Boutellier, J. Ersfolk, J. Lilius, M. Mattavelli, G. Roquier and O. Silven, “Actor merging for 
dataflow process networks.,” IEEE Transactions on Signal Processing, vol. 63, no. 10, pp. 
2496-2508, 2015. 

[55] J. Manyika, M. Chui, P. Bisson, J. Woetzel, R. Dobbs, J. Bughin and D. Aharon, “Unlock-
ing the potential of the Internet of Things,” McKinsey Global Institute, 06 2016. [Online]. 
Available: http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/the-
internet-of-things-the-value-of-digitizing-the-physical-world. [Accessed 24 10 2016]. 

[56] Khronos OpenCL Working Group. "OpenCL Specification Version 2.2,” May 2017. 

[57] Jääskeläinen, Pekka, et al. "pocl: A performance-portable OpenCL implementation." Inter-
national Journal of Parallel Programming 43.5 (2015): 752-785. 

[58] Shen, Jie, et al. "Performance traps in OpenCL for CPUs." Parallel, Distributed and Net-
work-Based Processing (PDP), 2013 21st Euromicro International Conference on. IEEE, 
2013. 

[59] Daga, Mayank, Thomas Scogland, and Wu-chun Feng. "Architecture-aware mapping and 
optimization on a 1600-core gpu." Parallel and Distributed Systems (ICPADS), 2011 IEEE 
17th International Conference on. IEEE, 2011. 

[60] Fang, Jianbin, et al. "Grover: looking for performance improvement by disabling local 
memory usage in OpenCL kernels." Parallel Processing (ICPP), 2014 43rd International 
Conference on. IEEE, 2014. 

[61] Stattelmann, S., Bringmann, O., Rosenstiel, W. (2011). Fast and accurate source-level 
simulation of software timing considering complex code optimizations. 2011 48th 
ACM/EDAC/IEEE Design Automation Conference (DAC), (S. 486-491). 

[62] Bringmann, O., Ecker, W., Gerstlauer, A., Goyal, A., Mueller-Gritschneder, D., Sasi-
dharan, P., & Singh, S. (2015). The Next Generation of Virtual Prototyping: Ultra-fast Yet 
Accurate Simulation of HW/SW Systems. Proceedings of the 2015 Design, Automation & 
Test in Europe Conference & Exhibition, (S. 1698-1707). 

[63] Cooper, Keith D., and Nathaniel McIntosh. "Enhanced code compression for embedded 
RISC processors." ACM SIGPLAN Notices 34.5 (1999): 139-149. 

[64] Larin, Sergei Y., and Thomas M. Conte. "Compiler-driven cached code compression 
schemes for embedded ILP processors." Microarchitecture, 1999. MICRO-32. Proceedings. 
32nd Annual International Symposium on. IEEE, 1999. 

[65] Menon, Sreejith K., and Priti Shankar. "A code compression advisory tool for embedded 
processors." Proceedings of the 2005 ACM symposium on Applied computing. ACM, 2005. 



Deliverable COMPACT Page 16 
 

D1.5 and D5.3  21.12.2020 

 

[66] Menon, Sreejith K. "Studying the code compression design space–A synthesis approach." 
Journal of Systems Architecture 60.2 (2014): 179-193. 

[67] IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating and Reusing IP 
within Tool Flows, IEEE Std 1685-2014. 

[68] A. Kamppi, E. Pekkarinen, J. Virtanen, J.-M. Määttä, J. Järvinen, L. Matilainen, M. Teuho 
and T. D. Hämäläinen, „Kactus2: A graphical EDA tool built on the IP-XACT standard”, The 
Journal of Open Source Software, 2017. 

[69] F. Fleurey and B. Morin, "ThingML: A Generative Approach to Engineer Heterogeneous 
and Distributed Systems," 2017 IEEE International Conference on Software Architecture 
Workshops (ICSAW), Gothenburg, 2017, pp. 185-188. 

[70] I. Hautala, J. Boutellier, O. Silvén, „Towards efficient execution of RVC-CAL dataflow pro-
grams on multicore platforms”, Springer Journal of Signal Processing Systems, 2018, to 
appear. 

[71] H. Yviquel, A. Sanchez, P. Jääskeläinen, J. Takala, M. Raulet, E. Casseau, „Embedded 
multi-core systems dedicated to dynamic dataflow programs”, Journal of Signal Processing 
Systems 80 (1), 121-136 

[72] Object Management Group. UML. [Online] [Cited: 02 09, 2018.] http://www.omg.org/tech-
nology/readingroom/UML.htm 

[73] Costa, Pires and Delicato. Modeling IoT Applications with SysML4IoT. 2016 42th Euromi-
cro Conference on Software Engineering and Advanced Applications (SEAA), 2016. 

[74] IoT-A Architectural Reference Model. [Online] [Cited: 02 09, 2018.] http://open-plat-
forms.eu/standard_protocol/iot-a-architectural-reference-model 

[75] Lekidis, et al. Model-Based Design of IoT Systems with the BIP Component Framework. 
Software Practice and Expericen. January 2018 

[76] Basu, et al. Rigorous Component-Based System Design Using the BIP Framework. IEEE 
Software. 2011, Vol. 28, 3. 

[75] Object Management Group. Common Variability Language. [Online] [Cited: 02 09, 2018.] 
http://www.omgwiki.org/variability/doku.php 

[76] Kang, et al. Feature-Oriented Domain Analysis (FODA) Feasibility Study. s.l. : Carnegie 
Mellon University Pittsburgh, 1990. 

[77] Bąk, et al. Clafer: Unifying Class and Feature Modeling. Software & Systems Modeling. 
2016, Bd. 15, 3. 

[78] Eichelberger, et al. Integrated Variability Modeling Language: Language Specification. 
2015. 

[79] Abele, et al. The CVM Framework - A Prototype Tool for Compositional Variability Man-
agement. Fourth International Workshop on Variability Modelling of Software-Intensive 
Systems. 2010. 

[80] R. Merritt. Walmart Calls for Sub-$1 IoT Sensor. EET Online 12/4/2017. 
https://www.eetimes.com/document.asp?doc_id=1332669 

[81] R. Merritt. IoT May Need Sub-50-Cent SoCs. EET Online 10/27/2017. 
https://www.eetimes.com/document.asp?doc_id=1332517 

[82] J. Kathuria. Understanding IoT requirements 101, part 1. Embedded Computing, April 4th, 
2017. http://www.embedded-computing.com/embedded-computing-design/understanding-
iot-requirements-101-part-1 

[83] G. Banjac, B. Stellato, N. Moehle, P. Goulart, A. Bemporad, and S. Boyd. Embedded 
Code Generation Using the OSQP Solver, IEEE Conference on Decision and Control, De-
cember 2017. 



Deliverable COMPACT Page 17 
 

D1.5 and D5.3  21.12.2020 

 

[84] T. Johnson, M. Amini, X. D. Li, A Framework for Scalable and Incremental Link-Time Opti-
mization, IEEE/ACM International Symposium on Code Generation and Optimization 
(CGO), February 2017. 

[85] Evidence Embedding Technology. ERIKA3. Online 26/02/2018. http://www.erika-enter-
prise.com 

[86] Courbariaux, Matthieu, et al. "Binarized neural networks: Training deep neural networks 
with weights and activations constrained to+ 1 or-1." arXiv preprint arXiv:1602.02830(2016). 

[87] Ragan-Kelley, Jonathan, et al. "Halide: a language and compiler for optimizing parallelism, 
locality, and recomputation in image processing pipelines." ACM SIGPLAN Notices 48.6 
(2013): 519-530. 

[88] Apache Mynewt, “Apache Mynewt Project Website,” 2020. [Online]. Available: https://myn-
ewt.apache.org/ 

[89] NVidia, “NVDLA Open Source Project documentation”, 2020. [Online]. Available: 
http://nvdla.org/ 

[90] Tzu-Mao Li, Michaël Gharbi, Andrew Adams, Frédo Durand, Jonathan Ragan-Kelley.  
“Differentiable Programming for Image Processing and Deep Learning in Halide”.  
ACM Transactions on Graphics 37(4) (Proceedings of ACM SIGGRAPH 2018) 

[91] A. Janapsatya, A. Ignjatovic, and S. Parameswaran, “A Novel Instruction Scratchpad 
Memory Optimization Method based on Concomitance Metric,” p. 6, 2006, doi: 
10.1145/1118299.1118443. 

[92] V. Suhendra, C. Raghavan, and T. Mitra, “Integrated scratchpad memory optimization and 
task scheduling for MPSoC architectures,” in Proceedings of the 2006 international con-
ference on Compilers, architecture and synthesis for embedded systems - CASES ’06, 
Seoul, Korea, 2006, p. 401, doi: 10.1145/1176760.1176809. 

[93] S. Udayakumaran, A. Dominguez, and R. Barua, “Dynamic allocation for scratch-pad 
memory using compile-time decisions,” ACM Trans. Embed. Comput. Syst., vol. 5, no. 2, 
pp. 472–511, May 2006, doi: 10.1145/1151074.1151085. 

[94] J. Hu, C. J. Xue, Q. Zhuge, W.-C. Tseng, and E. H.-M. Sha, “Data Allocation Optimization 
for Hybrid Scratch Pad Memory With SRAM and Nonvolatile Memory,” IEEE Transactions 
on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 6, pp. 1094–1102, Jun. 
2013, doi: 10.1109/TVLSI.2012.2202700. 

[95] J. Pallister, K. Eder, and S. J. Hollis, “Optimizing the flash-RAM Energy Trade-off in Deeply 
Embedded Systems,” in Proceedings of the 13th Annual IEEE/ACM International Sympo-
sium on Code Generation and Optimization, Washington, DC, USA, 2015, pp. 115–124, 
Accessed: Jan. 21, 2019. [Online]. Available: http://dl.acm.org/cita-
tion.cfm?id=2738600.2738615. 

[96] M. Strobel, M. Eggenberger, and M. Radetzki, “Low power memory allocation and mapping 
for area-constrained systems-on-chips,” J Embedded Systems, vol. 2017, no. 1, Jul. 2016, 
doi: 10.1186/s13639-016-0039-5. 

[97] Y. Li, J. Zhan, W. Jiang, and J. Yu, “Energy optimization of branch-aware data variable allo-
cation on hybrid SRAM+NVM SPM for CPS,” in Proceedings of the 34th ACM/SIGAPP 
Symposium on Applied Computing, Limassol Cyprus, Apr. 2019, pp. 236–241, doi: 
10.1145/3297280.3297305. 

[98] C. Fu, G. Calinescu, K. Wang, M. Li, and C. J. Xue, “Energy-Aware Real-Time Task Sched-
uling on Local/Shared Memory Systems,” in 2016 IEEE Real-Time Systems Symposium 
(RTSS), Porto, Portugal, Nov. 2016, pp. 269–278, doi: 10.1109/RTSS.2016.034. 

[99] M. E. T. Gerards, J. L. Hurink, and P. K. F. Hölzenspies, “A survey of offline algorithms for 
energy minimization under deadline constraints,” Journal of Scheduling, vol. 19, no. 1, pp. 
3–19, Feb. 2016, doi: 10.1007/s10951-015-0463-8. 

[100] LLVM, “LLVM Website”, 2020. [Online]. Available: https://llvm.org 

[101] GCC, „GCC Website“, 2020. [Online]. Available: https://gcc.gnu.org 



Deliverable COMPACT Page 18 
 

D1.5 and D5.3  21.12.2020 

 

[102] Stahl, Rafael, Daniel Mueller-Gritschneder, and Ulf Schlichtmann. "Driver generation for 
IoT nodes with optimization of the hardware/software interface." IEEE Embedded Systems 
Letters 12.2 (2019): 66-69. 

[103] Daniel Mueller-Gritschneder; Martin Dittrich; Marc Greim; Keerthikumara Devarajegowda; 
Wolfgang Ecker; Ulf Schlichtmann. The Extendable Translating Instruction Set Simulator 
(ETISS) Interlinked with an MDA Framework for Fast RISC Prototyping 2017 International 
Symposium on Rapid System Prototyping (RSP), 2017. 

[104] María del Mar Gallardo, Pedro Merino, and Ernesto Pimentel. 2002. Debugging UML De-
signs with Model Checking. Journal of Object Technology 1, 2 (July 2002), 101–117. 
https://doi.org/10.5381/jot.2002.1.2.a1 

[105]  Eran Gery, David Harel, and Eldad Palachi. 2002. Rhapsody: A Complete Life-Cycle 
Model-Based Development System. In Integrated Formal Methods, Michael Butler, Luigia 
Petre, and Kaisa Sere (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–10. 

[106] Liang Guo and Abhik Roychoudhury. 2008. Debugging Statecharts Via Model-Code 
Traceability. In Leveraging Applications of Formal Methods, Verification and Validation, 
Tiziana Margaria and Bernhard Steffen (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 292–306. 

[107] W. Haberl, M. Herrmannsdoerfer, J. Birke, and U. Baumgarten. 2010. Model-Level De-
bugging of Embedded Real-Time Systems. In 10th IEEE International Conference on 
Computer and Information Technology. 1887–1894. https://doi.org/10.1109/CIT.2010.323 

[108] MathWorks. 2018. Stateflow Documentation – MathWorks Deutschland. Retrieved Octo-
ber 11, 2018 from https://de.mathworks.com/help/stateflow/ 

[109] MathWorks. 2018. Test and Debug Simulations – Matlab & Simulink - MathWorks 
Deutschland. Retrieved October 16, 2018 from https://de.mathworks.com/help/sim-
ulink/test-and-debug-simulations.html 

[110] MathWorks. 2018. Test Models in Real Time – Matlab & Simulink - MathWorks Deutsch-
land. Retrieved October 16, 2018 from https://de.mathworks.com/help/sltest/ug/test-mod-
els-in-real-time-and-assess-results.html 

[111] Bewoayia Kebianyor, Philipp Ittershagen, and Kim Grüttner. 2019. Towards Stateflow 
Model-Aware Debugging using Model-to-Source Tags with LLDB. 2nd International Work-
shop on Embedded Software for Industrial IoT (ESIIT) at DATE'19 

[112] Bewoayia Kebianyor, Philipp Ittershagen, and Kim Grüttner. 2019. Towards Stateflow 
Model Aware Debugging with LLDB. In Proceedings of the Rapid Simulation and Perfor-
mance Evaluation: Methods and Tools (RAPIDO '19). Association for Computing Machin-
ery, New York, NY, USA, Article 1, 1–8. DOI: https://doi.org/10.1145/3300189.3300190 



Deliverable COMPACT Page 19 
 

D1.5 and D5.3  21.12.2020 

 

4 Appendix A - Table of Acronyms 
Acronym Definition 

AADL Architecture Analysis and Design Language 

ARM Advanced RISC Machine 

ASIC Application Specific Integrated Circuit 

BIP Behaviour, Interaction, Priority 

BSD Berkeley Software Distribution 

COMPACT Cost-efficient Smart System Software Synthesis 

CNN Convolutional Neural Networks 

CPU Central Processing Unit 

CVL Common Variability Language 

DSP Digital Signal Proccessor 

DTLS Datagram Transport Layer Security 

EAST-ADL Electronics Architecture and Software Technology - Architecture Description 
Language 

EDA Electronic Design Automation 

ESL Electronic System Level 

FODA Feature-Oriented Domain Analysis 

FPGA Field-programmable Gate Array 

GPU Graphics Processing Unit 

IoT Internet of Things 

IoT-PML Internet of Things Platform Modelling Language 

IPO Inter-procedural Optimization 

ISA Instruction Set Architecture 

IR Intermediate Representation 

IVML INDENICA Variability Modeling Language 

LIPO Light-weight Inter-procedural Optimization 

LLVM Low Level Virtual Machine 

LTO Link Time Optimization 

MDA Model Driven Architecture 

MDE Model Driven Engineering 

MIPS Mega Instructions Per Second 

OMG Object Management Group 

OVP Open Virtual Platforms 

PGO Profile Guided Optimizations 

POSIX Portable Operating System Interface 

QEMU Quick Emulator 

RAM Random Access Memory 

REST Representational State Transfer 

RISC Reduces Instruction Set Computer 

ROM Read Only Memory 

RSA Rivest–Shamir–Adleman 

RTOS Real Time Operating System 

RVC-CAL Reconfigurable Video Coding – Cal Actor Language 

SoC System on Chip 

SIMD Single Instruction, Multiple Data 

SysML Systems Modelling Language 

TLS Transport Layer Security 

TTA Transport Triggered Architecture 

UML Unified Modeling Language 

UPDM Unified Profile for DoDAF/MODAF 

VLIW Very Long Instruction Word 

VSL Variability Specification Language 

V2FCC Variable-to-fixed Code Compression 

 


