

 28.01.2021

 1/23

D2.3.2 Documented definitions of the
metrics

Contents
1. Executive summary 3

2. Definitions of metrics per use case 4

a. Quality Use Case: Technical Debt 5

a.1 Background 5

a.2 Data 6

a.3 Metrics 6

b. Quality Use Case: Product Quality 8

b.1 Background 8

b.2 Data 9

b.3 Metrics 9

b.3.1 Development status metrics 9

b.3.2 Build status metrics 9

b.3.3 Code quality metrics 9

c. Quality Use Case: Runtime Performance 10

c.1 Background 10

c.2 Data 10

c.3 Metrics 10

d. Software as a Service (SaaS) Use Case 13

d.1 Background 13

d.2 Data 13

d.3 Metrics 14

d.4 Additional data 16

e. Teaching Use Case 16

e.1 Background 16

e.2 Data 16

e.3 Metrics 17

e.3.1. Progress 17

e.3.2 Effort 19

 28.01.2021

 2/23

e.3.3 Level of difficulty 19

e.3.4 Code metrics 20

e.3.5 Work distribution 20

e.3.6 Pace of work 20

3. Conclusions 22

4. References 23

REVISION HISTORY

Version Date Author/ Organization Modifications

0.1 01/10/2020 Paris Avgeriou (RUG) Drafted outline and executive
summary

0.11 09/11/2020 Outi Sievi-Korte and
Vivian Lunnikivi (TAU) First draft of section 2.e

0.2 30/11/2020 Lou Somers (CPP) First draft of section 2.c

0.3 16/12/2020 Paris Avgeriou and Yikun
Li (RUG) First draft of section 2.a

0.4 21/12/2020 Outi Sievi-Korte (TAU)
and Lidia López (UPC)

Updated section 2.e and first draft
of 2.b

0.5 21/12/2020 Veli-Pekka Eloranta
(Vincit) Updated section 2.d

0.6 22/12/2020 Paris Avgeriou and Yikun
Li (RUG)

Updated section 2.a and overall
deliverable

0.7 13/01/2021 Paris Avgeriou (RUG) Worked out review from TUT
0.8 13/01/2021 Lou Sommers (Canon) Worked out review from TUT

0.9 13/01/2021 Updated section 2.b (background
and data)

1.0 25/01/2021

Paris Avgeriou and Yikun
Li (RUG), Lou Sommers
(Canon), Veli-Pekka
Eloranta (Vincit)

Updates based on reviews

 28/01/2021 Lidia López (Experis) Updated section 2.b (new metrics)

 28.01.2021

 3/23

1. Executive summary
The data that are illustrated in VISDOM visualizations originate from a number of heterogeneous
sources, across the DevOps tool chain. In addition, a significant amount of processing is required
before it can be used in the visualizations implemented by VISDOM. The goal of WP2 is to deliver
the data to the visualization techniques and tools (WP3), based on the requirements and use cases
that have been defined in WP1. Task 2.3 focuses on data analysis and metrics and complements
the other tasks in WP2 that focus on techniques and methods to acquire data (Task 2.1), and
model data (Task 2.2) from software project repositories and product artifacts. Task 2.3 results in
two deliverables: D2.3.1 which focuses on examples of data analysis, and D2.3.2 (the current
deliverable) which focuses on data metrics.

In WP1 we have defined three different use cases, where each one focuses on a different aspect
or application domain (software quality, Software as a Service – SaaS, teaching), and hence
different tools and corresponding data. Therefore, in this deliverable, we will define for each use
case, the appropriate metrics used in the analysis approaches. Accordingly, this deliverable is
organized in line with the three use cases. The first use case that focuses on Software Quality is
more comprehensive than the other two as it comprises three different aspects: technical debt,
runtime performance and product quality. Each one of these three aspects is elaborated within a
different subsection; this results in a total of five sets of metrics (technical debt, runtime
performance, product quality, SaaS, teaching). We also note that some of the use cases are very
specific focusing on the actual products and services of the project partners. The runtime
performance use case concerns the printers of Canon, the SaaS use case focuses on the service of
product road-mapping offered by Vincit, while the teaching case is focused on programming
courses using a specific learning management system at University of Tampere.

The five sets of metrics are defined and presented independently in this deliverable. However,
there are a number of common aspects across the use cases; for example technical debt is
complementary to product quality, while they both can be used in the SaaS use case and the
Teaching use case. Such synergy and the corresponding integration between the analysis tools are
the object of study within the visualization dashboards and are discussed here as future work
within WP3 (see Section 3).

The rest of this deliverable is structured as follows. Section 2 elaborates on the definitions of the
selected metrics. As aforementioned, the definitions are categorized according to the three use
cases of the VISDOM project. Five sets of definitions are discussed in detail: three for the quality
use case and two for the SaaS and teaching use cases. Finally, Section 3 concludes this deliverable
and briefly outlines current and future work.

 28.01.2021

 4/23

2. Definitions of metrics per use case
The next sub-sections elaborate on definitions of the metrics adopted in each use case (quality,
Software as a Service – SaaS, teaching). As aforementioned, the quality use case is further
decomposed into three aspects: Technical Debt, Product Quality, and Runtime Performance
(respectively subsections 2.a., 2.b and 2.c). The list of all metrics organized per use case (including
the three sub-use cases of Quality) is summarized in Table I.

TABLE I
METRICS FROM ALL USE CASES.

Use case Metric

Quality - technical debt

Number of issues per TD type
Number of issues per TD indicator
Number of TD issues across time (evolution)
Number of TD issues in temporal phases (before creating issues, during
code review, after the patch)
Percentage of repaid TD
Percentage of who repays TD
Repayment time (per TD item)

Quality - product quality

Percentage of closed issues
Percentage of closed issues that are prioritised as “critical”
Percentage of issues closed with a maximum of +-10% of deviation. This
metric has been defined separately for each of the three development
phases (Definition, Development, and Testing)
Percentage of issues closed with a maximum of +-10% of deviation.
Percentage of issues closed with a schedule deviation between +-10 and +-
20%
Percentage of issues closed with a schedule deviation higher than +-20%
Percentage of closed bugs in the product backlog
Percentage of critical bugs closed with respect to the total number of bugs
Percentage of files lying within a defined range of comment density
Percentage of files lying within a defined range of duplication density
Percentage of successful builds in a certain period

Quality - runtime
performance

MPBE (Mean Prints Between Errors)
Amount of software errors per square meter printed
Amount of open and solved P1/P2/P3/P4 problems
Number of automatic tests
Software quality items resolved
Overall CPU load (usage) during sustained operation
Average and peak elapsed time for each image processing step
Trend in average and peak elapsed times during regression tests

Software as a Service

Complexity of features to be developed
Development time (estimate)
Development time (realized)
Costs
Value for the customer
Value of the customer
Overall value of the feature for the product

 28.01.2021

 5/23

Value for developers

Teaching

Current status of the student (points, commits, and exercises)
Average status of the student (points, commits, and exercises)
Expected status of the student (points, commits, and exercises)
Time used for each exercise (sum of used time per commits made for said
exercise)
Time used each week (sum of time used for exercises on a given week)
Average, median, minimum and maximum hours spent per exercise
Average, median, minimum and maximum hours spent per week
Relation between used effort and number of completed tasks
Relation between used effort and expected grade
The top percentage of tasks by 1) least effort used, and 2) highest level of
completion
The bottom percentage of tasks by 1) most effort used, and 2) lowest level
of completion
The average and median effort for 1) all exercises on the course, 2) all
exercises for a specific week, and 3) all exercises on a given period
The percentage of students completing 1) each exercise on the course, 2)
exercises on a specific week, 3) exercises on a given period
Percentage of code that is rewritten between commits
Metrics gained from inspecting code, such as given by SonarQube
Metrics related to style guidelines
Percentage of code commits made by each member of the group
Issues opened/answered by each member of the group
New lines of code per commit by member of group
Contribution to README etc. documentation per person
Metrics related to the pace of work

a. Quality Use Case: Technical Debt
a.1 Background
Technical debt (TD) refers to taking shortcuts, either deliberately or inadvertently, to achieve
short-term goals, which might negatively influence the maintenance and evolution of software in
the long term [1]. A part of technical debt is declared as such by the developers themselves; for
example when developers state in source code comments, that something is not right and should
be fixed. This has been termed “Self-Admitted Technical Debt” (SATD) [2]. In Deliverable D2.3.1,
we had defined the Data Model used in this use case, comprised of a number of types, and their
corresponding indicators, as listed in Table II. These types and indicators are used in the set of
metrics listed below.

TABLE II
DEFINITIONS OF INDICATORS OF DIFFERENT TYPES OF TECHNICAL DEBT IN ISSUE TRACKERS.

Type Indicator Definition
Architecture debt

Violation of modularity Because shortcuts were taken, multiple modules became inter-dependent,
while they should be independent.

Using obsolete technology Architecturally-significant technology has become obsolete.
Build debt Under- or over-declared

dependencies
Under-declared dependencies: dependencies in upstream libraries are not
declared and rely on dependencies in lower level libraries.
Over-declared dependencies: unneeded dependencies are declared.

Poor deployment practice The quality of deployment is low that compile flags or build targets are not
well organized.

 28.01.2021

 6/23

Code debt
Complex code Code has accidental complexity and requires extra refactoring action to

reduce this complexity.
Dead code Code is no longer used and needs to be removed.
Duplicated code Code that occurs more than once instead of as a single reusable function.
Low-quality code Code quality is low, for example because it is unreadable, inconsistent, or

violating coding conventions.
Multi-thread correctness Thread-safe code is not correct and may potentially result in synchronization

problems or efficiency problems.
Slow algorithm A non-optimal algorithm is utilized that runs slowly.

Defect debt Uncorrected known defects Defects are found by developers but ignored or deferred to be fixed.
Design debt Non-optimal decisions Non-optimal design decisions are adopted.
Documentation debt

Outdated documentation A function or class is added, removed, or modified in the system, but the
documentation has not been updated to reflect the change.

Low-quality documentation The documentation has been updated reflecting the changes in the system,
but quality of updated documentation is low.

Requirement debt Requirements partially
implemented Requirements are implemented, but some are not fully implemented.
Non-functional requirements
not fully satisfied

Non-functional requirements (e.g. availability, capacity, concurrency,
extensibility), as described by scenarios, are not fully satisfied.

Test debt
Expensive tests Tests are expensive, resulting in slowing down testing activities. Extra

refactoring actions are needed to simplify tests.
Lack of tests A function is added, but no tests are added to cover the new function.
Low coverage Only part of the source code is executed during testing.

a.2 Data
Data from issues are collected from open source Java projects that are of high quality and
supported by mature communities. To select projects pertinent to our goal, we set the following
criteria:

● Both the issue tracking project and the source code repository are publicly available and
well-maintained.

● They have at least 1,000,000 source lines of code (SLOC) and 10,000 issues in the issue
tracker. This is to ensure sufficient complexity.

● Source code commits involve their associated issue keys within their comments. This is
important to support linking commits (in the source code repository) with issues (in the
issue tracker).

● They are commonly used in other self-admitted technical debt studies. This allows us to
compare the results between our study and other self-admitted technical debt studies.

Furthermore, we select projects that use Git as a source code repository and JIRA1 as an issue
tracker. The number of Java files and SLOC are calculated using the LOC tool2. The number of
contributors is obtained from GitHub. We used the JIRA Python package to extract all issues from
the online server and stored them in a local database; then we counted the number of issues.

a.3 Metrics
We have selected a number of metrics based on their usefulness for software practitioners [4]. For
each metric, we provide: a name, a definition, an example that helps to understand the definition,

1 https://jira.apache.org

2 https://github.com/cgag/loc

 28.01.2021

 7/23

as well as its potential usage by software engineers. The examples are derived from two Apache
projects, namely Hadoop3 and Camel4, and they refer to specific issues of those projects in JIRA.

● Number of issues per TD type
Definition: for each type of TD (the list of types of TD are shown in Table II), the total number of
issues containing this type of SATD is counted.
Example: in Hadoop-9763, the reported TD is test debt, because the developer commented 'still
need to test it.' For Hadoop, we have 20 instances of test debt and 6 instances of design debt.
Usage: this metric helps developers gain an overall understanding of the proportion of different
types of TD in the project. If a certain type of TD is significantly accumulated, it can be prioritized
for repayment.

● Number of issues per TD indicator
Definition: for each indicator of TD (the list of indicators of TD are shown in Table II), the total
number of issues containing this indicator is counted.
Example: in Hadoop-8288, there is a report of redundant code: 'they are not being used any
more'; thus, the indicator of this TD is dead code. We found 3 instances of dead code in Hadoop.
Usage: this metric helps developers gain an overall understanding of the indicators that cause TD
in the project. When the TD of specific indicators exceeds a specific threshold, the development
team needs to discuss about this indicator, and what measures can be further taken to address it.

● Number of TD issues across time (evolution)
Definition: during software development, some TD items are introduced while others get
resolved. This metric counts the number of issues containing SATD across time and is usually
visualized as a time series (e.g. number of issues on the y-axis and time on the x-axis).
Example: under the pressure of delivery, developers may choose to incur more TD, leading to the
accumulation of TD. For instance, in Camel, we had identified 37 TD instances on the date of 30
Oct 2012, and this number rose to 51 TD instances on the date of 1 Feb 2015.
Usage: keeping track of how the number of TD issues fluctuates along time is crucial for TD
management. Developers can identify spikes in the evolution, where significant amounts of TD
were accumulated. They can also see the overall trend, i.e. how fast TD is increasing in their
system.

● Number of TD issues in temporal phases
Definition: TD can be identified and reported in three different time points: 1- before creating
issues, 2- during code review, 3- after the patch is made. The numbers of SATD declared in each of
these three periods are counted.
Example: in Camel-903, documentation debt was reported after committing the patch - 'todo:
need to document it in wiki.' In Hadoop-12923, architecture debt existed in the system and later
on was reported in the issue description - 'some code is used only by tests. let's relocate them’.
For Camel, we found 27, 13, and 11 instances of TD reported before creating issues, during code
review, and after committing the patch respectively.

3 https://hadoop.apache.org

4 https://camel.apache.org

 28.01.2021

 8/23

Usage: this metric helps developers gain an overall understanding of the proportion of TD
reported in different temporal phases. This is particularly important for the code review process. If
more and more TD is reported after submitting patches rather than during the code review, then
the code review process should be revisited and potentially improved. Similarly if only few TD
items are reported in the issue description, it could be a problem with the organization culture
that does not encourage good code quality assessment.

● Percentage of repaid TD
Definition: after TD is reported in issue trackers, some of the TD is resolved and reported in issues.
The numbers of repaid and unrepaid TD items are counted, and then the percentage of repaid TD
is calculated (by dividing the former by the total).
Example: in Camel-231, the TD was first reported in the issue summary - 'broken link on wiki
page.' Then the developer fixed it and reported the repayment - 'fix applied.' We found that 71.3%
and 72.5% of TD were repaid in Hadoop and Camel respectively.
Usage: this metric provides developers the proportion of repaid TD compared to unrepaid TD. If
more and more TD is reported but not paid off, developers should be urged to spend more effort
on TD repayment.

● Percentage of who repays TD
Definition: TD can be paid off by those who create it, those who identify it, or those who
participate in resolving it. The numbers of TD instances paid by these different types of developers
are counted. Then the percentage of TD paid by each type is calculated.
Example: in Camel-201, test debt was reported by its creators, because the patch creator did not
know where to put the tests - 'there are no XQuery specific tests (mainly because of not knowing
where to put them).' In Hadoop-8124, the TD was reported by its identifier, because the code
reviewer noticed a deprecated function was used in the patch - 'the syncable.sync() was
deprecated in 0.21, we should remove it.' For Camel, we have 12 instances of TD repaid by its
creators, 19 instances of TD repaid by its identifiers, and 6 instances of TD repaid by others.
Usage: this metric provides developers the proportion of TD paid by different types of people.
Debt creators are the most knowledgeable to pay back debt and can do it more efficiently. Thus, if
most of TD is repaid by others than those that incurred the debt in the first place, TD repayment
may be neither effective nor efficient. Depending on the values of the metric, a development team
may assign more repayment tasks to those that incurred the debt.

● Repayment time (per TD item)
Definition: the time spent on repaying a TD item is calculated by subtracting the time it was
reported from the time it was resolved.
Example: in Camel-1320, after 16 hours of spotting the a TD item - 'we need to add it to the wiki
page,' the documentation debt was resolved. Thus, the repayment time of this TD item is 16
hours. The average TD repayment time for Camel is 633.1 hours.
Usage: this metric indicates how quickly or slowly different types of TD are resolved. If it takes a
longer time to repay a certain type of TD, this type of TD can be given a higher priority for
repayment.

 28.01.2021

 9/23

b. Quality Use Case: Product Quality
b.1 Background
To identify visualization needs in the context of product quality monitoring for Experis projects, we
conducted a workshop including project manager, product owners, system analyst, developers
and server technician. During the workshop, using Goal-Question-Metric (GQM) paradigm [3], we
identified a set of indicators to be included in the demonstration. Project manager (responsible for
both products) was seeing the progress and efficiency of the development and the quality of the
final product. The quality of the product depends on the product, for the development team they
are interested in the quality of the product in terms of bugs and for the operations team in terms
of availability and performance. GQM paradigm allowed us to define the set of appropriate
metrics to be able to assess the identified indicators.

b.2 Data
Data produced by the DevOps team in Experis were provided by different kinds of tools. GitLab is
the tool used to source code and project management, metrics defined for measuring product
quality are mainly using data related to project management tasks, this data is used to assess the
project evolution (issues, planned/real effort ...) and quality of service (bugs). Jenkins provides
support to automated testing and continuous integration (tests and build information).
Additionally, the development team uses SonarQube to perform static code analysis to improve
the quality of the source code. In order to support operations teams, some runtime data will be
used to assess the quality of service, including availability and performance.
This data can be complemented with data described in Section 2a: data about technical debt could
be used to complement the code analysis provided by SonarQube.

b.3 Metrics
In order to measure the product quality, we distinguish product and process product quality
aspects. We defined metrics for the following quality aspects: development progress, development
performance, external quality, code quality, and build status. These quality aspects can be
combined to compute the indicators that will be used by the DevOps team to assess the quality of
the monitored products, for example code quality can be used to assess product quality and
development effectiveness.
At this stage of the project, the metrics that have been developed are mainly focusing on the
project management and development activities. We plan to include quality of service aspects in
the future.
b.3.1 Development progress metrics
These metrics are used by project managers to monitor the quantity of development tasks
finished, the data comes from the GitLab tool.

● Issue-closing Ratio: Percentage of closed issues
○ Formula: closed_issues / total_issues, where

■ closed_issues: total number of issues with the state equals to “closed”
■ total_issues: total number of issues

● Critical Issue-closing Ratio: Percentage of closed issues that are prioritised as “critical”
○ Formula: critical_closed_issues / total_issues, where

 28.01.2021

 10/23

■ critical_closed_issues: total number of issues with the state equals to
“closed” and priority equals to “critical” (using issues’ labels for both
characteristics)

■ total_issues: total number of issues
● OnSchedule-closing Ratio per phase: Percentage of issues closed with a maximum of +-10%

of deviation. This metric has been defined separately for each of the three phases defined
in the Experis development process (Definition, Development, and Testing).

○ Formula: onSchedule_issues/ closed_definitionPhase_issues, where
■ closed_definitionPhase_issues=total number of issues with the state

equals to “closed” and phase=”Definition”
■ onSchedule_issues=total number of issues with the state equals to

“closed” and ABS(spent_time - estimate_time) <=
(estimate_time*0.1).

■ The 10% can be customised.
b.3.2 Development performance metrics
These metrics are used by project managers to monitor the development’s velocity with respect to
the estimations, the data comes from the GitLab tool.

● OnSchedule issues: Percentage of issues closed with a maximum of +-10% of deviation.
○ Formula: onSchedule_issues/ closed_issues

■ closed_issues=total number of issues with the state equals to “closed”
■ onSchedule_issues=total number of issues with the state equals to

“closed” and ABS(spent_time - estimate_time) <=
estimate_time*threshold/100.

■ threshold=10%
● Small Deviation issues: Percentage of issues closed with a schedule deviation between +-10

and +-20%
○ Formula: smallDeviated_issues / closed_issues, where

■ closed_issues=total number of issues with the state equals to “closed”
■ smallDeviated_issues=total number of issues with the state equals to

“closed” and ABS(spent_time - estimate_time) >
estimate_time*threshold_lower/100) && ABS(spent_time -
estimate_time) <= estimate_time*threshold_upper/100).

■ threshold_lower=10
■ threshold_upper=20

● Significant Deviation issues: Percentage of issues closed with a schedule deviation higher
than +-20%

○ Formula: significantDeviated_issues / closed_issues, where
■ closed_issues=total number of issues with the state equals to “closed”
■ significantDeviated_issues=total number of issues with the state

equals to “closed” and ABS(spent_time - estimate_time) >
estimate_time*threshold/100).

■ threshold=20
b.3.3 External Quality metrics
These metrics are used by the development team to control the quality of the software product
from the point of view of reported defects/bugs, the data comes from the GitLab tool.

 28.01.2021

 11/23

● Critical Issue-closing Ratio: Percentage of closed issues that are prioritised as “critical” (see
Section b.3.1)

● Bug-closing Ratio: Percentage of closed bugs in the product backlog
○ Formula: closed_bugs / total_bugs, where

■ total_bugs=total number of issues with type equals to “Bug” (using issue’s
labels)

■ closed_bugs=total number of issues with type equals to “Bug” and state
equals to “closed”.

● Critical Bug-closing Ratio: Percentage of critical bugs closed with respect to the total
number of bugs

○ Formula: critical_bugs / total_bugs, where
■ total_bugs=total number of issues with type equals to “Bug” (using issue’s

labels)
■ critical_bugs=total number of issues with type equals to “Bug” and and

priority equals to “critical” (using issues’ labels for both characteristics)
b.3.4 Code quality metrics
These metrics are used by the development team to control the quality of the written code, the
data comes from the SonarQube tool.

● Comment Ratio: Percentage of files lying within a defined range of comment density.
○ Formula: comments_good / comments_total, where

■ comments_good: number of files considered well commented according to
the comment’s percentage.

■ threshold_lower=10%
■ threshold_upper=30%
■ comments_total: total number of analysed files.

● Duplication Density: Percentage of files lying within a defined range of duplication density.
○ Formula: duplication_withinThreshold / duplication_total, where

■ duplication_withinThreshold: total number of files with a duplication
code below a concrete percentage.

■ duplication_threshold=10%
■ duplication_total: total number of analysed files.

b.3.5 Build status metrics
These metrics are used by the operations team to monitor the quality of the deployment process,
the data comes from the Jenkins tool.

● Build stability: Percentage of successful builds in a certain period.
○ Formula: success / total, where

■ success: total number of builds with result equals to “SUCCESS” in a
defined period

■ total: total number of builds in a defined period
■ defined period: last 300 days

c. Quality Use Case: Runtime Performance
c.1 Background
The runtime performance quality use case is centered around the performance of the embedded
software of professional production printers. However, its principles are also applicable in other

 28.01.2021

 12/23

contexts, where embedded software is developed for complex machinery. For example, the KPI
“Mean Prints Between Errors” mentioned below can be easily translated to other domains by
replacing “Prints” by the items being produced, or the time between errors.

Functional printer quality KPIs are related to items like the quality of the prints produced (color
gamut, resolution, reproduction of details, etc.), productivity (prints or square meters per hour),
total cost of ownership (related to ink usage, service cost, media cost).

c.2 Data
The data is collected from two different sources. First, the machines in the field at customer sites
report a large amount of structured system data, not only related to sensor and usage data, but
also to the state of the software, including warnings and errors. Execution time of several
components is also included in this logging. Second, the development data is gathered from the
management environment (TFS or Azure DevOps Server) and the regression test results from the
regression test framework.

c.3 Metrics
For the purpose of this document, we restrict ourselves to non-functional quality KPIs.

For general (non-functional) product quality, one uses KPIs like:

● MPBE (Mean Prints Between Errors).

This denotes how much is being printed (in A4 prints or square meters) between the
occurrences of an MRE (Machine Recoverable Error, solved by the machine itself, usually
by restarting) or ORE (Operator Recoverable Error). This KPI can be compared with the
common notion of MTBF (Mean Time Between Failures). These errors can have any cause
(and usually the cause is from outside the software domain).

There are also PE (Permanent Errors, to be solved by service), but these are not considered
here. Here suitable KPIs would be the amount of service calls per year, the diagnosis and
repair time, or the duration of service visits.

● Amount of software errors per square meter printed.

While the previous metric referred to all kinds of errors, this one concerns only software
errors. These are the errors logged by the software (and caused and observed by
software). They usually lead to an MRE (Machine Recoverable Error). Target will be very
near to 0.

The above KPIs are used during development and during deployment at customers.
During development we also have KPIs like:

● Amount of open and solved P1/P2/P3/P4 problems.

 28.01.2021

 13/23

These are problems of any kind (with decreasing priority) reported during system tests.
The priority is determined by the severity and chance of occurrence, as indicated in Table
III below. For example a problem with ‘S2’ severity and ‘Regular’ chance of occurrence is
given ‘P2’ priority. They are assigned to the discipline or system module that is causing
them.

TABLE III
CHARACTERISTICS OF PROBLEMS (SEVERITY, CHANCE OF OCCURRENCE, PRIORITY)

Severity
S1 Product inoperable, very important feature not working, crash
S2 Feature from specification not working and no work around

available
S3 Feature from specification not working but work around possible
S4 Inconvenience or annoyance

Chance of occurrence

 Frequency
Daily Weekly Monthly

Usage Exception Regular Rarely Rarely
Common Often Often Regular

Priority

 Often Regular Rarely
S1 P1 P1 P2
S2 P1 P2 P3
S3 P3 P3 P4
S4 P4 P4 accept

Target for unsolved not acceptable problems at release would be 0.

Specific for software we use:

● Number of automatic tests.

An important part of testing is performed automatically. Automated test cases are
executed nightly at every build using a simulated engine. Ultimate goal is to test everything
automatically and decrease the number of manual test cases to zero. Reporting is done
using a dashboard and emailing on failed tests.

Target for the amount of tests is such that they cover all functionality.
Target for automation is 100%.
Target for success is 100%.

● Software quality items resolved (here there are no real targets, but the items are
reported).

This addresses software design steps and removal of technical debt to keep the platform fit
for the future. Each software sprint sets in its goal which quality items should be tackled.

 28.01.2021

 14/23

For the runtime performance of the real time embedded software, we use:

● Overall CPU load (usage) during sustained operation.

This is not the CPU load at any given point in time (this might easily be 100%), it is the CPU
load measured during short intervals (e.g. of one millisecond) during which the printer is
continuously working (printing) at full speed.
It is comparable to what one sees in the windows task manager.

Target is to keep this below 50-60% for the real time embedded software to guarantee the
real-time deadlines.

● Specific for image processing:
o Average and peak elapsed time for each image processing step.

Should be below the available time.
o Trend in these times during regression tests.

Should not increase, unless explainable and it does not break the previous KPI.

There are usually some 10-20 image processing steps involved (from receiving the image
bitmap to placing the nozzle fire data in the buffer to send them to the print head).
Some of these steps might be fused together in the implementation to obtain better
performance.

All deadlines should be met, thus the sum of the times of the steps in the pipeline should
always be below the available time for each swath to be printed.

The time needed might be affected by algorithms whose performance depends upon the
image to be printed and the machine status (like nozzle failure compensation, which is
dependent upon the number of currently failing nozzles), so this has to be verified by
multiple tests.

d. Software as a Service (SaaS) Use Case
d.1 Background
Discussions with LaaS (Leadership as a Service) development team including the product owners,
sales and other stakeholders, lead to the conclusion that the most valuable asset for planning the
entrance to international Software as a Service (SaaS) market would be to have support for
decision making which feature set should be implemented next. In this discussion, the difficulty is
to balance the needs of the existing and potential customers and the development team’s own
ideas and wishes for further development.

d.2 Data
Data related to roadmap planning often resides in project management tools such as Trello, JIRA
or Redmine. Product owners prioritize features, bugs, etc. in these tools to demonstrate the
intended development order. Sometimes, the order might be changed by the developers because

 28.01.2021

 15/23

of dependencies causing one less important (from the business point of view) item to be
implemented before another higher value item.
Depending on the tool and agreed software development method, the developers estimate the
items in these same tools. Agile software development methodologies advocate to use relative
estimates and use complexity as a key indicator for the estimate. However, in real life, business
often requires time estimates as business needs to know when something is ready for the delivery
to customers. Sometimes other stakeholders crave for this information, too, for example to make
promotion campaigns timely. Developers see time estimates often dangerous as they tend to be
used to measure the performance of the teams or even worse, individuals. To make plans and lay
out roadmaps for product development, a fast and realistic way to convert complexity estimates
to time estimates is required.

For the needs of the SaaS use case it is most crucial to get the data regarding features and
milestones from the project management system. This data can be augmented with other data
described in Sections 2a -2c Software Quality use case to produce additional value. For example,
data about technical debt could be used to augment the data nuggets, to demonstrate where
refactoring efforts should be focused in order to provide the most value, if the schedule allows
refactoring. Similarly, run-time performance data could be used to augment the feature
development data to see the areas where improvement is needed. While these possibilities are
nice to have, the focus of the visualizations will primarily be on facilitating the discussions
between business and development and to decide the realistic roadmap.

d.3 Metrics
Next we describe metrics and their data source in the LaaS use case.

● Complexity of features to be developed.
○ Developers evaluate these in JIRA and add the estimate to the JIRA issue.

Developers use various methods, e.g. planning poker to come up with a best
possible estimate. Complexity estimates are relative to each other, i.e. tasks with
the same rating are about the same in complexity. Metrics could be used to
estimate the complexity of the planned change. However, Sjöberg et al. [6] shows
that usually the only metric that correlates with the time spent on a change request
is the lines of code. There is also evidence that the size of the code also affects the
cyclomatic complexity [5]. In addition, these metrics can be applied only to changes
to existing features, but not to a greenfield feature that does not exist at all. Thus,
we use expert heuristics for this value.

● Development time (estimate)

○ Complexity estimates can be converted to time estimates as a batch by assigning a
time frame for a whole that is formed of the tasks. We gather a set of tasks and
create a release or milestone out of these and assign time value for the whole
milestone. System then assigns time estimates to tasks automatically based on their
complexity values. Now developers can make a sanity check if a task is impossible
to do in a calculated time window. This time for a single task is shown in days.
However, these time estimates should not be used for anything else than a
feasibility check for the whole milestone.

 28.01.2021

 16/23

● Development time (realized)
○ This can be gathered from the project management tools such as JIRA if time spent

on the tasks are recorded there. This could help to make estimates more accurate
in the future. Value can be in days.

● Costs
○ Essentially in SaaS development, the costs generated from the wages of the

employees. Thus, time spent on a feature results in the cost of the feature. From
the time estimates and realized development times we can estimate the costs and
see the realized costs. Often the costs are key figures from the business point of
view when making go/nogo decisions about the features.

● Value for the customer

○ There is no direct metric for what is valuable for the customer or for the
development of customer partnership. We could ask customers to value the
features according to their wishes, however, they rarely would like to use their time
to do that. Thus, value for the customer is a rating that is given by a customer
representative or account manager who looks after the customer inputs. If there is
no customer representative or account manager available, the product owner
him/herself can give an estimate on the value for the customer.
In anycase, the unit of value is very abstract and represents more of a feeling than a
solid data point. Sometimes, the customer or account manager could indicate the
value in euros, but not in all cases. In most of the existing project management
tools, this is not visible.

● Value of the customer
○ Not all customers are of the same value for the company developing a product.

Some customers are more valuable than others. Some might bring in big turnover
and sometimes it might be beneficial to get a customer for reference purposes
even though the generated turnover is negligible. Thus, customers should be
weighed when discussing the roadmap and which features for which customers we
are going to develop next. Often in agile software development, it is the product
owner’s job to balance between the customers and to decide whose wishes will be
prioritized to be the most valuable. This value is input by the Product Owner of the
system as he or she should be capable of evaluating which customers are the most
valuable for the company. In most of the existing project management tools, this is
not visible.

● Overall value of the feature for the product
○ When we use ‘value of the customer’ to weigh ‘value for the customer’ values we

can calculate the overall value of the feature (or a task) for the product being
developed. This value can be used to discuss which features should be
implemented next and to plan out the roadmap. In most of the existing project
management tools, this value is not available. In the roadmapper tool we use the
following formula to calculate the overall value of the feature (or task) for the
product:

Value of a task = for all customers SUM[(Value of the customer /
SUM(Value of all customers) * Value for the customer] / Complexity
of a task

 28.01.2021

 17/23

● Value for developers
○ In addition to previously mentioned metrics for the product value, we can take into

account the value task produces to developers. It might be that a task might
decrease complexity, remove technical debt and consequently make the
development faster (which gives business value faster). Often developers are the
only ones who can see the value of such work. Thus, tasks should be estimated
from the developer value point of view.

d.4 Additional data
Section d.3 described metrics that are useful for visualizing the product roadmap and to facilitate
the planning of the roadmap. In addition, the visualizations could be augmented with all kinds of
data to allow even deeper discussions about what should be worked on next. Here is a list of data
that can be used to augment the aforementioned metrics to create new visualizations. However,
these are not mandatory to enable discussions on the roadmap.

● Modules with most technical debt
● Modules with most code smells
● Runtime performance analysis
● Usage data from the system
● Modules with most bugs

e. Teaching Use Case
e.1 Background
To identify visualization needs in teaching software engineering, we conducted interviews with 10
academics in the field of software engineering, teaching topics such as programming, software
engineering processes, testing, software architecture, and software project management. While
the discussions covered a wide range of software engineering topics and the teaching was aimed
at both Bachelor’s and Master’s levels, teachers unanimously named one need above all else: the
need to see how students are progressing during the course. Teachers needed tools to quickly and
easily see which students are in the danger of falling behind and even out of the course, what
tasks are bottlenecks for progress, and where students would need more support to be able to
better accomplish the course requirements. While the need to see how students are progressing
was unanimous, several teachers also hoped to find out the effort students used for their tasks
and being able to see what topics were difficult to grasp. Finally, some participants hoped for
visualizations of code metrics, of work distribution (among student groups), and on how the work
pace differs between student groups.

e.2 Data
Real live data mainly comes from two data sources: GitLab code repositories and a MOOC-styled
learning management system, Plussa. Teachers publish materials and weekly exercise
assignments and give points using Plussa. Students have their own git-repositories that are hosted
in Tampere University's instance of GitLab, and weekly programming exercises are submitted for
automatic grading by submitting the repository url in Plussa, once an exercise is finished. Both
GitLab and Plussa provide a simple, authorization-based RESTful API to the data saved in the
systems. The data collected by Plussa includes course name, participants, exercises, submissions

 28.01.2021

 18/23

and collected points. GitLab API provides data about its users, repositories and commits.
Additionally, in the future we will also integrate data from information systems holding grades
from previous years, include data from SonarQube which is used on some courses, and look into
utilizing data from Moodle.

e.3 Metrics
e.3.1. Progress
Based on most common use cases that arose from the interviews, we are basing our visualizations,
and by extension the metrics, on the following assumptions of the workflow: 1) students need to
complete weekly exercises, 2) each exercise has some maximum points defined that can be
awarded to a student, 3) students submit an answer to an exercise by committing code. Further,
we acknowledge there are differences in how points are awarded: 1) the maximum points that
can be gained from an exercise varies, and 2) the minimum points required to pass an exercise
varies. Finally – the number of exercises varies from week to week, and so does the distribution of
points between exercises. For one week there may be several exercises awarding only small
number of points each, and one exercise giving a large number of points.

For visualizations, the core metric to show student progress is the current status of a student. The
current status of a student is shown in comparison to statuses of other students of the course (for
easy comparison of how students statuses differ). Additionally, we will calculate the average
status, i.e., the status of the “average” student on the course. If a teacher wants to focus on a
small set of students, comparing to the average student will help keeping perspective. Finally, we
will calculate the expected status of a student. The expected status is based on calculations from
history data. We will define metrics for these in the following.

Current status
The current status of a student is multi-dimensional. The main dimensions (D) are points,
commits, and exercises.
Cumulative points: fetch the points a student has gathered for each specific week and calculate
the cumulative sum of points a student has gathered up to a specific week.

cumulativePointsn = ∑௡
௜ୀଵ 𝑔𝑎𝑡ℎ𝑒𝑟𝑒𝑑𝑊𝑒𝑒𝑘𝑙𝑦𝑃𝑜𝑖𝑛𝑡𝑠௜ , where n = selected week

Missed points: calculate how many points the students have missed, i.e., what is the difference
between maximum possible points and the points acquired by the student.

missedPointsn = ∑௡

௜ୀଵ (𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑊𝑒𝑒𝑘𝑙𝑦𝑃𝑜𝑖𝑛𝑡𝑠௜ − 𝑔𝑎𝑡ℎ𝑒𝑟𝑒𝑑𝑊𝑒𝑒𝑘𝑙𝑦𝑃𝑜𝑖𝑛𝑡𝑠௜) , where n =
selected week

Relational points: calculate the percentage of points a student has gathered from all possible
points available up to week n.
relationalPointsn = ௖௨௠௨௟௔௧௜௩௘௉௢௜௡௧௦

∑೙
೔సభ ௠௔௫௜௠௨௠ௐ௘௘௞௟௬௉௢௜௡௧௦೔

 , where n = selected week

D2: Exercises

 28.01.2021

 19/23

Cumulative exercises: fetch the number exercises a student has completed for each specific week
and calculate the cumulative number of exercises a student has completed up to a specific week.

cumulativeExercises = ∑௡
௜ୀଵ 𝑤𝑒𝑒𝑘𝑙𝑦𝐸𝑥𝑒𝑟𝑐𝑖𝑠𝑒𝑠௜ , where n = selected week

Relational exercises: calculate the percentage of exercises a student has completed from all
possible exercises given up to week n.
relationalExercisesn = ௖௨௠௨௟௔௧௜௩௘ா௫௘௥௖௜௦௘௦

∑೙
೔సభ ௠௔௫௜௠௨௠ௐ௘௘௞௟௬ா௫௘௥௖௜௦௘௦೔

 , where n = selected week

Relational exercises are closely tied to relational points. If a student has gathered a relatively small
number of points but completed a relatively high number of exercises, it would indicate the
student is often completing a large number of exercises that only offer a small number of points.
As each exercise typically addresses a specific topic or learning point on a course, in this case the
student will likely gather a superficial knowledge on a wide spectrum of topics. However, the
student is likely not getting a deeper knowledge or willing to make distinct effort to complete
tasks that would afford more points, as points typically reflect the estimated effort required to
complete an exercise.

D3: Commits
Commits per exercise: calculate the number of commits a student has made for each exercise.

Average status
Simply viewing how one student is progressing may not show if they are falling behind. Comparing
a student’s progress to how the rest of the students are progressing will more easily help showing
the ones in need of support. In effect, calculate average values for each dimension as given above:
1) the average number of points per student collected each week (D1), 2) the average number of
points cumulatively collected per student up to a certain week (D1), 3) the average number of
exercises completed per student (D2), and 4) the average number of commits made per task (D3).
The “average” means average of all students participating in the same course implementation.
In addition to “pure” average, we also calculate a threshold value to help identify those falling
behind.

Expected status
Based on history data from previous implementations, we need to calculate how a student should
be progressing at any given time in relation to a certain outcome (grade). The reference values are
calculated from the average of collected points among students that have received the same
grade on the previous course implementation. This approach aims at providing an estimation on
how a status evolves when it is about to result in a certain grade.

The reference value is calculated from historical data originating from the previous course
implementation by first defining the grade 𝑔 𝜖 [0, 5] and the course week number 𝑤 𝜖 [1, 𝑐]
where 𝑐 is the number of course weeks. Let

 28.01.2021

 20/23

𝑐𝑜𝑢𝑟𝑠𝑒𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝐶𝑜𝑢𝑛𝑡 = ෍

ହ

௚ୀ଴

𝑁௚,

where 𝑁௚ is the number of students that received grade 𝑔. For each student 𝑠௚,௜ that has received
grade 𝑔, the student’s cumulative points up until course week number 𝑤 is 𝑝௦೒,೔

(𝑤). With these
definitions, we get a week-wise reference value for each grade as follows:

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑉𝑎𝑙𝑢𝑒௚,௪ =
1

𝑁௚
∙ ෍

ே೒

௜ୀ଴

𝑝௦೒,೔
(𝑤).

The expected grade for a student in the current implementation is determined by which grade has
the closest reference value on the week of inspection. To view how the student has progressed
during each individual course week, the above method is used by replacing the cumulative points
by the sum of points collected during that course week.
e.3.2 Effort
Teachers have a clear need to see how much effort students use on the tasks given to them for
two main reasons: 1) knowing the real effort used will allow teachers to adjust workload on the
course to suit the credits given, and 2) knowing how much effort the course will need at different
stages will help communicating the course demands particularly to students, but to other
stakeholders as well.

Calculating effort is not straightforward. Still, even estimations based on real data are valuable.
For effort we define metrics for the following:

1) Time used for each exercise (sum of used time per commits made for said exercise)
2) Time used each week (sum of time used for exercises on a given week)
3) Average, median, minimum and maximum hours spent per exercise
4) Average, median, minimum and maximum hours spent per week
5) Relation between used effort and number of completed tasks
6) Relation between used effort and expected grade

e.3.3 Level of difficulty
Teachers need information on what topics are difficult for the students to grasp. This is closely tied
to previous sections on progress and effort: if a task requires a lot of effort, and many students fail
to complete a task, then a teacher might look into the topic of the task to see why it is challenging
for students. However, while metrics on progress are focused on the student, metrics on difficulty
are focused on the exercises.

Metrics that indicate the success/failure rate of a specific exercise or topic should allow the
teacher to 1) be able to spot bottlenecks and pain points in a course, and 2) use this information
to provide more support and material on difficult topics.
Metrics are defined for the following:

1. Calculating the top percentage of tasks by 1) least effort used, and 2) highest level of
completion

2. Calculating the bottom percentage of tasks by 1) most effort used, and 2) lowest level of
completion

 28.01.2021

 21/23

3. Calculating the average and median effort for 1) all exercises on the course, 2) all exercises
for a specific week, and 3) all exercises on a given period

4. Calculating the percentage of students completing 1) each exercise on the course, 2)
exercises on a specific week, 3) exercises on a given period.

e.3.4 Code metrics
In addition to completing or failing an exercise, teachers are eager to see the level of quality of
submissions. For this purpose code metrics are desired. The actual code metrics will vary based on
the planned learning outcomes of each course, and should be selected by each teacher. Possible
metrics are:

● Percentage of code that is rewritten between commits
● Metrics gained from inspecting code, such as given by SonarQube. At Tampere University,

Computing Sciences unit has access to SonarQube, and many courses are accustomed to
using metrics from SonarQube.

● Metrics related to style guidelines.
To illustrate some possible metrics for a given course, we inspect the case of Programming 2.
Programming two introduces the basics of objects and object-oriented programming, but does not
really go into, e.g., inheritance. On this course, metrics related to style guidelines would include:
complexity (depth of control structures), lines of code, length of functions (on average and
maximum), number of functions, and number of public variables.

In addition to calculating and comparing metrics for and between individual students, it would be
beneficial to calculate metrics and compare to the model solution.
e.3.5 Work distribution
Software development courses often have group assignments. When including group assignments,
it is expected that all group members contribute to the assignment equally, but in reality this is
rarely the case. Visualizations can help see who are not contributing, and how are students who
contribute less progressing otherwise on the course.
Metrics:

1) Percentage of code commits made by each member of the group.
2) Issues opened/answered by each member of the group
3) New lines of code per commit by member of group
4) Contribution to README etc. documentation per person

e.3.6 Pace of work
There are two angles to visualizing the pace of work: 1) seeing the different points of time that
particularly groups actually start producing code on a larger project assignment, and 2) how long
does it take for a student to finish a certain assignment (different from effort). In both cases
teachers are interested in seeing how the different paces of work affect the outcome on the
course (i.e., how well assignments are finished with regard to given deadlines, and are there
relations to points). While showing the different points of time when groups or individuals begin
their work is left for visualization implementations, we may use metrics to calculate the timespan
used for assignments, e.g., amount of time between starting an assignment and submitting it.

 28.01.2021

 22/23

3. Conclusions
This deliverable has provided the metrics that are being used in the 3 different sub-cases of the
Quality Use Case, as well as the SaaS and Teaching Use Cases. While it is possible that some of
these metrics may be refined during the course of the VISDOM project, we consider them as a
stable basis for further development of the visualization dashboard in WP3.

As a next step, we are working towards the combined usage of the different sets of metrics into
the VISDOM toolchain and subsequently their visualization in the envisioned dashboards. While
the five sets of metrics that were presented in this deliverable were developed independently of
each other, there are opportunities of integrating them across the corresponding visualizations.
This can be done in two ways. First, the metrics from the quality use case (especially regarding
Technical Debt and Product Quality) can be integrated in both the SaaS use case and the Teaching
use case. For example the metrics on Technical Debt and Product Quality that are automatically
extracted from source code and issue trackers can be easily fed into the dashboard of the
Teaching use case.

Second, the metrics within the three sub-cases of the quality use case can be cross-pollinated to
provide a wider perspective. For example the metric ‘Software quality items resolved’ of the
Runtime Performance sub-case can be integrated with the metric ‘Percentage of repaid TD’ of the
Technical Debt sub-case to incorporate both perspectives of technical debt in issue trackers and
design quality issues. Throughout this deliverable, a number of concrete ideas to integrate metrics
across the use cases were discussed. Within WP3 we will explore such synergies between the use
cases, and where possible implement integration of the tools developed for the individual use
cases.

Finally, the goal of this deliverable was to present the metrics that can be used in the VISDOM
visualizations. However, the envisioned dashboard is, in principle, independent of the specific
metrics used, and can be configured with any set of metrics, as long as they serve the purpose to
gauge the health of the system or process. In the upcoming period we will demonstrate how the
metrics presented in this deliverable, as well as other metrics can be combined and visualized
within the VISDOM dashboard.

 28.01.2021

 23/23

4. References
1. Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on technical debt and its

management,” J. of Syst. and Software, vol. 101, no. C, pp. 193–220, Mar. 2015.

2. E.d.S. Maldonado and E. Shihab, “Detecting and quantifying different types of self-admitted
technical debt,” in 2015 IEEE 7th International Workshop on Managing Technical Debt (MTD). IEEE,
2015, pp. 9–15.

3. V. Basili, G. Caldiera and D. Rombach, “The Goal Question Metrics Approach”, Encyclopedia of
Software Engineering, Wiley, 1994.

4. VISDOM D1.1.1 Public state of the art document
https://itea3.org/project/workpackage/document/download/6093/D1.1.1_Public%20state%20of%
20the%20art%20document.pdf, visited 18.9.2020

5. G. Jay, J. Hale, R. Smith, D. Hale, N. Kraft and C. Ward, "Cyclomatic Complexity and Lines of Code:
Empirical Evidence of a Stable Linear Relationship," Journal of Software Engineering and
Applications, Vol. 2 No. 3, 2009, pp. 137-143. doi: 10.4236/jsea.2009.23020.

6. Sjøberg, Dag & Anda, Bente & Mockus, Audris. (2012). Questioning software maintenance metrics:
A comparative case study. International Symposium on Empirical Software Engineering and
Measurement. 107-110. 10.1145/2372251.2372269.

