

D3.4.2 Second research demo that
shows aspects of one use case and first
version of the configurable dashboard

Programme ITEA3

Challenge Smart Engineering

Project number 17038

Project name Visual diagnosis for DevOps software development

Project duration 1st October 2018 – 30st June 2022

Project website

Project WP WP3 - Visualizations

Project Task

Deliverable type Doc Textual deliverable

 X SW Software deliverable

Version V1.0

Delivered 04/02/2021

Access x Public

 Abstracts are public

 Confidential

Document Contributors

Company Author Role

EXPERIS Ester Sancho writer/editor

EXPERIS Gema Maestro writer

UPC Lidia López writer

TAU Kari Systä writer

TAU Outi Sievi-Korte writer

TAU Vivian Lunnikivi writer

U.Oulu Henri Bomström writer

TIOBE Marvin Wener reviewer

Document History

Date Version Editors Status

16.11.2020 ToC EXPERIS Table of Content

19.11.2020 V01 EXPERIS Draft

13.12.2020 V02 TAU Teaching demo

21.12.2020 V03 UPC Quality demo

15.01.2020 V04 EXPERIS Final Version

28.01.2021 V05 TIOBE Reviewed Version

01.02.2021 V1.0 EXPERIS Submitted Version

04.02.2021 V1.1 EXPERIS Fixes

04.02.2021 V1.2 TAU Added Refences

Table of Contents

Table of Contents 3

1. Introduction 4

2. Introduction to Demonstrations 5

2.1. Quality use case 5

2.2. Teaching use case 5

3. Demo for Uses Cas 1 - product quality 6

3.1. Tailoring Quality Indicators 6

3.2. Quality Visualisations 7

3.3. Dashboard Configuration 11

4. Demo for Use Case 2 - Teaching Software Development 13

4.1. The configurable Dashboard 13

4.2. Utilizing Composer in the Teaching Use Case 13

4.3. Visualizations in the Teaching Use Case 13

4.4. Stakeholder Feedback on the Demo 15

5. Access to the demos 17

6. Next Steps & Conclusions 17

Table of Figures

Figure 1: Defining a quality factor in the quality use case. .. 7

Figure 2: Quality dashboard main view. ... 7

Figure 3: Detailed Strategic Indicators view (radar). .. 8

Figure 4: Detailed Strategic Indicators view (polar). .. 8

Figure 5: Detailed Strategic Indicators view (stacked). .. 9

Figure 6: Quality indicators evolution. ... 10

Figure 7: Strategic Indicators Heatmap .. 10

Figure 8: Quality prediction view ... 11

Figure 9: Quality profiles configuration form. .. 12

Figure 10: Quality categories for strategic indicators (quality use case). 12

Figure 11: The default dashboard for teachers, showing student progress over the
course. .. 14

Figure 12: The current default dashboard for teaching assistants showing current status
for each student. .. 15

Figure 13: Raw Data Screen for Product Quality Demo ... 17

1. Introduction

The main objective of WP3 is to define and implement graphical representation
(visualizations) of software projects, using the data collected and analysed from those
software projects and artefacts. Seeking to deliver new visualizations and configurable
dashboards that can contain several visualizations oriented to different types of profiles
or users, with different needs. In order to achieve these objectives, a thorough analysis
of the state of the art has been carried out mainly in the areas of visualization, data
extraction and processing in software projects (D1.1.1), and finally in the appropriate
techniques and methods for implementing visualization in the context of DevOps
(Development & Operations) (D.3.1.1).

During the definition and implementation of visualizations, the VISDOM-project
produces a set of demos that are used for both internal and external communication.
These demos or proof of concepts presented in this deliverable will be exposed to the
stakeholders on a regular basis. All feedback obtained will be translated into more
elaborate demonstrations that will be tailored to the stakeholders needs and
concerns.

VISDOM includes different company cases. Previous studies have been carried out in
parallel with the corresponding agents involved. Several types of users were identified
in these studies. Their needs are complementary in the framework of VISDOM, therefore
it was considered to present two demos in this deliverable, each of them tailored to a
specific user.

The main content of the deliverable is composed from two concrete demonstrations.

1. Quality case: a configurable dashboard for monitoring software quality of
DevOps projects.

2. Teaching case: a configurable dashboard for teachers of a programming
course.

This document gives the background of those demonstrators. Links to the actual
demonstrators are given at the end of the document.

As mentioned above, within these use cases, we can differentiate between two types of
users depending on the use of the tool and the user's needs. On the one hand, we have
users who need support for decision-making, which means they do not need to explore
the data but simply to be able to instantly understand the information, without going
into detail. These same users (or their organisation) may not have the technological
knowledge to develop or implement specific charts. On the other hand, we have users
with specific visualisation needs and with the necessary skills to generate and code these
types of visualisations. These users intend to analyse the data in detail and in a specific
way.

These demos have been conceived as complementary with possibilities of future
integration from a conceptual point of view.

2. Introduction to Demonstrations

2.1. Quality use case

The quality demo builds around a DevOps team that develops a product named PHE
developed in Experis (that consists in health & wellbeing services for their employees)
composed of two projects. These two projects consist of: (a) an application (APP) to be
deployed in the final users devices (named phe); and, (b) a set of services to be deployed
in a server that are consumed by the APP (named phe_server). Following DevOps
strategy, the team is composed of two connected teams, development team that is
responsible for the development of both products and operation and a team that is
focused on the services deployment. The source code and the backlog are managed
using GitLab. GitLab data is complemented by static (source) code analysis provided
by SonarQube and the continuous integration tool Jenkings.

In the context of quality management of software product development, the main
stakeholders are the project manager, product owners, a system analyst, developers
and server technicians.

Based on a workshop conducted in July 2019, we identified their different needs of data
visualization. In this use case, all the stakeholders need the same kind of visualizations,
they need visualizations that allow them to see if a specific quality-related property is
going well, like a quality indicator (good/moderate/poor). In this workshop, we
identified a set of indicators to be included in the demonstration. The project manager
(responsible for both products) was seeing the progress and efficiency of the
development and the quality of the final product. The quality of the product depends
on the product, for the development team they are interested in the quality of the
product in terms of bugs and for the operations team in terms of availability and
performance.

2.2. Teaching use case

The teaching demo builds around a programming course, taught in Tampere University.
The course work consists of weekly exercises, project works and an exam, and all course
activities grant students points towards the final course grade. Since there are usually
from 100 to 300 students on the course at a time, all the course material and exercise
assignments as well as their submission boxes for automatic grading are published in a
learning management system called Plussa. Students solve weekly exercises locally and
push their solutions into their own code repositories, hosted in the University’s GitLab
instance. Therefore, GitLab works as the main source of automatically collected data for
the teaching demo, and Plussa serves as another source.

In the teaching use case, the identified main stakeholders are teachers, teaching
assistants and students. The teacher on a course is responsible for the course
arrangements and might hire teaching assistants, who help with grading projects or
provide support for students in completing weekly assignments. Students work toward
completing the course by learning the topics and practicing the required skills by solving
the exercises. As these stakeholders have differing tasks and responsibilities on the same

course, they have individual information needs and thus, are presented with different
views into the data.

Based on a stakeholder interview, the main interest for teachers was identified to be
seeing how students’ progress over a course. Seeing the progress helps teachers to
evaluate if there are, for example, some difficult topics or bottleneck exercises that
require extra attention. However, teaching assistants are more interested in seeing the
current status of students during each course week, to be able to identify students that
might need help. Students, on the other hand, are likely interested to see how they are
progressing in relation to the course goals and how much work they are required to do
to achieve their personal goals. Visualizing progress in relation to course requirements
helps students plan their work and possibly even motivate them.

3. Demo for Uses Cas 1 - product quality

The quality demo consists of one software component with three main functionalities:
tailoring quality indicators, visualizing quality, and configuring the dashboard. The first
two functionalities are devoted to regular users (project manager, product owner,
system analyst, developer and server technician), and the third is for system
administrators.

3.1. Tailoring Quality Indicators

In the dashboard, the quality indicators are defined as aggregations-based metrics
computed directly from the data provided from the data source tools (see Deliverable
2.3.2 for details). These metrics are aggregated in quality factors, addressing concrete
quality attributes. These quality factors can be aggregated into the final quality
indicators, that are named strategic indicators.

The dashboard provides forms for defining dedicated quality attributes and strategic
indicators of each product to be assessed (phe and phe_server). Figure 1 shows the form
for creating the quality factor Code Quality. It is computed based on the metrics related
to static code analysis Comment Ratio and Duplication Density. The dashboard shows
the list of available metrics in the left list, and the user can select and move to the right
list the ones he or she wants to use for the quality factor computation. This aggregation
can be calculated as an average or a weighted average.

Figure 1: Defining a quality factor in the quality use case.

The dashboard includes the same kind of form to define strategic indicators, for strategic
indicators, the user needs to select from the list of available quality factors.

3.2. Quality Visualisations

When the strategic indicators and quality factors are defined, the dashboard provides
several ways to visualise these indicators. Figure 2 shows the main view when the
dashboard is open.

Figure 2: Quality dashboard main view.

On the menu, the user can select what to do (first menu level) and what to see (strategic
indicators, quality factors, and metrics). Figure 2 is showing the strategic indicators

assessment for today providing this good/moderate/poor views through gauge charts.
The categories, and their colours, are configurable. In the Experis use case, we
configured quality as 3-levels: poor (red), moderate (orange), and good (green), the
qualification for each level is configurable. This view shows a moderate quality for
product quality and poor quality for software readiness, the software is not ready to
release yet. The dashboard also allows the user to visualise the quality factor used in the
assessment of the quality factors, for visualising this detailed view, the dashboard
provides three different visualisations: using radar charts (see Figure 3), using polar
charts (Figure 4), and stacked bar charts (Figure 5).

Figure 3: Detailed Strategic Indicators view (radar).

Radar charts visualizes the quality assessment for the quality factor. For example, for
Release Readiness indicator, Build Status factor value is 0.35 and Development status is
0. Therefore, they need to devote more resources to improve their development status.

Figure 4: Detailed Strategic Indicators view (polar).

Polar and stacked bar charts show how the quality factor value is contributing to the
strategic indicator value. For example, Code Quality is the only factor for measuring
Product Quality, therefore, the Product Quality indicator value is the same as Code
Quality (0.44). In the example of Software readiness, Build status corresponds to 0.18 to
Software Readiness because Software Readiness has two factors (50%+50%), therefore
0.35*0.5 is equals to 0.175 (rounded to 0.18 in the chart).

Figure 5: Detailed Strategic Indicators view (stacked).

These visualizations also include information about the quality categories in the charts
(poor-red, moderate-orange, and good-green), being represented by areas (e.g. gauge,
radar) or lines (polar). The dashboard provides the same kind of visualizations for quality
factors and metrics.

Dashboard also provides the possibility of visualising the evolution of these indicators
(strategic indicators, quality factors, and metrics) using line charts. Figure 6 shows the
kind of charts used to visualise the evolution of the strategic indicator Release Readiness
(left) and the evolution of the quality factors Build Status and Development status used
to compute it (right). In these charts, the user can see a stable quality assessment, no
changes in the last two weeks.

Figure 6: Quality indicators evolution.

Heatmaps are generally used for hotspot identification like this file has many bug fixes.
In this case, we considered using this kind of visualization to display the evolution of the
strategic indicators summarised by periods (Figure 5).

Figure 7: Strategic Indicators Heatmap

Quality dashboard also includes a view showing the quality prediction. Figure 8 shows
the prediction for the strategic indicator Release Readiness for the following two weeks.
These charts include some historical data (dotted line), the predicted values (solid line
chart), and the confidence intervals corresponding to 80 and 95 percent of confidence.
On the left, we are visualising the predicted values for the strategic indicators, on the
right the predicted values for the quality factors for the strategic indicator.

Figure 8: Quality prediction view

3.3. Dashboard Configuration

As we explained in section 2.1, all the stakeholders need the same kind of visualizations.
Therefore, in this use case, the configuration needs are related to what data should be
visualised by the dashboard.

The dashboard provides a profiles manager, the system administrator can create as
many profiles as needed. Figure 9 shows the profile configuration form, each profile
determines:

● Quality level. The quality indicators managed by the quality dashboard (from
higher to lower level) are strategic indicators, quality factors, and metrics. The
profile can restrict the access to some levels, e.g, only metrics.

● Allowed projects. The dashboard allows to visualise the quality indicators for
several projects. In the Experis case, they decided to monitor phe and phe_server
projects, the profile can provide access to phe, to phe_server, or both.

● For each project, the allowed strategic indicators. The dashboard allows to
define several strategic indicators for each project. In the Experis case, they
defined the same two indicators for both projects: Project Quality and Release
Readiness, depending on the profile, the user will be able to monitor one of each
or both.

● Default visualizations. For some of the quality views, the dashboard provides
several views, in this deliverable, we show three different views for the detailed
strategic indicators (i.e., using radar, polar, or stacked bar charts). The profile
defines which kind of charts should be shown.

Figure 9: Quality profiles configuration form.

Figure 10 shows the configuration form for defining the quality categories for strategic
indicators. The number of categories, colours, and thresholds can be different for
strategic indicators, quality factors, and metrics.

Figure 10: Quality categories for strategic indicators (quality use case).

4. Demo for Use Case 2 - Teaching Software Development

The teaching demo consists of two main software components: the configurable
dashboard and independent visualization applications that are imported to the
dashboard service.

4.1. The configurable Dashboard

An implementation of a configurable dashboard is being developed as a part of a
Composer service under construction by the team in University of Oulu. The deployed
version of the Composer service, including link to sources, is available publicly in
https://iteavisdom.org/dashboard. The service provides user management and collects
together visualizations aimed at different stakeholders. The most relevant visualizations
are displayed to each stakeholder by implementing roles for each stakeholder and
composing a stakeholder-specific default dashboards from a set of visualizations.

Additionally, Composer allows users to define their own custom dashboards. For
instance, a teacher, interested to find out if there are some exercises that caused a lot
of difficulties for students, can create a new view that appears here under the view
listing in the Composer.

4.2. Utilizing Composer in the Teaching Use Case

In the context of the teaching use case, the Tampere University team has designed and
piloted a set of visualizations, which are deployed in the Composer service. When
logging in to Composer, users see a different default dashboard, depending on their role.
Currently, the default dashboard for teachers consists of a progress view, whereas the
default visualization for teaching assistants consists of a status view. Despite the default
visualization for students being still work-in-progress, this document introduces the
concept of combined EKG and Pulse visualization for the pace of progress.

4.3. Visualizations in the Teaching Use Case

Figure 11 shows the current default dashboard for a teacher. The visualization shown is
the Progress view, which shows each student as a line, and how many points each
student has received during each course week, since points from weekly exercises and
projects map to the final course grade. The teacher can also compare the progress of
different student groups to see if there are some behavioral differences by using the
group display utilities.

https://iteavisdom.org/dashboard
https://iteavisdom.org/dashboard
https://iteavisdom.org/dashboard

Figure 11: The default dashboard for teachers, showing student progress over the course.

To compare how the default dashboard shows for a different stakeholder, Figure 12
shows the default dashboard for a teaching assistant. We should expect that since the
default dashboards should visualize interests of each specific stakeholder group, the
dashboard should look different for a user of another role. The visualization seen is the
status view, which shows how many points students have collected out of the weekly
maximum. Figure 12 shows that on course week 1, there are a few students that have
not even started working on the course, but most have successfully completed all
weekly exercises.

Figure 12: The current default dashboard for teaching assistants showing current status for each student.

For students, we are currently developing a more advanced visualization, combining an
EKG and Pulse visualization. The student visualization aims at a proof-of-concept for the
advanced visualization principles for EKG and Pulse visualizations, described in
deliverable 3.3.1 Designs of new visualizations [1], in which beats in an EKG line translate
to the student completing course activities on each course week, showing cyclic progress
over the course. The shape of the EKG expresses the estimated workload on each
accomplishment. A pulse line constructs of commits made by the student, showing
when and how much work the student completes. The pulse line would be shown below
the EKG line to allow, for instance, comparing estimated and realized work and their
distribution over the course.

4.4. Stakeholder Feedback on the Demo

The different interactions and visual analysis provided by progress and status views are
discussed in detail in deliverable 2.3.1 Documented data analysis examples [3]. The
analysis examples were also presented to a group of teachers in October 2020 to collect
feedback on the implementations. The overall feedback stated that teachers found the
system useful, and improvement points were formalized into tickets for future
development.

Future development plans for the teaching demo include implementing advanced
visualizations. Similarly, the development of the composer service is continued,
following the principles described in deliverable 3.2.1 Visualization guidelines [2].

The current configuration of stakeholder specific default dashboards is given manually,
but in the future we plan to include a way for the visualizations to communicate in a
machine-readable format for whom the visualization is targeted at and what aspects it
visualizes. The composer will use that information to generate the default dashboards
automatically. Future plans include implementing similar configurations for
stakeholders, too, to allow generating default dashboards automatically for new
stakeholders.

5. Access to the demos

Quality demo:

As the tool analyses data from an internal project of Experis, which deals with private
data, we cannot make the demo or code available to the public. However, a video
presenting the functionalities developed until now will be made available on the
project's website.

● Running demo: https://visdom-project.github.io/website/.

Teaching demo:

The running demo and source codes are available as follows
● Running demo: https://iteavisdom.org/dashboard
● Source code: https://github.com/visdom-project/visdom

6. Next Steps & Conclusions

The two demos presented in this paper provide two different but complementary
approaches to VISDOM´s objective.

The product quality demo dashboard presents data that has been previously analysed,
and its visualisations provide information at a glance that supports decision making. The
teaching software development demo, on the other hand, focuses on the
representation of raw data and allows the design of specific and customised
visualisations.

Both approaches are complementary and currently work is ongoing to offer either
approach in both use cases.

As an example, the product quality demo foresees the inclusion of a screen named "Raw
Data" (see Figure 13) that will offer access to raw data representations. This will allow
users to access lower level information enabling them to better understand the rationale
behind the indicators represented.

Figure 13: Raw Data Screen for Product Quality Demo

7. References

[1] Designs of new visualizations, VISDOM Deliverable D3.3.1., January
2020. Available through ITEA3 portal, www.itea3.org.

[2] Visualization guidelines for the different viewpoints, VISDOM
Deliverable D3.2.1, December 2020. Available through ITEA3 portal,
www.itea3.org.

[3] Documented data analysis examples, VISDOM Deliverable D2.3.1.
September 2020. Available through ITEA3 portal, www.itea3.org.

