
SCRATCh
SECURE AND AGILE CONNECTED THINGS

Deliverable

• D1.3a Communication architecture
• D1.4a Device architecture

Deliverable

 Copyright © 2018-2022, SCRATCh 1

Work-package: WP1

Affected milestone: MS1

Partners involved: AnyWi

 consider it GmbH

DFKI

NXP Semiconductors Germany GmbH

OTARIS

Date: 18/03/2021

Deliverable version: v2.1

Editor: see below

Author(s): Arne Ehrlich

 Daniel Schneider

Franklin Selgert

 Karsten Sohr

Morten Larsen

 Till Witt

Responsible Contact: Till S. Witt

 NXP Semiconductors Germany GmbH

 Copyright © 2018-2022, SCRATCh 2

Version history

Date Version Author Comment

14.10.2019 0.1 Till Witt (NXP) Initial version

28.10.2019 0.2 Till Witt (NXP) Restructuring according to current discussions

30.10.2019 0.3 Franklin Selgert
(AnyWi)

Added high level architecture/ domain model and
building blocks

22.11.2019 0.9 See authors Version to be reviewed by consortium

10.12.2019 0.9a Franklin Selgert (Any
WI)

Restructuring and cleanup, adding relation with
some standard RA’s

16.12.2019 1.0 See authors Version A of deliverable

01.03.2020 1.1 See authors Minor rework

11.09.2020 1.2 Daniel Schneider
(DFKI)

Added requirements and third threat model
(privacy focused)

23.09.2020 1.3 Mehmet Kus, Karsten
Sohr (OTARIS)

Added section on technical architecture common
in IoT networks; OWASP Risk Rating

26.01.2021 2.0b Franklin Selgert
(AnyWi)

Reshuffling chapters, textual changes to first 4
chapters 4/2 added text DevOps and architecture

18.03.2021 2.1 Till Witt (NXP) Final review before publishing to ITEA portal

 Copyright © 2018-2022, SCRATCh 3

Table of contents

1. Reference architecture/framework scratch .. 4

Introduction .. 4

Purpose ... 5

Scope ... 5

2. A framework for SCRATCh ... 6

3. Functional viewpoints/model ... 7

4. Device architecture ... 10

5. Security view ... 11

6. SecDevOps view .. 12

7. Best Practices and tools to Design a secure system .. 14

1st proposed step: STRIDE ... 15

2nd proposed step: DREAD .. 16

3rd proposed step: LINDDUN ... 16

4th proposed step: OWASP Risk Rating Methodology ... 17

Requirements .. 18

8. Security in Common Architecture in IoT Networks ... 19

Common Architecture in IoT Networks .. 19

Security Considerations in IoT Networks .. 20

Security Considerations IoT Devices ... 20

9. References .. 22

 Copyright © 2018-2022, SCRATCh 4

1. Reference architecture/framework scratch

Used documents:

1. The Industrial Internet of Things Volume G1: Reference Architecture Version 1.9 June 19, 2019
2. Recommendations for commonalities and interoperability profiles of IoT platforms, Revision:

1.00 30-09-2018 Lead partner: ETSI (Create IoT Project)
3. ISO ‘ISO/IEC/IEEE 42010:2011’ [2] architecture concepts
4. IoT-A Final architectural reference model for the IoT v3.0 date 15.07.2013

Introduction
This technical report describes a Reference model/architecture to be used as structure for the
SCRATCh document. it specifies an IoT Architecture Framework comprising viewpoints and security
concerns to add in the development, documentation and communication of the Scratch use cases,
toolkit and Secure Development and Operation thoughts (SecDevOps) The reference architecture uses
a common vocabulary and a standard-based framework to describe typical viewpoints as business,
usage, functional and implementation.

The framework is generic and can be used as an aid to derive concrete architectures and builds on the
IoT-A reference model, IIRA and ISO IoT RA concepts, see fig 1.

Figure 1: IOT-A, IIRA and ISO models and SCRATCh framework

 Copyright © 2018-2022, SCRATCh 5

Purpose
This SCRATCh framework technical report addresses two primary purposes. For all SCRATCh work
efforts, it is the framework that links other technical documents and technical activities of the
consortium. For a broader IoT community, it provides guidance and assistance in the development,
documentation, communication, and deployment of Secure IoT systems.

Scope
This framework is meant as a guidance to be used for constructing specific IoT system architectures.
It is not describing all the viewpoint as mentioned in ‘ISO/IEC/IEEE 42010, and the framework is not to
be seen as yet another Reference architecture for IoT, but rather as a guide that provides an overview
of current thoughts concerning IoT architectures. The framework will highlight the security aspects
that needs to be addressed in any to be developed IoT architecture.

The following unique terms and definitions are used in this document:

• architecture framework conventions and common practices for architecture description
established within a specific domain or stakeholder community

• Architecture viewpoint (viewpoint for short): conventions framing the description and analysis
of specific system concerns.

• Stakeholder: an individual, team or organization having an interest in a concern and, by
extension an interest in, the viewpoint and system.

• Architecture view: the collection of ideas describing, analyzing, and resolving the set of specific
concerns in a viewpoint using the conventions set forth in that viewpoint. A view includes one
or more models.

• Reference architecture: the outcome of applying the architecture framework to a class of
systems to provide guidance and to identify, analyze and resolve common, important
architecture concerns. A reference architecture can be used as a template for concrete
architecture of systems of the class.

 Copyright © 2018-2022, SCRATCh 6

2. A framework for SCRATCh

Figure 2: Three Approaches

Many reference architectures exist in the IoT landscape, most of them follow more or less the
structure as presented in ISO 42010, but have different ways to present the viewpoints. Most
consistent in representation across all reference architectures Is the functional and implementation
or physical viewpoint. As a start of the SCRATCh framework, we will start our description using these
viewpoints. The Implementation viewpoint is a more project dependent viewpoint and will only be
presented in the different use cases. Within the framework we will limit this viewpoint to a schematic
three tier architecture to be used if needed in the security assessments (fig3)

Figure 3: simple three layered implementation view

 Copyright © 2018-2022, SCRATCh 7

3. Functional viewpoints/model
For the functional viewpoint we will use the layered structure as presented in the Create IoT project a
structure that maps very well on the ISO Layers. The Create IoT project analyzed several implemented
architectures within the Large scale IoT projects of the EU and found these common layers, on top of
these layers we map the two functional models of IIRA and IoT-A

Figure 4: Mapping of IIRA (left) and IoT-A (right)

In the IoT-A reference architecture the terms functional model and functional view are used,
combining the model with requirements should lead to a functional view (see fig 4). The Functional
View describes the system ‘s runtime Functional Components, including the components
responsibilities, their default functions, their interfaces, and their primary interactions.

The IIRA talks about functional domains as model for decomposition of IoT system, with information
flows (green arrows) and decision flows (red arrows). Both models have their own approach but also
have commonalities and can be plotted on layers as described by the Create IoT project (see table 1).

 Copyright © 2018-2022, SCRATCh 8

Table 1: mapping functional models to the create IoT layers

Layers Maps to IIRA/IoT-A Description IIRA and IoT-A

Collaboration
and processes

Business domain
Process
management

functional domain for implementing business functional
logic
conceptual integration of (business) process management
systems

Applications application represents the collection of functions implementing
application logic that realizes specific business
functionalities.

Service Operations
Service
Organization

Management and operation of the control domain. It
represents the collection of functions responsible for the
provisioning, management, monitoring and optimization
of the systems in the control domain
used for composing and orchestrating Services of
different levels of abstraction, it effectively links the
Service requests from high level functions such as IoT
Process Management, or external applications, to basic
services that expose Resources

Abstraction Virtual entity
Information
domain

Virtual Entity level models higher-level aspects of the
physical world, and these aspects can be used for
discovering Services. Examples for interactions between
applications and the IoT system on this abstraction level
are ―Give me the outdoor temperature of Car xyz.
Virtual entities can be used for analytic and AI type of
applications, without interfering with the actual IoT
system operation.
The information domain is a functional domain for
managing and processing data. It represents the
collection of functions for gathering data from various
domains, most significantly from the control domain, and
transforming, persisting, and modeling or analyzing those
data to acquire high-level intelligence about the overall
system.1 The data collection and analysis functions in this
domain are complementary to those implemented in the
control domain

Storage N/A Not a separate function in the models, storage is a generic
function available for use by several layers and can be
external or physical internal.

Processing Control
IoT service

The control domain implements industrial control
systems. The core of these functions comprises fine-
grained closed-loops, reading data from sensors applying

1 Possibly in a hierarchy, at several levels.

 Copyright © 2018-2022, SCRATCh 9

rules and logic, and exercising control over the physical
system through actuators. IoT service is the functional
abstraction of the sensor and actuator, effectively
providing the interface between the physical and
functional world.

Networks &
Communications

IIRA the Arrows
Communication

Information and control flows between functional and
physical domains.
Abstracts the variety of interaction schemes derived from
the many technologies belonging to IoT systems and
provides a common interface to the Service layer.
Provides an interface for instantiating and for managing
high-level information flow. Starting from the top layers
of the ISO/OSI model it considers data representation,
end to end path information, addressing issues (i.e.
Locator/ID split), network management and device
specific features.

Physical / Device
Layer

Physical system
Device

Physical layer actual devices, gateways networks,
modules, drivers, MPU/MCU etc.

This gives us the possibility to map function to layers and draw functional diagrams as figure 4 if
needed. The implementation view will give us the means to place the functional components in a
logical relation to each other. Management and security in most models are verticals that span
multiple layers to fulfil their special role. Implementing this role would mean that every functional
block has a security and management component to it, that combined make this vertical overarching
control function. In SCRATCh security is viewed from a process point of view, as in addressing it as an
essential activity in a most phases of the DevOps process.

 Copyright © 2018-2022, SCRATCh 10

4. Device architecture
Architecture concepts mentioned apply to complete systems, if narrowed down to the level of a single
device some viewpoint does not need to be considered on the level of a reference architecture, e.g.
the business viewpoint. A functional viewpoint and implementation viewpoint can be drafted.

Below figure 6 is an example of a functional viewpoint from the sunrise project. The viewpoint can be
used to review all functional blocks using the security viewpoint described in chapter 5 and
investigating the architecture on potential weaknesses.

Figure 5 (source TUD project Sunrise)

 Copyright © 2018-2022, SCRATCh 11

5. Security view
This architecture is a first step in the holistic approach of SCRATCh in building a type of security
framework. Objectives of a security framework* (source H2020 create IoT)

The IoT security framework must consider the following elements:

1. Ensuring IoT security mechanisms
2. Ensuring IoT data protection
3. Ensuring IoT system resilience
4. Providing IoT system/application trust

Figure 6 IOT security framework dependencies (source H2020 Create IoT)

Properties for security are often based on the established CIA triad: confidentiality, integrity, and
availability* (H2020):

1. Confidentiality ensures that information is not made available or disclosed to unauthorized
individuals, entities, or processes. Examples of measures for achieving or enhancing
confidentiality include protected transmission of collected data, protected access with
suitable authentication schemes, protected processing of data, and protected storage.

2. Integrity ensures the accuracy and completeness of data over its entire life cycle. Examples of
measures for achieving or enhancing integrity include schemes such as digital signatures.

3. Availability ensures accessibility and usability upon demand by an authorized entity. Examples
of measures for achieving or enhancing availability include preventing service disruptions due
to power outages, hardware failures, or security denial of service attacks using schemes such
as redundant systems.

One of the meaning for security in the oxford dictionary is “the activities involved in protecting a
country, building or person against attack, danger, etc.” Security as an activity to achieve this a
framework needs to be embedded in a process in the case of SCRATCh the aim is to use the DevOps
process.

 Copyright © 2018-2022, SCRATCh 12

6. SecDevOps view

Figure 7 ArchOps: Extending the DevOps Loop
(https://smarchy.com/blog/f/archops-part-ii-extending-the-devops-loop)

Figure 8 DevOps and architecture

What is the relation between architecture and SecDevOps? There is no direct relation as DevOps is a
process-oriented approach and a Refence architecture is an inherent outcome of a process. In the
DevOps way of thinking two approaches can be suggested.

1. Incorporate the architecture function in the DevOps Team, 0rganizational approach
2. Extend DevOps with an extra loop between Monitor and Plan to design and analyze the

architecture, Process approach

The assumption in SCRATCh is: the plan Phase of DevOps is the phase where normally the system
architecture is drafted. From a security perspective important artifact of the process because it is the
input for a security analysis like e.g., Stride. In SCRATCH we emphasize a holistic approach meaning
not only use the architecture to make a safe system but also design the architecture to keep the
system safe.

 Copyright © 2018-2022, SCRATCh 13

Security is an often a missing part left to be solved by security experts in the release phase. SCRATCh
proposes a methodology to do a proper shift left of security and put is at the start of development in
the plan phase. To support this methodology, we want to inject tools in the cycle that build up the
trust and Security of the system at hand. Tools and methodology are described in deliverable D2.1.

DevOps and security viewpoint

1. Ensuring IoT security mechanisms
a. Input of design constrains from best practices and standards
b. Verify the implementation of the design constrains
c. Monitor operational system and monitor threats reports on used code libraries

2. Ensuring IoT data protection
a. The design constrains reflect the level of protection needed.
b. Implementation of protection mechanism like secure storage, secure elements, and

encryption mechanisms
3. Ensuring IoT system resilience

a. A basic design constrain is the capability of recovery from failure, as a result of this
secure recovery mechanism need to be in place, specific manifest of this is a method
for secure firm and software update

4. Providing IoT system/application trust
a. Part of the architecture is the embedding of trust mechanism.
b. The verification of the trust mechanisms

 Copyright © 2018-2022, SCRATCh 14

7. Best Practices and tools to Design a secure system
Having layout, the framework we can start a design process according to certain guidelines and rules.
There are certain basic rules that apply:

The components of the system shall combined provide the necessary management and security
requirements:

1. Complying with the security framework of chapter 4.
2. Providing the necessary interaction points to make implementation of Sec Dev Ops possible.

The process starts with selecting a proper set of design constrains, as an example one could build on
the OWASP top 10 or the best practices of ENISA. Next step would be a draft architecture on system
level and if needed for security reasons also on device level. This draft architecture must also describe
the interaction points to guarantee the capability to keep the system safe and up to date as well as to
gather monitoring data.

 Copyright © 2018-2022, SCRATCh 15

1st proposed step: STRIDE
A simple look at “what can go wrong in this system we're working on” can be achieved using STRIDE.
This consist of looking at the threats and the desired property to be achieved:

Threat Desired property
Spoofing Authenticity
Tampering Integrity
Repudiation Non-repudiability
Information disclosure Confidentiality
Denial of Service Availability
Elevation of Privilege Authorization

If we look at the ENISA study (Baseline Security Recommendations for IoT in the context of Critical
Information Infrastructures November 2019) where numerous threats are listed, none of the Stride
threats are named specifically. All threats mentioned can be seen as a result of an exploit of one or
more of the threats listed in the STRIDE model.

 E.g. (ENISA threats in bold)

1. Man in the middle attack: an attempt to tamper with information in order to destroy the
integrity of the system. Such an attack will have an effect on several STRIDE factors, e.g.
tampering, spoofing, repudiation.

2. Device modification: A example of tampering by exploiting a device vulnerability.
3. Software vulnerabilities: a more generic category that can lead to information disclosure,

authorization issues, etc.
4. DDoS and Information gathering are two threats that match directly on Denial of Service and

Information disclosure of the STRIDE model

Threat modeling in the design Phase is a start to make the system more resilient. In scratch we will
test this hypothesis by starting with STRIDE in the design phase for each use case of the project. After
which we will try to abstract the commonalities of this approach into a threat modeling method to be
used in the design phase. This covers mainly the architectural viewpoint 1 and 2 the layered and
domain model.

 Copyright © 2018-2022, SCRATCh 16

2nd proposed step: DREAD
• Damage – how bad would an attack be?
• Reproducibility – how easy is it to reproduce the attack?
• Exploitability – how much work is it to launch the attack?
• Affected users – how many people will be impacted?
• Discoverability – how easy is it to discover the threat?

DREAD lies more in the realm of operation and deployment and should be covered by the processes
in the SecDevOps cycle. Why, e.g. damage will depend on how fast you can react on a successful
exploit, which again depends on how you monitor your system (discoverability). Reproducibility is
heavily dependent on your actual system layout as is affected users. Within Scratch the emphasis
from the Dread analysis will be on Reproducibility, Exploitability, and Discoverability. Damage and
Affected use cases are very much sector and system dependent. DREAD will be performed in each use
case with the mindset to discover commonalities that can enrich the SecDevOps process.

3rd proposed step: LINDDUN
In addition to the security-focused STRIDE and DREAD frameworks, the LINDDUN framework can be
employed to strengthen privacy [Robles-Gonzalez.2020]. There is some overlap in the presented
threats, since LINDDUN is originally based on STRIDE[Deng.2011].

• Linkability - How easy is it to link two or more items of interest (IOIs)?
• Identifiability - How easy is it to identify the subjected associated with an IOI?
• Non-repudiation - Can plausible deniability be broken?
• Detectability - How easy is it to detect an IOI?
• Information Disclosure - Is personal information exposed to unauthorized parties?
• Content Unawareness - Is the user aware of the information disclosed to the system?
• Policy Noncompliance - Does the system comply with its stated privacy policy?

 Copyright © 2018-2022, SCRATCh 17

4th proposed step: OWASP Risk Rating Methodology
Microsoft has deprecated DREAD within their SDL as its results are sometimes arbitrary (see Shostack
[10], page 180). One alternative to DREAD is the OWASP Risk Rating Methodology published by the
Open Web Application Security Project [11]. The OWASP Risk Rating Methodology has the advantage
that it uses the CVSS score to rate architectural risks. This allows one to have a common risk rating
methodology for threat modeling, code reviews, and penetration testing such that these different
kinds of software security risks can be handled in a unified way.

 The OWASP Risk Rating Methodology comprises the following steps:

1. Identifying a Risk
2. Factors for Estimating Likelihood
3. Factors for Estimating Impact
4. Determining Severity of the Risk
5. Deciding What to Fix
6. Customizing Your Risk Rating Model.

Broadly speaking, the methodology defines several factors concerning the likelihood as well as the
severity of risks and calculates the product of both as usual in risk management. Both the scales for
severity and likelihood are within the range of 0..9. These values are then merged into an overall risk
value according to the following two tables (taken from [7]):

Likelihood and Impact Levels

0 to <3 LOW

3 to <6 MEDIUM

6 to 9 HIGH

Tabelle 1: Likelihood and impact Levels of OWASP Risk Rating Methodology.

Overall Risk Severity

Im
pact à

 HIGH Medium High Critical

MEDIUM Low Medium High

LOW Note Low Medium

 LOW MEDIUM HIGH

Likelihood à

Tabelle 2: Overall Risk Rating of OWASP RISK Rating Methodology.

The details of the OWASP Risk Rating Methodology including all factors influencing likelihood and
impact can be found in [11].

 Copyright © 2018-2022, SCRATCh 18

Requirements
Requirement engineering is an important success factor in software projects [Durmic.2020]. Two types
of requirements can be distinguished: functional requirements (FR), which define the result behavior
of a system, and non-functional requirements (NFR), which define a system’s qualities and constraints
[Glinz.2017].

Functional Non-Functional

Authentication Confidentiality

Authorization Integrity

Session Management Availability

Error and Exception Handling Non-repudiation

Vulnerability Scan OS Agnostic Middleware

Code Analysis Certified Middleware

Test Framework Certified Secure Element

Gateway Smoke Test PSA Compliance

Authenticated Logging Secure and up-to-date 3rd Party libraries

Confidential Logging Attestation

Authenticated Firmware Upgrade Accessible Documentation

Confidential Firmware Upgrade Integration of scratch devices

Secure Boot Integration of non-scratch devices

Deployment Automation Device Management Migration of legacy devices

Secure Element personalization Docum. of Migration of legacy devices

Unique identifier Un-linkability

Key storage Anonymity/Pseudonymity

Authorized Device Reset Plausible Deniability

Automated Software Deploy & Delivery process Undetectability

Automated Firmware Deploy & Delivery process Policy compliance

Feedback of the Firmware/Software
Deployment

Automated Testing

Authenticated Interface Access

 Copyright © 2018-2022, SCRATCh 19

8. Security in Common Architecture in IoT Networks
Common Architecture in IoT Networks
In Figure 7, an architecture that is common in IoT networks including industrial IoT is shown. One part
of this network are IoT devices (e.g., smart home devices, industrial robots, and medical devices).
Usually these IoT devices are connected via low-power wireless networks, such as ZigBee and Z-Wave.
In addition, these IoT devices are controlled by a more powerful gateway, which in turn is connected
to other networks, such as WAN or LAN.

The IoT gateway itself is often controlled with the help of mobile applications as well as an IoT cloud.
This IoT cloud takes over the job of device management including software update management,
provisioning remote access (e.g., sending remote commands to devices and retrieving events from the
IoT devices), remote configuration, and obtaining statistics on the IoT network.

Figure 7: A common IoT architecture.

 Copyright © 2018-2022, SCRATCh 20

Security Considerations in IoT Networks
There are different communications channels that must be secured in IoT networks. In particular,
security-by-design approaches such as STRIDE analyses have to consider the following
communications channels:

• Device to device (M2M): Communication via low-power wireless networks (e.g., ZigBee, Z-
Wave, MQTT)

• Gateway to device (and vice versa): Communication via low-power wireless networks
• Gateway to cloud (and vice versa): Communication often via HTTPS/REST, RPC, LoRaWAN, TR-

069, and MQTT.
• Possibly smartphone connections (local and remote access): HTTP(S)-based communications,

Web sockets.

The aforementioned communications channels need to be secured according to the CIA protection
goals and mutual authentication mechanisms. Of special interest for STRIDE analyses are the cloud –
because it could be a single point of failure of the whole IoT network– and the IoT gateway, which
controls all the devices and must deliberately open ports for remote access. Software security issues
must be considered foremost for these two central components of an IoT network.

Security Considerations IoT Devices
Source TUD sunrise project

 Copyright © 2018-2022, SCRATCh 21

 Copyright © 2018-2022, SCRATCh 22

9. References

1. The Industrial Internet of Things Volume G1: Reference Architecture Version 1.9 June 19, 2019
2. Recommendations for commonalities and interoperability profiles of IoT platforms, Revision:

1.00 30-09-2018 Lead partner: ETSI (Create IoT Project)
3. ISO ‘ISO/IEC/IEEE 42010:2011’ [2] architecture concepts
4. IoT-A Final architectural reference model for the IoT v3.0 date 15.07.2013
5. H2020 CREATE IoT D06_02_WP6_2018
6. Robles-González, Antonio & Parra-Arnau, Javier & Forné, Jordi. (2020). A LINDDUN-Based

Framework for Privacy Threat Analysis on Identification and Authentication Processes.
Computers & Security

7. Deng, Mina & Wuyts, Kim & Scandariato, Riccardo & Preneel, Bart & Joosen, Wouter. (2011).
A privacy threat analysis framework: Supporting the elicitation and fulfillment of privacy
requirements. Requir. Eng.. 16. 3-32. 10.1007/s00766-010-0115-7.

8. Durmic, Nermina. (2020). Information Systems Project Success Factors: Literature Review.
Journal of Natural Sciences and Engineering.

9. Glinz, Martin. (2017). A Glossary of Requirements Engineering Terminology.
10. Adam Shostack. 2014. Threat Modeling: Designing for Security (1st. ed.). Wiley Publishing.
11. Jeff Williams. 2020. OWASP Risk Rating Methodology. Accessible under:

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

