
1 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deliverable D1.1b 

SECURE AND AGILE CONNECTED THINGS 
SCRATCh  

Copyright © 2018-2022, SCRATCh 



 

 

 
Copyright © 2018-2022, SCRATCh 2 

Deliverable D1.1b: Requirements Elicitation 
 

Work package:  WP1 

Affected milestone:  MS3 

 

Partners involved:  HI Iberia 

    AnyWi 

    BEIA 

    DFKI 

    Diebold Nixdorf 

    Irdeto 

    Nimbeo 

    Quobis 

    NXP 

    Sirris 

 

Date:    27/11/2020 

Deliverable version:  v1.0 

Editor:    Raúl Santos de la Cámara, HI Iberia 

Author(s):   Raúl Santos de la Cámara, HI Iberia 

     

      

Responsible Contact: Raúl Santos de la Cámara 

HI Iberia Ingeniería y Proyectos 

    c/ Juan Hurtado de Mendoza, 14. 28036 Madrid (Spain) 

    rsantos@hi-iberia.es 

    (+34) 699 830 005 

 

mailto:rsantos@hi-iberia.es


 

 

 
Copyright © 2018-2022, SCRATCh 3 

Version history 
 

Date Version Author Comment 

16/04/2020 0.1 Raúl Santos (HIB) Initial ToC and objectives sent for 

comments 

29/04/2020 0.15 Raúl Santos (HIB) Refined ToC. 

14/05/2020 0.2 Raúl Santos (HIB) Final ToC, added deliverable 

production schedule. 

23/06/2020 0.3 Franklin Selgert 

(AnyWi) 

Integration of contents for section 2 

with abstraction of the SecDevOps 

phases and links to tools,. 

02/10/2020 0.4 Raúl Santos (HIB) Reformulation of section 3, launch of 

second requirement collection phase. 

17/11/2020 0.5 Raúl Santos (HIB) Requirements M25 inserted in 

chapter 3, content for section 2.3 on 

process, added introduction 

conclusions. 

23/11/2020 0.9 Raúl Santos (HIB) Polishing up of section 2, 

reformatting of the document. 

Release candidate proposed for 

internal review. 

27/11/2020 1.0 Raúl Santos (HIB) Clean up and production of release 

candidate document. 

 

  



 

 

 
Copyright © 2018-2022, SCRATCh 4 

Table of Contents 
1. Introduction ....................................................................................................................... 5 

2. SCRATCh approach to requirements ............................................................................... 7 

2.1. Evolution of the process within the course of the project ...................................... 7 

2.2. SCRATCh requirements process as of M25 ............................................................ 12 

2.3. Good-practices / Design constraints....................................................................... 14 

2.4. Process guidance document ................................................................................... 20 

3. Requirements M27 .......................................................................................................... 30 

4. Conclusions and next steps ............................................................................................ 51 

4.1. Conclusions ............................................................................................................... 51 

4.2. Next steps ................................................................................................................. 51 

5. References ........................................................................................................................ 52 

 



 

 

 
Copyright © 2018-2022, SCRATCh 5 

1. Introduction 
D1.1b is the culmination of the task T1.1a and T1.1b providing requirements elicitation, 

analysis and study of its broader management in the scope of a SecDevOps 

environment. In the previous deliverable T1.1a a first approach was presented, including 

a first overview of the capture and representation methodologies, some of the possible 

tools for use in the project and a first list of SCRATCh requirements at that point in the 

project. This included general requirements as well as some requirements expressing 

the initial needs of more concrete results of the project such as tools and demonstrators 

for our project use cases (Smart Retail, Police and Smart Grid). 

Since the wrapping up of that document over a year has passed in which the project has 

moved from an initial conceptualization stage to a development stage in which the 

major building blocks have been outlined. These include first descriptions of the 

demonstrator, which outline the problems that we’re trying to solve, and the generic 

demonstrator and its related documentation such as the architecture and QMS 

document, which present a first approach to the solutions that SCRATCh proposes. 

On the highest level, the overall goal of this document is twofold: 

1. To present a requirement collection and management strategy that fits within the 

general methodology proposed by SCRATCh. This includes appropriate links with 

the toolset and the generic demonstrator. Since the tools are presented as a 

toolset rather than a monolithic toolchain, it is important that the requirements 

approach caters to this flexibility, offering options to deal with requirements at 

different stages of the architecture and different process levels. 

2. To present, using that methodology, the requirements for SCRATCh, some of the 

requirements already defined at the delivery of this document (M27). Since 

developments in the project are iterative and continue for more than a year and 

a half after this deliverable is presented, requirements will continue to evolve. So 

the snapshot presented here is to be understood as a vision in a particular 

moment of time. Requirements will continue to evolve using the methodology 

presented in 1) until the end of SCRATCh. 

To fulfill these objectives, the deliverable is organized as follows: 

• In this section 1, a summary of the document (goals and general approach) is 

provided. 

• In section 2 we present the SCRATCh approach to requirements elicitation, 

management, storage and connections with the toolset and different parts of the 

DevOps cycle, addressing the objective 1) above. This is the main methodological 

part of this document and the ultimate contribution of WP1 on requirements to 

the SCRATCh workflow. 



 

 

 
Copyright © 2018-2022, SCRATCh 6 

• In section 3 we present the current (as of M27) requirements for SCRATCh: the 

methodology itself, the toolkit as a whole and each of the application use cases: 

Smart Retail, Police and Smart Grid. 

• Finally, in section 4 the work performed is summarized and conclusions are 

presented. This includes links with subsequent activities even after the end of WP1 

activities. 

 



 

 

 
Copyright © 2018-2022, SCRATCh 7 

2. SCRATCh approach to requirements 
2.1. Evolution of the process within the course of the project 

In the course of WP1 and the whole of SCRATCh we have iterating several differing views 

and levels of discussion over how requirements should be handled. These have, in a first 

approximation, divided basically on two different levels of discussion: 

- How the SCRATCh project requirements should be expressed and shared. 

- How the requirements of the applications built in accordance to the  

The first of these topics (the requirements for SCRATCh) is the main goal of tasks T1.1a 

and T1.1b in which this deliverable is produced. The collected requirements are 

presented in the next chapter of this document. But the process of general 

requirements collection and management for a DevSecOps IoT perspective, which has 

been part of the discussion for the toolkit in WP2 has informed many of our decisions 

during the period. We will provide here a short summary of the different strategies 

followed which mirror well the experience that an SME trying to work out a product in 

IoT may follow. 

Th process started with an initial stage in which the most basic methods were put 

forward: usage of shared table for collecting the requirements and the use of simple 

methods to format requirements in a straightforward manner. 



 

 

 
Copyright © 2018-2022, SCRATCh 8 

 

FIGURE 1 REQUIREMENTS COLLECTION IN SCRATCH: TEXT-BASED APPROACH 

As readable in the Figure, it was proposed that requirements would be expressed in 

plain language and according to the MoSCoW prioritization terminology and IEEE 830-

1998 [1] directions. This approach was discussed internally in the project prior to the 

kickoff (Spring 2019) and was deemed easy to understand by partners and useful to a 

certain degree. It represents very much the way in which requirements are elicited and 

managed for an SME that deals with simple products, most often incorporating little to 

no security. As such, we could define it as the baseline approach to requirements 

management. 

After the kickoff and upon discussions with the experts in the project that had more 

knowledge of the different available approaches, it was decided to try and experiment 

with requirement collection using a dedicated markup language, concretely sphinx-

needs [2]. This approach, which was discussed in some depth in the predecessor to this 

document, D1.1a, offers significant functional benefits: 

- More precise syntax, including elements for signaling dependencies, levels of 

requirements description and others. 



 

 

 
Copyright © 2018-2022, SCRATCh 9 

- Better versioning: since requirements are expressed in a mark-up language close 

to rST or Markdown, they can be readily versioned in a code versioning system. 

- Better links with code: since they can be expressed at the same level as the code 

(text files in a versioning system) it is easier to link requirements with code 

assets. This makes it also much easier to integrate them in tools such as unit 

testing systems as tests can readily validate outputs with the expected value of 

the requirement. 

These advantages were deemed useful by the consortium and a sphinx-needs 

versioning and automatic processing system was put in place. The consortium was then 

asked to elicit the initial requirements and around 40 requirements were collected and 

reported in D1.1a. The tools provided good representation of the requirements as 

depicted in Figure 2. 

 

FIGURE 2 SAMPLE REQUIREMENT IN SPHINX-NEEDS 

After the deliverable D1.1a was compiled, the approach was reevaluated. It was found 

out that, while potentially useful and offering benefits to deal with the technical aspects 

of the project, this approach presented some issues: 

- The learning curve of the syntax was very steep. Although a guide was produced 

so partners could learn the basics of the language and some helping assets such 

as templates were generated, partners struggled to codify requirements. Sphinx-

needs is a markup oriented to developers while productors of requirements are 

typically more business-oriented users that maybe weren’t very efficient in 

aspects such as keeping text indentation or removing trailing spaces. 

- The approach wasn’t equally suitable for all kinds of requirements. While for 

some technical requirements the process could yield significant benefits (e.g., a 

technical specification of a IoT device’s performance such as throughput) it 

offered fringe benefits to the majority of requirements. For example, Use Case 

requirements are very much user-story oriented and so they couldn’t be 



 

 

 
Copyright © 2018-2022, SCRATCh 10 

automatically tested. Then the benefits achieved do not justify the extra effort 

put into generating the sphinx-needs markup. 

- The available tools are very basic. While setting up an environment that manages 

the sphinx-needs markup in a versioning system and generates some output on 

its compilation was quite straightforward, in the end all editing of the 

requirements was done in text editors that provide little help to the end-user. 

This was exacerbated by the fact that checking of syntax was only possible upon 

committing changes to the repository and checking the output (if syntax was at 

least correct for compilation) or error traces in a Drone output. This had also the 

inconvenience that if one user produced bad input, all of the process could be 

disrupted. 

With this experience at hand, it was decided that using sphinx-needs as the mainline 

tool for requirements management was more suited for very focused development 

operations and not for the main project. 

At the same time, and evolving also from a different part of the work presented in D1.1a, 

a tool for compiling and managing the general industry requirements (e.g., from ENISA, 

OWASP and others) was starting to emerge in the project. It was the Knowledge Base 

kept by AnyWi in the www.trusttab.com website: 

 

FIGURE 3 TRUSTTAB WEBSITE SHOWING ENISA THREATS IN THE KNOWLEDGE BASE 

This tool appeared as an excellent repository for these generic high-level assets and 

SotA and soon it was apparent that it could also host requirements in a more human-

http://www.trusttab.com/


 

 

 
Copyright © 2018-2022, SCRATCh 11 

readable form than sphinx-needs. This was the origin of the method for collecting 

requirements that we have used for this document, the final result of which is discussed 

in the following Chapter 3.  

But usage of the TrustTab website could also be quite technical for all of the intended 

end-users of a requirements tool (which includes developers but also business users), so 

a transitional approach was used. 

 

FIGURE 4 REQUIREMENTS ELICITATION FOR M25 USING SPREADSHEET 

The general taxonomy of elements needed for a requirement was used as the basis for 

a simple requirement collection spreadsheet which was collectively filled in by partners 

in the project. This was done using a collaborative spreadsheet so all partners could 

operate in parallel. 

After the spreadsheet was complete, a simple import into the database of TrustTab was 

done so that the requirements could be accessed online. 

In the end this approach yielded excellent results both in terms of number of 

requirements and in general speed of collection by partners. In comparison with the 

cumbersome process used in D1.1a, for this final iteration we have doubled the number 

of requirements in a fashion which is easy to understand but can still lead to high-

quality, reusable requirements: the elements in TrustTab could be accessed via REST 

calls by testing programs in order to validate the requirements same as was proposed 

with sphinx-needs. 

It may seem like the approach has come full-circle from the first offering of collaborative 

documents for requirements, but this final approach is much more integrated with 

project assets. TrustTab and other tools are currently being proposed as part of the 



 

 

 
Copyright © 2018-2022, SCRATCh 12 

toolset in WP2 as the core result in SCRATCh. Other open source tools such as CAIRIS1 

and Ephemeris2, which offer sophisticated requirement management as well as 

connections with other areas of interest such as risk management are being considered 

for inclusion in the next iterations of the SCRATCh toolkit. 

2.2. SCRATCh requirements process as of M25 

In this section, and having taken into consideration the evolution presented in the 

previous section 2.1, we present the current process of requirements engineering 

followed in SCRATCh for the production of requirements.  

This links with the work undertaken in task T1.2 and work package WP2 regarding the 

production of a toolkit for developers to produce SCRATCh-based applications. In that 

production process requirements engineering is often the first activity and so it has to 

rely on a methodological framework that is presented here in the form of the different 

processes to follow. 

According to Sommerville (Sommerville, 2016) the requirements process contains three 

phases: elicitation and analysis, specification and validation. A logical fourth would be 

requirement management. The all-day practice is more complicated and fuzzier, Agile 

practices, rapid prototyping, novel products, new markets, all contribute to a 

requirement process not so structured. The experience in the development of the 

SCRATCh demonstrators did underpin this thought. Analyzing the relation between 

security and requirements was a next step after initial requirements where gathered. 

Some thoughts on this analysis is reflected in the whitepaper (franklin2020). A 

conclusion of this whitepaper:  inject (security)design constraints at the beginning of a 

development cycle, e.g. use an abstract of the ENISA good practices. 

How does this fit in the requirements process is presented in Figure 5 

 
1 https://cairis.org/ - CAIRIS requirements management tool. 
2 https://github.com/shuart/ephemeris - Ephemeris requirements management tool. 

https://cairis.org/
https://github.com/shuart/ephemeris


 

 

 
Copyright © 2018-2022, SCRATCh 13 

 

FIGURE 5 REQUIREMENTS ENGINEERING (SOMMERVILLE 2016) 

Injecting at start mostly impacts system requirements, analyzing security features it is 

safe to assume that they mainly impact system description and architecture and are 

corrected or changed based on user or stakeholder needs. Typically, an agile process 

feedback from early prototypes may require adaptation of security measurements from 

a usability perspective or technical limitations. It is these iterations that lead to a viable 

product, that is then as a last step validated against requirements and sector specific 

regulations. If due process is followed the system should pass the sector specific 

regulations as they were input in the early stage development, and deviation should be 

documented and mitigated. 

The SCRATCh approach to the requirements process based on analysis and 

demonstrator experience is: 

1. Create a minimum generic good practice set to start with for any development. 

The used tools here would be the Knowledge base category system requirements 

(as depicted in section 2.1 in the Figure 3). This corresponds to the generic 

requirements as presented in D1.1a. 

2. Add a minimum set of process related good practices to guide the DevOps 

process. 

3. Combine both sets in a process guidance document describing the DevOps cycle, 

with Tooling examples including the SCRATCh specific tools. 

4. For each demonstrator an evaluation document describing the use of 

requirements, best practices & guidelines in their development. (separate 

documents) 

We continue to examine the different steps proposed in this process. 



 

 

 
Copyright © 2018-2022, SCRATCh 14 

2.3. Good-practices / Design constraints 

1: IT Architecture technical requirements (source ENISA) 

Title Description Threats 

Authorization Device firmware should be designed to 

isolate privileged code, processes and data 

from portions of the firmware that do not 

need access to them, and device hardware 

should provide isolation concepts to prevent 

unprivileged from accessing security 

sensitive code. in order to minimise the 

potential for compromised code to access 

those code and/or data. 

Failures / 

Malfunctions 

Nefarious Activity 

/ Abuse 

Eavesdropping / 

Interception / 

Hijacking 

Cryptography Ensure a proper and effective use of 

cryptography to protect the confidentiality, 

authenticity and/or integrity of data and 

information (including control messages), in 

transit and in rest. Ensure the proper 

selection of standard and strong encryption 

algorithms and strong keys, and disable 

insecure protocols. Verify the robustness of 

the implementation. 

Nefarious Activity 

/ Abuse 

Eavesdropping / 

Interception / 

Hijacking 

Cryptography Cryptographic keys must be securely 

managed. Encryption is only as robust as the 

ability for any encryption-based system to 

keep the encryption key hidden. 

Cryptographic key management includes key 

generation, distribution, storage, and 

maintenance. 

Nefarious Activity 

/ Abuse 

Eavesdropping / 

Interception / 

Hijacking 

Cryptography Support scalable key management schemes. 

It has to be considered that tiny sensor 

nodes cannot provide all security features 

because they have lots of system limitations. 

Thus, the sensed data carried over 

infrastructure networks may not have strong 

encryption or security protection. 

Nefarious Activity 

/ Abuse 

Eavesdropping / 

Interception / 

Hijacking 

Failures / 

Malfunctions 

Cryptography Build devices to be compatible with 

lightweight encryption and security 

techniques (including entities secure 

identification, secure configuration, etc.) that 

can, on the one hand, be usable on 

resource-constrained devices, and, on the 

other hand, be scalable so to minimise the 

management effort and maximise their 

usability. 

Nefarious Activity 

/ Abuse 

Eavesdropping / 

Interception / 

Hijacking 



 

 

 
Copyright © 2018-2022, SCRATCh 15 

Title Description Threats 

Secure and 

trusted 

communications 

Disable specific ports and/or network 

connections for selective connectivity. If 

necessary, provide users with guidelines to 

perform this process in the final 

implementation. 

Nefarious Activity 

/ Abuse 

Eavesdropping / 

Interception / 

Hijacking 

Secure and 

trusted 

communications 

Ensure that communication security is 

provided using state-of-the-art, standardised 

security protocols, such as TLS for 

encryption. 

Eavesdropping / 

Interception / 

Hijacking 

Damage / Loss (IT 

Assets) 

Secure and 

trusted 

communications 

Guarantee the different security aspects -

confidentiality (privacy), integrity, availability 

and authenticity- of the information in 

transit on the networks or stored in the IoT 

application or in the Cloud, using data 

encryption methods to minimise network 

threats such as replay, interception, packet 

sniffing, wiretapping, or eavesdropping. 

Nefarious Activity 

/ Abuse 

Eavesdropping / 

Interception / 

Hijacking 

Failures / 

Malfunctions 

Secure and 

trusted 

communications 

Guarantee data authenticity to enable 

trustable exchanges (from data emission to 

data reception - both ways). Data is often 

stored, cached, and processed by several 

nodes; not just sent from point A to point B. 

For these reasons, data should always be 

signed whenever and wherever the data is 

captured and stored. 

Nefarious Activity 

/ Abuse 

Eavesdropping / 

Interception / 

Hijacking 

Secure and 

trusted 

communications 

Rate limiting – controlling the traffic sent or 

received by a network to reduce the risk of 

automated attacks. 

Nefarious Activity 

/ Abuse 

Eavesdropping / 

Interception / 

Hijacking 

Secure and 

trusted 

communications 

Make intentional connections. Prevent 

unauthorised connections to it or other 

devices the product is connected to, at all 

levels of the protocols. IoT devices must 

provide notice and/or request a user 

confirmation when initially pairing, 

onboarding, and/or connecting with other 

devices, platforms or services. 

Nefarious Activity 

/ Abuse 

Eavesdropping / 

Interception / 

Hijacking 



 

 

 
Copyright © 2018-2022, SCRATCh 16 

Title Description Threats 

Secure Interfaces 

and network 

services 

Implement a DDoS-resistant and Load-

Balancing infrastructure to protect the 

services against DDoS attacks which can 

affect the device itself or other devices 

and/or users on the local network or other 

networks. 

Nefarious Activity 

/ Abuse 

Secure Interfaces 

and network 

services 

Ensure web interfaces fully encrypt the user 

session, from the device to the backend 

services, and that they are not susceptible to 

XSS, CSRF, SQL injection, etc. 

Nefarious Activity 

/ Abuse 

Secure Interfaces 

and network 

services 

Ensure only necessary ports are exposed 

and available. 

Eavesdropping / 

Interception / 

Hijacking 

Failures / 

Malfunctions 

Secure Software / 

Firmware updates 

Offer an automatic firmware update 

mechanism. Devices should be configured to 

check for the existence of firmware updates 

at frequent intervals. Automatic firmware 

updates should be enabled by default. A 

device may offer an option to disable 

automatic firmware updates and require 

authentication for it. 

Outages 

Failures / 

Malfunctions 

Secure Software / 

Firmware updates 

Backward compatibility of firmware updates. 

Automatic firmware updates should not 

change network protocol interfaces in any 

way that is incompatible with previous 

versions. Updates and patches should not 

modify user-configured preferences, 

security, and/or privacy settings without 

user notification. Users should have the 

ability to approve, authorise or reject 

updates. 

Outages 

Failures / 

Malfunctions 

Trust and Integrity 

Management 

Sign code cryptographically to ensure it has 

not been tampered with after being signed 

as safe for the device, and implement run-

time protection and secure execution 

monitoring to be sure malicious attacks do 

not overwrite code after it is loaded. Only 

run signed code and never unsigned code. 

Nefarious Activity 

/ Abuse 

Eavesdropping / 

Interception / 

Hijacking 



 

 

 
Copyright © 2018-2022, SCRATCh 17 

Title Description Threats 

Measuring the boot-process enables the 

detection of manipulation of the host OS 

and software, so that malicious changes in 

the behaviour of the devices can be 

detected. It enables boot-time detection of 

rootkits, viruses and worms. 

Trust and Integrity 

Management 

The boot process initialises the main 

hardware components, and starts the 

operating system. Trust must be established 

in the boot environment before any trust in 

any other software or executable program 

can be claimed, so the booted environment 

must be verified and determined to be in an 

uncompromised state. 

Failures / 

Malfunctions 

Nefarious Activity 

/ Abuse 

Outages 

 

  



 

 

 
Copyright © 2018-2022, SCRATCh 18 

2: Process related requirements 

Title Description 

Asset Management Establish and maintain asset management procedures and 

configuration controls for key network and information systems, to 

identify and authenticate of the assets involved in the IoT Service (i.e. 

Gateways, Endpoint devices, home network, roaming networks, service 

platforms, etc.). 

Privacy by design Privacy must be a guiding principle when designing and developing 

systems, in order to make privacy an integral part of the system. 

Privacy by design Perform privacy impact assessments before any new applications are 

launched, using a top‐down decomposition method that requires first 

answering three fundamental questions: 

        - Where is the targeted application deployed (Legal constraints and 

cultural significance) 

        - For what purpose (Scope) 

        - For which scenarios (Business requirements) 

Risks and Threats 

Identification and 

Assessment 

Identify the intended use and environment of a given IoT device. This 

will help developers and manufacturers determine the most suitable 

technical features for the IoT device’s operation, and the security 

measures required. This will also help to effectively handle bugs or 

enhancement requests 



 

 

 
Copyright © 2018-2022, SCRATCh 19 

Risks and Threats 

Identification and 

Assessment 

Identify significant risks using a defence-in-depth approach. Conduct 

end-to-end risk assessments that account for both internal and third-

party vendor risks, where possible. Developers and manufacturers 

should include vendors and suppliers in the risk assessment process, 

which will create transparency and enable them to gain awareness of 

potential third-party vulnerabilities and promote trust and transparency. 

Security should be readdressed on an ongoing basis as the component 

in the supply chain is replaced, removed or upgraded. 

 

Risk Assessment procedure should be initiated using a top‐down 

decomposition method that requires first answering three fundamental 

questions: 

        - Where is the targeted application deployed (Legal constraints and 

cultural significance) 

        - For what purpose (Scope) 

Security by design Design architecture by compartments to encapsulate elements in case 

of attacks 

Security by design Ensure the ability to integrate different security policies and techniques, 

so as to ensure a consistent security control over the variety of devices 

and user networks in IoT 

Security by design Security must consider the risk to human safety 

Security by design For IoT hardware manufacturers and IoT software developers it is 

necessary to implement test plans to verify whether the product 

performs as it is expected. Penetration tests help to identify malformed 

input handling, authentication bypass attempts and overall security 

posture. 

Security by design Design for power conservation should not compromise security 

Security by design Consider the security of the whole IoT system in a consistent and holistic 

approach along its whole lifecycle across all levels of device/application 

design and development, integrating security throughout the 

development, manufacturing, and deployment 

Security by design For IoT software developers it is important to conduct code review 

during implementation as it helps to reduce bugs in a final version of a 

product. 

  



 

 

 
Copyright © 2018-2022, SCRATCh 20 

2.4. Process guidance document 

In this section we describe how the guiding principles above match with the different 

tools that we propose in the SCRATCh toolset as it can be identified in D1.2. This is also 

connected to the processes investigated and put forward in the work of work package 

WP2, in this document we only want to present a short summary of how the 

requirements management process in SCRATCh applications is informed by the work 

done in T1.1 and the rest of WP1. 

  

FIGURE 6 SCRATCH COMPLETE TOOLSET (M27) 

In the Figure 6 we see the different tools as identified in the task T1.2. We now will 

abstract the lifecycle of a SecDevOps application and identify for each one of the 

subprocesses that is contained in that lifecycle the tools from the Figure that are 

applicable. 



 

 

 
Copyright © 2018-2022, SCRATCh 21 

Process Description 

Dp-gate

Op-Gate

Quality Assurance
Security

Defects /Security Breaches

Sec Dev Ops

Feedback loop

Development

PLAN CODE BUILD/ unit test

IP

DESIGN

Deployment

DEPLOYTEST RELEASE

PC DD

OPERATE MONITOR EOL

Operation

MD

Feedback loop

 

FIGURE 7: SEC DEV OPS PROCESS 

In Figure 7 we can see our proposed abstraction of the complete lifecycle of the 

SecDevOps application as a process which spans the entire lifecycle of a product and is 

divided into 3 sub-processes: 

1. Development 

2. Deployment 

3. Operation 

Between the different sub-processes described in Figure 7 there are multiple decision 

moments (gates) that interconnect each of the sub-processes. By providing automation 

or decision support tools in these gates the process can evolve in a continuous 

integration, delivery, deployment or DevOps process hereby implementing SCRATCh 

vision of integrated security. 

We will now delve into a summary of each one of the three sub-processes (development, 

deployment and operation) and analyse the underlying tasks that comprise them and 

match them with existing SCRATCh tools in the toolset presented in D1.2 or rather 

identify gaps that we will need to fulfil in future work. Each of the sub processes is itself 



 

 

 
Copyright © 2018-2022, SCRATCh 22 

divided into different phases that will be also summarized and explained in the following 

subsections. 

Development 

 

Development

PLAN CODE
BUILD/Unit 

Test

IP

DESIGN

 

FIGURE 8: SCRATCH METHODOLOGY DEVELOPMENT PHASE 

The ultimate goal of the development process is to compile a list of needs/requirements 

by an external agent and translate a set of needs/ requirements into a prototype. For 

this, phases of planning and coding are also necessary. 

Design Phase 

Purpose: 

1. Capture user and business requirements 

2. Define system requirements 

3. Draft or choose a starting system architecture  

4. Evaluate possible solutions 

Main activities (details in procedure requirements gathering) 

Document the business requirements, this include targeted security level, regulatory 

environment, intended distribution area. The guideline for business requirements 

capture is set in the proposed template BR-TEMP.DOC (see WP2 documentation for 

complete reference of these documents). Sector requirements are based on the 

intended use and regulatory environment and are recorded in IU-TEMP.DOC. 

Document user requirements, this includes security measurements/ requirements. The 

guideline for user requirements capture is set in template T-UR-001.DOC. The expected 

outcome should be detailed enough to abstract features for agile development. 

Based on the business requirements system requirements defining performance 

assumptions and hardware boundaries are drafted and captured according template T-

SR-001.DOC 

A system architecture is chosen, adapted or defined. The to be developed product or 

software is expected to function in a certain environment/architecture, for the purpose 

of simplicity only essential parts of the architecture are described or chosen. Essential 

parts are e.g. Interface, communication, security. Template to be used T-SA-001.DOC. 

After a basic layout of the system is known a first security scan can be performed using 

the STRIDE Model (T-STRIDE-001.DOC) early awareness of security issues will increase 



 

 

 
Copyright © 2018-2022, SCRATCh 23 

overall security of the end product at minimal additional cost (The 2019 State of DevOps 

Report, presented by Puppet, CircleCI and Splunk). 

Based on the available information possible solutions are discussed, and a first selection 

is made, this including e.g. tools, components, development environment. These 

decisions are captured in a design output document using template T-DO-001.DOC. 

Documentation criteria are set in DOC-CRIT.XYZ and can depend on the specifics of the 

product under development and the applicable certification demands for the targeted 

industry sector. 

In the following tables we define proposals (as of the closing of this document) of tools 

and templates for documents to follow the process in a SCRATCh fashion, including the 

numbering references (e.g., 1.1 for requirements management and validation tool in the 

next table) to tools in the SCRATCh toolkit as defined in D1.2. This will be repeated for 

each phase in every process in subsequent sections. However, two caveats apply: (1) this 

is incomplete work valid only by the writing of this D1.1b and (2) this is WP2 work and is 

only stated here for informative purposes. 

TABLE 1 SCRATCH TOOLSET SUGGESTIONS FOR THE DESIGN PHASE 

name Description Ref knowledge 
base 

Knowledge base Source of information on available standards and 
certification requirements and best practices 

www.trusttab.com 

Requirements 
management & 
validation tool 

To manage, trace and track and validate 
requirements. Commercial ad open source tools 
available.  

1.1 

Threat Modeling Software to perform threat modeling, proposed to 
keep a simple approach in design Phase and use the 
STRIDE template. 

STRIDE template 
NXP 

 

TABLE 2 DOCUMENTS USED IN DESIGN PHASE 

Document/ template description Mandatory 

T-BR-XYZ.DOC Business requirements Yes 

IU-XYZ.DOC Intended Use Yes 

T-UR-XYZ.DOC User requirements Yes 

T-SR-XYZ.DOC System requirements Yes 

T-SA-XYZ.DOC System architecture No 

T-DO-XYZ.DOC Design outputs Yes 

T-DEV_QMS_TOOLS.DOC Tools used listed No 

QMS-DOC-CRIT.XYZ Criteria for documentation No 

CMDL Configuration Management Document List Yes 

GRCL Gate Review Check List No 

 

https://trusttab.com/standards/masterdetail/index/toolkit/toolkit/toolkit_id/1.1


 

 

 
Copyright © 2018-2022, SCRATCh 24 

Plan Phase (based on Agile development) 

Goal: create and agree upon a feasible planning for the creation of the 

product/software. 

Purpose: 

1. Agree upon a planning and the deliverables for a first increment 

Main activities 

The Design Phase should deliver a general understanding of to be developed product 

including some rough high-level requirements, some functional component 

descriptions, security issues and development direction (used tools and software 

environment). A product owner and development teams should now have enough 

information to define and describe stories and features for the first increment.  Any 

missing info or requirements can be further detailed in a sprint. There are no specific 

tools for this phase, but several tools are available that could simplify the work such as 

Trello. 

Code Phase 

Goal: agile development of software modules to be used or integrated with chosen 

hardware 

Purpose: 

1. Create software modules that fulfill the set stories and features 

Main activities 

Converts stories into code, captures tests and requirements in code or in separate 

documents. Code is to be made compliant to the coding standards set in the 

development environment described in document CODE-HBK-XYZ.DOC. This activity is 

guided by the procedure Software development SW-XYZ.DOC. 

Multiple sprints construct the prototype (software + documentation). Software is 

continuously compiled in the Build phase and compiler errors are corrected before a 

next build is scheduled. 

Finished features are documented in the FINISHED FEATURE LIST FFL-XYS.DOC, in this 

document: 

Realized system requirements, solved defects and security breaches are documented.  

A trace back to user needs is documented  

Requirements and associated testcases are documented conform the company 

standard described in CODE-HBK-XYZ.DOC AND SW-XYZ.DOC AND deviations are 

documented in DO-XYZ.DOC. 

  



 

 

 
Copyright © 2018-2022, SCRATCh 25 

 

TABLE 3 SCRATCH TOOLSET SUGGESTIONS FOR THE CODE PHASE 

name Description Ref knowledge 
base 

Knowledge base Source of information on available standards and 
certification requirements and best practices 

www.trusttab.com 

Requirements 
management & 
validation tool 

To manage, trace and track and validate 
requirements. Commercial ad open source tools 
available.  

1.1 

Code Analysis Tools Different tools may apply, depending on the used 
coding standard and development environment 

3.2 

Code editor Different tools may apply, depending on the used 
coding standard, editor aids the developer. 

 

Source Code 
Obfuscation tool 

Provides protection against reverse engineering, 
tampering, and IP theft, use vary per business. 

 

 

Build Phase 

Goal: compile created software modules, check for compiler errors, and know security 

issues in used libraries. 

Purpose: 

1. Create executable safe software modules that fulfill the set stories and features 

Main activities 

This process is largely automated, only if a build failed a message is send out to the 

configuration manager then first priority will be to repair the build. The build process is 

described in procedure BUILD-XYZ.DOC Included in the build phase are code analysis, 

code coverage and automated test cases. The results are captured in a build report, the 

build report is checked by the configuration manager and identified issues will be put on 

the backlog, Issues can vary from lack of code coverage to potential security issues in 

the code or libraries.  The build process is executed on the main branch, Builds of sub 

branches not merged with the main branch are out of scope. 

TABLE 4 SCRATCH TOOLSET SUGGESTIONS FOR THE BUILD PHASE 

name Description Ref knowledge 
base 

Code Analysis Tools Different tools may apply, depending on the used 
coding standard and development environment 

3.2 

Code editor Different tools may apply, depending on the used 
coding standard, editor aids the developer. 

 

binary Obfuscation 
tool 

Provides protection against reverse engineering, 
tampering, and IP theft, use vary per business. 

 

Threat checking tool Tool that checks the code on known vulnerabilities in 
used libraries 

 

https://trusttab.com/standards/masterdetail/index/toolkit/toolkit/toolkit_id/1.1
https://trusttab.com/standards/masterdetail/index/toolkit/toolkit/toolkit_id/3.2
https://trusttab.com/standards/masterdetail/index/toolkit/toolkit/toolkit_id/3.2


 

 

 
Copyright © 2018-2022, SCRATCh 26 

Dp-Gate (decision deployment gate) 

The goal of this gate is to decide on the maturity of the developed software/product in 

order to continue to the next cycle deployment.  the documents or proof needed to pass 

this gate are listed in the Gate Review Check List (GRCL) 

 

Deployment 

Deployment

DEPLOYTEST RELEASE

PC DD

 

FIGURE 9: SCRATCH METHODOLOGY DEPLOYMENT PHASE 

Once the development process is finished, the next stage in the cycle would be to run 

the deployment process, in which the assets produced in development are validated, 

packaged and installed for their operation. 

This process depends on a go of the release a decision made by management. This 

decision depends on a number of factors which differ per industry sector, in the 

CERTIFICATION PLAN these factors are listed. 

Gates: 

• The Product committed (PC) gate means that the product passed final tests, if a 

test failed continuation is only possible if accepted by the QCB 

• The Decision to Deploy (DD) is a management decision  

Test Phase 

Goal: verify the reliability of the product/software 

Purpose: 

Increase confidence that a product/software can be released to customers 

Main activities 

In this Phase the software is verified and validated, verification is automated as much as 

possible, validation depends on type of product /software. Both steps are described in a 

verification and validation plan. The Content of these plans depend on type of product 

and applicable certification scheme. E.g. in research projects there is no obligation to 

provide plans for verification and validation yet. 

Unit testing, integration testing and if needed validation of e.g. system requirements 

(load testing) on a staging environment is done in this phase 

 



 

 

 
Copyright © 2018-2022, SCRATCh 27 

TABLE 5 SCRATCH TOOLSET SUGGESTIONS FOR THE TEST PHASE 

name Description Ref knowledge 
base 

Verification 
testing guidance 

Guidance for verification of product/software, e.g. 
testing protocol for compliance to certain security 
standards.  

5.1 

Penetration 
testing tools 

A toolset used by expert to test a system on security 
issues, known and unknown. sometimes mandatory for 
certification. 

5.2 

Requirements 
management & 
validation tool 

To manage, trace and track and validate requirements. 
Commercial ad open source tools available.  In this 
phase all requirements should be checked traced 
accepted or passed 

1.1 

Release Phase 

Goal: Release the product for deployment. 

Purpose: 

Check if all conditions for release are met and decide on a deployment plan 

Main activities 

After the test phase and passing of the PC gate there is enough confidence in the 

product to release it to the market. In this phase the management team will decide on 

release based on the results from previous phases. The phase will deliver a deployment 

plan describing how the product/ software will be released.  E.g. deployment can be 

phased to a certain area or customer base. Also, some last checks on the final build is 

performed. 

The release phase delvers all the information for the decision to deploy gate. 

TABLE 6 SCRATCH TOOLSET SUGGESTIONS FOR THE RELEASE PHASE 

name Description Ref knowledge 
base 

Dataflow 
protection test 
tools 

Automatically analyzing traffic data (e.g, in pcap format) 
w.r.t. dataflows that violate privacy and security 
requirements pcap input with the help of a keyword 
search 

5.1 

Threat checking 
tool 

Repeat threat check for updates in the known 
vulnerabilities databases 

 

 

Deploy 

Goal: install or deliver product/software to end customers 

Purpose: 

Deliver product/ software to end customers according deployment plan. 

Main activities 

Deployment means release to customers, based on the deployment plan this can be a 

phased rollout to a selected number of customers, or a deploy to all installed base. 

https://trusttab.com/standards/masterdetail/index/toolkit/toolkit/toolkit_id/5.1
https://trusttab.com/standards/masterdetail/index/toolkit/toolkit/toolkit_id/5.2
https://trusttab.com/standards/masterdetail/index/toolkit/toolkit/toolkit_id/1.1
https://trusttab.com/standards/masterdetail/index/toolkit/toolkit/toolkit_id/5.1


 

 

 
Copyright © 2018-2022, SCRATCh 28 

During deployment more effort of support staff is expected to monitor the deployment 

and repair small errors fast if needed. 

Deployment tools are more specific to the implemented architecture, software and 

hardware. Listed below are some general categories of tools that aid the deployment. 

TABLE 7 SCRATCH TOOLSET SUGGESTIONS FOR THE DEPLOYMENT PHASE 

name Description Ref knowledge 
base 

Identity & 
Security 
Provisioning Tools 

Generates and assigns identities and associated security 
assets to IoT devices in a secure manner. This may 
include assets such is unique identifiers, X.509 
certificates, symmetric keys, passwords, and associated 
metadata that is required for securely managing a device 
throughout its entire lifecycle 

7.1 

Secure 
Deployment 
Tools 

Facilitate secure firmware updates for networks of IoT 
devices. Users are able to deliver new firmware to 
devices for which they are authorised, without risk of 
“bricking” i.e. getting the device stuck with incomplete 
code, and without risk of outsider tampering. 

7.2 

Operation 
 

OPERATE MONITOR EOL

Operation

MD

 

FIGURE 10: SCRATCH METHODOLOGY OPERATION PHASE 

After decision to deploy the product/software enters the operational process. During the 

lifecycle an obligation exists to maintain the product/software. Maintenance is agreed 

upon in a separate agreement (out of scope for this documents). Obligations may vary 

from complete system to components or only software updates and security patches.  

Gates: 

• The MD Gate is a management decision to end the lifecycle of a 

product/software. After this gate a phaseout process starts and after a 

predefined time all support for the product halts. 

Operation Phase 

Goal: maintain the products within set specification 

https://trusttab.com/standards/masterdetail/index/toolkit/toolkit/toolkit_id/7.1
https://trusttab.com/standards/masterdetail/index/toolkit/toolkit/toolkit_id/7.2


 

 

 
Copyright © 2018-2022, SCRATCh 29 

Purpose: 

Keep a product/software operational and functioning within contractual agreements 

Main activities 

1. Keep track of security patches published for used software libraries. 

2. Analyze and react on messages from the monitoring tools 

3. Install security patches if needed. 

Tools used in this Phase are listed in the Tools list 

Monitor Phase 

Goal: monitor installed base on reliability aspects. 

Purpose: 

Keep a product/software reliable and operational within contractual agreements 

Main activities 

1. Analyze messages from the monitoring tools 

2. Fine tune rules used by monitoring tools 

Tools used in this Phase are listed in the Tools list 

Document references.  

The following are the documents that we defined to collect the process information 

described in the different phases mentioned in the previous subsections. 

TABLE 8 DOCUMENTS REFERENCE FOR MONITOR PHASE 

Document/ template description Mandatory 

T-BR-XYZ.DOC Business requirements Yes 

CERT-XYZ.DOC Certification Requirements No 

T-UR-XYZ.DOC User requirements Yes 

T-SR-XYZ.DOC System requirements Yes 

T-SA-XYZ.DOC System architecture No 

T-DO-XYZ.DOC Design outputs Yes 

T-DEV_QMS_TOOLS.DOC Tools used listed Yes 

QMS-DOC-CRIT.XYZ Criteria for documentation No 

CMDL Configuration Management Document List Yes 

GRCL Gate Review Check List Yes 

 



 

 

 
Copyright © 2018-2022, SCRATCh 30 

3. Requirements M27 
What follows in this section is the snapshot of SCRATCh requirements on project 

milestone 3 in project month M25. As the project continually iterates its requirements in 

a DevOps fashion, the releases in the deliverables so far (D1.1a released in M16 and this 

D1.1b released in M27) are better thought as snapshots of the status of the requirements 

rather than definitive compilations. 

However, given that work package WP1 is officially ending in project M27 and also given 

that the understanding of the work in the project has evolved and solidified considerably, 

it is expected that no drastic changes will occur until the end of the work. 

The requirements expressed here describe essentially the following aspects of the 

SCRATCh outlook: 

- SCRATCh methodology requirements, or requirements upon the processes that 

companies adherent to the SCRATCh premises need to follow in order to produce 

secure IoT software. 

- SCRATCh toolkit requirements, understood not so much as individual tool 

requirements but more of the toolkit as a whole. 

- Use Case requirements of the demonstrators produced in the project to evaluate 

the benefits of using SCRATCh. This correspond to the three main domains in the 

project: 

o UC-Retail requirements 

o UC-Police requirements 

o UC-Smart Grid requirements 

Following the discussion on the different formats for requirements that underlies the very 

width of the project’s scope, the requirements are presented here in one of its simplest 

and more straightforward forms, a table with some categories for each of the 

requirements. This is done to be consistent with this deliverable being presented as a text 

document. 

The ultimate reference for the requirements is however the SCRATCh Knowledge Base 

(see description section 2.1). They are available in: 



 

 

 
Copyright © 2018-2022, SCRATCh 31 

https://trusttab.com/standards/scratch_requirement/list 

 

FIGURE 11 TRUSTTAB SECTION FOR SCRATCH REQUIREMENTS 

For the reasons given before, the exact form of some of the requirements could be 

updated with regards to the table in this document, with the online version being 

considered more accurate. 

https://trusttab.com/standards/scratch_requirement/list


32 

ID Short description Description Rationale Acceptance Criteria 
Use 
Case 

Scenario Priority Owner 

2 Fail Safe State Given that a Device securely receives a 
firmware or configuration update, and 
while executing the update a failure 
renders the device inoperable. Then a 
mechanism shall be in place to restore 
the device to its last safe working state. 

To prevent failure and high 
repair cost of devices in the 
field, a mechanism that 
keeps the device in a 
connected state is needed 

Push or Pull a defect 
image of 
configuration file, 
check if the device 
fails, check if the 
device reboots and 
reconnects 
automatically 

2 7 medium AnyWi 

3 Gateway Attestation The device shall provide functionality to 
attest part of its state to external 
entities, e.g., based on TPM 
measurement of system state 

During operations, operator 
likes to monitor health 
status of device with strong 
cryptographic guarantee. 
Prove health towards 
system auditing. 

Modify state and 
check if detected in 
attestation. 

2 5 low AnyWi 

4 Gateway Trust 
Relation 

IoT devices that are once securely 
registered to a specific gateway, can also 
register to other gateways that have a 
secure trust relation the initial gateway 

To enable to build wider IoT 
network structures, e.g. 
smart cities. 

Test if a registered 
IoT Device can also 
register with 
another gateway 
that has the trust 
relation with the 
original gateway 

5 7 low AnyWi 



 

 

 
Copyright © 2018-2022, SCRATCh 33 

ID Short description Description Rationale Acceptance Criteria 
Use 
Case 

Scenario Priority Owner 

5 Secure OTA data/file 
transfer 

Given the device software/firmware, 
configuration and applications have the 
ability to update Over-The-Air (OTA), 
and that the update server is secure. 
when updating the firmware or 
configuration. Then the update file is 
only transmitted if the sever and the IoT 
device negotiated a trust relation based 
on a hardware token and the file is 
encrypted. 

To prevent updates that 
could compromise the 
whole system operational 
state 

If one of the criteria 
is not met, the 
device should not 
perform an update 

2 7 high AnyWi 

6 Standalone 
operation edge 
device 

The edge device should be able to 
operate standalone when disconnected 
from the cloud and all essential features 
should continue to work with a loss of 
cloud connectivity and without chronicle 
negative impacts from compromised 
devices or cloud-based systems 

this feature will make the 
system hardened against 
attacks or unintended 
failure of other systems, 
without compromising its 
own integrity. E.g., cloud 
connectivity lost the system 
can still operate with its 
connected nodes. Los of 
connectivity to a node or 
group of nodes remaining 
nodes should remain 
operational. 

When the 
connection between 
cloud and gateway 
or gateway and 
device is lost, 
defined essential 
features remain 
functional and can 
be tested. Essential 
features such as 
access control, 
encryption of 
storage. When a 
group of nodes are 
disconnected 
remaining nodes 
remain operational. 

5 7 low AnyWi 



 

 

 
Copyright © 2018-2022, SCRATCh 34 

ID Short description Description Rationale Acceptance Criteria 
Use 
Case 

Scenario Priority Owner 

7 limit number of 
open TCP/UDP ports 

limit number of open TCP/UDP ports to 
strictly needed for operation 

Minimize the attack plane 
for a device 

When a port scan is 
conducted on the 
device only 
specified ports are 
accessible 

2 7 high AnyWi 

8 IoT device register 
gateway 

The IoT Gateway should contain a 
registry of IoT devices that are allowed 
to connect with it, this registry should 
contain a communication profile of each 
IoT device. 

The gateway or edge device 
can monitor connected 
devices and act directly and 
autonomously on deviation 
between communication 
profile and communication 
behaviour of a connected 
device 

Force a connected 
device to behave 
outside its 
communication 
profile, check if the 
gateway executes 
the predefined 
policy. 

 
7 medium AnyWi 

9 IoT device 
monitoring by 
gateway 

The gateway should monitor traffic with 
IoT device in its register, and compare 
traffic patterns against stored device 
profiles. deviations will be checked with 
the gateway policy manager; actions are 
dictated by the policy manager. 

The gateway or edge device 
can monitor connected 
devices and act directly and 
autonomously on deviation 
between communication 
profile and communication 
behaviour of a connected 
device 

change policy of 
gateway, e.g. to 
exclude a device 
from 
communication. 
check if the 
exception is 
detected 
communication is 
closed and message 
send to 
administrator. 

5 7 medium AnyWi 



 

 

 
Copyright © 2018-2022, SCRATCh 35 

ID Short description Description Rationale Acceptance Criteria 
Use 
Case 

Scenario Priority Owner 

10 activate new IoT 
device in 
infrastructure 

If a new IoT device is detected and this 
device request a registration as IoT 
systems device, then the gateway will 
check the device against known 
configuration changes, in case of 
unknown change the gateway will send 
out a configuration change message 
administrator and to the device of the 
store manger 

To prevent unauthorized 
devices to gain access to 
the gateway. 

check if an 
unauthorized 
registration is 
detected and lead 
to the described 
actions, check if an 
authorized change 
does not lead to the 
describes actions. 

5 6 high AnyWi 

11 Sphinx-needs editor The SCRATCh workflow should provide a 
sandbox environment so that sphinx-
needs text can be edited without making 
commits to the repository. 

This reflects a particular 
frustration when 
kickstarting the 
requirements activity. A 
fork of this particular editor 
in GitHub could be made. 

   
Low HIB 

12 Methodology 
documentation 

The SCRATCh workflow should be 
documented so that all levels of users in 
the company (developers, managers, 
business) understand the methodology. 

Understanding continuous 
integration, automated 
builds, test cases and all of 
the concepts that we use is 
not straightforward. We 
should always keep in mind 
all actors that could 
potentially use the 
documentation. 

   
High HIB 



 

 

 
Copyright © 2018-2022, SCRATCh 36 

ID Short description Description Rationale Acceptance Criteria 
Use 
Case 

Scenario Priority Owner 

13 Various 
communication 
types 

The secure communication architecture 
must support various use cases. 
Different use cases will have different 
aspects to protect. These will consist of 
a combination of the key concepts of 
security: 
-confidentially 
-integrity 
-availability 
-non-repudiation 

     
NXP 

14 confidentially must 
be ensurable 

confidentially “is the property, that 
information is not made available or 
disclosed to unauthorized individuals, 
entities, or processes”  

     
NXP 

15 integrity must be 
ensurable 

means maintaining and assuring the 
accuracy and completeness of data over 
its entire lifecycle 

     
NXP 

16 availability must be 
ensurable 

must be available when it is needed 
     

NXP 

17 Secure storage in 
device 

The demonstrator will implement 
storage of critical data in a secure 
manner. 

    
High HIB 

18 Secure facial 
recognition 

The Police demonstrator shall 
implement a secure algorithm for facial 
recognition. 

This will include access to a 
secure profile of the face(s) 
to be recognised. 

   
High HIB 

19 Secure streaming The Police demonstrator will stream the 
video capture from device to server in a 
secure manner. 

    
Medium HIB 



 

 

 
Copyright © 2018-2022, SCRATCh 37 

ID Short description Description Rationale Acceptance Criteria 
Use 
Case 

Scenario Priority Owner 

20 Authentication Users need to be authenticated, i.e. it 
needs to be verified that they are who 
they claim to be. 

     
DFKI 

21 Authorization As soon as a user is authenticated, their 
permissions need to be determined. 

     
DFKI 

22 Session 
Management 

User sessions need to be tracked via 
unique and randomized tokens. 

     
DFKI 

23 Error and Exception 
Handling 

In order to prevent information leakage, 
errors and exceptions have to be caught 
and processed in a way that gives 
meaningful information to users, 
extensive information to maintainers, 
and no useful information to attackers. 

     
DFKI 

24 Deployment 
Environment 
Specification 

The environment in which the software 
shall be deployed needs to be 
determined. 

In the case of trunk and test 
environments, the 
environment needs to be 
optimized for the 
software’s needs. However, 
in live environments, it may 
be necessary to accept pre-
defined conditions and 
optimize the software to fit 
these. 

    
DFKI 



 

 

 
Copyright © 2018-2022, SCRATCh 38 

ID Short description Description Rationale Acceptance Criteria 
Use 
Case 

Scenario Priority Owner 

25 OS Agnostic 
Middleware 

The SCRATCh secure element 
integration middleware shall be 
operating system agnostic. Hence, it 
should support standard real time 
operating systems (RTOSs) like Arm 
Mbed or FreeRTOS. 

The RTOS in IoT devices is 
device and application 
dependent.  

Passed compatibility 
test with different 
RTOS. 

2 
  

DN 

26 Certified 
Middleware 

The SCRATCh secure element 
integration middleware should consider 
certification according to appropriate 
certification schemes, e.g., BSI 
Cryptographic Service Provider (CSP). 

For application in some 
domains, certification of the 
product is required. If the 
middleware is used in this 
domain, it shall be possible 
to certify a device that uses 
the middleware. 

Design review. Pass 
of penetration 
testing tools. 

2 
  

DN 

27 Certified Secure 
Element 

The SCRATCh secure element should be 
certified according to appropriate 
certification schemes, e.g., Common 
Criteria with appropriate security target. 

For application in some 
domains, certification of the 
product is required. If the 
secure element is used in 
this domain, it shall be 
possible to certify a device 
that uses the secure 
element. 

Passing domain 
specific certification 
of secure element. 

2 
  

DN 

28 PSA Compliance The SCRATCh secure element 
integration middleware should be 
compliant to Arm Platform Security 
Architecture (PSA) or similar 
frameworks. 

To integrate the 
middleware into the 
application. 

API compatibility 
test. 

2 
  

DN 



 

 

 
Copyright © 2018-2022, SCRATCh 39 

ID Short description Description Rationale Acceptance Criteria 
Use 
Case 

Scenario Priority Owner 

29 Vulnerability Scan The SCRATCh secure development 
platform shall include an automated 
Common Vulnerabilities and Exposures 
(CVE) scan as part of the continuous 
integration (CI) pipeline. 

Reduce number of known 
vulnerabilities in releases. 

Tool detects defined 
set of CVEs in 
project. 

2 
  

DN 

30 Code Analysis The SCRATCh secure development 
platform shall include an automated 
code analysis as part of the continuous 
integration (CI) pipeline. 

Reduce number of new 
vulnerabilities in releases. 

Tool detects test 
defined set of 
vulnerabilities in 
project. 

2 
  

DN 

31 Test Framework The SCRATCh secure development 
platform shall integrate a framework for 
tests at all stages of the continuous 
deployment pipeline, e.g. after build, 
staging, and deployment. 

Increase quality of releases. 
 

2 
  

DN 

32 Gateway Smoke 
Tests 

The SCRATCh gateway device shall 
support continuous deployment of tests 
for smoke tests at customer staging and 
productive environment. 

Ensure compatibility of 
releases. 

 
2 

  
DN 

33 Authenticated 
Logging 

The SCRATCh secure element 
integration middleware shall support 
authenticated logging. 

Obtain authentic security 
related feedback from 
devices. 

 
2 

  
DN 

34 Confidential logging The SCRATCh secure element 
integration middleware should support 
encrypted logging. 

Enable logging of 
confidential information. 

 
2 

  
DN 



 

 

 
Copyright © 2018-2022, SCRATCh 40 

ID Short description Description Rationale Acceptance Criteria 
Use 
Case 

Scenario Priority Owner 

35 Authenticated 
Firmware Upgrade 

The SCRATCh secure element 
integration middleware shall support 
signed firmware upgrades. 

For verification of updates, 
a verification key is 
required. The integrity of 
the key has to be protected. 
The secure element shall 
support hosting this key for 
integrity protection. 

 
2 

  
DN 

36 Confidential 
Firmware Upgrade 

The SCRATCh secure element 
integration middleware should support 
encrypted firmware upgrades through a 
key encapsulation mechanism. 

For confidential firmware 
upgrades, the encryption 
keys are shared by a series 
of devices to avoid 
encrypting firmware for 
individual devices. 
Confidentiality of these 
shared keys have to be 
protected at the devices by 
the secure element.  

 
2 

  
DN 



 

 

 
Copyright © 2018-2022, SCRATCh 41 

ID Short description Description Rationale Acceptance Criteria 
Use 
Case 

Scenario Priority Owner 

37 Attestation The SCRATCh secure element 
integration middleware should support 
remote attestation. 

If the device attestation 
keys have to be store in the 
secure element, the 
middleware shall provide 
the interfaces that are 
required to perform device 
attestation (hashing of state 
information and signing) . 

 
2 

  
DN 

38 Secure boot The SCRATCh secure element 
integration middleware should support 
secure boot, i.e. a verified boot chain 
from the hardware root of trust up to 
the RTOS. 

For verification of the boot 
chain, a verification key is 
required. The integrity of 
the key has to be protected. 
The secure element shall 
support hosting this key for 
integrity protection. 

 
2 

  
DN 

39 Deployment 
Automation Device 
Management 

The SCRATCh deployment automation 
components and tools shall provide a 
device management service for updating 
remote IoT components as part of the 
deployment process. 

Unify the update process 
for different device types. 

 
2 

  
DN 

40 Secure Element 
personalization 

The SCRATCh secure element 
integration middleware shall support 
personalization of the secure element 
with key material at the manufacturer or 
OEM. 

For unique device 
identification. 

 
2 

  
DN 



 

 

 
Copyright © 2018-2022, SCRATCh 42 

ID Short description Description Rationale Acceptance Criteria 
Use 
Case 

Scenario Priority Owner 

41 Firmware 
downgrade 
protection 

The SCRATCh device shall be able to 
reject firmware downgrade. 

Mitigate downgrade attacks 
that re-introduce old 
vulnerabilities. 

 
2 

  
DN 

42 Unique identifier Every SCRATCh device must provide a 
unique identifier, which cannot be 
changed after production via software. 

Used for device lifecycle 
management. 

 
2 

  
DN 

43 Key storage All keys and sensitive data shall be 
stored inside the secure storage. 

Protection against attackers 
with local access to device. 

 
2 

  
DN 

44 Secure monitoring Monitoring data secured and authentic. To avoid attacker tampering 
with security feedback. 

 
2 

  
DN 

45 Device Reset Successfully resetting the device back to 
operation shall need authorization 

To avoid unauthorized 
manipulation of device 
state and communication 
infrastructure. 

 
2 

  
DN 

46 3rd Party libraries All third-party libraries and application 
should be up to date and have to be 
supported. 

  
2 

  
DN 

47 3rd Party libraries 
vulnerabilities 

All third-party libraries and application 
should not include known 
vulnerabilities. 

  
2 

  
DN 

48 Automated Software 
Deployment and 
Delivery process 

The SCRATCh software and firmware 
deployment and delivery process should 
be automated and include least manual 
steps. 

To maintain security in 
unattended environments. 

 
2 

  
DN 



 

 

 
Copyright © 2018-2022, SCRATCh 43 

ID Short description Description Rationale Acceptance Criteria 
Use 
Case 

Scenario Priority Owner 

49 Feedback of the 
fw/sw deployment  

Feedback of the fw/sw deployment 
process shall be directly notified to the 
developers. 

  
2 

  
DN 

50 Automated testing SCRATCh deployment process shall 
include automated testing in different 
test environments. 

Separation of staging from 
operations. Customer 
specific staging 
environments. 

 
2 

  
DN 

51 Automated unit test SCRATCh deployment process shall 
include automated unit tests 

To verify that 
implementations meet 
specification. 

 
2 

  
DN 

52 Automated system 
test 

SCRATCh deployment process shall 
include automated system tests. 

To detect incompatibilities 
with other components. 

 
2 

  
DN 

53 Automated smoke 
test 

SCRATCh deployment process shall 
include automated smoke tests 

To reject updates that break 
availability of services. 

 
2 

  
DN 

54 Documentation SCRATCh documentation should be 
provided for all developed components 
and devices. 

  
2 

  
DN 

55 Interface 
Documentation 

All interfaces should be documented. For integration into use 
case specific applications. 

 
2 

  
DN 

56 Interface Access 
Restricted 

Interfaces allowing modification of 
settings or configuration data shall be 
restricted by using authentication 
mechanisms. 

  
2 

  
DN 



 

 

 
Copyright © 2018-2022, SCRATCh 44 

ID Short description Description Rationale Acceptance Criteria 
Use 
Case 

Scenario Priority Owner 

57 Integration of 
SCRATCh devices 

SCRATCh-ready devices must be 
integrable securely with other SCRATCh-
ready devices or services. 

  
2 

  
DN 

58 Integration of non-
SCRATCh devices 

Non-Scratch-ready devices must be 
integrable securely with scratch-ready 
devices or services. 

Non-SCRATCh devices 
security should benefit from 
this integration and not 
open a security flaw 

 
2 

  
DN 

59 Migration of legacy 
devices 

It shall be possible to migrate legacy 
devices into scratch ready device. 

  
2 

  
DN 

60 Documentation of 
Migration of legacy 
devices 

It shall be documented how to migrate 
legacy devices into SCRATCh ready 
device. 

  
2 

  
DN 

61 Chatbot sensor 
values 

The chatbot must allow obtaining sensor 
values from chat messages. 

    
high Quobis 

62 Chatbot sensor list The chatbot must provide a list of the 
sensors/actuators available in the 
system. 

    
high Quobis 

63 Sensors presence 
information 

The sensors must be able to publish 
their status through presence 
information 

    
medium Quobis 

64 Chatbot message 
reception 

The chatbot should be able to receive 
chat messages from the system, 
preferably using the XMPP protocol. 

    
high Quobis 

65 Communication TLS 
version 

All communications must be secure 
using TLS1.3 preferably, and TLS1.2 as 
backup in case 1.3 is not supported by 
any end. 

    
  

medium Quobis 



 

 

 
Copyright © 2018-2022, SCRATCh 45 

ID Short description Description Rationale Acceptance Criteria 
Use 
Case 

Scenario Priority Owner 

68 Tests prioritisation 
historical 

The test prioritisation framework shall 
obtain the test case execution historical, 
including: - detected error number - 
execution time - code coverage - 
successful execution cycle number 

    
   

ULMA 

69 Test prioritisation 
report 

The test prioritization framework shall 
execute test cases and provide a report 
with obtained results. 

    
   

ULMA 

70 Energy loss monitor The system must provide a module that 
detects and shows the energy losses. 

    
   

Nimbeo 

71 Energy response 
module 

The system must provide a module for 
the Response demand, where the 
consumer is informed about their 
consumption and the system offers 
solutions to balance the system load. 

    
   

Nimbeo 

72 Energy interruptions 
management 

The system must provide a module for 
the Management of interruptions, 
where AMI data is used for the early 
detection of interruptions and to help 
early restoration. 

    
   

Nimbeo 

73 Energy predictive 
analysis 

The system must provide a module for 
the Predictive analysis of network 
behaviour, which is a result of the 
execution of the algorithms that analyze 
the AMI data. 

    
   

Nimbeo 



 

 

 
Copyright © 2018-2022, SCRATCh 46 

ID Short description Description Rationale Acceptance Criteria 
Use 
Case 

Scenario Priority Owner 

74 PKI API CSR The provisioning service shall process 
X509.v3 certificate signing requests. 

To provision devices, we 
need a certificate authority 
that processes the signing 
requests that are issued at 
device provisioning. 

  2 
  

DN 

75 PKI API CRL The demonstrator PKI shall provide an 
interface for managing and requesting 
certificate revocation lists. 

For device lifecycle 
management we need to 
revoke devices at end of 
lifetime or if corrupted. 

  2 
  

DN 

76 PKI API AUTH The demonstrator PKI registration 
authority (RA) shall provide 
authentication mechanisms to restrict 
access to the CA.  

We need to technically 
enforce a role concept such 
that only authorized entities 
are able to receive 
certificates. 

  2 
  

DN 

77 TLS1.3 The secure communication protocols 
shall support TLS1.3. 

For secure communication 
at transport layer in the 
demonstrator, we plan to 
migrate to TLS1.3. 

  2 
  

DN 

78 Retail IoT 
Identification 

The SCRATCh retail demonstrator shall 
be able to identify SCRATCh IoT 
demonstrator devices. 

    2 
  

DN 

79 Retail IoT 
Provisioning 

The demonstrator shall be able to 
provision SCRATCH IoT demonstrator 
devices with credentials. 

    2 
  

DN 



 

 

 
Copyright © 2018-2022, SCRATCh 47 

ID Short description Description Rationale Acceptance Criteria 
Use 
Case 

Scenario Priority Owner 

79 Retail IoT 
Monitoring 

The demonstrator shall provide facilities 
for device monitoring including device 
health status. 

    2 
  

DN 

80 Retail network 
deception 

The demonstrator shall use deceive TCP 
headers to defend fingerprinting. 

    2 
  

DN 

81 Retail network 
anomaly detection. 

The demonstrator shall monitor the 
network for anomalous traffic. 

    2 
  

DN 

82 Retail Localization The demonstrator shall be able to track 
coordinates of shopping baskets. 

Based on customer 
localization, we trigger 
events like check out, 
advertisement. 

  2 
  

DN 

83 Retail telemetry The demonstrator shall provide a 
publish/subscribe based mechanism to 
distribute telemetric data like 
coordinates, temperature, power 
consumption of demonstrator devices.  

    2 
  

DN 

85 No vulnerabilities 
must be introduced 
by new libraries 

All new libraries used must be analysed 
to detect any know vulnerability before 
be merged into the release branch. The 
toolkit must be able to warn the 
developer about any found issues. 

It is not difficult to 
introduce new 
vulnerabilities when adding 
needed libraries to cover 
some new feature. The 
toolkit should let the 
developer know that this 
happened in an automatic 
way.  

When a new library 
is added to the code 
it must be detected 
and the tool must 
check if it has any 
know vulnerability. 

  
high Quobis 



 

 

 
Copyright © 2018-2022, SCRATCh 48 

ID Short description Description Rationale Acceptance Criteria 
Use 
Case 

Scenario Priority Owner 

86 Licenses of libraries 
can be easily listed 
and check by 
developers 

The developer must be aware of the 
licenses of the libraries used in any piece 
of software since it may not be 
compliant with the license of the IoT 
software. 

Open source libraries are 
commonly used in 
commercial software, but 
there are constraints about 
what libraries can be used 
depending in the licenses. 
This must be checked to 
avoid legal issues.  

When a new library 
is added the 
licenses of the used 
libraries is checked 
and showed in an 
clear way to the 
developer 

  
medium Quobis 

87 Integration of 
Crownstones 

Crownstones must be implemented in 
the use case demonstrator and 
connected to important devices, 
including particularly point of sales 
terminals and ATMs as well as 
monitoring devices. 

In order to explore the 
security benefits of 
Crownstone monitoring of 
important devices in a retail 
store, they must be 
connected first. 

A point of sales 
terminal is 
connected to a 
Crownstone; an 
ATM is connected to 
a Crownstone; a 
server is connected 
to a Crownstone; if 
present, a gateway 
is connected to a 
Crownstone. 

2 
  

Almende 



 

 

 
Copyright © 2018-2022, SCRATCh 49 

ID Short description Description Rationale Acceptance Criteria 
Use 
Case 

Scenario Priority Owner 

88 Analysis of power 
measurements from 
Crownstones 

Power usage of connected devices 
should be measured using Crownstones 
and analysed for insights important to 
the use case, e.g. when it comes to the 
power bill for the store as well as 
fluctuations indicative of threats to the 
store and customers. 

Various forms of tampering 
will involve sudden changes 
in power usage, e.g. 
because a device is being 
surged or turned off. It 
should be possible to detect 
this. Secondarily, relevant 
to the use case but not 
necessarily a security 
matter, it may be 
interesting to observe 
power usage within a store 
and compare the demand 
of the various important 
devices. 

Measure power 
usage of connected 
devices in the 
demonstrator and 
look for useful 
results; notice any 
devices that are 
outstanding for high 
power usage; 
simulate various 
attacks and look for 
symptoms in 
measured power 
usage. 

2 
  

Almende 

89 Security monitoring 
through 
Crownstones 

By measuring power usage, and 
particularly by detecting drops in power 
usage, it may be possible to detect 
device failure and other malfunctions. 
This should be tested and 
demonstrated. 

Whether it is a conscious 
attack or an accident, 
failure or malfunction in 
important devices is worth 
detecting and alerting staff 
about, and may even 
indicate immediate danger. 
This avenue of monitoring 
should be explored. 

Detect device 
shutdown and 
unusual power 
surges. 

2 
  

Almende 



 

 

 
Copyright © 2018-2022, SCRATCh 50 

ID Short description Description Rationale Acceptance Criteria 
Use 
Case 

Scenario Priority Owner 

90 Secure update of 
Crownstones 

It must be possible to deploy 
Crownstone firmware updates securely 
and remotely into the demonstrator. 

  Perform a remote 
deployment of 
Crownstone 
firmware to the 
demonstrator 
without violating 
SCRATCh firmware 
update security 
requirements. 

2 
  

Almende 

 

 



51 

4. Conclusions and next steps 
4.1. Conclusions 

In this deliverable we have presented the following: 

• The final account of the work undertaken in tasks T1.1a and T1.1b regarding the 

expression, formatting and management of requirements, particularly for the 

SCRATCh projects but with conclusions also applicable for requirement tools in the 

SCRATCh toolkit. This vision has evolved during the project and here we present 

the findings and lessons learnt from the process. 

• The month 27 SCRATCh project requirements themselves, that define aspects of 

the SCRATCh methodology, overall toolkit usage and finally the particular use cases 

in which the SCRATCh technology is evaluated in the course of the project. 

With these results we have completed the goals for task T1.1 in SCRATCh and delivered 

the final strategy for requirements collection in the project’s methodology as well as the 

final release of the formally documented requirements. All subsequent changes to the 

requirements will be updated in other outlets such as the requirements section of the 

TrustTab Knowledge Base website3. 

4.2. Next steps 

Task T1.1 has formally ended with the release of this document. However, requirements 

elicitation in a DevOps focused project such as SCRATCh is never a fully finished process. 

Thus, we will continue to apply the requirements management methodology and tools 

presented here and produce new requirements that we will use internally to drive the 

final months of the project. 

 

 
3 TrustTab website: https://trusttab.com/standards/scratch_requirement/list 

https://trusttab.com/standards/scratch_requirement/list


 

 

 
Copyright © 2018-2022, SCRATCh 52 

5. References 
[1] IEEE Computer Society. Software Engineering Standards Committee, & IEEE-SA 

Standards Board. (1998). IEEE Recommended Practice for Software Requirements 

Specifications. Institute of Electrical and Electronics Engineers. 

[2] Sphinx-needs website: https://sphinxcontrib-

needs.readthedocs.io/en/latest/index.html  

 

 

https://sphinxcontrib-needs.readthedocs.io/en/latest/index.html
https://sphinxcontrib-needs.readthedocs.io/en/latest/index.html

