

D1.2 Toolset Framework

Deliverable 1.2

SECURE AND AGILE CONNECTED THINGS

SCRATCh

Copyright © 2018-2022, SCRATCh

Copyright © 2018-2022, SCRATCh 1

Work Package: WP1

Affected milestone: MS1

Partners involved: Irdeto BV

AnyWi BV

 Almende BV

 NVISIO BV

 Otaris GmbH

consider it GmbH

NXP Semiconductors Germany GmbH

Date: 16/10/2020

Deliverable version: v1.91

Author(s): See below

Responsible Contact: Till S. Witt

 NXP Semiconductors Germany GmbH

Version history

Date Version Author Comment

16/09/2020 1.8 Franklin Selgert
Werner Strydom

Initial version, based on the presentation
Toolset Framework v1.7

16/10/2020 1.91
Werner Strydom

Karsten Sohr
Cédric Bassam

Updated with current view of the Toolset
Framework. Added overview of tools under
development.

Copyright © 2018-2022, SCRATCh 2

Table of contents

1 Introduction .. 3

1.1 Purpose .. 3

1.2 Scope ... 3

2 The SCRATCh Toolset Framework ... 5

2.1 Purpose of the Toolset Framework ... 5

2.2 Toolset & Best Practice Descriptions ... 6

[1.0] Test & Development Best Practices ... 6
[1.1] Requirements Management & Validation Tools .. 6
[2.1] Threat Modelling Tools .. 7
[2.2] SDK Blueprint ... 7
[3.1] Source Code Obfuscation Tools .. 7
[3.2] Code Analysis Tools .. 8
[3.3] Integrated Development Environment .. 8
[4.1] Binary Obfuscation Tools ... 9
[5.1] Verification Testing Tools ... 9
[5.2] Penetration Testing Tools .. 10
[5.3] Unit Test Prioritization Tools .. 10
[6.0] Release & Deployment Best Practices .. 10
[6.1] Threat Checking Tools .. 10
[6.2] Dataflow Protection Tools .. 11
[7.1] Identity & Security Provisioning Tools .. 11
[7.2] Secure Deployment Tools .. 12
[8.0] Operational Best Practices ... 12
[8.1] Runtime Application Self Protection Tools ... 12
[8.2] Deception Toolkits .. 13
[8.3] Secure Communications Tools ... 13
[8.4] Secure Storage Tools .. 13
[9.1] Threat Monitoring Tools ... 14
[9.2] Incident Reporting Tools .. 14

3 Tools Developed by the SCRATCh Consortium Members ... 14

Copyright © 2018-2022, SCRATCh 3

1 Introduction
1.1 Purpose
This technical report captures the outcome of task 1.2 and is regularly updated with new findings as
the SCRATCh project evolves. The goal of task 1.2 is to define a reference toolkit architecture that can
be used to facilitate effective SecDevOps for IoT software development projects.

Task 1.2 takes the requirements identified in task 1.1 into consideration, with specific attention to
requirements that are enabled by/have dependencies on security-by-design, secure development,
continuous integration/continuous delivery, secure deployment, and secure operations.

This reference toolkit architecture then serves as input in specific to the work performed in work
package 2 on interoperable tools, and in general to any IoT project that wishes to adopt or accelerate
an agile Secure Development-Operations (SecDevOps) process.

This document is structured in two parts. The first provides an overview of the generic toolset
framework defined in task 1.2 and contains a description of each identified tool. The second part
provides more details on specific tools that are being developed by consortium partners in the context
of the SCRATCh project, and which fit into this framework.

1.2 Scope
The goal of SecDevOps is to facilitate effective cross-functional collaboration between software
development teams and IT operations teams, while maintaining a focus on cybersecurity. SecDevOps
is often used in conjunction with Agile software development methodologies, from which the
Continuous Integration and Continuous Delivery (CI/CD) concepts originate.

FIGURE 1: SECDEVOPS

The commonly agreed structure for a SecDevOps life cycle consists of 3 high-level disciplines that are
broken down into 8 phases as illustrated in Figure 1 above. In order to allow the SCRATCh tool
framework to specify a more comprehensive set of tools, it was decided to break the PLAN phase down
into two phases (both of which contributes critical inputs to planning), namely REQUIREMENTS and
DESIGN. The motivation for doing so is to allow the framework to highlight two related tool categories
that are critically important to ensure E2E security within SecDevOps.

Copyright © 2018-2022, SCRATCh 4

The SCRATCh toolset framework therefore considers the following SecDevOps phases:

1. Requirements Phase – During this phase the user requirements are documented and analysed.
Once the requirements are agreed, they are prioritised, and change management is enforced. This
phase also enables requirements tracking through the rest of the SecDevOps phases.

2. Design Phase – During this phase the requirements are transformed into complete and detailed
system and test design specifications. The design is typically broken down to facilitate multiple
releases (implementation plan, release plan, product roadmap).

3. Code Phase – The design is realised during this phase through a process of software code
development, and typically includes supporting mechanisms such as code reviews and developer-
level unit test development.

4. Build Phase – Once the agreed coding tasks for a given release have been completed, the code is
committed to a code repository where it is eventually merged with a new shared codebase. All
submitted code merges are reviewed and then an automated process is initiated to build a new
software release and perform end-to-end, integration, and unit testing.

5. Test Phase – Once a build is completed successfully it is automatically deployed to a staging
environment for more comprehensive testing. This involves a series of manual and/or automated
tests to validate the design and ultimately the requirements. The process may loop over the code-
build-test phases until the agreed quality measures have been met. If more fundamental changes
are required, the process may loop back to the design and even the requirements phase.

6. Release Phase – Once the pre-defined quality criteria have been met, the build is considered ready
for release. This phase may include various automated scans of the release artefacts to detect
common vulnerabilities and exploits, and to ensure compliance with code re-use practices. The
release is tagged for traceability, deployment packages are prepared, and the release is marked
ready for deployment.

7. Deploy Phase – A completed release is deployed into the target production environment, ready
for use. Deployment typically includes mechanisms to minimize system downtime and may also
ensures that it is possible to roll back to a previous release in the event that the new release has
critical defects.

8. Operate Phase - The new release is in use and performs the intended functions. The operations
team ensures the availability and performance of the system through mechanisms such as
redundancy, load balancing, and scaling. For critical systems, disaster recovery and business
continuity plans are put in place and regularly tested.

9. Monitor Phase – While the system is in operation, it also has to be monitored. As such, the last
two phases of the cycle happen in parallel. During this phase data is collected about the
performance and functionality of the system, which ultimately may be fed back to the start of the
SecDevOps cycle.

A practically endless array of tools is used during the SecDevOps cycle to automate tasks and make
life easier for those involved in the process (see figure 2). The tools generally include commercial tools,

Copyright © 2018-2022, SCRATCh 5

open source tools, and proprietary developed tools. As a consequence, setting up a new end-to-end
SecDevOps practice can be overwhelming, especially for smaller organisations.

 FIGURE 2: TYPICAL SECDEVOPS TOOLS

2 The SCRATCh Toolset Framework
2.1 Purpose of the Toolset Framework
It has become common practice within the traditional Information Technology (IT) domain to
automatically update software (computer software applications, web applications, mobile apps) with
high frequency to address defects and to add new features. This practice is also well accepted by the
end users of these applications. In contrast, this is almost unheard of within the Operational
Technology (OT) domain, where firmware and embedded applications for IoT devices may never be
updated, or only updated through a convoluted manual process that is inaccessible to most end users.

The goal of the SCRATCh Toolset Framework is to make it easier for software development teams
working on OT projects to adopt SecDevOps. The framework is broken down into the 9 phases of
SecDevOps as described above and lists the tool categories and best practices that are relevant within
each phase. Refer to figure 3 for a visual depiction of the framework.

The remainder of section 2 provides a detailed description of each tool category, along with some
examples of commercial and open source tools that fit in this category.

Copyright © 2018-2022, SCRATCh 6

FIGURE 3: THE SCRATCH TOOLSET FRAMEWORK

2.2 Toolset & Best Practice Descriptions

Tool Category [1.0] Test & Development Best Practices
SecDevOps Phases Requirements, Design, Code, Build, Test
Tool Examples N/A
Tool Purpose Provides essential advice and standards for SecDevOps. Includes major

established standards.
Inputs Required N/A
Actions Performed N/A
Outputs Produced N/A
Tool Interfaces N/A
Standards
Req. Mapping

Tool Category [1.1] Requirements Management & Validation Tools
SecDevOps Phases Requirements Design, Code, Test
Tool Examples Jira (Atlassian), Jama Connect (Jama Software), Rational Doors (IBM), ReQtest
Tool Purpose Provides full management of the lifecycle of requirements (also called epics,

user stories, or features), including definition, modelling of dependencies,
visualisation, status tracking during design, coding, & testing, and more.

Inputs Required User inputs related to requirements
Actions Performed Evolution of definition of requirements and tracking of various statuses

associated with requirements
Outputs Produced Unambiguous requirements; reports detailing requirements coverage during

design, coding, and testing
Tool Interfaces These tools may have interfaces with the development tools, test subsystem,

and documentation tools.
Standards ANSI/IEEE Guide to Software Requirements STD 830-1984
Req. Mapping

8.4 Secure

Storage Tools

2. Design 3. Code 4. Build 5. Test 6. Release 7. Deploy 8. Operate 9. Monitor1. Reqs

5.1 Verification

Testing Tools

7.1 Identity &

Security Provisioning

Tools

2.1 Threat

Modelling Tools

9.1 Threat

Monitoring Tools

6.1 Threat

Checking Tools

2.2 SDK Blueprint Repository

4.1 Binary

Obfuscation

Tools

3.1 Source Code

Obfuscation Tools

1.0 Development & Test Best Practices; Security & Vulnerability Knowledge Base

6.2 Dataflow

Protection Test

Tools

5.2 Penetration

Testing Tools

9.2 Incident

Reporting Tools

5.3 Unit Test

Prioritization

Tools

6.0 Release & Deployment Best Practices 8.0 Operational Best Practices

8.3 Secure

Communications

Tools

2.2 IDE / Text Editor

7.2 Secure

Deployment Tools

8.2 Deception

Toolkits
3.2 Code Analysis Tools

8.1 Runtime Application Self Protection

Tools
1.1 Requirements Management & Validation Tool

Copyright © 2018-2022, SCRATCh 7

Tool Category [2.1] Threat Modelling Tools
SecDevOps Phases Design
Tool Examples Microsoft Threat Modelling Tool, OWASP Threat Dragon, IriusRisk Threat

Modelling Tool, ArchSec (https://archsec.informatik.uni-bremen.de)
Tool Purpose Threat Modelling (STRIDE) or Architectural Risk Analysis (e.g., as defined by

McGraw, https://searchsecurity.techtarget.com/opinion/McGraw-Software-
insecurity-and-scaling-architecture-risk-analysis) is an important activity
within a Security Development Lifecycle (SDL). Architectural Risk
Analysis/Threat Modelling is carried out within the software design phase
and attempts to systematically identify architectural security defects. The
derived threats are ranked according to their risks in order to later define
adequate mitigations. Approaches to risk management include Microsoft
DREAD, FAIR, Bug Bars or specific methodologies as defined, for example, by
SAP SE.

Inputs Required Architectural diagrams of the software; high-level security and privacy
requirements

Actions Performed Manual security analysis of the software architecture, threat/risk elicitation
and ranking

Outputs Produced A list with architectural risks and possible mitigations (design-level security
requirements)

Tool Interfaces Results of Threat Modelling can be used as input for dynamic testing (more
focused dynamic tests); MS Threat Modelling Tool interfaces with issue
trackers

Standards Common Weakness Enumeration (CWE), ISO Standard 25000, ISO/IEC 25010
Req. Mapping

Tool Category [2.2] SDK Blueprint
SecDevOps Phases Design, Code, Build
Tool Examples SDKs (usually vendor and solution specific) such as NXP MCUXpresso SDK

Builder
Tool Purpose The blueprint of the SDK makes it possible to replicate the SCRATCh

SecDevOps environment with the vendor specific tools and (if possible)
provide a vendor agnostic solution to incorporate the SCRATCh SecDevOps
approach.

Inputs Required SCRATCh SecDevOps processes and HW/SW selection
Actions Performed Preparation of SDK to meet the process requirements and get a quick start

from requirements through to testing.
Outputs Produced A testable application either in a simulator or on hardware
Tool Interfaces Interfaces to process and hardware components
Standards
Req. Mapping

Tool Category [3.1] Source Code Obfuscation Tools
SecDevOps Phases Code
Tool Examples Cloakware Software Protection (Irdeto), Trusted Software (Irdeto),

Jscrambler (Jscrambler), SmartAssembly (Redgate)

Copyright © 2018-2022, SCRATCh 8

Tool Purpose Provides protection against reverse engineering, tampering, and IP theft of
software by modifying the source code (or an intermediate representation
thereof) using techniques such as branch protection, control flow flattening,
data transformations, variable obfuscation, constant and symbol hiding,
function transformations, security in-lining, and white box cryptography.
The resulting software, once compiled, is typically hardened against static
and dynamic (run-time) analysis. This tool is used as an alternative to 4.1
Binary Protection Tool.

Inputs Required Source code or intermediate representation of source code, obfuscation
settings/parameters

Actions Performed Obfuscate code and data, inject white box crypto
Outputs Produced Hardened source code and transformed data, ready for compilation
Tool Interfaces No hard interfaces; tool is inserted into the build pipeline as an extra step
Standards ETSI TS 103 718 - External encodings for Advanced Encryption Standard
Req. Mapping

Tool Category [3.2] Code Analysis Tools
SecDevOps Phases Code
Tool Examples Fortify Static Code Analysis Tool (Micro Focus), Checkmarx Static Application

Security Testing (Checkmarx), Static Analysis Tool (Veracode), Coverity
Static Analysis (Synopsis), AppScan (IBM), SonarQube, Clang Static Analyzer
(freely available), TiCS

Tool Purpose Code analysis tools analyse source code with the help of advanced compiler-
construction techniques (e.g., data and control flow analysis) to detect
potential low-level security bugs. Typical bugs include buffer/heap/integer
overflows, code injection vulnerabilities (e.g., SQL injection, Cross-Site
Scripting), cryptographic misuse, simple race conditions. Typically provides
TQI, based on consolidation of various software quality metrics like test
coverage, abstract interpretation, cyclomatic complexity, compiler warnings
etc.

Inputs Required Source code of the software to be analysed; rules to be checked against the
source code (ruleset)

Actions Performed Automated static analysis of the source code against defined security rules
Outputs Produced A list with all potential findings (low-level bugs), often a classification as to

the severity of the finding
Tool Interfaces Integration with an IDE sometimes possible, in some cases online service

allowing one to upload the source code
Standards OWASP Top 10, SEI CERT coding guidelines, Common Weakness Enumeration

(CWE), ISO Standard 25000, ISO/IEC 25010.
Req. Mapping

Tool Category [3.3] Integrated Development Environment
SecDevOps Phases Code
Tool Examples Visual Studio, IntelliJ IDEA, PyCharm, PhpStorm, Eclipse, WebStorm, Xcode,

Syncfusion, NetBeans, Arduino IDE
Tool Purpose Aid in the construction, formatting and maintenance of large amounts of code

within a project. Enable automatic detection of bad coding practices.
Inputs Required Code

Copyright © 2018-2022, SCRATCh 9

Actions Performed Auto-completion; detection of errors and weaknesses; simplification and
automation of various coding activities

Outputs Produced Formatted code
Tool Interfaces Coding language formats; user preferences
Standards
Req. Mapping

Tool Category [4.1] Binary Obfuscation Tools
SecDevOps Phases Build
Tool Examples Application Protection™ (Arxan), Code Protection™ (WhiteCryption), Denuvo

Anti-Tamper (Irdeto)
Tool Purpose Provides protection against reverse engineering, tampering, and IP theft of

software by modifying the binary code using techniques such as branch
protection, control flow flattening, data transformations, variable
obfuscation, constant and symbol hiding, function transformations, and
white box cryptography. The resulting binary is typically hardened against
static and dynamic (run-time) analysis. This tool is used as an alternative to
3.1 Source Code Protection Tool.

Inputs Required Binary code, obfuscation settings/parameters
Actions Performed Obfuscate binary and data, inject white box crypto
Outputs Produced Hardened binary code and transformed data
Tool Interfaces No hard interfaces; tool can be inserted into the build pipeline as an extra

step
Standards ETSI TS 103 718 - External encodings for Advanced Encryption Standard
Req. Mapping

Tool Category [5.1] Verification Testing Tools
SecDevOps Phases Test
Tool Examples IoT security verification standard (NVISO), IoT testing guide (NVISO), Tools to

test/read out the configuration of an IoT application (NVISO)
Tool Purpose Assist security testers in their security testing activities
Inputs Required An IoT application (code build) together with the physical embedded device.

Security assessments can be either:
• White box: the security tester is provided with all of the required

information to perform the test. For example, accounts, source code,
architecture design.

• Black box: the security tester is provided only with the physical embedded
device running the application.

Actions Performed Tools are used by the security tester to verify security requirements
Outputs Produced Pass/Fail
Tool Interfaces Not relevant to the security verification standard or testing guide. The tools

however, will interface with the IoT application through a certain interface
(can really be anything depending on the application)

Standards Security verification standard will be based on the common ground found
between many existing IoT security requirement standards. For example,
through teaming up with OWASP IoT.

Req. Mapping

Copyright © 2018-2022, SCRATCh 10

Tool Category [5.2] Penetration Testing Tools
SecDevOps Phases Test
Tool Examples - Tools that allow to intercept/alter communication of IoT specific

communication protocols.
- Tools that allow the extraction of certain configuration properties of
certain embedded platforms
- Tools that can interface with certain chips

Tool Purpose Tools will allow a security testers to gain access to the required input
required to use the verification testing tools as defined in 5.1

Inputs Required Embedded application and physical device
Actions Performed Depends on tool
Outputs Produced Access to required input for 5.1
Tool Interfaces N/A
Standards N/A
Req. Mapping

Tool Category [5.3] Unit Test Prioritization Tools
SecDevOps Phases Test
Tool Examples TSelect, XRay, Jnan
Tool Purpose Create a market ready test case selection and prioritization tool, which can

be delivered as a library, independent tool or a plug-in, to optimize testing
of embedded systems in a continuous integration environment.

Inputs Required Test Suite, Historic data, Requirements, Code Changes (e.g., .xml, .json)
Actions Performed Test case prioritization according to input data.
Outputs Produced Prioritized test cases
Tool Interfaces No hard interfaces. The tool can be inserted as a library, an independent

tool or a plug-in in the testing phase of the development cycle.
Standards N/A
Req. Mapping

Tool Category [6.0] Release & Deployment Best Practices
SecDevOps Phases Release, Deployment
Tool Examples
Tool Purpose Provides essential advice and standards for secure DevOps. Includes major

established standards
Inputs Required None
Actions Performed Searching and filtering
Outputs Produced Important requirements and guidelines for a development process.
Tool Interfaces N/A
Standards
Req. Mapping

Tool Category [6.1] Threat Checking Tools
SecDevOps Phases Release
Tool Examples Xray (JFrog), OWASP Dependency-Check (OWASP), CVE-check-tool

(Clearlinux)
Tool Purpose Threat checking tools generally operate on the release artefact repository

and perform a composition analysis of the components that make up the

Copyright © 2018-2022, SCRATCh 11

release of a software application or system. The purpose of this is to identify
publicly disclosed vulnerabilities contained within these components.

Inputs Required Release artefacts, publicly known vulnerabilities (CVE database)
Actions Performed Analysis of composition of the release
Outputs Produced Notifications of detected common vulnerabilities
Tool Interfaces N/A
Standards
Req. Mapping

Tool Category [6.2] Dataflow Protection Tools
SecDevOps Phases Release
Tool Examples Wireshark, mitmproxy, OTALYZER (extension based on Wireshark and

mitmproxy output)
Tool Purpose Automatically analyse traffic data (e.g., in pcap format) with respect to

dataflows that violate privacy and security requirements (pcap input) with
the help of a keyword search

Inputs Required Key word list (e.g., add blocking lists/host files), pcap files, mitmproxy files
Actions Performed Automatically analyse pcap or mitmproxy files regarding key words to identify

privacy violations (e.g., tracking), performing IP address lookups and reverse
DNS to identify servers

Outputs Produced List of findings
Tool Interfaces pcap, mitmproxy files (traffic captures)
Standards Pcap format
Req. Mapping

Tool Category [7.1] Identity & Security Provisioning Tools
SecDevOps Phases Deploy
Tool Examples Trust Provisioning Services (NXP), Keys & Credentials Service (Irdeto)
Tool Purpose Generates and assigns identities and associated security assets to IoT

devices in a secure manner. This may include assets such is unique
identifiers, X.509 certificates, symmetric keys, passwords, and associated
metadata that is required for securely managing a device throughout its
entire lifecycle.

The generation of security sensitive items is done in a trusted environment,
typically using a hardware security module (HSM). The provisioning of these
data can be done into silicon chips during a so-called personalisation
process, in a manufacturing facility where the device is assembled, or online
when the device is first connected to a network.

Inputs Required Number of identities to generate, optionally with unique identifiers
Actions Performed Secure generation of certificates, keys, passwords, etc and association of

these assets with unique identities. Provisioning of these identities into
chips or devices.

Outputs Produced Certificates, keys, passwords, etc
Tool Interfaces Configuration (types of assets required), number of identities required,

optionally unique identifiers
Standards
Req. Mapping

Copyright © 2018-2022, SCRATCh 12

Tool Category [7.2] Secure Deployment Tools
SecDevOps Phases Deploy
Tool Examples Crownstone Update Framework (Almende)
Tool Purpose Facilitate secure firmware updates for networks of IoT devices. Users are

able to deliver new firmware to devices for which they are authorised,
without risk of “bricking” i.e. getting the device stuck with incomplete code,
and without risk of outsider tampering.

Inputs Required Function calls & firmware payload
Actions Performed Secure transfer and install of firmware payload
Outputs Produced None
Tool Interfaces Direct interfacing with firmware code; format and size requirements for

payload
Standards
Req. Mapping

Tool Category [8.0] Operational Best Practices
SecDevOps Phases Operate, Monitor
Tool Examples
Tool Purpose Provides essential advice and standards for secure DevOps. Includes major

established standards.
Inputs Required None
Actions Performed
Outputs Produced Important requirements and guidelines for a development process.
Tool Interfaces Only human interfacing
Standards
Req. Mapping

Tool Category [8.1] Runtime Application Self Protection Tools
SecDevOps Phases Code, Build, Operate, Monitor
Tool Examples Rackspace, Travis CI, Puppet, Chef
Tool Purpose Detects and prevents attacks on applications in real time by analysing both

the behaviour of the applications and the context of that behaviour. RASP
allows attacks to be identified and mitigated without human intervention.
RASP is integrated into the server-side application and typically leaves the
client-side application untouched. RASP systems can usually be configured
to run in diagnostic mode (for monitoring) or protection mode (for
enforcement).

Inputs Required Server-side code, and binaries at link time (Code, Build)
Running system (Operate, Monitor)

Actions Performed Insert protection and monitoring features in runtime binary (Code, Build)
Provides threat monitoring information (Monitor)
Prevents attacks on running systems (Operate)

Outputs Produced Application with runtime protection
System with embedded monitoring capability (able to produce relevant
telemetry) and the ability to prevent certain types of attacks

Tool Interfaces No hard interfaces; tool can be inserted into the build pipeline as an extra
step

Standards
Req. Mapping

Copyright © 2018-2022, SCRATCh 13

Tool Category [8.2] Deception Toolkits
SecDevOps Phases OSfuscate
Tool Examples The purpose of this tool is to impede the reconnaissance phase of an

attacker. According to the Lockheed Martin Cyber Kill Chain, this phase is
the first in a series of hostile activities. A directed manipulation of the
hostile reconnaissance output therefore affects the entire process of hostile
activity. Ideally, deception allows immediate impact on the prevention of an
attack.

Tool Purpose
Inputs Required
Actions Performed
Outputs Produced
Tool Interfaces
Standards
Req. Mapping

Tool Category [8.3] Secure Communications Tools
SecDevOps Phases Operate
Tool Examples Any VPN Client
Tool Purpose An easily introduced layer of security that makes sure all public network

traffic is protected.
Inputs Required (Unprotected) network traffic.
Actions Performed Depends on the tool, e.g. end-to-end encryption
Outputs Produced Protected network traffic.
Tool Interfaces No hard interfaces; tool can be inserted into the build pipeline as an extra

step
Standards
Req. Mapping

Tool Category [8.4] Secure Storage Tools
SecDevOps Phases Operate
Tool Examples Various software toolkits that allow for data to be stored in encrypted form

Secured storage facilitated by hardware
Tool Purpose Ensure that security related data (e.g. keys, passwords) and privacy sensitive

data is stored in a manner that will protect it.
Inputs Required Either protected or unprotected data, depending on operation
Actions Performed Encryption / Decryption operations
Outputs Produced Either unprotected or protected data, depending on operation
Tool Interfaces
Standards
Req. Mapping

Copyright © 2018-2022, SCRATCh 14

Tool Category [9.1] Threat Monitoring Tools
SecDevOps Phases Monitoring
Tool Examples Darktrace, FireEye (Cisco), Vectra AI (Vectra), QRadar (IBM)
Tool Purpose Threat monitoring tools typically monitor network traffic between endpoints

on an IT or OT network in order to detect cyber-threats and latent
vulnerabilities. These systems are configured to understand - or in some
cases use AI to learn - what 'normal' behaviour is, and then flag any
deviations from this norm (anomalies). This can generally identify a wide
range of threats, from malware to network intrusion.

Inputs Required Network traffic, configured or learned understanding of ‘normal’ behaviour
Actions Performed Analysis of the network traffic and flows
Outputs Produced Notifications of detected anomalies
Tool Interfaces Network interface
Standards
Req. Mapping

Tool Category [9.2] Incident Reporting Tools
SecDevOps Phases Monitoring
Tool Examples Nagios, Veeam, datadog, solarwinds, Famatech Advanced IP Scanner, Icinga,

LibreNMS, Wireshark, Zabbix, Graylog
Tool Purpose Monitoring IoT infrastructure components
Inputs Required Network traffic, Log files, System events, rules
Actions Performed Depends on the rules and tool used
Outputs Produced Messages/visualization of harmful events, blocking of certain devices
Tool Interfaces Tool dependent
Standards
Req. Mapping

3 Tools Developed by the SCRATCh Consortium Members
To facilitate agile SecDevOps for IoT system, the partners within the SCRATCh consortium will use a
combination of open source tools, existing commercial-off-the-shelf tools, and finally, tools developed
within the context of this project.

FIGURE 4: SECDEVOPS TOOLS DEVELOPED BY SCRATCH CONSORTIUM PARTNERS

8.4 Secure
Storage

HIB

2. Design 3. Code 4. Build 5. Test 6. Release 7. Deploy 8. Operate 9. Monitor1. Reqs

5.1 Verification
Testing Tools

NVISO

7.1 Identity &
Security Provisioning

Tools – Irdeto

2.1 Threat
Modelling Tools

Otaris

9.1 Threat
Monitoring Tools

DFKI

6.1 Threat
Checking Tools

4.1 Binary
Obfuscation

Tools

3.1 Source Code
Obfuscation Tools

Irdeto

5.2 Penetration
Testing Tools
NVISO, Anywi

9.2 Incident
Reporting Tools

5.3 Unit Test
Prioritization

Tools
Ulma

Tool developed within SCRATCh Program

8.3 Secure
Communications

Tools

8.2 Deception
Toolkits

DFKI

2.2 SDK Blueprint Repository

1.0 Development & Test Best Practices; Security & Vulnerability Knowledge Base 6.0 Release & Deployment Best Practices 8.0 Operational Best Practices

6.2 Dataflow
Protection Test
Tools - Otaris

3.2 Code Analysis Tools
Otaris

1.1 Requirements Management & Validation Tools
8.1 Runtime Application Self Protection

Tools

7.2 Secure
Deployment Tools
Almende, Anywi

Copyright © 2018-2022, SCRATCh 15

Figure 4 above represents the categories in which SCRATCh partners are current (or plan to) develop
tools that fit within the Toolset Framework. More details on these tools are provided in the
deliverables associated with Work Package 2 Interoperable Tools.

Additionally, most of these tools will be integrated into the generic demonstrator, or one of the use
case specific demonstrators as part of Work Package 4.

